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Abstract. Controllers often are large and complex reactive software systems and thus they typically cannot be
developed as monolithic products. Instead, they are usually comprised of multiple components that interact to
provide the desired functionality. Components themselves can be complex and in turn be decomposed into mul-
tiple sub-components. Designing such systems is complicated and must follow systematic approaches, based on
recursive decomposition strategies that yield a modular structure. This paper proposes FIDDle–a comprehensive
verification-driven framework which provides support for designers during development. FIDDle supports hier-
archical decomposition of components into sub-components through formal specification in terms of pre- and
post-conditions as well as independent development, reuse and verification of sub-components. The framework
allows the development of an initial, partially specified design of the controller, in which certain components,
yet to be defined, are precisely identified. These components can be associated with pre- and post-conditions,
i.e., a contract, that can be distributed to third-party developers. The framework ensures that if the components
are compliant with their contracts, they can be safely integrated into the initial partial design without additional
rework. As a result, FIDDle supports an iterative design process and guarantees correctness of the system at
any step of development. We evaluated the effectiveness of FIDDle in supporting an iterative and incremental
development of components using the K9 Mars Rover example developed at NASA Ames. This can be consid-
ered as an initial, yet substantive, validation of the approach in a realistic setting. We also assessed the scalability
of FIDDle by comparing its efficiency with the classical model checkers implemented within the LTSA toolset.
Results show that FIDDle scales as well as classical model checking as the number of the states of the components
under development and their environments grow.
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1. Introduction

Software systems are usually comprised of multiple components—portions of the system that provide a desired
functionality. In large and complex systems, components themselves can be complex, and decomposed into mul-
tiple sub-components. Hence, especially when large systems are considered, system design must follow systematic
approaches, based on recursive decomposition strategies that support the development of modular structures.
A good decomposition and a careful specification should allow sub-components to be developed in isolation
by different members of the development team or be delegated to third parties [Par72a, Par72b]. It should also
be possible to reuse off-the-shelf components or delegate development of parts of the system to external service
providers [PBKS07, PBvDL05, ABKS16, CH01]. In essence, software development can often be viewed as a dis-
tributed endeavor, where different decentralized developers (internal engineers, subcontractors, component and
service providers) are coordinated by the organization responsible for the entire system. The main problems of
distributed development are in the integration phase, when separately validated components are composed with
the other parts of the system and checked for overall correctness. In practice, software failures in the integration
phase may lead to expensive and painful changes that may affect the components, the rest of the system, and
even lead to changes in the modular structure.

In this article, we focus on the iterative and incremental design of components that abstractly behave as
controllers. This term is commonly used to denote components that interact with a complex environment—which
may include both physical devices and humans—through events. The controller processes the events generated
by the environment and generates events to control it. In particular, we focus on the provably correct iterative and
incremental development of complex, modular controllers. By this we mean that that component integration is safe
and does not require any rework. It guarantees overall correctness by construction.

Recently, several researchers [vBFH+14, tBRdV16] focused on synthesis as a way to obtain correct-by-
construction components. These techniques are tremendously useful for in-house development of small com-
ponents or development of individual components. Yet, they are not appropriate for many real-world scenarios,
due to their inability to support iterative and incremental developmentwhich becomes necessarywhen the problem
is too large to be handled in a single step. In addition, they do not support component reuse. For these reasons,
although significant advances have been made in the direction of synthesis, the fully automated approach based
on synthesis is not yet (and perhaps will never be) able to produce complex components. A more viable solution
is to use synthesis activities in the design process as a support to human effort [SL08, SL13]. On the other side
of the spectrum, approaches presented in the literature [BG99, CDEG03, MSG16, MSG17, BMS+17] provide
support for model-checking and top-down refinement of partial models with the goal of preserving correctness.
However, while these techniques guarantee correctness at each development stage, they do not explicitly address
the problem of decentralized development and bottom-up integration, which are needed to support iterative and
incremental development of real-world components. This is the problem we tackle in this work in a detailed and
actionable manner.

We believe that the complete automation of complex components development is both impossible and unde-
sired. Rather, we envision a systematic and formally verified design process where the construction of the overall
structure of a complex controller and the various development steps require insight and experience which are
human, not machine characteristics [SL08]. This suggests the need for a framework that capitalizes on the syn-
ergy between humans and machines for supporting distributed incremental development, by providing tools to
enhance (and verify) the human work at each step of the development. In particular, the framework should provide
several types of support:

S1.Modeling support for design activities performed by humans.Novel tools for software development should
help humans with modeling formalisms that effectively support components design. This includes support in
the contexts in which software components are produced by first creating an initial partial high-level model of a
component, where portions of the system that should be later defined are clearly identified, and then developing
a detailed model of the behavior of the system for the partially specified portions. The tools should support (i)
the description of the environment in which the component will be deployed, (ii) the specification of its required
properties, (iii) the creation of the initial (partial) structure of the component, and (iv) the design of the component
behavior in the portion of the component that are left unspecified.

S2. Model analysis support. As developers produce models of their components, they require automatic
support to check their designs. Such support should (j) check whether the properties of interest can be satisfied by
refining unspecified parts; (jj) check whether the initial partial design satisfies a set of properties of interest. The
first check allows developers to verify whether it is possible to refine unspecified parts in a way that guarantees
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the satisfaction of the property of interest. This is a necessary requirement for enabling distributed development.
The second check is performed after the contracts of the unspecified parts are defined. It allows the verification
of whether respecting the given contracts guarantees satisfaction of the properties of interest. If the answer to
the latter question is negative, further information that may help the user in fixing the errors, e.g., some form of
counterexamples, should be provided.

S3. Support for iterative and incremental development of unspecified parts. When complex components are
considered, it is desirable to first define a high level behavior of the component, leaving some parts temporarily
unspecified, and thendevelop theunspecifiedpartsor reuse existingoff-the-shelf sub-components, or evendelegate
provision of the functionality to an external service provider. To enable this type of development, there is a need
for developers to precisely describe what the unspecified parts should do.

S4. Support for integrating (sub-)components.When (sub-)components associated with the unspecified parts
are created and delivered, theymust be integrated in the original partially specified design. Integration is a process
that replaces the unspecified parts with their actual design.A desired property of the frameworkwe aim to develop
is that no work (manual or automatic) should be performed at the integration level.

In this paper, we propose a unified framework called FIDDle (a Framework for Iterative and Distributed
Design of components). FIDDle provides a set of tools and techniques for iterative and incremental verification-
driven component development. The framework is not based on any specific component models, like the ones
commonly adopted by industry (such as Java Beans, Microsoft’s COM family, or others). It is positioned at
a higher and more abstract level, and assumes components to be fragments of functionality modeled as state
machines. The framework supports a formal specification of global properties, a decomposition process and a
specification of component interfaces by providing a set of tools to guarantee correctness of the different artifacts
produced during the process. The capability of FIDDle to approximate complex designs by contracts and to
replace a prototypical implementation with a more sophisticated one at a later stage fosters decomposition of
complex designs and component reuse. Specific novel contributions of FIDDle are:

1. a new formalism, called Interface Partial Labeled Transition System (IPLTS), for specifying components
through a decomposition that encapsulates sub-components into unspecified black-box states;

2. an approach to specify the expected behavior of black-box states via pre- and post-conditions expressed in
Fluent Linear Time Temporal Logic (FLTL); and

3. a notion of component correctness and a local verification procedure that guarantees preservation of global
properties once the components are composed.

We also report on the evaluation of FIDDle on a realistic case study obtained by reverse-engineering the executive
module of theMars Rover developed at NASA [GPB02, CGP03, GPB05]. Scalability is evaluated by considering
randomly-generated examples.

FIDDle was first presented in [MSCG18]. This paper extends the work in [MSCG18] in several directions:

• it presents a complete formal treatment of the work, including proofs of all lemmas and theorems;
• it provides a detailed description of the algorithms;
• it shows how the presented approach can be applied recursively;
• it provides a thorough comparison with related work;
• it describes the FIDDle tool support;
• it provides additional detail of our evaluation.

The rest of the paper is organized as follows. Section 2 describes our running example. Section 3 provides an
overview of FIDDle. Section 4 gives the necessary background. Section 5 describes the semantics for FLTL on
finite traces. Section 6 presents Interface Partial Labeled Transition Systems. Section 7 defines a set of algorithms
for reasoning on partial components and describes their implementation. Section 8 reports on an evaluation of
the effectiveness and scalability of the proposed approach. Section 9 compares FIDDle with related approaches,
and Sect. 10 concludes the paper.
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Fig. 1. The p&d environment (Figs. 1a, 1b, 1c) and the properties the p&d system must ensure (Fig. 1d)

2. Running example

We illustrate FIDDle using a simple example of purchase&delivery (p&d) [PBB+04, DBPU13], shown in Fig. 1.
The p&d system supports furniture purchase and delivery. The system allows users to check whether certain items
are present, and to order the desired product or cancel the order.

To provide this functionality, the p&d system uses two existing web services, which implement the furniture-
sale and the shipping. The behavior of the furniture-sale service is described in Fig. 1a through a simple state
machine. The service is initially in the state 1. The transition labeled with the action prodInfoReq allows the
furniture-sale component to be queried to check the presence of some furniture. The transition labeled with the
action infoRcvd indicates that the information regarding the furniture is provided. Finally, transitions labeled
with prodReq and prodCancel indicate that the furniture is requested or the order is canceled.

The behavior of the shipping service is described in Fig. 1b. The transition labeled with shipInfoReq allows
the shipping component to be queried to check the presence of some furniture. The transition labeled with
costAndTime indicates that the information regarding the cost and time of the delivery is provided. Transitions
labeled with shipReq and shipCancel indicate that the shipping is being requested and that the order is canceled,
respectively.

The desired interactions of the users with the yet-to-be-defined component are described in Fig. 1c. The
transition labeledwith userReq indicates that the user performs a request to the system.The transition labeledwith
offerRcvd indicates that the user receives the desired information (furniture presence and shipping information).
Based on this information, the user can choose whether to accept or refuse the offer. This is represented through
the transitions labeled with the actions userAck and userNack. The system then has to confirm to the the user
that her choice has been correctly processed via transitions labeled with the actions respOk and reqCanc.

The goal of the development team is to design a component, referred in the following as the p&d component,
which acts as a controller interacting with the user and the two services in order to satisfy the user requests.
The furniture-sale, the shipping service and the user represent the environment within which the component
under development should operate. The final design of the p&d component must ensure that the controller, when
plugged into its environment, will satisfy a set of properties of interest, reported inFig. 1d. For example, in the final
system, ship and product info should not be provided to the user if a request has not been issued. The development
team decides to adopt a top-down development approach, which first creates an initial, partial and preliminary
high-level description of the system where the still-to-be-refined parts of the system are explicitly indicated. The
unspecified parts of the component are refined into sub-components, whose design and implementation are
delegated to third-party developers, who receive a contract that should be satisfied by the sub-component. It is
strongly desired that no rework be performed during the integration phase.



A verification-driven framework for iterative design of controllers

Fig. 2. Overview of the application of FIDDle for developing a component. Thick-bordered components are implemented in FIDDle.
Thick-dashed bordered components are currently supported by the theory presented in this paper, but they are still not fully implemented.
Thin-dashed bordered components are not discussed in this work

3. Overview

FIDDle is a verification-driven environment supporting iterative and incremental controller developments, as
described in Sect. 1.Ahigh-level viewofFIDDle is shown inFig. 2. FIDDle allows controllers to bemodularly and
incrementally developed in a distributedmanner, through a set of development phases in which the human insight
and experience are exploited to achieve a verified modular structure (rounded boxes labeled with a designer icon
and a recycle symbol indicate design or reuse, respectively) and phases in which automated support is provided
(squared boxes labeled with a pair of gearwheels). Automatic support is provided to verify the current state of the
design, integrate synthesized or off-the-shelf components, decentralize component development to third parties,
and check whether integrated components correctly fit into the overall design. FIDDle structures controller
developments according to a set of phases described in the following.

3.1. Creating an initial component design

This phase is identified in Fig. 2 with the symbol 1 . FIDDle provides modeling support for design activities
performed by humans and analysis support for design validation.

FIDDle provides suitable formalisms to specify requirements and to model behavior of the controller and of
its (sub-)components (step S1 in Sect. 1). The development team formalizes the component’s desired properties
through the requirements specification language and designs an initial, high-level structure of the component.
Components are modeled using a state-based formalism that can clearly identify sub-components, represented
as black-box states, whose internal design is delayed to a later stage or split apart for distributed development
by other parties. In the following, we refer to other (non black-box) states as “regular”. Black-box states are
enriched with an interface that provides information on the universe of events relevant to the black box. They are
also decorated with pre- and post-conditions that allow distributed teams to develop sub-components without
the need to know about the rest of the system. The contract of a black-box state consists of its interface and the
pre- and post-conditions.
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Fig. 3. The p&d running example: artifacts produced by FIDDle
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In the p&d example, the environment (assumed as given) in which the p&d component will be deployed is
composed by the furniture-sale component (Fig. 1a), the shipping component (Fig. 1b) and the user (Fig. 1c).
A possible initial design for the p&d component is shown in Fig. 3b. It contains the regular states 1 and 3 and
black-box states 2 and 4. State 1 is the initial state. Whenever a userReq event is detected, the component moves
from the initial state 1 into the black-box state 2, which represents a sub-component in charge of managing the
user request. An event offerRcvd which indicates that an offer is provided to the user labels the transition to state 3.
The interface of the black-box states 2 and 4 and their pre- and post-conditions are shown in Fig. 3c. The interface
indicates that events prodInfoReq, infoRcvd, shipInfoReq and costAndTime can occur while the component is in
the black-box state 2. Pre- and post-conditions need to be provided by the developers. Pre-conditions specify
properties that hold up to entering the corresponding black-box state and post-conditions specify properties that
should be ensured by black-box states. Both of them can be used in the analysis: whether the finite behaviors
reaching the black-box state guarantee satisfaction of the pre-conditions and whether the black-box state can be
replaced by their post-conditions to verify the validity of properties of interest. The pre- and post-conditions are
discussed in detail in this section.

FIDDle supports the designer by checking properties of the design at different stages of development (step
S2 in Sect. 1). The realizability checker confirms the existence of a realizable component that can be integrated to
complete apartially specified component and ensures satisfactionof theproperties of interest. If sucha component
does not exist, the designer needs to redesign the partially-specified component. The well-formedness checker
verifies that both the pre- and the post-conditions of black-box states are satisfiable. Finally, the model checker
verifies whether the (partial) component (together with its contract) guarantees satisfaction of the properties of
interest.

In the p&d example, the model checker identifies a problem with the partial solution sketched in Fig. 3b. No
matter how the black-box state 2 is to be defined, the p&d component cannot satisfy property P4 since every time
reqCanc occurs it is preceded by usrAck. This suggests a re-design of the p&d component, which may lead to a
new model, shown in Fig. 3d. This model includes two regular states: state 1, in which the component waits for a
new user request, and state 3, in which the component has provided the user with an offer and is waiting for an
answer. The user might accept (userAck) or reject (userNack) an offer and, depending on this choice, either state
4 or 5 is entered. States 2, 4 and 5 are black-box states, to be refined later.

To support iterative and incremental development of unspecified parts, FIDDle allows designers to specify
pre- and post-conditions for the black-box states (steps S3 and S4 in Sect. 1). In the p&d example, pre- and post-
conditions of the black-box state 2 specify that there is a pending user request, and that cost, time and product
information are collected. Pre- and post-conditions of the black-box state 4 specify that infoRcvd has occurred
after the user request, and both a product and shipping requests are performed. Finally, pre- and post-conditions
of the black-box state 5 specify that infoRcvd has occurred after the user request and before entering the state,
and both the product and the shipping requests are canceled when leaving the state. This model is checked using
the verification tools; since it passes all the checks, it can be used in the next phase of the development.

The design team may choose to refine the component or distribute the development of unspecified sub-
components (represented by black box states) to other (internal or external) development teams. In both cases,
the sub-component can be designed by only considering the contract of the corresponding black-box state. Each
team can develop the assigned sub-component or reuse existing components.

3.2. Sub-component development

This phase is identified in Fig. 2 with the symbol 2 . During sub-component development, FIDDle provides
support to the modeling activities performed by humans (step S1 in Sect. 1). In the p&d example, each team can
design the assigned sub-component using any available technique, including manual design (left side), reusing of
existing sub-components (right side) or synthesizing new ones from the provided specifications (center).

To support iterative and incremental development of unspecified parts and safe integration of the developed
of sub-components, FIDDle requires the developed sub-components to satisfy some constraints, namely,

1. given the stated pre-condition, the sub-component has to satisfy its post-condition, and
2. the sub-component should operate in the same environment as the overall partially specified component.

Sub-component development can itself be an iterative process (see Sect. 3.4) but neither the model of the envi-
ronment nor the overall properties of the system can be changed during this process. Otherwise, the resulting
sub-component cannot be safely and automatically integrated into the overall system.



C. Menghi et al.

In the p&d example, development of the sub-component for the black-box state 2 is delegated to an external
(third-party) contractor. Candidate sub-components are shown inFigs. 3e-3f. In the case of Fig 3e, the component
requests shipping info details and waits until the shipping service provides the shipment cost and time. Then it
queries the furniture-sale service to obtain the product info. In the case of Fig 3f, the shipping and the furniture
services are queried, but the sub-component does not wait for an answer from the furniture-sale. Since these
candidates are fully defined, the well-formedness check is not needed. Yet, the substitutability checking confirms
that of these, only the sub-component in Fig. 3e satisfies the post-condition in Fig. 3c.

3.3. Integration of sub-components

This phase is identified in Fig. 2 with the symbol 3 . FIDDle supports integration of the development of sub-
components and guarantees that if each sub-component is developed correctly w.r.t. the contract of the corre-
sponding black-box state, the component obtained by integrating the sub-components is also correct (step S4 in
Sect. 1). In the p&d example, the sub-component in Fig. 3e passes the substitutability check and can be a valid
implementation of the black-box state 2 in Fig. 3d. Integration is shown in Fig. 3j.

3.4. Recursive application of FIDDle

FIDDle can be applied recursively, allowing to distribute development of portions of the sub-components (e.g.,
to third-party vendors). This is indicated in Fig. 2 with the symbol 2 .

For example, Fig. 3g shows an initial partial design of the sub-component associated with state 5 of the p&d
example. This partially-specified sub-component requires the system to increase the count of canceled orders,
enters the black-box state 5.2, and finally cancels the order. FIDDle provides automated support for the sub-
component design. The well-formedness confirms that the pre- and the post- conditions of black-box states are
satisfiable. The substitutability checking notifies the designer that the sub-component in Fig. 2 does not ensure
the satisfaction of its post-condition. Indeed, there is no guarantee that shipping of the product is canceled
(i.e., the ShipCancel event occurs). The post-condition for the black-box state 5.2, shown in Fig. 3h, which
ensures that the shipping is performed before the black-box state 5.2 is exited by the system, guarantees that
the sub-component passes the substitutability checking. In turn, the black-box state 5.2 is decomposed into the
sub-component represented in Fig. 3i. This component is completely specified. Upon its entry, the counter of the
canceled shipping orders is incremented and then the shipping is canceled. When it is entered, the counter of the
canceled shipping orders is incremented by one. The substitutability checking confirms that the sub-component
is substitutable and can be integrated within the black-box state 5.2. This iterative process can be applied for any
partially specified subcomponent.

To conclude, FIDDle allows the iterative and incremental distributed development of controllers and provides
the support described in Sect. 1. FIDDle relies on an extension of Labeled Transition Systems (LTS) that allows
the representation of incompleteness and offers the possibility of defining an initial modular incomplete structure.
It also allows distributing the design of the missing components and offers automatic support for the verification
of the different parts and for substitutability analysis of components within a partially defined structure.

4. Background

This section contains background knowledge and definitions used in the rest of the paper. Section 4.1 introduces
LTS. Section 4.2 provides a high level description of Büchi automata (BA). Section 4.3 introduces Fluent Linear
Time Temporal Logic (FLTL). Finally, Sect. 4.4 outlines a procedure for verifying the satisfaction of FLTL
properties on LTS.

4.1. Labeled transition systems

Labeled Transition Systems are a specific type of state machines commonly used to model software components
and their environments.
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Definition 4.1 [Kel76] Let Act be the universal set of observable events and let τ be an unobservable local event.
A finite Labeled Transition System (LTSf ) is a tuple F � 〈Q, q0,A,�,Qf 〉, where
• Q is a finite set of states,
• q0 ∈ Q is the initial state,
• A ⊆ Act is a finite set of events,
• � ⊆ Q × A ∪{τ } ×Q is the transition relation, and
• Qf ∈ Q is the set of final states.

A Labeled Transition System (LTS) L � 〈Q, q0,A,�〉 is an LTSf where the set of final states is not defined.

For example, Fig. 3e contains an LTSfwith states 2.1, 2.2, 2.3, 2.4 and 2.5, where 2.1 and 2.5 are its initial
and final states, respectively. Transitions specify how the LTSf evolves by firing transitions labeled with events
shipInfoReq, costAndTime, prodInfoReq and infoRcvd.

Fig. 1a contains an LTS for modeling a furniture-sale component. The LTS is defined over the states 1, 2
and 3, where state 1 is initial. Transitions specify how the LTS evolves by firing transitions labeled with events
prodInfoReq, infoRcvd, prodCancel and prodReq.

Given a state q (of an LTS or an LTSf ), let �(q)− and �(q)+ denote its incoming and outgoing transitions,
respectively, and let �(q) denote the union of the incoming and outgoing transitions of q . For example, in the
LTS in Fig. 1a, �(1)+ � {(1, prodInfoReq, 2)}. Given a transition δ � (q1, e, q2), we use δ− to indicate its source
q1, δ+ to indicate its destination q2, and δe for its label e. For example, for the transition δ � (2, infoRcvd, 3) of
the LTS in Fig. 1a, δ− � 2, δ+ � 3 and δe � infoRcvd.

Definition 4.2 Let F � 〈Q, q0,A,�,Qf 〉 be a LTSf . A finite sequence q0, e0, q1, e1, . . . , qn , en , qn+1, such that
for every 0 ≤ i ≤ n, (qi , ei , qi+1) ∈ � and qn+1 ∈ Qf , is a finite execution of F , and π � e0, e1, . . . , en is a
trace of F . Let L � 〈Q, q0,A,�〉 be an LTS. An infinite sequence q0, e0, q1, e1, . . ., such that for every i ≥ 0,
(qi , ei , qi+1) ∈ �, is an infinite execution of L, and π � e0, e1, . . . is a trace of L.

Traces of an LTSf are finite and reach final states representing finite computations. For example, shipInfoReq,
costAndTime, prodInfoReq, infoRcvd is the only finite trace of the LTSf in Fig. 3e. LTS traces are infinite, i.e., the
system is not designed to stop. For example, prodInfoReq, infoRcv, prodReq repeated infinitely often is an infinite
trace of the LTS in Fig. 1a.

Definition 4.3 Let π � e0, e1, . . . , en and π ′ � e ′
0, e

′
1, . . . , e

′
n be two sequences of events. We use the notation

π ; π ′ to indicate their concatenation e0, e1, . . . , en , e ′
0, e

′
1, . . . , e

′
n .

In the rest of this paper, when not specified, we assume that LTSf and LTS are minimized with respect to
bisimulation. Intuitively, given an LTSf (respectively, an LTS), theminimization procedure removes τ actions and
generates a LTSf (respectively, an LTS) with the same behavior (for additional information about minimization,
refer to [MK99]).

Parallel composition is a symmetric operator that takes two LTSf and computes a resulting one by synchro-
nizing on shared events and interleaving the others.

Definition 4.4 Let M � 〈QM , q0,M ,AM ,�M ,Qf ,M 〉 and N � 〈QN , q0,N ,AN ,�N ,Qf ,N 〉 be LTSf . Parallel
composition ofM andN (denoted byM ‖ N ) is an LTSf P � 〈QM ×QN , 〈q0M , q0N 〉,AM ∪AN ,�,Qf ,M ×Qf ,N 〉,
where � is the smallest relation that satisfies the following rules:

(1) (s, l , s ′) ∈ �M

(〈s, t〉, l , 〈s ′, t〉) ∈ �
, l ∈ AM \ AN or l � τ

(2) (t, l , t ′) ∈ �N

(〈s, t〉, l , 〈s, t ′〉) ∈ �
, l ∈ AN \ AM or l � τ ;

(3) (s, l , s ′) ∈ �M , (t, l , t ′) ∈ �N

(〈s, t〉, l , 〈s ′, t ′〉) ∈ �
, l ∈ AN ∩ AM , l � τ ;

where l ∈ AM ∪ AN ∪ {τ }, s and s ′ are states in QM , and t and t ′ are states of QN . Parallel composition of two
LTS is defined identically, except that final states are excluded.

Rules (1) and (2) indicate that there is an interleaving on non-shared events and Rule (3) that there is a synchro-
nization on shared ones.
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Given a set of events H , the hiding operator turns all the transitions labeled with events in H into τ -labeled,
i.e., unobservable events.

Definition 4.5 Let F � 〈Q, q0,A,�,Qf 〉 be an LTSf and H ⊆ A. \ is a hiding operator such that N � F\H is
an LTSf N � 〈Q, q0,A′,�′,Qf 〉, where the following conditions hold:
• A′ � A \ H ;
• �′ � {(q, e, q ′) | (q, e, q ′) ∈ � and e ∈ A \ H } ∪ {(q, τ, q ′) | (q, e, q ′) ∈ � and e ∈ H }.

For LTS, hiding is defined identically, except that final states are excluded.

For example, if the hiding operator is applied to the LTS in Fig. 1a w.r.t. the set {prodInfoReq}, the transition
from state 1 to state 2 labeled with prodInfoReq is replaced by one labeled with τ .

4.2. Büchi automata

Büchi Automata are a reference formalism commonly used in the verification community.

Definition 4.6 [Büc90] Let AP be a finite set of atomic propositions. A Büchi automaton (BA) defined over AP is
a tuple B � 〈Q, q0,A,�,Qa 〉 such that:

• Q is a finite set of states;
• q0 is the initial state;
• A ⊆ AP is a finite set of atomic propositions;
• � ⊆ Q × A × Q is the transition relation;
• Qa ⊆ Q is the set of the accepting states.

Given a BA B � 〈Q, q0,A,�,Qa 〉, π � e0, e1, . . . is an infinite trace of B if there exists an infinite sequence
q0, e0, q1, e1, . . ., where, for every i ≥ 0, (qi , ei , qi+1) ∈ � and there exists a state qi ∈ Qa that appears in the
sequence infinitely often.

It is possible to check (using a standard procedure described in [Büc90]) whether a given BA has no infinite
trace. We indicate this check by a function checkEmptiness(B ) which returns true if the automaton accepts no
infinite traces and thus is empty, and false otherwise.

An LTS can be converted into a BA which accepts exactly the same traces:

Lemma 4.1 Let L � 〈Q, q0,A,�〉 be an LTS. π � e0, e1, . . . is a trace of L if and only if it is a trace of the BA
B � 〈Q, q0,A,�,Q〉.

The BA contains the same states and transitions as the LTS and all of its states are accepting. This ensures
that, if a trace of the LTS is also a trace of the BA, it will enter at least an accepting state of the BA an infinite
number of times, since the set of states is finite. Every infinite trace of the BA is an infinite trace of the LTS by
construction. We call LTS2BA the procedure for converting an LTS into a BA. This procedure copies all the
states and transitions from the LTS to the BA and adds all the states of the LTS in the set of the accepting states
of the BA. For example, the BA obtained from the LTS in Fig. 1a has the same states and transitions, and states
1, 2 and 3 are also accepting.

The intersection operator computes the synchronous product of two automata: given two BA M and N , it
computes a BA whose traces are the intersection of the traces of M and N .

Definition 4.7 [CGP99] Let M � 〈QM , q0,M ,A,�M ,Qa,M 〉 and N � 〈QN , q0,N ,A,�N ,Qa,N 〉 be BA defined
over the same alphabet A. Their intersection is a symmetric operator (∩) such that P � M ∩ N is a BA P �
〈QM ×QN × {0, 1, 2}, 〈q0,M , q0,N , 0〉,A,�,Qa,M ×Qa,N × {2}〉, where a transition (〈qm , qn , x 〉,A, 〈q ′

m , q ′
n , y〉)

is in � if and only if:

1. (qm , e, q ′
m ) ∈ �M and (qn , e, q ′

n ) ∈ �N ;
2. if x � 0 and q ′

m ∈ Qa,M then y � 1;
3. if x � 1 and q ′

n ∈ Qa,N then y � 2;
4. if x � 2 then y � 0;
5. otherwise, y � x .
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The states of the system contain all the possible combinations of the states of the automataM andN and the
values {0, 1, 2}. A transition from a state 〈qm , qn , x 〉 to a state 〈q ′

m , q ′
n , y〉 labeled with e is in the intersection if

bothM and N can move from qm (resp. qn ) to q ′
m (resp. q ′

n ) on a transition labeled with e. The third component
in each state is responsible for guaranteeing that an infinite trace of the intersection automaton is present if and
only if it corresponds to an infinite trace ofM (resp.N ) in which an accepting state is visited infinitely often. The
third component is initially 0, and changes from 0 to 1 and from 1 to 2 whenever an accepting state ofM and N
is entered, respectively. After an accepting state of N is visited, it is set back to 0. This construction guarantees
that every infinite trace of the intersection automaton is an infinite trace of bothM and N , i.e., where accepting
states ofM and N are visited infinitely often.

4.3. Fluent linear time temporal logic

It is often non-trivial to express LTL properties directly in terms of events, especially when the interest is to
define intervals among the occurrence of different events and relationships between them. Thus, in this work, we
consider FLTL [San95, CDGV02, GM03] as a logic to express properties of the system.

A fluent is a property that holds after an event occurs and ceases to hold when it is terminated by another
event.

Definition 4.8 [San95] A fluent Fl is a tuple 〈IFl ,TFl , I ni tFl〉 where IFl ⊂ Act is the set of initiating events,
TFl ⊂ Act with IFl ∩ TFl � ∅ is the set of terminating events and I ni tFl ∈ {true, false} is the initial valuation.

Afluentmaybe trueor false. The initial valueof thefluent is specifiedusing the attribute I ni tFl [MS99].Afluent
is true if it has been initialized by an event e1 ∈ IFl at an earlier time point (or if I ni tFl � true, i.e., it was initially
true) and has not yet been terminated by another event e2 ∈ TFl ; otherwise, it is false. For example, the fluent
PR � 〈{prodInfoReq}, {prodCancel, prodReq}, false〉, representing the fact that the furniture-sale component is
processing a request, is initially false. It becomes true from the moment when the event prodInfoReq occurs, i.e.,
a request is received, until the moment in which the event prodCancel, which cancels the order request, or the
event prodReq, which confirms the order request, occur.

Fluents also implicitly allow developers to specify properties on event occurrence. The occurrence of an
event e ∈ Act can be considered by defining a fluent where the initial set of actions is the singleton {e} and the
terminating set contains all other actions in the alphabet of the system, i.e., Act \ {e}. In the following, we use
the notation F Event to indicate a fluent that is true when the event with label event occurs.

Definition 4.9 Given a set of fluents �, an FLTL formula φ has the following syntax:

φ :� Fl | ¬φ | φ1 ∧ φ2 | φ | φ | φ | φ U φ | φ W φ, where Fl ∈ �

(next), (eventually), (always), U (until) and W (weak until) are the standard LTL operators.

For example, theFLTLproperty (PR) states that eventually the furniture-sale componentwill process a request.
The FLTL encodings of the properties P1, P2, P3 and P4 are shown in Fig. 3a. Note that, for completeness,
Definition 4.9 provides the complete syntax of FLTL formulae, including the operators (eventually), (always)
and W (weak until), but all the FLTL formulae can be expressed using only the operators and U .

The semantics of FLTL formulae is given by considering infinite sequences of fluents associated with infinite
traces of an LTS. We begin by constructing an FLTL interpretation of an infinite trace.

Definition 4.10 Let Actτ � Act ∪ {τ }. Given a set of fluents � and an infinite trace π � e0, e1, . . . over Actτ , an
FLTL interpretationofπ is an infinite sequence f0, f1, . . .over 2� which assigns to each index i ofπ the set of fluents
that hold in position i . Formally, ∀ i ∈ N, ∀ Fl ∈ �, Fl ∈ fi if and only if either of the following conditions hold:

• I ni tFl � true and (∀ k ∈ N, k ≤ i , ek ∈ TFl );
• ∃ j ∈ N such that (j ≤ i ) and (ej ∈ IFl ) and (∀ k ∈ N, j < k ≤ i , ek ∈ TFl ).

Consider an infinite trace of the LTS inFig. 1a, inwhich the events prodInfoReq, infoRcv, prodReq are repeated
infinitely often, and a set of fluents {PR}. The infinite interpretation of this trace is an infinite sequence in which
the the set {PR} is assigned to each index i where events prodInfoReq or infoRcv occur and the set {} is assigned
to each index j where the event prodReq occurs. In this sequence, the fluent PR holds from the time of occurence
of the event prodInfoReq until occurence of prodReq (that time point itself is excluded).
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The FLTL infinite semantics specifies when a formula φ is satisfied by the FLTL interpretation of an infinite
trace.

Definition 4.11 Let π � e0, e1, . . . be an infinite trace, ρ � f0, f1, . . . be its FLTL interpretation and φ be an FLTL
formula. The FLTL infinite semantics of φ over ρ is defined as follows:

ρi |� Fl ⇔ Fl ∈ ρi

ρi |� ¬φ ⇔ ρi |� φ

ρi |� φ1 ∧ φ2 ⇔ ρi |� φ1 and ρi |� φ2

ρi |� (φ) ⇔ ρi+1 |� φ

ρi |� (φ1)U(φ2) ⇔ ∃k ≥ i such that ρk |� φ2, and ∀ j such that i ≤ j < k , it holds that ρj |� φ1,

where ρi indicates the infinite sub-trace of ρ starting at position i .

The semantics of (eventually), (always) andW (weak until) is not presented since it is standard and can
be deduced from the semantics of the operators and U .

Given an infinite trace π and a formula φ, we say that π satisfies φ (denoted π |� φ) if and only if the FLTL
interpretation ρ of π satisfies φ (i.e., ρ |� φ). For example, the infinite trace of the LTS in Fig. 1a in which the
events prodInfoReq, infoRcv, prodReq are repeated infinitely often satisfies the FLTL property (PR). Note that
since FLTL is a natural extension of LTL, it is closed under negation. The proof can be obtained, for example,
by applying the procedure described in [YPA06].

4.4. Verifying FLTL properties on LTS

Verification of an FLTL property φ on an LTS L aims at checking whether φ holds on L. We first define the notion
of satisfaction of an FLTL φ on an LTS L and then review a procedure for checking an FLTL φ on an LTS L.

Definition 4.12 Let L be an LTS and φ be an FLTL formula. We say that the LTS L satisfies the FLTL formula
φ, i.e., L |� φ, if for every infinite trace π of L, it holds that π |� φ.

Consider the LTS in Fig. 1a and the fluent PR. The FLTL formula PR holds on this LTS.
We now recall a procedure to check an FLTL formula φ on an LTS L. Note that the infinite traces of the LTS

are defined over the set of events A, while the formula is defined over the set of fluent propositions �. This gap
has been handled by introducing fluent automata and synchronizer automata. These automata are used in the
verification procedure to bind event occurrence with the fluent satisfaction. We first present fluent automata and
synchronizer automata and then describe how they are used in the verification procedure.

A fluent automaton relates the occurrence of events with the satisfaction of a given fluent.

Definition 4.13 Let � be a set of fluents and Fl=〈IFl ,TFl , I ni tFl〉 be a fluent in �. Its fluent automaton is an LTS
F � 〈Q, q0,A,�〉, where:
• Q � {qt , qf };
• A � IFl ∪ TFl ∪ 2�;
• � � {(qf , e, qt ) | e ∈ IFl }∪

{(qt , e, qt ) | e ∈ IFl }∪
{(qt , e, qf ) | e ∈ TFl }∪
{(qf , e, qf ) | e ∈ TFl }∪
{(qf , x , qf ) | x ∈ 2� and Fl ∈ x }∪
{(qt , x , qt ) | x ∈ 2� and Fl ∈ x };

• q0 � qt if initially I ni tFl � true, else q0 � qf .

The automaton has two states: qt , where the fluent holds, and qf , where it does not. The automaton moves
from qt (resp. qf ) to qf (resp. qt ) if an event from its initiating (resp. terminating) set occurs. Fluent satisfaction is
represented by self-transitions labeled with the fluent propositions from 2�. For example, consider the set of flu-
ents � � 〈PR,FR〉, where PR=〈{prodInfoReq}, {prodCancel, prodReq}, false〉, and FR is an additional arbitrary
fluent. The fluent automaton associated with the fluent PR is represented in Fig. 4.
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Fig. 4. Fluent automaton associated with the fluent PR

Fig. 5. Synchronizer automaton associated with the fluent PR and FR and the set of events A � {prodInfoReq, prodCancel, prodReq}

In Fig. 4, multiple transitions with the same source and destination states are represented by a single transi-
tion, where the atomic propositions that label the different transitions are separated by commas. For example, the
transition labeled with the atomic propositions {prodInfoReq,PR∧FR,PR∧¬FR } indicates three different tran-
sitions, labeled with prodInfoReq, PR ∧ FR and PR ∧¬ FR. If a transition labeled with PR is fired, the fluent PR
holds, while if a transition labeledwith¬PR is fired, the fluentPR does not hold.As expected, infinite traces of the
automaton indicate thatPR holds only after an event prodInfoReq and before events {prodCancel, prodReq}. Fur-
thermore,PR does not hold initially and becomes false after occurence of either of the events prodCancel, prodReq
and before a transition labeled with prodInfoReq is fired.

While the fluent automaton allows taking a transition labeled with a fluent (e.g., PR in Fig. 4) or its negation
(e.g., ¬PR in Fig. 4), nothing forces these transitions to actually take place. Instead, we aim to generate an au-
tomaton that is forced to alternate the execution of transitions labeled with events and fluents. This automaton
is obtained by combining the fluent automaton with a special synchronizer automaton, which we define below.

Definition 4.14 Let � be a set of fluents and Act be a set of events, such that for all Fl ∈ �, IFl ⊆ Act and
TFl ⊆ Act , the synchronizer automaton is an LTS Sync � 〈Q, q0,A,�〉, where
• Q � {q0, q1};
• A � Act ∪ 2�;
• � � {(q1,Fl , q0) | Fl ∈ 2�} ∪ {(q0, e, q1) | e ∈ Act}.
The synchronizer automaton has two states: q0 and q1. It moves from q0 to q1 by firing a transition labeled with

an event, and from q1 to q0 by firing a transition labeled with a fluent. Thus, it alternatively executes transitions
labeled by events and by fluents. For example, the synchronizer automaton associated with the fluents PR and
FR and the set of events A � {prodInfoReq, prodCancel, prodReq} is shown in Fig. 5.

Algorithm 1 Checks an FLTL formula on an LTS.
1: function CheckFLTLonLTS(L, φ,F1,F2, . . .Fn , Sync)
2: B ⇐ LTL2BA(¬φ)
3: P ⇐ (L ‖ F1 ‖ F2 ‖ . . .Fn ‖ Sync)
4: P ′ ⇐ LTS2BA(P )
5: B ′ ⇐ AddEvents(B ,Act)
6: I ⇐ B ′ ∩ P ′
7: return checkEmptiness(I)

The synchronizer and the fluent automata are used to verify FLTL formulae on LTS via a procedure described
in Algorithm 1, in which the classical model checking algorithm presented in [CGP99] is enriched to deal with
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FLTL instead of LTL and the combination of LTS and BA. The procedure takes as parameters the LTS L, the
formula φ, the fluent automata F1,F2, . . .Fn , and the synchronizer Sync. It returns true if the property φ is
satisfied, and false and a counterexample if it is not. The algorithm translates the negation of the formula into
a BA B by using a standard LTL2BA procedure [VW94] (Line 2). Then, it computes the parallel composition
between the LTS L, the fluent automata F1,F2, . . .Fn and the synchronizer Sync (Line 3). In the traditional
automata-based approach, the next step is to compute the intersection between the BA representing the system
and the BA representing the negation of the LTL property to check. Since in our case, the model is an LTS, it
needs to be converted in a BA via the function LTS2BA (Line 4). Moreover, as the transitions of the obtained BA
are labeled with fluents and transitions of the model obtained in Line 3 alternate fluents and events, to correctly
compute the intersection between the model and the formula (Line 6), we need to add a self-loop labeled with the
events in Act to all the states in B (Line 5). The reason is that the intersection that is computed in the next step
of the algorithm (Line 6) synchronously fires transitions of the automata B ′ and P ′. Thus, transitions labeled
with events of P ′ can only fire if the BA obtained from the property also contains transitions labeled with events.
Essentially, the BA P ′ fires its transitions depending on the behavior of the system and on the relation between
events and fluents. The intersection extracts from those behaviors the ones that also satisfy the property of interest
as specified by the fluent-labeled transitions present in the automaton B ′. The function checkEmptiness is then
used to verify whether the automaton I is empty.

Theorem 4.1 Algorithm 1 returns true if and only if there exists an infinite trace of the LTS L which satisfies the
FLTL formula.

5. Fluent linear time temporal logic and finite traces

Section 4 described how FLTL formulae are evaluated on infinite traces. However, it might be necessary to evalu-
ate satisfaction of formulae on finite traces, e.g., recall that pre- and post-conditions introduced in Sect. 3 specify
properties over traces that reach unspecified components. In this section,

• we define finite semantics of FLTL formulae, referred to as FLTLf (Sect. 5.1);
• we present a procedure for checking FLTLf formulae on LTSf (Sect. 5.2). Our procedure reuses the algorithm
for checking the satisfaction of FLTL formulae on LTS presented in Sect. 4.4;

• we present a procedure for taking an FLTLf formula φ and synthesizing from it an LTSf that exhibits exactly
those finite traces that satisfy φ (Sect. 5.3). This procedure forms one of the main tools used in FIDDle for
providing automatic support for iterative design of components, as described in Sect. 7.

5.1. FLTLf semantics on finite traces

Interpretation of FLTL formulae on finite traces is denoted by FLTLf . FLTLf syntax is the same as FLTL and
its semantics is inspired by [DGV13].

We begin by defining the interpretation of a fluent Fl on a finite trace.

Definition 5.1 Let� be a set of fluents, and π � e0, e1, . . . , en be a finite trace overAct .An FLTLf interpretation
of π is a finite sequence f0, f1, . . . , fn over 2� which assigns to each index i of π the set of fluents that hold in
position i for 0 ≤ i ≤ n, by following the same rules as specified in Definition 4.10.

Consider the finite trace shipInfoReq, costAndTime, prodInfoReq, infoRcvd of the LTSf in Fig. 3e and the fluent
W � 〈{shipInfoReq, prodInfoReq}, {costAndTime, infoRcvd}, false〉, which is true when the system is waiting for
some information. The fluentW becomes true when a request is performed by the component, i.e., a shipInfoReq
or a prodInfoReq event occur, and becomes falsewhen some information is received (costAndTime or infoRcvd oc-
curs). The FLTLf interpretation of the trace shipInfoReq, costAndTime, prodInfoReq, infoRcvd is {W}, {}, {W}, {}.

We now use the interpretation of a finite trace to define the FLTLf semantics.

Definition 5.2 Let π � e0, e1, . . . , en be a finite trace, ρ � f0, f1, . . . , fn be its FLTLf interpretation, and φ be a
FLTLf formula. The FLTLf finite semantics of φ over ρ is as defined by Definition 4.11, with the exception of
the operators and U defined as follows:
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ρi |� (φ) ⇔ i < n ∧ ρi+1 |� φ

ρi |� (φ1)U(φ2) ⇔ ∃ i ≤ k ≤ n such that ρk |� φ2 and ∀ i ≤ j < k , ρj |� φ1,

where ρi refers to the finite sub-trace of ρ starting at position i .

Intuitively, a formula preceded by the operator does not hold in the last position of the interpretation, since
the operator forces the existence of the next position of the interpretation. A formula of the type (φ1)U(φ2)
forces the fluent φ2 to occur before reaching the position n of the interpretation. For example, the formula (W),
whereW is the fluent previously defined, does not hold on the finite trace shipInfoReq, costAndTime, prodInfoReq,
infoRcvd.Given afinite traceπ its FLTLf interpretationρ anda formulaφ, we say thatπ |� φ if andonly ifρ |� φ.

5.2. Verifying FLTLf properties on LTSf

We begin by defining what it means for an LTSf L to satisfy an FLTLf formula, and then present a verification
procedure that checks the satisfaction of an FLTLf formula φ on an LTSf L. We reduce this problem to checking
an FLTL formula φ′ on an LTSL′, where φ′ andL′ are obtained from φ andL.We begin by showing that checking
whether an FLTLf formula φ holds on a finite trace π can be done by evaluating whether an equivalent FLTL
formula φ′ holds on the infinite extension e(π ) of the trace φ.

Definition 5.3 Let π � e0, e1, . . . , en be a finite trace defined over the set of eventsActτ such that end ∈ Actτ . Its
infinite extension, e(π ) � e0, e1, . . . , en , {end}ω, is obtained by concatenating an infinite number of occurences
of the event end to the trace π .

Definition 5.4 LetF be an LTSf and φ be an FLTLf formula.We say that the LTSf F satisfies the FLTLf formula
φ, i.e., F |� φ, if for every finite trace π of F , it holds that π |� φ.

Consider the LTSf in Fig. 3e and the fluentW. The FLTLf formula W holds on this LTSf .

Definition 5.5 Let� be a set of fluents defined over the alphabetActτ , such that end ∈ Actτ ,�′ be a set of fluents
defined over the alphabet Actτ ∪ {end}, φ be an FLTLf formula defined over �, and φ′ be an FLTL formula
defined over �′. φ′ is equivalent to φ if for every finite trace π , π |� φ ⇔ e(π ) |� φ′.

We now want to define an operator FLTLf 2FLTL that, given an FLTLf formula φ, generates an equivalent
FLTL formula φ′.

Definition 5.6 Let � be a set of fluents defined over the alphabet Actτ , such that end ∈ Actτ , END be the fluent
〈{end},Actτ , false〉, and φ be an FLTLf formula defined over �. The operator FLTLf 2FLTL converts φ into an
FLTL by applying the following rules:

FLTLf 2FLTL(Fl ) → Fl ′, where Fl � 〈IFl ,TFl , I ni tFl〉 and Fl ′ � 〈IFl ,TFl ∪ {end}, I ni tFl〉;
FLTLf 2FLTL(¬φ) → ¬FLTLf 2FLTL(φ);
FLTLf 2FLTL(φ1 ∧ φ2) → FLTLf 2FLTL(φ1) ∧ FLTLf 2FLTL(φ2);
FLTLf 2FLTL( φ) → (FLTLf 2FLTL(φ) ∧ ¬END);
FLTLf 2FLTL(φ1 U φ2) → FLTLf 2FLTL(φ1)U(FLTLf 2FLTL(φ2) ∧ ¬END).

Let φ � ¬W be an FLTLf formula, and π � e0, e1, . . . , en be a finite trace. We discuss the evaluation of the
formula in the final position n of the trace. The formula ¬W is false in position n by Definition 5.2, as i < n is
not satisfied. Let us consider the extension e(π ) of π . The FLTLf formula ((¬W)∧¬END) obtained from φ by
applying the function FLTLf 2FLTL is false in position n, as intended. This formula evaluates to true in position
n only after adding the event end to the set of the terminating events of the fluent W.

Consider a finite trace π defined over the set of events Actτ , such that end ∈ Actτ , its infinite extension e(π ),
and an FLTLf formula φ. We show that the problem of checking the satisfaction of φ can be reduced to checking
its equivalent formula φ′ on e(π ).

Theorem 5.1 Let � be a set of fluents, where END ∈ �, φ be an FLTLf formula defined over the set �, and φ′
be the formula constructed using the FLTLf 2FLTL procedure. The FLTL formula φ′ is equivalent to φ.

Proof Sketch We show that π |� φ ⇔ e(π ) |� φ′ holds in the base case, when φ is a fluent, and that it also
holds when temporal operators are considered.
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Consider the finite interpretation ρ of π � e0, e1, . . . , en and the infinite interpretation ρ ′ of e(π ). For every
Fl ∈ � and position i such that i ≤ n, where n is the length of the finite trace, ρi |� Fl ⇔ ρ ′

i |� Fl ′ by
construction. Furthermore, for every Fl ∈ � and position i such that i > n, ρi |� Fl and ρ ′

i |� Fl ′.
For operators ¬ and ∧, ρ |� ¬φ ⇔ ρ ′

i |� ¬FLTLf 2FLTL(φ) and ρ |� φ1 ∧ φ2 ⇔ ρ ′
i |� FLTLf 2FLTL(φ1) ∧

FLTLf 2FLTL(φ2) by construction.
Consider the operator . If i < n, ρi |� φ if and only if ρ ′

i |� (FLTLf 2FLTL(φ)), since END is false if i <
n. If i ≥ n, then, byDefinition 5.2, ρi |� φ, but also ρ ′

i |� false byDefinition 5.6 and the fact thatEND is true.
Consider the operator U . If i < n, ρi |� φ1 U φ2 if and only if ρ ′

i |� FLTLf 2FLTL(φ1)U(FLTLf 2FLTL(φ2))
by Definition 5.6 and the fact that END is false. If i ≥ n, then, by Definition 5.2, ρi |� φ1 U φ2. However,
ρ ′
i |� FLTLf 2FLTL(φ1)U false, is also always false, since END is true. �

Consider the finite trace shipInfoReq, costAndTime, prodInfoReq, infoRcvd, of the LTSf shown in Fig. 3e
and its infinite extension shipInfoReq, costAndTime, prodInfoReq, infoRcvd, endω. The satisfaction of the FLTLf

formula φ � (W ), whereW � 〈{shipInfoReq, prodInfoReq}, {costAndTime, infoRcvd}, false〉, on the finite trace
can now be checked by evaluating the satisfaction of the formula φ � (W ∧ ¬END) on its infinite extension.

We show that checking satisfaction of an FLTLf formula on LTSf can be reduced to checking the corre-
sponding FLTL formula on an LTS.

Theorem 5.2 Let φ be an FLTLf formula and F � 〈Q, q0,A,�,Qf 〉 be an LTSf model. If φ′ is the FLTL for-
mula equivalent to φ and F ′ � 〈Q, q0,A ∪ {end},�′〉 is an LTS such that �′ � � ∪ {(q, end, q) | q ∈ Qf }, then
F |� φ ⇔ F ′ |� φ′.

Intuitively, F ′ is replaced by adding a self-loop labeled with the event end to all of the final states of the LTSf .
Consider for example the LTSf presented in Fig. 3e. The FLTLf formula φ � (W ) can be checked by verifying
that the formula φ � (W ∧ ¬END) holds on the LTS obtained by an end self-loop to the state 2.5. In the rest
of this paper, we refer to this procedure as CheckFLTLf onLTSf .

We now provide the proof of Theorem 5.2.

Proof Sketch The infinite traces of the LTS F ′ are the infinite extensions of the finite traces of F ; thus, by
Theorem 5.1, the proposed procedure is correct. �

5.3. Synthesizing LTSf from FLTLf formulae

Given an FLTLf formula φ, we show how to construct an LTSf such that its finite traces are exactly those that
satisfy formula φ.

Definition 5.7 We define an FLTL end formula φend as (END) ∧ (END → (END)).

Lemma 5.1 Let π be an infinite trace and φend be an FLTL formula defined via Definition 5.7. If π |� φend ,
then π has the form e0, e1, . . . , en , {end}ω.

Proof Sketch The subformula (END) forces the END fluent to eventually hold. The subformula (END →
(END)) specifies that globally if the END fluent holds, it must hold in the next position. Since the set of the

initiating events of the END fluent only contains the event end and the set of the terminating events isActτ , event
end must occur at some position n + 1, and in any position i ≥ n + 1. �

Wealso define an operator that converts a BA into anLTSf and a procedure that removes τ -labeled transitions
from a LTSf .

Definition 5.8 Let B � 〈Q, q0,A,�,Qa 〉 be BA. The LTSf F � 〈Q, q0,A,�,Qf 〉 is the conversion of the BA B ,
denoted F � BA2LTSf (B ), if Qf � Qa .

Definition 5.9 Let F � 〈Q, q0,A,�,Qf 〉 be an LTSf . F ′ � Removeτ (F ) is an LTSf 〈Q, q0,A,�′,Qf 〉, such
that any transition (qi , e, qj ) ∈ �′ satisfies one of the following conditions: (i) e � τ ; or (ii) (qi , τ, qi+1), (qi+1, τ,
qi+2), . . . (qj−2, τ, qj−1), (qj−1, e, qj ) and e � τ .
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(a) (b)

Fig. 6. An example usage of the procedure Removeτ

In essence, sequences of τ -labeled transitions that connect a state qi to a state qj−1 followed by a transition to a
state qj labeled with some symbol e � τ are replaced by a transition from qi to qj labeled with e. Consider, for ex-
ample, the LTS in Fig. 6a. The procedure Removeτ generates the LTS in Fig. 6b. The transitions (1, τ, 2), (2, e, 3)
are replaced by the single transition (1, e, 3), and (1, τ, 5), (5, e, 6) are replaced by (1, e, 6).

Algorithm 2 describes a procedure for computing an LTSf model F whose finite traces satisfy the FLTLf

formula φ. We discuss the steps of our algorithm using an example FLTLf formula φ � (W ), where W �
〈{shipInfoReq, prodInfoReq}, {costAndTime, infoRcvd}, false〉. The algorithm begins by transforming φ to FLTL
via the procedure FLTLf 2FLTL (Definition 5.6). For example, the FLTLf formula φ � (W ) is transformed into
the FLTL formula φ′ � (W ∧ ¬END). The algorithm then constructs a BA by conjoining the FLTL formula
and the end formula φend and applying the procedure LTL2BA (Line 3). In our example, the BA in Fig. 7a
is computed from the FLTL formula (W ∧ ¬END) ∧ END ∧ (END → (END)). Then the algorithm
computes the parallel composition of the BA obtained from the formula φ′ ∧ φend and the BA obtained by
applying the function LTS2BA to the parallel composition of the fluent and the synchronizer automata (Line 4),
resulting in an automaton whose infinite traces satisfy the FLTLf formula, and interleaves the occurence of the
fluents and the events. In our example, the fluent automata associated with the fluents W and END are shown
in Figs. 7b and 7c, and the synchronizer is shown in Fig. 7d. A portion of the intersection between their parallel
composition and the BA obtained from the FLTL formula φ′ ∧ φend is shown in Fig. 7e. Then, Algorithm 2
converts the parallel composition into an LTS (see Definition 5.8) and hides transitions labeled with fluents and
the event end . In our example, the transitions from 2 to 3, from 4 to 5, from 6 to 7, from 7 to 8, from 8 to 9, from
9 to 8 and from 12 to 13 in Fig. 7e are hidden, i.e., they are relabeled using the τ symbol. The final step, on Line 7,
removes τ -transitions and returns. In our example, the LTSf for the FLTL formula φ � (W ) is shown in Fig. 7f.

Theorem 5.3 Let φ be an FLTLf formula. Algorithm 2 generates an LTSf such that its finite traces are exactly
those that satisfy the formula φ.

Proof Sketch We prove the correctness by construction. Line 3 forces each infinite trace of A to finish with
an infinite sequence of END fluents (Lemma 5.1). Thus, the BA reaches an accepting state from which only
transitions labeled with the END fluent can be fired. By Theorem 5.1, φ′ is equivalent to φ, so for every infinite
trace extension e(π ), if π |� φ ⇔ e(π ) |� φ′. Thus, the BA generated in Line 3 contains infinite traces that are
extensions of finite traces π that satisfy the formula φ. Line 4 computes an automaton that interleaves fluents
and events and ensures that the traces generated by the sequences of events satisfy the property φ, as described in
Sect. 4.4. Then, the BA is converted into an LTSf (Line 5). Transitions labeled with fluents and the event end are
hidden (Line 6). This procedure ensures, by construction, that the traces reaching the final states of the returned
LTSf are exactly those traces that satisfy the formula φ. �

1 For simplicity of presentation, we presented only states 8 and 9, but Algorithm 4.7 generates three copies of these states, for labels {0, 1, 2}.
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(a)

(b) (c)

(e)

(f)

(d)

Fig. 7. Application of the steps of Algorithm 2 over the formula (W )
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Algorithm 2 Transforms an FLTLf formula into an equivalent LTSf .
1: function FLTLf 2 LTSf (φ,Fl1,Fl2,Fl3, . . . , Fln , Sync)
2: φ′ ⇐ FLTLf 2FLTL(φ)
3: A ⇐ LTL2BA(φ′ ∧ φend )
4: B ⇐ A ∩ LTS2BA(Fl1 ‖ Fl2 ‖ Fl3 . . . ‖ Fln ‖ Sync)
5: C ⇐ BA2LTSf (B )
6: D ⇐ C\(� ∪ {END, end})
7: return Removeτ (D)

Fig. 8. The environment E obtained by computing the parallel composition of the LTS in Figs. 1a, 1b and 1c

6. Modeling notation

This section presents the modeling notation proposed in FIDDle to support the modular, distributed, and it-
erative development of software controllers. Section 6.1 describes how to model the environment in which the
components under development will eventually be deployed. Section 6.2 describes how to provide a high-level
model of the components. Section 6.3 describes how pre- and post-conditions can be added to the high level
model to facilitate distributed development. Section 6.4 describes how unspecified components can be refined
into sub-components by exploiting their pre- and post-conditions.

In the rest of this section, we capitalize generic entities specified in a given modeling formalism and denote
specific software development entities using caligraphic fonts. For example, a generic LTS can be indicated by L,
while the LTS modeling the behavior of the environment is denoted by E .

6.1. Modeling the environment

The development workflow proposed in FIDDle (Sect. 3) assumes that a model of the environment is initially
designed by developers (or provided by a third party) and is not changed during the iterative refinement rounds.
FIDDle receives the model of the environment specified through an LTS. The LTS of the environment (E) can
be obtained by composing several LTS using the parallel composition operator (Definition 4.4). Each of these
LTS models is a component of the environment. For example, the LTS of the environment of the p&d example
is obtained via the parallel composition of the LTS described in Figs. 1a, 1b and 1c. The complete model of the
environment has 45 states and 174 transitions. A portion of the parallel composition is shown in Fig. 8. Since
the alphabets of the three LTS are disjoint, all the transitions are interleaved.
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6.2. Initial component design

We propose partial (finite) LTS (PLTS) as a formalism to support the high level design of a component under
development. A Partial (finite) Labeled Transition System is an LTS (resp. LTSf ) where some states are “regu-
lar” and others are “black-box”. Black-box states model portions of the component whose behavior still has to
be specified. Each black-box state is augmented with an interface that specifies the universe of events that can
occur in the black-box. Partial LTS are used to design an initial component model, partial finite LTS–to define
sub-components (see Sect. 6.4).

Definition 6.1 Let F � 〈Q, q0,A,�,Qf 〉 be an LTSf . A Partial Finite Labeled Transition System (PLTSf ) is a
structure P � 〈F ,R,B , σ 〉, where:
• R is the set of regular states;
• B is the set of black-box states;
• Q � R ∪ B and R ∩ B � ∅;
• σ : B → 2A is the interface.

Let L � 〈Q, q0,A,�〉 be an LTS. A Partial Labeled Transition System (PLTS) is a structure P � 〈L,R,B , σ 〉
defined as above.

LTS (resp. LTSf ) are PLTS (resp. PLTSf ), where the set of black-box states is empty. For example, the initial
design of a component that interacts with the furniture-sale, the shipping service and the user is represented in
Fig. 3d. The interfaces of its black-box states are documented in Fig. 3c. The component is defined over the
regular states 1 and 3, and the black-box states 2, 4 and 5. When a user request is received (event userReq), the
black-box state 2 is entered. This black-box state represents an unspecified functionality for computing an offer
to the user. The interface specifies that events prodInfoReq, infoRcvd, shipInfoReq and costAndTime can occur
while the component is in the black-box state 2. The system exits this black-box state via a transition labeled with
the event offerRcvd. After leaving the unspecified component, the system enters one of the black-box states: 4,
if the user accepts the offer (event userAck) or 5, if it refuses it (event userNack). In turn, these black-box states
represent unspecified components that are executed in response to a user request. The interfaces of the black-box
states 4 and 5 specify that the events prodReq,shipReq and prodCancel, shipCancel can occur while the component
is in the black-box states 4 and 5, respectively.

Definition 6.2 Let L � 〈Q, q0,A,�〉 be an LTS, P � 〈L,R,B , σ 〉 be a PLTS, and D � 〈QD , q0,D , AD ,�D 〉 be
an LTS. The parallel composition P ‖ D is an LTS S � 〈Q × QD , 〈q0, q0,D 〉,A ∪ AD ,�S 〉, where �S is defined
as follows:

(i) (q, e, q ′) ∈ �

(〈q, t〉, e, 〈q ′, t〉) ∈ �S
, and e ∈ A \ AD or e � τ ;

(ii) (t, e, t ′) ∈ �D

(〈q, t〉, e, 〈q, t ′〉) ∈ �S
, and one of the following is satisfied:

(a) e ∈ AD \ A;
(b) e � τ ;

(c) q ∈ B and e ∈ σ (q).

(iii) (q, e, q ′) ∈ �, (t, e, t ′) ∈ �D

(〈q, t〉, e, 〈q ′, t ′〉) ∈ �S
and e ∈ A ∩ AD , e � τ.

Rule (i) specifies that if the PLTS P fires the transition (q, e, q ′) of � and the event e does not belong to the
set of events of AD or it is τ , P moves to q ′ while the LTS D does not change its state. Rule (ii) states that the
LTS D performs the transition (t, e, t ′) while the PLTS P remains in state q if one of the following conditions
hold: (a) the event e is not an event of P , (b) the event e is the τ event, (c) the PLTS is in a black-box state q and
the event e belongs to the interface of q . Rule (iii) specifies that the PLTS P and the LTS D fire the transitions
(q, e, q ′) and (t, e, t ′) in parallel if the event e is in the set of events of both P and D .

Consider the initial partial component design C modeled using the PLTS in Fig 3b and the interfaces of its
black-box states documented in Fig. 3c. The parallel composition operator allows analyzing how C behaves when
it is executed in its environment E , which, in turn, is an LTS produced by composing the LTS in Figs. 1a, 1b and 1c.
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6.3. Adding pre- and post-conditions

A pre-condition is an assumption about the history of the system at the point when a given unspecified component
is entered. A post-condition is a guarantee that is expected to be established by a given unspecified component. A
contract of an unspecified component, represented as a black-box state in our formalism, consists of the black-box
state interface and its pre- and post-conditions.

Definition 6.3 Let�f be theuniversal set ofFLTLf formulae.An InterfacePLTS (IPLTS) I is a tuple 〈P , pre, post〉,
where P � 〈L,R,B , σ 〉 is a PLTS, pre : B → �f and post : B → �f . An interface finite PLTS (IPLTSf ) is an
IPLTS, where P is a PLTSf .

Pre- and post-conditions are defined using FLTLf formulae, i.e., formulae over finite traces. Intuitively, a
pre-condition pre(b) for a black-box state b must hold on any finite trace that reaches b. For example, the pre-
condition of the state 4 of the PLTS of Fig. 3d, shown in Fig. 3c, states that globally, on the finite traces that reach
state 4, if a user request has been detected, information from the user has been received. The post-condition of
the black-box state 4 indicates that the sub-component that has to replace this state has to ensure that a product
is requested from the furniture sale component and a shipping request is sent.

To effectively support developers in iterative design, we define what it means for a pre- and a post-condition
to be satisfied by the current partial component and when a property of interest is satisfied by the current partial
component. Pre-conditions specify properties that hold on finite traces of the system S that reach the black-
box state. Since the environment is fixed and does not change during the component development, semantics
of pre-conditions for a black-box state b is defined by considering the parallel composition between the partial
component under development C and its environment E . To reach this goal, we first define the notion of a finite
trace of the parallel composition among a PLTS P and an LTS D that reaches a state qd of the PLTS, where the
PLTS P represents the partial component P and the LTS D represents its environment E .
Definition 6.4 Let L � 〈Q, q0,A,�〉 be an LTS, qd ∈ Q and P � 〈L,R,B , σ 〉 be a PLTS. Let D � 〈QD , q0,D ,
AD ,�D 〉 be an LTS and S � P ‖ D be an LTS 〈QS , q0,S , AS ,�S 〉. We say that a finite trace e0, e1, . . . , en of
S reaches qd if there exists a finite sequence 〈q0, t0〉, e0, 〈q1, t1〉, . . . , en , 〈qd , tn+1〉, where for every 0 ≤ i ≤ n, we
have (〈qi , ti 〉, ei , 〈qi+1, ti+1〉) ∈ �S .

For example, considering the PLTS in Fig. 3d and the LTS in Fig. 1c, the finite trace obtained by performing a
userReq event reaches the black-box state 2 of the PLTS.

We now show how to transform the LTS S � C ‖ E into an LTSf S ′, denoted by LTS2LTSf (C, qd ,L), so that
S ′ contains exactly the finite traces that reach the state qd .

Definition 6.5 Let L � 〈Q, q0,A,�〉 be an LTS, qd ∈ Q , and P � 〈L,R,B , σ 〉 be a PLTS, D � 〈QD , q0,D ,
AD ,�D 〉 be an LTS and S � P ‖ D be an LTS 〈QS , q0,S , AS ,�S 〉. The LTSf F is a cast of the PLTS P over D
w.r.t. the state qd , i.e., F � LTS2LTSf (P , qd ,D), if F � 〈QS , q0,S , AS ,�S , {qd } × QD 〉.
Intuitively, the LTSf F is obtained from the LTS S � P ‖ D by setting every state obtained by combining a state
qd of P and one from the set QD of the states of D and making it a final state of F .

Lemma 6.1 Let L, qd , P , D and S be the same as in Definition 6.5. The finite traces of LTS2LTSf (P , qd ,D) are
exactly finite traces that reach qd (see Definition 6.4).

Proof Sketch By construction, a finite sequence 〈q0, t0〉, e0, 〈q1, t1〉, . . . , en , 〈qd , tn+1〉 exists in the LTSf F if and
only if a finite sequence 〈q0, t0〉, e0, 〈q1, t1〉, . . . , en , 〈qd , tn+1〉, where for every 0 ≤ i ≤ n, (〈qi , ti 〉, ei , 〈qi+1, ti+1〉) ∈
�S , exists in S . �

Post-conditions specify which properties should be ensured by black-box states. To give their semantics, we
begin by definining what it means to have traces of the system inside a black-box state.

Definition 6.6 Let L � 〈Q, q0,A,�〉 be an LTS, P � 〈L,R,B , σ 〉 be a PLTS with b ∈ B , and D be an LTS. Let
S � P ‖ D be an LTS, π � e0, e1, . . . be an infinite trace of S , and 〈q0, t0〉, e0, 〈q1, t1〉, e2, 〈q2, t2〉, . . . an infinite
execution of S . We say that a sub-trace ei , ei+1, . . . , ek of π is inside the black-box state b if the sub-sequence
〈qi , ti 〉, ei , 〈qi+1, ti+1〉, . . . , 〈qk+1, tk+1〉 is a maximal sub-sequence such that qi � qi+1 � . . . � qk+1 � b and
ei , ei+1, . . . , ek ∈ σ (b).
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Note that a sub-trace inside a black-box state is finite.
LetC be thep&dsupervisordesign (Fig. 3d) andE be thep&denvironment (Figs. 1a, 1band1c).Let us consider

the infinite trace of C ‖ E in which the sequence of events userReq, shipInfoReq,costAndTimeofferRcvd,usrAck,
shipReq,respOk is repeated an infinite number of times, the sub-trace shipInfoReq,costAndTime is inside the
black-box state 2.

Let C be a partial component described using an IPLTS I � 〈P , pre, post〉, and E be its environment, described
using an LTSD . Traces ofP ‖ D are valid if they satisfy both the pre- and the post-conditions of all the black-box
states.

Definition 6.7 Let L � 〈Q, q0,A,�〉 be an LTS, P � 〈L,R,B , σ 〉 be a PLTS, I � 〈P , pre, post〉 be an IPLTS.
Let D be an LTS, and S be P ‖ D . A trace π of S satisfies the pre-conditions of a black-box state b ∈ B if for
every subtrace π1 of π that reaches a black-box state b, π1 |� pre(b). A trace π of S satisfies the post-conditions
of a black-box state b ∈ B if for every sub-trace π2 inside a black-box state b, π2 |� post(b).

In the proposed definition, a pre-condition specifies a property that must hold in a sub-trace that reaches a
black-box state, while a post-condition specifies a property that must hold in a sub-trace performed inside the
black-box state. Intuitively, a post-condition is defined as a constraint on the behavior of the system thatmust hold
while the system is in the back-block state. An alternative semantics may define a post-condition as a property
that must hold when the system exits the black-box state, i.e., a property that must hold in the concatination of
the sub-trace that reaches the black-box state and the sub-trace obtained inside the black-box state (the “whole
sub-trace”). Our semantic choice was geared towards fitting within an iterative and incremental development
process while allowing distributed development of components. We believe that when a development team has
to refine a black-box state, it prefers having a condition that constrains the behavior of the component under
development, rather than a condition that constrains the composition of the component that has to be developed
and all the components that have been executed before entering that component.

Consider the pre-condition of the black-box state 4 of the partial component C represented by the IPLTS in
Fig. 3d. It requires that any finite trace of C ‖ E , where E is its environment, that reaches black-box state 4 is such
that if a user requests information about a product, the system provides it. The post-condition for the black-box
state 4 constrains the behavior of C ‖ E when the partial component C is inside the black-box state 4. For our
example, it ensures that a product and a shipping request are performed by the furniture-sale service by C ‖ E
while the partial component is inside the black-box state 4.

Let C be a partial component defined using an IPLTS and E be its environment. We say that C is well-formed
when all pre- and post-conditions of its black-box states are satisfied by C ‖ E .
Definition 6.8 Let L � 〈Q, q0,A,�〉 be an LTS, P � 〈L,R,B , σ 〉 be a PLTS, I � 〈P , pre, post〉 be an IPLTS.
Let D be an LTS, and S � P ‖ D . The IPLTS I is well-formed (over D) if for every trace π of S holds that, if π
satisfies the post-conditions, then it also satisfies the pre-conditions.

Intuitively, Definition 6.8 specifies when pre- and post-conditions are consistent with each other. It ensures
that the pre-conditions are satisfied if the post-conditions are. Consider the pre-condition (see Fig. 3c) of the
black-box state 4 of the p&d supervisor design (Fig. 3d), which requires that if a user request is received, the sys-
tem finally had sent information to the user. This pre-condition is satisfied if the post-condition of the black-box
state 2 ensuring that information is sent to the user is also satisfied (Fig. 3c).

We now define what it means for a property φ to hold on a well-formed IPLTS.

Definition 6.9 Let L � 〈Q, q0,A,�〉 be an LTS, P � 〈L,R,B , σ 〉 be a PLTS, I � 〈P , pre, post〉 be an IPLTS.
LetD be an LTS, and S � P ‖ D . We say that the IPLTS I satisfies an FLTL property φ if it is well-formed (over
D) and for every trace π of S that satisfies the post-conditions, π |� φ.

In the p&d example, the post-condition (F ProdReq) ∧ (F ShipReq) of the black-box state 4 ensures that
the parallel composition of the component in Fig. 3d and its environment satisfies property P3 (Fig. 1d).

6.4. Sub-components and their integration

In this section, we describe how black-box states representing unspecified components can be refined into sub-
components and define an integration operator that replaces the black-box states of a partial component with
the corresponding sub-components.
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We first define the notion of a sub-component.

Definition 6.10 Let L � 〈Q, q0,A,�〉 be an LTS, P � 〈L,R,B , σ 〉 be a PLTS, I � 〈P , pre, post〉 be an IPLTS
and b ∈ B . A sub-component for b is an IPLTSf If � 〈P ′, pre′, post′〉, where P ′ � 〈F ,R′,B ′, σ ′〉 and F is an
LTSf 〈Q ′, q ′

0, σ (b),�
′,Q ′

f 〉.
A sub-componentR is represented as an IPLTSf such that its computation starts in its initial state and ends

in one of its final states and is defined over a finite LTS with events in the set σ (b).
When the design of a sub-component is finished, it is integrated into the initial partial component design.

Let C be a partial component modeled as an IPLTS and R be a sub-component (modeled as an IPLTSf ) for a
black-box state b of C. The integration operator replaces b withR.

Recall that given a state q (of an LTS or an LTSf ), �(q)− and �(q)+ denote its incoming and outgoing
transitions, respectively, and �(q) denotes the union of the incoming and outgoing transitions of q .

Definition 6.11 Let I � 〈P , pre, post〉 be an IPLTS, where P � 〈L,R,B , σ 〉, L � 〈Q, q0,A,�〉 and consider
one of its black-box states b. Let If � 〈Pf , pref , postf 〉 be an IPLTSf , where Pf � 〈Lf ,Rf ,Bf , σf 〉 and
Lf � 〈Qf , q0,f ,Af ,�f , Qf ,f 〉. The integration I ′ � Integrate(I , b, If ) is an IPLTS 〈P ′, pre′, post′〉, where
P ′ � 〈L′,R′,B ′, σ ′〉, such that:

(i) L′ is an LTS 〈Q ′, q ′
0,A

′,�′〉, where
(a) Q ′ � Q ∪ Qf \ {b}

(b) q ′
0 �

{
q0 if q0 � b;
q0,f if q0 � b;

(c) A′ � A ∪ Af ;

(d) �′ � � ∪ �f \ �(b) ∪ {(δ−, δe , q0,f ) | δ ∈ �−(b)} ∪ {(q, δe , δ
+) | δ ∈ �+(b) and q ∈ Qf ,f };

(ii) R′ � R ∪ Rf ;
(iii) B ′ � B ∪ Bf \ {b};
(iv) σ ′(b) �

{
σ (b) if q ∈ B \ {b};
σf (b) if q ∈ Bf ;

(v) pre′(b) �
{
pre(b) if q ∈ B \ {b};
pref (b) if q ∈ Bf ;

(vi) post′(b) �
{
post(b) if q ∈ B \ {b};
postf (b) if q ∈ Bf

Intuitively, the integration of an IPLTSf If in an IPLTS I considering the black-box state b is an IPLTS
defined over the LTS L′. The LTS L′ contains all the states of the IPLTS I and the IPLTSf If with the exception of
the black-box state b (Condition (i).a). The initial state of the integration is the initial state of the IPLTSf If if the
black-box state was an initial state, and the initial state of the IPLTS I otherwise (Condition (i).b). The alphabet
of the obtained IPLTS is the union of the alphabets of the IPLTS and the IPLTSf (Condition (i).c). Transitions
of the IPLTSC ′ contain all the transitions of the IPLTS I and the IPLTSf If . However, every incoming transition
of b is replaced by a transition with the same initial state and with destination being the initial state of IPLTSf
If , and every outgoing transition of b is replaced by a transition with the same final state and with source being
the final state of IPLTSf If (Condition (i).d). The set of the regular states of the integrated IPLTSf C ′ contains
all the regular states of the IPLTSf If and the IPLTS I (Condition (ii)). The set of the black-box states of the
integrated IPLTSf C ′ contains all the black-box states of the IPLTSf If and the IPLTS I excluding the black-box
state b (Condition (iii)). The interfaces of all the black-box states of the IPLTSf If (excluding the black-box state
b) and of the IPLTS I , as well as their pre- and post-conditions, are preserved (Conditions (iv), (v) and (vi)).

For example, integrating the sub-componentR for black-box state 2 in Fig. 3e into the partial component C
in Fig. 3d produces the IPLTS shown in Fig. 3j. The prefix “2.” is used to identify the states obtained from R.
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The contracts of black-box states 4 and 5 are the same as those in Fig. 3c. The initial state of the integration is
the initial state of the C in Fig. 3d. Every incoming transition of state 2 is replaced by a transition with the same
initial state and with destination being the initial state 1 of R , and every outgoing transition of 2 is replaced by
a transition with the same final state and with source being the final state 5 of the sub-componentR.

The integration operator allows replacing a black-box state b of the partial component C by a sub-component
R and obtaining another partial component C ′.

Definition 6.12 Let b be a black-box state, pre(b) and post(b) be its pre-conditions and post-conditions. Let
I � 〈P , pre, post〉 be an IPLTSf , where P � 〈F ,R,B , σ 〉 and F � 〈Q, q0,A,�,Qf 〉 and D be an LTS. The
IPLTSf If is substitutable for D if for every sequence πi ; πe where

1. πi � e0, e1, . . . , en where q0, e0, q1, e1, . . . , qn , en , qn+1 is a sequence of the LTS L such that for all i , where
0 ≤ i < n, (qi , ei , qi+1) is a transition of the LTS D and πi |� pre(b);

2. πe is a finite trace of P ‖ D , where qn+1 is considered an initial state of the LTS;

we have that πe |� post(b).

Intuitively, a sub-componentR is substitutable if, assuming that the environment evolves in away that respects
the pre-condition pre(b),R ensures the satisfaction of the post-condition.

Correctness. To ensure the correctness of our framework, we show that replacing a substitutable IPLTSf by
a well-formed IPLTS preserves satisfaction of its properties.

Theorem 6.1 Let an IPLTS I with a black-box state b, an IPLTSf If , a property φ and an LTS L such that

1. I is well-formed w.r.t. L,
2. If is substitutable w.r.t. L, and
3. I ‖ L |� φ

be given. Then, the integration Integrate(I , b, If ) is such that Integrate(I , b, If ) ‖ L |� φ.

Proof Sketch Since I is well-formed, every valid trace of S � I ‖ L satisfies all the pre-conditions of every
black-box state b of I (byDefinition 6.8). Since I ‖ L |� φ, if the post-conditions are satisfied, all the infinite traces
of I ‖ L satisfy the property φ (by Definition 6.9). Since If is substitutable, if the pre-precondition of b is satisfied,
If ensures the satisfaction of the post-condition (Definition 6.12). Thus, by replacing the black-box state b with
the IPLTSf If , the satisfaction of the post-conditions is guaranteed, and thus Integrate(I , b, If ) ‖ L |� φ. �

For example, the sub-componentR fromFig. 3e is substitutable; thus, integrating it into the partial component
C shown in Fig. 3j ensures that the resulting integrated component C ′ preserves properties P1-P4, as intended.

Definition 6.13 Let F � 〈Q, q0,A,�,Qf 〉 be an LTSf and If � 〈D, R, B , σ 〉 be an IPLTSf with D � 〈QI , q0,I ,
AI ,�I ,Qf ,I 〉. The sequential composition of F and If , denoted by F .If , is an IPLTS 〈L, R ∪ Q, B , σ 〉 where
L is the LTS L � 〈Q ∪ QI ∪ {qend }, q0, A ∪ AI ∪ {init, end},�′〉, where �′ � � ∪ �I ∪ {(q, init, q0,I ) | q ∈
Qf )} ∪ {(q, end, qend ) | q ∈ Qf ,I } ∪ {(qend , end, qend )}}.

Intuitively, the sequential composition of F and If is an IPLTS. All the final states of the F are connected to
the initial state of the IPLTSf If by a transition labeled with a fresh event init. An additional state qend is added
to the LTS with a self-loop labeled with end . A transition from q to qend labeled with end is added for each
final state q of the IPLTSf If . Performing these steps ensures that all the infinite traces π of I ′ are in the form
π1;init;π2;endω, where π1 is generated by the LTSf F and π2 is generated by the IPLTSf If .

Consider for example the LTSf presented in Fig. 9a which is obtained from the LTS in Fig. 1a by considering
the state 3 as a final state and the IPLTSf of Fig. 3e. The sequential composition is represented in Fig. 9b. Its
initial state is the initial state of the LTSf represented in Fig. 9a. The final state of the LTSf is connected to the
initial state of the IPLTSf of Fig. 3e with an init labeled transition. The final state of the IPLTSf is connected to
the state qend through a transition labeled with end . A self-loop labeled with end is added to state qend .
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(a) (b)

Fig. 9. Sequential composition: an example

7. Verification algorithms

In this section, we describe the algorithms for the analysis of partial components introduced in Sect. 3, which
we have implemented on top of LTSA [MK99]. Section 7.1 describes a method for checking realizability (Algo-
rithm 3). Section 7.2 describes a well-formedness check (Algorithm 4). Section 7.3 describes a model-checking
algorithm (Algorithm 5). Finally, Sect. 7.4 describes a method for checking substitutability (Algorithm 6).

7.1. Checking realizability

Let C be a partial component, E be its environment and φ be a property of interest. The realizability checking
algorithm (Algorithm 3) verifies whether there exists an integration (Definition 6.1) of C obtained by integrating
sub-components (Definition 6.11) that constrain the environment E in a way that satisfies φ, i.e., there exists an
integration C ′ of C such that C ′ ‖ E |� φ and there is at least an infinite trace in C ′ ‖ E .

Algorithm 3 Checking realizability
1: function CheckRealizability(E , C, φ)
2: CB ⇐ removeBoxes(C)
3: if CheckFLTLonLTS(CB ‖ E , φ)= false then
4: return false
5: if CheckFLTLonLTS(C ‖ E , ¬φ)=true then
6: return false
7: else
8: return true

The algorithm removes all the black-box states and their incoming and outgoing transitions from C and stores
the obtained LTS in CB (function removeBoxes on Line 2). It checks whether CB ‖ E |� φ (Lines 3-4) using the
classical CheckFLTLonLTSmodel-checking procedure (Algorithm 1). If the property¬φ is satisfied, the compo-
nent is not realizable. Otherwise, it computes C ‖ E (as specified in Definition 6.2) andmodel-checks it against¬φ
using the classical model-checking procedure CheckFLTLonLTS, returning the negation of the computed result
(Lines 5-8). If CheckFLTLonLTS(C ‖ E,¬φ) returns true, all the infinite behaviors satisfy the negation of the
property φ, so there is no infinite trace in C ‖ E satisfying φ. Since we aim to construct an LTS obtained from C
by integrating sub-components into its black-box states that contain infinite traces that satisfy φ, and no infinite
traces that satisfy φ exist in C ‖ E , a value false is returned. Recall that C ‖ E allows the environment E to perform
any transition while C is in one of its black-box states. If CheckFLTLonLTS(C ‖ E,¬φ) returns false, there exists
an infinite behavior that satisfies φ. The integration of the partial component C that ensures the satisfaction of
the property φ can be obtained through an integration that forces the environment to only show this behavior.

For example, let C be the p&d supervisor design (Fig. 3d), E be the p&d environment (Figs. 1a, 1b and 1c) and
the property P2 (Fig. 1d). The realizability checker confirms the existence of an integration that satisfies property
P2.

Since the algorithm simply calls the CheckFLTLonLTS twice, its complexity is exponential in the size of the
FLTL formula and linear in the size of the partial component C.
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Theorem 7.1 Let C be a partial component, E be its environment and φ be a property of interest. Algorithm 3
returns false if there is no component C ′ obtained from C by integrating sub-components, s.t. C ′ ‖ E |� φ.

Proof Sketch If CB ‖ E |� φ, there exists an infinite trace of the environment which is allowed by the already
specified portion of the component and which violates φ. No matter how the sub-components of the black-box
states are specified, there will be an infinite trace that does not satisfy φ. Thus, the component is not realizable.

If C ‖ E |� ¬φ, there does not exist an infinite trace on which φ holds. Thus, there cannot exist a component
that constrains the environment to expose only traces that satisfy φ and ensures that at least one infinite trace is
present in the final system. �

7.2. Checking well-formedness

Let C be a partial component and E be its environment. The well-formedness checker (Algorithm 4) verifies
whether the partial component C is well formed w.r.t. its environment E (Definition 6.8).

Algorithm 4 Checking well-formedness
1: function CheckWell- formed(E , C)
2: for b ∈ B do
3: C ′ ⇐ C
4: for q ∈ B \ b do
5: LTSf (q) ⇐ FLTLf 2LTSf (post(q))
6: C ′ ⇐ Integrate(C ′, q,LTSf (q))
7: LTSf (b) ⇐ FLTLf 2LTSf (post(b))
8: 〈C ′′, q0,b〉 � Integrate

∗(C ′, b,LTSf (b))
9: S � LTS2LTSf (C ′′, q0,b, E)

10: if (CheckFLTLf onLTSf (S , pre(b))=false) then
11: return false

return true

Algorithm 4 considers each black-box state b of the partial component C (Line 2). For each b, it creates a copy
C ′ of the partial-component (Line 3). For each block-box state q , different from b, it transforms its post-condition
post(q) into an LTSf denoted LTSf (q) using the procedure FLTLf 2LTSf described in Algorithm 2 (Line 5). This
LTSf is integrated into C ′ (Line 6). Then, the algorithm transforms the post-condition post(b) of b into an LTSf
denoted LTSf (b) (Line 7) and integrates it into C ′ (Line 8). The operator Integrate

∗ behaves like the usual
Integrate operator (Definition 6.11) but in addition returns the initial state q0,b of the post-condition post(b).
Then, we cast the C ′′ over E w.r.t. the initial state q0,b of the post-condition (Definition 6.5). Finally, the algorithm
checks the satisfaction of the precondition pre(b) of b on the LTSf S by using the procedureCheckFLTLf onLTSf

described in Sect. 5.2 (Line 10).
In the p&d example, if we remove the clause F InfoRcvd from the post-condition of the black-box state

2, the p&d component is not well-formed since the pre-condition of state 4 is violated. The counterexample
shows a trace that reaches the black-box state 4 in which an event userReq is not followed by infoRcvd. Adding

F InfoRcvd to the post-condition of state 2 solves the problem.
Algorithm 4 calls the method CheckFLTLf onLTSf with the pre-condition pre(b) and an LTS obtained from

C by integrating a set of LTSf , one for each black-box state, generated from their post-conditions. In the worst
case, the size of each LTSf is exponential in the size of the corresponding post-condition. Thus, the complexity is
exponential in the size of the FLTLf formula of the post-conditions and in the size of the FLTLf pre-condition,
and linear in the size of the partial component C.
Theorem 7.2 Let C be a partial component and E be its environment. The well-formedness procedure returns true
if and only if C is well-formed (Definition 6.8).

Proof Sketch By construction, the finite traces of LTS2LTSf (C ′′, q0,b, E) are exactly the finite traces that satisfy
the post-conditions of the black-box states (Definition 6.8). Thus, the procedure CheckFLTLf onLTSf returns
false if and only if there exists a finite traceπ of C ‖ E that does not satisfy the pre-condition pre(b) (Definition 6.7).

�



A verification-driven framework for iterative design of controllers

7.3. Model checking

Let C be a well-formed partial component, E be its environment and φ be a property of interest. Model checking
(Algorithm 5) verifies whether C satisfies the property of φ under the environment E (Definition 6.9).

Algorithm 5 Model checking
1: function CheckModel(E , C φ)
2: C ′ ⇐ C
3: for q ∈ B do
4: LTSf (q) ⇐ FLTLf 2LTSf (post(q))
5: C ′ ⇐ Integrate(C ′, q,LTSf (q))
6: return CheckFLTLonLTS(C ′ ‖ E , φ)

Algorithm 5 first creates a copy C ′ of the partial component C (Line 2), which is then iterativelymodified by the
algorithm (Line 5). Specifically, the algorithm transforms all post-conditions into an LTSf (Line 4) and integrates
the generatedLTSf into the copy C ′ of the partial component (Line 5). Since all of the black-box states are replaced
by the correspondingLTSf , theobtainedmodel of thepartial componentC ′ is anactualLTS.Finally, the algorithm
uses the CheckFLTLonLTS model-checking procedure (Algorithm 1) to verify whether C ′ ‖ E |� φ (Line 6).

If we consider the design in Fig. 3d and assume that the black-box state 2 is not associated with any post-
condition, then the model checker returns a counterexample userReq, τ , offerRcvd for property P2, since the
sub-component that will replace the black-box state 2 is not forced to ask to book the furniture service. Adding
the post-condition in Fig. 3c solves the problem.

Algorithm 5 calls the CheckFLTLonLTS method considering the property φ and an LTS that is obtained
from C by integrating a set of LTSf , one for each black-box state, that are generated from their post-conditions.
The size of each of these LTSf is in the worst case exponential in the size of the corresponding post-condition.
Thus, the complexity is exponential in the size of the FLTL property φ, and in the size of the post-conditions. It
is linear in the size of the partial component C.
Theorem 7.3 Let E be an environment and let C be a partial component well-formed over E , and φ be a property
of interest. The model-checking procedure returns true if and only if C satisfies the property φ (Definition 6.9).

Proof Sketch The model-checking procedure runs the CheckFLTLonLTS algorithm by considering the LTS
C ′ ‖ E . C ′ is obtained from the partial component C by integrating the LTSf generated from the post-conditions
of its black-box states. Thus, C ′ ‖ E contains exactly the traces of C ‖ E that satisfy the post-conditions of the
black-box states of C (Definition 6.7). Furthermore, since C is well-formed, by Definition 6.9, φ holds. �

7.4. Checking substitutability

Let E be an environment,R be a sub-component for a black-box state b with interface σ (b), pre-condition pre(b)
and post-condition post(b). Algorithm 6 checks whether the sub-componentR is substitutable (Definition 6.12).

Algorithm 6 Substitutability checking
1: function CheckSubst(E , R, b, σ (b), pre(b), post(b))
2: for q ∈ B do
3: LTSf (q) ⇐ FLTLf 2LTSf (post(q))
4: C ′ ⇐ Integrate(C ′, q,LTSf (q))
5: LTSf (b) � FLTLf 2LTSf (pre(b))
6: P � LTSf (b).R
7: λ � (INIT → (post(b)))
8: return CheckFLTLonLTS((P ‖ E), λ)
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Algorithm 6 transforms all the post-conditions in LTSf using the procedure FLTLf 2LTSf and integrates
them (Lines 2-4). Then, it transforms the pre-condition pre(b) into an LTSf (Line 5) and computes the sequen-
tial composition between the computed LTSf and the sub-component R (Line 6). The post-condition post(b)
is transformed into the FLTL formula λ � (INIT → (post(b))), i.e., the post-condition must hold after the
fluent INIT becomes true. Finally, it verifies the satisfaction of the transformed post-condition on the sequential
composition (Line 8) by executing the function CheckFLTLonLTS on the parallel composition P ‖ E and the
modified post-condition λ.

In the p&d example, the substitutability checker does not return any counterexample for the sub-component
in Fig. 3e. Thus, the sub-component can be integrated in place of the black-box state 2.

Algorithm 6 calls the CheckFLTLonLTS method considering the property λ and an LTS P ‖ E . The IPLTS
P is obtained from the sub-component R by integrating a set of LTSf , one for each black-box state, that are
generated from their post-conditions, and by computing the sequential compositionwith an LTSf generated from
the pre-condition pre(b). The size of each of the integrated LTSf is in the worst case exponential in the size of the
corresponding post-condition. The size of the LTSf generated from the pre-condition pre(b) is in the worst case
exponential in the size of the pre-condition. Thus, the complexity is exponential in the size of the FLTLf property
φ, of the post-conditions of the black-box states contained in the sub-component and of its pre-condition pre(b).
It is linear in the size of the partial component C.
Theorem 7.4 Let E be an environment, R be a sub-component for a black-box state b with interface σ (b),
pre-condition pre(b) and post-condition post(b). The CheckSubst procedure returns true if and only if the sub-
component R is substitutable (Definition 6.12).

Proof Sketch By construction, the LTSf P ‖ E contains traces of the form πi ; πe that satisfy the conditions
of Definition 6.12. By checking whether λ holds on P ‖ E using the procedure CheckFLTLf onLTSf , we verify
that πe |� post(b). �

8. Tool support and evaluation

This section reports on our experience evaluating the effectiveness and scalability of our approach. Specifically,
we aim to answer the following questions:

RQ1: How effective is FIDDle w.r.t. supporting an iterative, distributed development of correct controllers?
(Sect. 8.2) and

RQ2: How scalable is the automated part of the proposed approach? (Sect. 8.3).

We begin by describing our tool support.

8.1. Tool support

FIDDle is a Java application developed on top of LTSA to provide support for incremental distributed develop-
ment of controllers. The complete implementation together with the examples and the case study presented in the
next section is available at https://github.com/claudiomenghi/FIDDLE.FIDDle extendsLTSA in threedirections:

• input language and compiler: extended to support modeling of partial components and sub-components;
• graphical interface: extended to provide graphical support to users;
• verification algorithms: implemented the procedures described in Sect. 7.

We describe each of these directions below.

8.1.1. Input language

We introduced a set of constructs within the LTSA input language that support the formalism defined in Sect. 6.
These commands (see Table 1) introduce new keywords to define partial components (partial component),
their black-box states (box), their pre- and post-conditions (precondition, postcondition), the environ-
ment (environment), and the sub-components (subcomponent).

https://github.com/claudiomenghi/FIDDLE
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Fig. 10. Specification of the p&d motivating example using our extended syntax

For example, the model of the environment of our motivating example presented in Fig. 1, the partial com-
ponent presented in Fig. 3f and the pre- and post-conditions of the black-box state 2 presented in Fig. 3c and the
sub-component presented in Fig. 3e are described using the proposed keywords given in Fig. 10.

8.1.2. Graphical user interface

We modified the graphical interface of LTSA (Fig. 11) in three different directions:

1. the commands described in Table 1 are integrated within the textual interface embedded within LTSA,
including syntax highlighting;

2. the LTSA GUI is extended to visualize partial components and sub-components, with black-box states
identified by black-colored states, as shown in Fig. 11 ( 1 );

3. a new menu is added to the interface to enable loading of partial components, sub-components and their
environments ( 2 in Fig. 11);

4. a new menu is added to allow running the checks described in Sect. 7 ( 3 in Fig. 11).

8.1.3. Verification algorithms

The verification algorithms presented in Sect. 7, as well as Algorithm 2 and the function FLTLf 2FLTL presented
in Sect. 5 have been developed within appropriate Java classes. The implementation reused existing LTSA classes,
as specified in the description of the appropriate algorithm. However, implementation was not straightforward.
Reverse engineering the existing LTSA classes, which were written by different authors and that were often not
completely documented, took a considerable effort. Thus, integrating the existing algorithms within the existing
classes was not easy and required more than 1000 lines of Java code.
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Fig. 11. FIDDle graphical user interface

Table 1. Syntax of the new commands added in LTSA to support FIDDle

Syntax Description

box name = (trans)[interface] name: the name of the box, trans: the outgoing transitions of
the box, interface: the set of events in the interface of the
black-box state.

partialcomponent name = proc name: the name of the partial component, proc: the description
of the process of the partial component.

subcomponent comp box name=proc
final ENDSTATE.@{interface}.

defines a subcomponent: comp: the partial component for which
the sub-component is designed, box: the name of the box of
the partial component for which the sub-component is designed,
name: the name of the sub-component, proc: the definition of
the sub-component behavior, ENDSTATE: indicates the terminal
state of the sub-component, interface: contains the interface
of the sub-component.

precondition comp box name=formula comp: the partial component that contains the black-box state,
box: the box of the partial component towhich the pre-condition
is associated, name: the name of the precondition, formula: the
FLTLf formula of the precondition using the standard LTSA
FLTL syntax.

postcondition comp box name=formula comp: the partial component that contains the black-box state,
box: the box of the partial component to which the post-
condition is associated, name: the name of the post-condition,
formula: the FLTLf formula of the post-condition using the
standard LTSA FLTL syntax.

8.2. Effectiveness

In this section, we describe a case study which aims to show how the proposed approach supports developers
in the initial overall design of the controller and in iterative and distributed development of (sub-)components.
To do so, we simulated forward development of an existing complex controller and analyzed FIDDle-provided
support along the steps described in Sect. 3.

8.2.1. Experimental setup

We chose the executive module of the K9 Mars Rover, developed at NASA Ames [GPB02, CGP03, GPB05] and
specified using LTS. The overall size of the LTS is 1̃07 states.
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Table 2. High-level description of the Mars Rover components

Component Description #States

ExecCondChecker Designed to monitor the state conditions. 3300
ActionExecution Responsible for issuing the commands to the Rover. It receives an action as input and

checks whether it is already under execution. In this case, it stops the action by sending an
interrupt and then executes the action. If no action is under execution, it executes it.

45

DBMonitor Allows reading and writing informations. 13
Executive (D3) The main coordinating component. The complete model of the Executive component

comprised of 11 states, WaitingForPlan, PrepareExecution, ExecutePlan, ExecuteCur-
rentNode,ExecuteTaskAction,AddTerminatingCondition,WaitForTermination,CheckSuc-
cessfulCommand,CheckExecSignal,ClearConditions andDone, each further decomposed
as an LTS. The final model of the Executive component was obtained by replacing these
states with the corresponding LTS. This model had about 100 states.

11

D2 Obtained from the Executive component by encapsulating states WaitingForPlan, Pre-
pareExecution into the black-box state PlanBox.

9

D1 Obtained from D2 by setting ExecuteTaskAction as a black-box state. 9

Table 3. High-level description of the Mars Rover Shared Variables

Mutex Description

exec Locked and unlocked by the ExecCondChecker module.
conditionList Locked and unlocked by the ExecCondChecker module.
action Locked and unlocked by the ActionExecution module.
db Locked and unlocked by the DBMonitor module.

The executivemodule was decomposed into the following components:Executive,ExecCondChecker,Ac-
tionExecution and Database. ExecCondChecker was further decomposed into DBMonitor and Internal.
A high-level description of each component is provided in Table 2.

Each of these components was associated with a shared variable (exec, conditionList, action and db) used to
communicate with the other components, e.g., the exec variable was used by ExecCondChecker to communicate
with Executive. Access to each shared variable was done via mutexes, documented in Table 3.

We considered two properties:

Pr1: Executive performed an action only after a new plan was read from Database;
Pr2: Executive got the lock over the condList variable only after obtaining the exec lock.

The FLTL formulae for the properties of interest are presented in Table 4. To specify property Pr1, we defined
two fluents: EXEC ACTION, which is true while the action is under execution, and READ PLAN, which is true
while the plan is read. Fluents are detailed in Table 5. The formalization of property Pr1 specifies that an action
is not performed before a plan is read.

To specify property Pr2, we defined fluents, COND LIST LOCKED and EXEC LOCKED. These fluents are
true after the condList and the exec are locked and until it is unlocked. The formalization of this property specifies
that if the condition list is locked, the exec is also locked.

We simulated forward development of the Executive component. We considered the existing model (D3) of
the Executive and abstracted portions of the complete model into black-box states to create two partial com-
ponents, D1 and D2, representing partial designs. The abstracted portions are used to generate sub-components
Sub1 and Sub2 for the black-box states contained in the partial design which we assumed third-party companies
had to develop.

Table 4. Formalization of the considered properties and pre- and post-conditions in FLTL and FLTLf

Element Formula

Pr1 (¬EXEC ACTION)W(READ PLAN ∧ ¬EXEC ACTION)
Pr2 (COND LIST LOCKED → EXEC LOCKED)
Post1 (READ PLAN)
Post2 (COND LIST LOCKED → EXEC LOCKED)) ∧ ( ( EXEC LOCKED)))
Post3 (EXEC ACTION → EXEC LOCKED) ∧ (EXEC LOCKED ∧ ¬EXEC ACTION)
Pre1 (¬EXEC ACTION ∧ EXEC LOCKED)
Pre2 ( (EXEC LOCKED ∧ ¬COND LIST LOCKED)) ∧ ( (COND LIST LOCKED → EXEC LOCKED)))
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Table 5. Fluents and their description

Fluent name Formal definition Textual description

READ PLAN 〈{begin read}, {end read}, false〉 true from the moment in which ExecCondChecker starts read-
ing the plan to the moment in which the plan is read.

EXEC ACTION 〈{install}, {action.unlock}, false〉 true from the moment in which a new action is installed by Ex-

ecutive, to the moment in which the action lock is released.
COND LIST LOCKED 〈{condList.lock}, {condList.unlock}, false〉 true while the condition list is locked.
EXEC LOCKED 〈{exec.lock}, {exec.unlock}, false〉 true while exec is locked.

To createD2, we encapsulated three states that receive plans and prepare for plan execution into one black-box
state Read Plans. The abstracted portion of the Executive leads to the sub-component Sub2. To create D1, we
also designated one of the 10 states of the Executive whose corresponding LTS is in charge of executing a plan,
stateExecuteTaskAction, as a black-box state.Aportionof the designD1of Executive is presented inFig. 11.The
abstracted portionof Executive leads to the sub-component Sub1.D2 canbe obtained fromD1by integrating the
sub-component Sub1 using the same procedure.D3 is obtained from D1 by integrating the sub-component Sub2.

We considered the (partial) designsD1,D2 andD3 and the sub-components Sub1 and Sub2 and used FIDDle
to iteratively develop and check their designs. The obtained results are summarized in Table 6 which contains
an incremental identifier used as a reference in the textual description (i.e., ID1, ID2, . . . , ID15), the check that
has been performed, the considered partial component or sub-component, the considered property and pre- and
post- conditions. For each check, we specify whether the check succeeded (✓) or fail (✗), the number of states
explored by FIDDle, the memory consumption and the time needed to provide the reported results.

Creating an Initial Component Design. The realizability checker (Algorithm 3) confirmed the existence of a
component obtained from D1 by integrating sub-components that satisfy the properties of interest (ID1 in Ta-
ble 6). Specifically, for property Pr1, FIDDle returned a trace of D1 ‖ E that satisfies the property of interest,
i.e., a trace in which EXEC ACTION does not occur before READ PLAN. For property Pr2, FIDDle returned
a trace of D1 ‖ E that satisfies the property of interest, i.e., a trace in which Executive got the lock over the
condList variable only after obtaining the exec lock (ID2).

Themodel checker (Algorithm 5) returned a counterexample for both properties of interest. For property Pr1,
it returned a counterexample in which no plan was read and yet an action was performed (ID3). For property
Pr2, the counterexample was where Executive got the condList lock without possessing the exec lock (ID4).

To guarantee the satisfaction of Pr1, we specified the post-condition Post1 defined in Table 4 for the black
box state Read Plans (ID5). The post-condition ensures that a plan is read in the black-box state PlanBox, since
the fluent EXEC ACTION can only hold after the black-box state PlanBox is left. By ensuring that a plan is read
in the black-box state PlanBox, the property is satisfied.

We added the post-condition Post2 to the black box state PlanBox and the post-condition Post3 to the black
box state ExecuteTaskAction (see Table 4). The post-condition Post2 specifies that if the conditionList variable is
locked, the exec variable is also locked.Furthermore, it forces the exec variable to be lockedwhen the component is
exited. The post-condition Post3 specifies that if an action is under execution, the exec variable should be locked.
Furthermore, it forces the exec variable to be locked when the component is exited and the action to not be under
execution. The model checker confirmed that the new design guaranteed satisfaction of property Pr2 (ID6).

We added a pre-condition that specifies that an action is not under execution when the black-box state
Read Plans is entered. The well-formedness checker (Algorithm 4) confirmed that the pre-condition is ensured
by the current design (ID7). We additionally added a pre-condition for the black-box state PlanBox specifying
that, when the black-box state is entered, the exec variable is locked, while the conditionList variable is not and
the property is not violated before entering the black-box. The well-formedness checker (Algorithm 4) confirmed
that the pre-condition is ensured by the current design (ID8).

Developing and Integrating the ExecuteTaskAction Sub-component. We simulated a refinement process in
which pre- and post-conditions were given to third parties for sub-component development. We considered the
sub-component Sub1 containing the portion of the Executive component abstracted by the black-box state
ExecuteTaskAction. We ran the substitutability checker (ID9) to verify, affirmatively, whether the sub-component
Sub1 ensured the post-condition Post3 given the pre-condition Pre1.

Then, we integrated the sub-component Sub1 into the partial design D1 obtaining the partial component D2.
We ran the realizability checker (ID10) which confirmed the existence of a model that refines D2 and satisfies the
properties of interest. Then, we ran the model checker which confirmed satisfaction of the property Pr1 (ID11)
and Pr2 (ID12). This shows that the development of the sub-component Sub1 can be distributed to a third party.
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Table 6. Checks performed using FIDDle during the iterative development of the Executive component: ID, incremental identifier used as
reference in the textual description; Check, the check being performed; Comp., the considered partial component or sub-component; Prop.,
the considered property; Pre, the considered pre-condition; Post, the considered post-condition; #States, the number of states explored by
FIDDle; Mem.(Mb), the memory consumption of FIDDle; Time(ms), the time needed to produce the reported result; Result, did the check
succeed (✓) or failed (✗)?

ID Check Comp. Prop. Pre Post #States Mem.(Mb) Time(ms) Result

ID1 Realizability D1 Pr1 - - 889924 2002193 191611 ✓
ID2 Realizability D1 Pr2 - - 943954 943954 126054 ✓
ID3 Model D1 Pr1 - - 442343 662590 6797 ✗
ID4 Model D1 Pr2 - - 442343 1197398 2140 ✗
ID5 Model D1 Pr1 - Post1 2920400 1384993 61649 ✓
ID6 Model D1 Pr2 - Post1, Post2, Post3 3214400 913841 77701 ✓
ID7 Well-Formedness D1 - Pre1 Post1, Post2, Post3 3116416 2022787 111869 ✓
ID8 Well-Formedness D1 - Pre1, Pre2 Post1, Post2, Post3 3459400 1047821 158076 ✓
ID9 Substitutability Sub1 Pre1 Post3 8467200 1345867 307224 ✓
ID10 Realizability D2 - - Post1, Post2 9955311 2609186 579786 ✓
ID11 Model D2 Pr1 - Post1, Post2 4537400 1701396 139013 ✓
ID12 Model D2 Pr2 - Post1, Post2 4586400 1309030 132629 ✓
ID13 Substitutability Sub2 - Pre2 Post1, Post2 3633840 1073350 92165 ✓
ID14 Model D3 Pr1 4321800 1167794 120314 ✓
ID15 Model D3 Pr2 4272800 923968 121174 ✓

As formally proven in Sect. 6.4 and confirmed by the model checker, integrating a substitutable sub-component
into a well-formed partial-component ensures that the satisfaction of the property of interest is preserved.

Developing and Integrating the PlanBox Sub-component. We simulated the iterative refinement of the sub-
component PlanBox. Distributing pre- and post-conditions allow parallel development of the PlanBox and Exe-
cuteTaskAction sub-components. We assumed that the developer team provides the design of the sub-component
Sub2 abstracted from the Executive component by the black-box state PlanBox. Then, in order to verify that
the sub-component Sub2 ensured the post-condition Post2 and Post3, we ran the substitutability checker (ID13).
The check was affirmative showing that the proposed design can replace the black-box state PlanBox.

Then, we integrated the sub-component Sub2 into the partial design D2 obtaining the partial component
D3. We ran the model checker which confirmed satisfaction of the properties Pr1 (ID14) and Pr2 (ID15). This
shows that the development of the sub-component Sub2 can be distributed to a third party. and that integrating a
substitutable sub-component into a well-formed partial-component ensures that the satisfaction of the property
of interest is preserved, as desired.

8.2.2. Discussion and threats to validity

The Executive component is a realistic controller of medium size [AFT08, LMP08, BBKT04]. It has been im-
plemented by 25K lines of C++ code, 10K of which is the main control code, and the rest define data structures
needed for communication with the actual Rover [GPC04].

FIDDle was effective in analyzing partial components and helping change their design to ensure the sat-
isfaction of the properties of interest. The experiment confirmed the possibility of distributing the design of
sub-components for the black-box states. As expected, no rework at the integration level was required, i.e., in-
tegration produced components that satisfied the properties of interest. This confirmed that FIDDle supports
verification-driven iterative and distributed development of components.

A threat to construct validity concerns the (manual) construction of the intermediate model produced by
us by abstracting an existing component model and the design of the properties to be considered. However, the
intermediate partial designs and the selected properties were based on original developer comments present in
the model. Specifically, the intermediate partial designs were obtained by encapsulating states of the initial model
that abstracted portions of the LTS into black-box states. In terms of the properties, the designer’s interest in
whether the condList is locked when actions are performed by Executive is confirmed by the presence of the
following comment:

AssumedByXXX = ( condList.lock
that preceded an instruction in which the Executivemodifies the value of a condition of the ExecCondChecker
component.



C. Menghi et al.

The property specifying that an action is not performed before a plan is read follows from the description of
the Mars Rover Executive behavior [GPB02]:

The executive receives flexible plans from a Planner, which it
executes according to the plan language semantics. A plan is a
hierarchical structure of actions that the Rover must perform.
A threat to internal validity concerns the design of the contracts (pre- and post- conditions and interfaces) for

the black-box states chosen along the process. Writing pre- and post-conditions may be difficult and error-prone
for practitioners. However, we envision a process in which developers use property specification patterns [DAC98]
to define pre- and post-conditions. Patterns collect recurrent specification problems and can guide developers
in writing meaningful contracts. Patterns also contain solutions, expressed in temporal logic, for the recurrent
specification problems, which can be used as template formulae for pre- and post-conditions, thus facilitating
writing correct FLTLf specifications. That was the method we used ourselves in writing pre- and post-conditions
in the reported case study.

The fact that a single example has been considered is a threat to external validity. However, we believe that
the presented results can be considered as representative for real case scenarios since the analyzed example is a
medium-sized complex real case study [Lev87, Sof04, BBKT04].

8.3. Scalability

We studied the scalability of the procedures proposed in this work. We considered the well-formedness and
the substitutability checkers since the realizability and the model checker are implemented by performing a
call to a classical model checker after simple transformations of the considered models. We set up experi-
ments Exp1 and Exp2 to evaluate the scalability of the well-formedness and the substitutability checkers, re-
spectively. Our experiments were based on a set of randomly-generated models. Random model generation
is a widespread technique to evaluate artifacts in the software engineering and formal methods communi-
ties [TV05, DWDHR06, TV07, SFG+12, FSC12a, MSG16, MSCG18, MGPT18a, MGPT18b].

Experiment Exp1. We compared performance of thewell-formedness checker with the standardmodel checker
for FLTL properties on LTS models implemented in LTSA by varying the size of the partial components and
their environments. We generated an LTS model of the environment and a complete model of the component
and checked the parallel composition between the component and the environment w.r.t. a property of interest
using LTSA. Then we generated a partial component (by marking one of the states of the complete component
as a black-box and defining pre- and post- conditions for it) and ran the well-formedness checker, comparing
performance of the two.

ExperimentExp2.Wecompared theperformanceof the substitutability checkerwith theLTSAmodel checker—
a standard model checker for FLTL properties on LTS–by varying the size of the sub-components and their
environments. We generated an LTS model of the environment and a complete model for the component and
checked them against a property, as described in experiment Exp1. Then we extracted a sub-component by se-
lecting a set of component states and the transitions between them, defined the pre- and post-conditions for the
sub-component, and ran the substitutability checker comparing its performance with model-checking.

We describe the experiments below.

8.3.1. Experimental setup

We implemented a random LTS generator (rndLTSgen) to create LTS models with a specified number of states
(#States), transition density (#Tdens) i.e., transitions per state, and number of events (#events). First, an LTS
with #States states and #events events is created and then transitions are added. Starting with the initial state,
we visit each state of the LTS, adding #Tdens transitions to each. Each transition has state q as source, a random
state of the LTS as destination, and it is labeled with an event randomly chosen among the #events events of the
LTS. The random LTS generator is used to create models for the environment and the complete component.

We also developed a partial component generator (prtCompGen) that creates a partial component with one
black-box state. prtCompGen takes as input an LTS, a number of events (#events) of the LTS to be added to
the interface of the black-box state, and its pre- and the post-conditions. prtCompGen randomly chooses one of
the states of the LTS and marks it as black-box state and then randomly selects #events events among the LTS
events and adds them to the interface of the black-box state. Finally, it sets the pre- and post-conditions of the
interface to the values passed as its parameters.
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(a) (b)

Fig. 12. Sub-component generation: (a) an LTS and (b) a corresponding sub-component

Table 7. Template formulae considered in the scalability evaluation

Formula Class Textual description

K1 � (Q → P ) Obligation Instance of the universality pattern specifying that Q → P holds globally.
K2 � Q →(¬P U Q) Safety Instance of the absence pattern. It specifies that P is false before Q .
K3 � (Q → (¬P )) Obligation Instance of the absence pattern. It specifies that P is false after Q .

We use the formulas in Table 7 to describe pre- and post-conditions and properties of interest, where fluents
Q and P are true when two distinct events, randomly selected among the events of the LTS, occur. Formula K1
has been chosen since it has the same form as Pr2 of our case study. The formulae K2 and K3 are based on the
commonly used property patterns and belong to two different classes of theManna and Pnueli hierarchy [MP90].

Finally, we implemented a sub-component generator (subCompGen). subCompGen takes as input anLTS and
the percentage of the number of its states (%States) to be added. subCompGen extracts %States of the states
from the LTS and the transitions between them. Then it adds states q0 and qf as the sub-component’s initial and
final states, respectively, and connects, via a τ -transition, q0 with all the states of the sub-component that have, in
the LTS, at least one incoming transition from a state that was not added to the sub-component. Transitions to
qf are added similarly. To illustrate, consider the LTS in Fig. 12(a). Fig. 12(b) shows an extracted sub-component
with 5 states. Transitions from q0 to 2 and 4 are added since states 1 and 8 are not included in the sub-component
and they had an outgoing transition reaching 2 and 4. Transitions from 5 and 6 to qf are added since states 7 and
9 are not included in the sub-component and 5 and 6 had outgoing transitions reaching those states.

8.3.2. Methodology and results

We now describe the methodology and results of the two experiments.
Experiment Exp1. For each combination of values #EnvStates and #CompStates reported in Table 8, we

generated five different configurations by changing the pre- and post-conditions of the partial component and
the property of interest. We used rndLTSgen to generate a model of the environment E and a complete com-
ponent C considering the number of states (#EnvStates for the environment and #CompStates for the complete
component), the transition density and the number of events specified in Table 8. We used prtCompGen to create
a partial component P obtained from the complete component C considering the number of events specified
in Table 8 and by randomly selecting one among the pre- and post-conditions presented in Table 7. We also
randomly selected a property φ from the formulae specified in Table 7.

For each configuration, we ran a classical model checker (in our case, LTSA) by checking the satisfaction of
the property φ on the parallel composition between the environment and the complete component C. Then we
ran the well-formedness checker on the partial component P w.r.t. the environment E . This procedure was run
on a 2 GHz Intel Core i7, with 8 GB 1600 MHz DDR3 disk, and we recorded the average time (over the five
different configurations obtained by changing pre- and post-conditions) required by the well-formedness checker
(Tw ) and by the model checker (Tm ). Table 9 contains the average ratio amongTw andTm for each combination
of values for #EnvStates and #ContStates.

These results show that thewell-formedness checker scales aswell as the classicalmodel checker does as the size
of the environment, the partial component and the sub-component grows. This means that the well-formedness
checker can be used in all of the scenarios where classical model checking is already being used.
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Table 8. Values of the parameters considered in our experiments for the different components

Environment Parameter #EnvStates #Tdens #events

Value 10, 100, 1000 10 50
Component Parameter #CompStates #Tdens #events

Value 10, 50, 100, 250, 500, 750, 1000 10 50
Partial component Parameter #events Pre- Post-

Value 25 K1,K2,K3 K1,K2,K3
Sub-component Parameter %States Pre- Post-

Value 50% K1,K2,K3 K1,K2,K3
Property K1,K2,K3

Table 9. Results of experiments Exp1 and Exp2

#CompStates

Exp1 : (Tw )/(Tm ) Exp2 : (Ts )/(Tm )

#EnvStates 10 50 100 250 500 750 1000 10 50 100 250 500 750 1000

10 1.45 1.26 1.51 1.29 1.42 1.43 1.31 2.20 4.37 2.18 1.50 2.19 1.62 1.62
100 1.15 1.25 1.50 1.08 0.88 1.02 2.33 3.51 4.66 3.61 2.80 3.18 1.96 2.73
1000 1.39 1.23 0.60 1.44 4.90 1.00 2.83 13.98 8.12 3.84 2.64 2.83 2.91 2.00

Experiment Exp2.For each combination of values #EnvStates and#CompStates reported in Table 8, we again
generated five configurations, each obtained by varying the pre- and post-conditions of the partial component and
the property of interest. Specifically, we used rndLTSgen to generate amodel of the environment E and a complete
component C considering the number of states (#EnvStates for the environment and #CompStates for the com-
plete component), the transition density and the number of events specified in Table 8, and subCompGen to create
a sub-component S obtained from the complete component C considering the percentage of states specified in
Table 8.We randomly chose the pre- and post-conditions ofS and a propertyφ from the ones specified in the table.

For each configuration, we used LTSA to check whether φ holds on E ‖ C and then ran the substitutability
checker considering the sub-component S and the environment E on the same computer configuration as for
Experiment Exp1. Table 9 contains the average ratio between the time taken by the substitutability checker (Ts )
and that of the model checker (Tm ) for each combination of values of #EnvStates and #ContStates.

The results show that the substitutability checker scales as well as classical model checking as the size of the
environment, the partial component and the sub-component grows. This means that the substitutability checker
can be used in all of the scenarios where classical model checking is already being used.

8.3.3. Discussion

The procedure employed to randomly generate models is a clear threat to construct validity. However, the tran-
sition density of the components was chosen based on the Mars Rover example. Specifically, we chose the value
10, which approximated the density of the Executive component (7.37) and the component run in parallel with
it (14.96). Furthermore, the number of states was chosen such that the ratio between the sizes of the component
and the sub-component was approximately the same as that of the Mars Rover example: the Executive had 96
states and the sum of the states of the LTS abstracted into black-box states (WaitingForPlan, PrepareExecution
and ExecuteTaskAction) was 51.

The properties considered in the experiment are a threat to internal validity. However, we believe that by using
properties from the patterns database, we considered properties that occur frequently, thus reducing the internal
validity bias.

Considering a single black-box state is a threat to external validity. However, our goal was to evaluate how
FIDDle scales with respect to the component and the environment sizes and not w.r.t. the number of black-
box states and the size of the post-conditions. Considering the scalability with respect to the component and
the environment sizes when multiple black-box states are present can be reduced to the problem of consider-
ing a single black-box with a more complex post-condition. Indeed, as discussed in Sect. 7, the scalabilty of
the well-formedness and the substitutability checkers depend on the size of the partial component and of the
post-conditions associated with its black-box states.
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9. Related work

The work described in this paper proposes a complete approach—from modeling to verification and synthesis—
for incremental and distributed development of correct controllers in the presence of partial information. The
ability to deal with incomplete models and reason about partial information is key in our approach. It becomes
necessary to support modularity and incremental design, where certain design decisions are postponed or dele-
gated to other parties. For this reason, we consider incompleteness in every part of model development as relevant
to our work, namely,

• modeling formalisms that support partial models (Sect. 9.1);
• verification techniques that permit the verification of partial models (Sect. 9.2);
• techniques to verify the pluggability of components in incompletemodels or to substitute existing components
(Sect. 9.3); and

• techniques to synthesize correct components in incomplete models starting from a specification of the com-
ponent (Sect. 9.4).

We explore these connections below.

9.1. Modeling partiality

Since many software development processes have either a hierarchical or an iterative structure, the literature
includes a variety of models for incomplete and partial models, both descriptive [RNA+04] and operational.
Given the nature of the presented work and the used model, we focus only on operational models. Modal Tran-
sition Systems (MTS) [LT88], LTS↑ [GPB02], Partial Kripke Structures (PKS) [BG99], X -Kripke Structures
(XKS) [CDEG03], and Incomplete Labeled Transition Systems (ILTS) [SS13] support the specification of in-
complete concurrent systems.

MTS extend LTS by allowing incomplete transitions. MTS transitions are classified as necessary and possible
(a.k.a., maybe or unknown [CBFU06]). Necessary transitions represent behavior that the system must exhibit,
while possible transitions describe admissible behavior. Different operations have been defined over MTS, such
as (classical) refinement, observational refinement [CBFU06],model merging (or logical conjunction) [LSW95]. A
good overview of this area is given in [UABD+13]. PLTS differ from MTS because they express incompleteness
via black-box states which are placeholders for (possibly partial) components, instead of via transitions. More-
over, the interfaces of black-box states can constrain the environment of the component that can be substituted
for the black-box state. LTS↑ [GPB02] are an extension of LTS, but, unlike our approach, they do not encap-
sulate components in a state, but rather use the ↑ operator to make unobservable those actions in the LTS of a
component that are not part of its interface.

PKS [BG99] are an extension of Kripke Structures (KS) that allow the description of incomplete models. A
proposition can have a value true, false or⊥ (unknown) in a given state of the system.XKS [CDEG03] extendKS
to allow assigning both propositions and transitions values from a multi-valued logic. These approaches differ
from PLTS where a state can be replaced (as a whole) by another (possibly incomplete) component.

ILTS [SS13] introduce the notion of transparent states, to handle incompleteness over states. Analogously to
PLTS, ILTS use states to capture incompleteness, but they are not equipped with pre- and pos-conditions and so
do not natively support distributed development.

Software product lines (SPL) [PBvDL05] provide an alternative formalism to partial systems. They allow
describing and reasoning about products by considering their features. Features are (user-visible) increments in
product functionalities. A software product line allows differentiating between mandatory and optional features.
Mandatory features must be part of every final product. Places where different features produce different be-
havior are called variation points. Like partial models, SPL compactly represent multiple alternatives that can be
generated from them, and thus partial modeling formalisms are applicable for modeling SPL. For example, in
a recent work by ter Beek et al. [tBFGM16], MTS are used to describe families of products through may and
must transitions which allow an efficient and compact way of modeling the notions of alternative and mutually
exclusive features. The variability-aware action-based branching time modal temporal logic (v-ACTL) [TBM14]
is used to reason about families of products. Our work is complementary to those, as pre- and post-conditions
can be considered as a tool for constraining the features that can be obtained by specifying the behavior of the
system in a black-box state.
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I/O Automata [LT87, LT89, Jon94] allow modeling systems that continuously interact (receive inputs from
and react to) with their environment. They are particularly useful for modeling components that operate asyn-
chronously. Each component is modeled as an automaton whose transitions are labeled with actions. Those
actions are instantaneous and classified into input, output or internal actions. While the internal and output
actions of a component are controlled by the component itself, inputs are controlled by its environment and
are instantaneously received by the component. Interface Automata [dAH01] are syntactically similar to the I/O
Automata. However, while in I/O Automata the environment can perform an action at every state of the I/O
Automata, in Interface Automata some input actions can be illegal in some of the states of a component.

Team Automata [tBK03] provide a flexible framework for modeling collaboration between components. They
are similar to I/O Automata as they allow the automata to synchronize over a subset of their actions. However,
different kind of synchornizations can be defined on a per-action basis. A specific notion of compatibility for
Team Automata, which enables iterative and hierarchical composition, has been proposed by Carmona and
Kleijn [CK13].

Finally, Contract Automata [FDB17] are designed to orchestrate services on a contract basis. They provide
a pre-defined set of the actions, that is, “make” requests, “advertize” offers, “matching” and a pair of “comple-
mentary” request/offer. A Contract Automaton specifies the assumptions and guarantees of a service in terms
of those actions. Unlike these formalisms, our formalism allows developers to explicitly identify the still to be
refined parts by means of black-box states and add pre- and post-conditions to black-box states enabling iterative
top-down development.

Other modeling formalisms, such as Hierarchical State Machines (HSM) [AY01] and Statecharts [Har87],
support the specification of a hierarchical relation among the states of the system, while others support uncer-
tainty [FSC12a, FSC12b, FSDSC13], i.e., they can associate incomplete parts with a set of possible replacements.

9.2. Checking partial models

Anumber of approaches to analyze partial models have been proposed [Hut02, CDEG03, BG99, GPB02, AY01],
but none of these techniques are directly applicable to the problem considered in this paper where missing sub-
components are specifiedusing contracts, and their development is distributedacrossdifferent development teams.

In [Hut02] and [CDEG03], the authors describe the model checking problem over MTS and XKS, respec-
tively. In both cases, the proposed procedure first builds an under-approximation of the model, which is model
checked against the property of interest. If the new model does not satisfy the property, the original model does
not satisfy the property either. If this is not the case, an over-approximation is computed and then checked against
the property of interest. A model checking approach for XKS is proposed in [CDEG03]. As in the case of MTS,
this problem can be reduced to a set of executions of the classical model checking algorithm. In [BG99], the
authors propose a 3-valued model checking approach, where three possible outputs can be returned: true, false,
and maybe (or possibly). Even if able to verify incomplete systems, differently from our approach, neither these
techniques are suitable for distributed development since they do not generate or assume any constraint on the
incomplete components to support their development when the output of the verification depends on them.

In [AY01], the authors study the problem of checkingHSMwith respect to LTLproperties. In this work,HSM
are not considered as a formalism to model partiality, and thus the verification is assumed to be performed at the
end of the development cycle when the final implementation of the model is provided. Finally, [GPB02] analyzes
the assumption generation problem for LTS with an additional interface operator. This work is complementary
to the one done in this paper and concerns the computation of an assumption that describes how the system
model interacts with the environment. This problem can be integrated with the design phase of our approach to
automatically generate post-conditions for the still-to-be-defined sub-components.

9.3. Substitutability checking

The goal of substitutability checking is to verify whether a (possibly partial) component can be plugged into a
higher level structurewithout affecting its correctness. Thus, compositional reasoning, component substitutability
and hierarchical model checking are related to this part of our work.

Compositional reasoning [dR01] reduces the verification effort by checking properties on individual compo-
nents and inferring that these properties hold in the global system without explicitly creating it. For example, in
the assume-guarantee paradigm [Jon83, AH99, Pnu85], ifM guarantees φ andM ′ guarantees ψ when it is located
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in an environment that satisfies φ, then M || M ′ satisfies ψ . This approach works in a different direction from
ours: we first guarantee that the properties of interest are satisfied in the initially defined partial model, and then
check that later-provided components are suitable for plugging into the initial PLTS.

The work of Giannakopoulou et. al. [GPB02] is similar to our approach but focused on generating environ-
mental restrictions. It addresses the assumption generation problem for LTSwith an additional interface operator
which describes how the model of the system interacts with its environment. In this approach, the claims to verify
are also expressed as LTS.When themodel of the systemM possibly satisfies the claim�, the proposed algorithm
computes an assumption that describes all and only environments which guarantee the satisfaction of� inM. In
this sense, the procedure is similar to the supervisory control problem. Another similar approach is presented in
[CT15]. The work discusses how to use a previously-developed contract refinement framework in a compositional
verification setting. The procedure is based on the classical structure of a deduction proof, i.e., starting from a
set of axioms, the properties of the system are obtained by iteratively applying a set of inference rules.

Several techniques ensure the substitutability between components [ZW97, BD08]. These approaches are built
upon the substitution principle of Liskov [LW94] in the context of object-oriented programming. Given a system
S , they check whether the interface type1 of a component C is a subtype of interface type of the component C ′
of S ; this would guarantee that C can replace C ′ in S without causing behavior violations. The substitutability
check is performed without plugging the componentC into the system. This approach is analogous to the substi-
tutability problem in the context of web services (e.g., [LFS+11]), where, once a web serviceW ′ is considered as
a substitute for a web serviceW in a composition Comp, the behavioral equivalence or similarity, and input and
output compatibility betweenW andW ′ inComp are checked before usingW ′ inComp. The solutions proposed
in literature use different formalisms, such as finite-state machines, process algebra, and Petri nets, but they all
rely on similar verification approaches.

The substitutability problem [CCSS08] can also be defined as a check that, after substituting one or more
components, any updated portion of a software system continues to provide all the services offered by its earlier
counterpart, and the previously established system correctness properties remain valid for the new version of the
software system. In this case, substitutability is checked only after the new components are plugged in place of
the old ones.

Compositional methods, e.g., Jonsson [Jon94], aim at checking whether an I/O Automaton refines another, by
omitting information about some “not interesting” communication events. These techniques are similar to the
one presented in this work.However, our technique is not based on information hiding but rather aims at ensuring
that certain post-conditions are guaranteed by the unspecified behavior enclosed within a black-box state.

Compositionality of TeamAutomata has been studied by ter Beek et al.,[tBK03] where the authors show how
the relevant behavior of a composite automaton can be obtained from the behavior of its constituting automata,
i.e., how, given one particular computation (behavior) of a team automaton, it is possible to extract the underlying
behavior of one of its constituting component automata, and vice versa. The authors presented conditions that
enable defining a set of operations that preserve this compositionality.

Ter Beek et al. [tBdV14] proposed a compositional verification technique for product lines. The compositional
technique uses a driver module that coordinates between the feature and the behavioral domain model and ab-
stracts the product behavior into a sub-component which is bisimilar to the product behavior, thereby enabling
verification of local properties over a smaller behavioral model. Instead, our technique assumes a top-down devel-
opment protocol in which sub-components are specified in terms of pre- and post-conditions described in FLTL.

Compositional verification can also be achieved using the Liskov substitutability Principle [LW94]. For ex-
ample, Hähnle and Schaefer [HS12] studied how to extend this principle to verify software product families in a
modular way. Specifically, in this work, a software product family is comprised of an original software product
together with the contracts of its methods (pre- and post-conditions) and its possible variations (i.e., adding and
removing methods and changing their contracts). This is different from our work in which we specifically address
incremental development of behavioral specifications. A compositional verification technique based on feature
verification has been proposed by Li et al. [LKF02]. The technique works by first verifying an individual feature
using model checking, computing a preservation constraint that ensures the preservation of the model check-
ing result; and proving that a feature ensures the preservation constraint of another feature. Thus, the proposed
technique is similar to the classical assume-guarantee reasoning style [Jon83] which has been discussed previously.

1 In the basic case, interface types include only information about the input and output of the component they describe, but they are also
enriched with behavioral descriptions.
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The ability to approximate the implementation of a sub-component by a suitable contract and to ensure cor-
rectness via substitutability is at the coreof thefieldofdeductive software verification.AutoProof [TFNP15,PTF15]
is an auto-active verifier for object-oriented programming languages. It proves functional correctness of Eiffel
programs annotated with contracts that can refer to values of variables, can include boolean operators as well as
and then and or else. Dafny [Lei10] allows proving code correctness by relying on a set of high-level anno-
tations added to the code. If the code is correct, Dafny generates a proof that the code matches the annotations.
KeY [BMU15] and OpenJML [Cok11] allow verification of sequencial Java programs by checking them against
properties expressed in Java Modeling Language [LBR99] (JML). KeY is an interactive program verifier, based
on dynamic logic [HKT01], and is suitable for verifying complexmethods as users can incrementally build proofs.
In constrast, OpenJML is fully automatic, and the program annotations are used to generate verification condi-
tions exploited by a first-order theorem prover. As a result, verification is very fast for typical boilerplate methods
(getters and setters)where the correct specifications canbe given directly, but the technique is less suitable for incre-
mental specification development. VCC [DMS+09] and VeriFast [JSP+11] use SMT solvers to verify correctness
properties on annotated (multi-threaded)C programs. Viper [MSS16] is an infrastructure designed to support ver-
ification of program specifications. It includes an intermediate verification language that supports encoding of dif-
ferent programming languages, such as Scala, Java andOpenCL [BDH15], and the Viper front-end.Why3 [FP13]
is a software verification platform that includes a logical languageWhy, a programming languageWhyML and an
infrastructure for translating the logical and the programming languages to existing theoremprovers that solve the
verification problem. Rather than verifying software programs, FIDDle verifies a behavioral model of the system.

Finally, verification ofHSM [AY01, AY98] is also related to our work sinceHSM support iterative refinement.
However, the verification procedures for HSM assume that the HSM is fully specified and does not analyze single
components in isolation.

9.4. Synthesis

Program synthesis [PR89, DBPU13] aims at computing amodel of the system that satisfies the properties of inter-
est. Moreover, synthesis can be used to generate assumptions on a system’s environment to make its specification
realizable (e.g., [LDS11]). The realizability problem is tackled in [AMT13], where the authors showed how an
unrealizable specification can be refined by adding assumptions on its environment through a counter-strategy
guided synthesis approach. A similar idea is proposed in [LDS11].

Synthesis approaches for controllers have been proposed. For example, in [UBC09], the authors propose a syn-
thesis technique to construct MTS from a combination of safety properties and scenarios. The idea is that safety
properties are used to synthesize a model that represents an upper bound on the behaviors of the system, i.e., they
include all the possible behaviors that the system can exhibit, while scenarios are lower bounds on its behavior, i.e.,
they describe less behavior than what the final system should provide. In [DBPU13], the authors propose a novel
synthesis technique, extending their previous work ([DBPU10, DBPU11]) and give methodological guidelines for
automatically constructing event-based behavior models. The proposed approach works for an expressive subset
of liveness properties, distinguishes between controlled and monitored actions, and differentiates system goals
from environment assumptions.

Incomplete information anduncertain contexts are considered in [KV00] and [CPRT15]. The former considers
the synthesis with incomplete information problem, which concerns the case in which each process can read only
a part of the signals of the underling process (e.g., distributed programs), while the latter proposes an algorithm
that allows to synthesize plans in uncertainty contexts, where an executionmay result in one or more sequences of
states. The goal is to compute plans which satisfy a reachability property, i.e., a condition on the final state of the
execution of a plan. Finally, [AFFM06] presents Supremica, an integrated environment for verification, synthesis
and simulation of discrete event systems. Supremica uses two main approaches: the first exploits modularity in
order to divide the original problem into many smaller problems that together solve it, while the second uses
an efficient data structure, a binary decision diagram, to symbolically represent the reachable states. [CBDU16]
presents a fully automated synthesis procedure for highly non-trivial components of over 2000 states that works
for special cases, by limiting the types of synthesizable goals and using heuristics. However, such cases might not
be applicable in general.

Recentworkhas beendone in the directionof compositional [AMT15,AMT16] and distributed [SUBK11] syn-
thesis. In [AMT15], the authors studied the problem of compositional refinement of component specifications in
the context of compositional reactive synthesis by considering a special case of only two components with specific
constraints. In [AMT16], the synthesis problem formulti-agent systems is solved in a decomposedmanner thanks



A verification-driven framework for iterative design of controllers

to the assumption that the objective of the system is given in conjunctive form, and each conjunct of the global ob-
jective only refers to a small subset of agents in the system. Also, in [SUBK11], the authors propose a distribution
algorithm for a deterministic subset of MTS. The algorithm under well-defined pre-conditions produces compo-
nent MTS of a monolithic partial system behavior model without loss of information. We do not consider our
approach tobeanalternative to synthesis, but insteadasaway to combine synthesis techniqueswithhumandesign.

10. Conclusion and future work

This paper presented a verification-driven methodology, called FIDDle, to support iterative distribution of of
software controllers. FIDDle enables recursive decomposition of a component into sub-components in such a
way that correctness of the integrated system is ensured by construction. Development of sub-components that
satisfy their specifications can then be done via independent, distributed development. FIDDle provides several
types of support: modeling support for design activities performed by humans; analysis support for helping
in software design; support for distributing development of unspecified parts; and support for integrating the
developed sub-components.

Tool support for FIDDle was created as a Java application on top of LTSA, allowing developers to model
components, iteratively develop sub-components, and perform all the checks described in this paper.

To evaluate the effectiveness of FIDDle in real cases, we abstracted parts of the K9Mars Rover model built at
NASAAmes and then simulated forward development. Our results showed that the proposed approach supports
developers in the initial overall design and that the proposed analysis supports distributed development of sub-
components. We also evaluated the scalability of our model-checking and substitutability procedures developed
within FIDDle on randomly generated models. Our results showed that the proposed procedures scale as well as
classical model-checking as the size of the environment, the partial component and the sub-component increase.

We believe that the support provided by FIDDle for iterative and incremental controller development can
positively impact the way in which future software systems will be developed. One of the main limitations of
the proposed framework is that pre- and post-conditions are specified through logic formulae. This can be a
time-consuming and error-prone process. In our evaluation, we used property specification patterns to support
us in defining pre- and post-conditions of the unspecified components. While this was effective in our evaluation,
we believe that FIDDle can benefit from additional automated support for helping define and analyze pre- and
post-conditions. For example, automatic extraction of pre- and post-conditions from natural language can help
users with a limited logical knowledge. We plan to enhance the implementation of FIDDle and improve its per-
formance by integrating existing symbolic model checkers, such as NuSMV [CCG+02]. We would also be very
interested in further evaluating FIDDle in real scenarios, where the approach would be used throughout software
development, and in conducting a user study to assess FIDDle’s usability.
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[FP13] Filliâtre J-C, Paskevich A (2013) Why3—Where programs meet provers. In: European symposium on programming, volume
7792 of Lecture Notes in Computer Science. Springer, Berlin, pp 125–128

[FSC12a] Famelis M, Salay R, Chechik M (2012) Partial models: towards modeling and reasoning with uncertainty. In: Proceedings of
ICSE’12. IEEE, pp 573–583

[FSC12b] Famelis M, Salay R, Chechik M (2012) The semantics of partial model transformations. In: Proceedings of MiSE’12. IEEE,
pp 64–69

[FSDSC13] Famelis M, Salay R, Di Sandro A, Chechik M (2013) Transformation of models containing uncertainty. In: Proceedings of
MODELS’13. Springer, Berlin, pp 673–689

[GM03] Giannakopoulou D, Magee J (2003) Fluent model checking for event-based systems. In: Proceedings of SIGSOFT FSE’03.
ACM, pp 257–266

[GPB02] Giannakopoulou D, Pasareanu CS, Barringer H (2002) Assumption generation for software component verification. In:
Proceedings of ASE’02. IEEE, pp 3–12
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