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In this paper, the cell based smoothed finite element method is extended to solve stochas-
tic partial differential equations with uncertain input parameters. The spatial field of
Young’s moduli and the corresponding stochastic results are represented by Karhunen-
Loéve expansion and polynomial chaos expansion, respectively. The Young’s Modulus of
structure is considered to be random for stochastic static as well as free vibration prob-
lems. Mathematical expressions and the solution procedure are articulated in detail to
evaluate the statistical characteristics of responses in terms of static displacements and
free vibration frequencies. The feasibility and effectiveness of the proposed SGCS-FEM
method in terms of accuracy and lower requirement on the mesh size in the solution
domain over that of conventional FEM for stochastic problems are demonstrated by
carefully chosen numerical examples. From the numerical study, it is inferred that the
proposed framework is computationally less demanding without compromising accuracy.
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FEM); Karhunen-Loève expansion (KLE); Polynomial Chaos Expansion (PCE); Ran-
dom Material Properties; Free Vibrations.

1. Introduction

The Finite Element Method (FEM) has become one of the most popular numerical

techniques to solve practical problems in various fields of engineering. Its only been

three decades since the general research community started to extend the potential

of the FEM to tackle uncertain systems governed by stochastic PDEs with ran-
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dom input data. The reader may refer to the research monographs by Ghanem and

Spanos1 and Kleiber and Hien2 for more information. In the stochastic FEM, the

uncertain input parameters in the form of material, geometry or loading conditions

are represented by using random variables. However, apart from treating the ran-

domness in the input parameters as perturbations about their mean value, most

of the uncertainty quantification problems in engineering requires the modeling of

spatial variability of the random input parameters. Some examples include: (a) the

tensile and the fracture toughness distribution of engineering materials, (b) the un-

certain size and shape characteristics of components (small micro-scale inclusions

in composites to large components in precision equipment’s) and (c) the wind and

snow loading on civil and offshore structures.

All the above examples, not only exhibit randomness from sample to sample,

but also from point to point in their spatial domain. To enable a computational

treatment of such stochastic problems, the random fields are first discretized in

order to represent them in a finite number of random variables. In general, the

number of random variables must be sufficiently large enough to ensure an accurate

representation of the randomness, but the number must be sufficiently small to

guarantee manageble computational costs.

Given a system of random algebraic equations, the Monte Carlo simulation tech-

niques can be readily applied to compute the response statistics to a certain de-

gree of accuracy3. As per the stochastic mechanics jargon, Monte Carlo techniques

are only considered as a last resort, since they are computationally demanding.

The perturbation method and Neumann series expansion offer efficient alternative

methods to compute the first two statistical moments of the response quantities2,4,5.

However, a drawback of these local approximation techniques is their inaccuracy

if the variation of the random input variables increases6. In the work of Ghanem

and Spanos7, a spectral stochastic FEM is proposed, in which the random alge-

braic equations are solved using the Wiener Polynomial Chaos (PC) decomposition

method. The basic principle behind this approach is to represent the stochastic

output in terms of a linear combination of multi-dimensional Hermite polynomials

of which the coefficients are to be solved for. These coefficients can be uniquely

determined by employing the Galerkin projection scheme. Based on the advan-

tages of such projection schemes, a wide variety of stochastic mechanics problems

have been solved in the last decade, for example elasticity problems1, random vi-

bration problems8, soil mechanics with random interfaces9, elasto-plastic material

problems10, to name a few.

A number of methods exists in discretizing the random fields. Interested readers

may refer to the work of Betz11 for a summary of existing techniques for the same

and the references therein. A popular approach that is used in the current study

is the Karhunen-Loève expansion, which involves the spectral decomposition of the

covariance functions. This process produces a representation of random field in the

form of an infinite series of deterministic spatial functions and uncorrelated random

variables.
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Up until now, a brief overview of the random field discretization and the pro-

jection of stochastic output response over polynomial basis have been reviewed.

While basis functions from conventional FEM are used to discretise the eigenvec-

tors of a given covariance function, several research efforts have gone in parallel

to improve the accuracy of the statistical moments of the stochastic outputs using

various advanced numerical techniques. For example, Long12 extended the scaled

boundary finite element formulation to random parameter field problems in which

the perturbation method was used to determine the statistical moments. Arun13

used mesh free methods in to solve boundary-value problems in damage mechan-

ics under elasto-plastic conditions. Keyan Li14 used non-uniform rational B-spline

(NURBS) and T-spline basis functions for meshing both the stochastic and the

spatial domain for complex geometries. The shared denominator between the FEM

and the mesh-free methods is that they are rooted under the same Galerkin formu-

lation, but their function spaces and basis functions are different. As the problem

complexity increases, lower order elements are commonly preferred, but comes with

the limitation of an reduced inefficiency for many practical applications. For exam-

ple, lower order elements exhibit an overestimation of the stiffness matrix and as

a byproduct, an underestimation of the internal strain energy. Furthermore, the

element shape cannot be distorted beyond a certain limit due to the limitation of

the mapping between the parent and the physical domain.

To overcome aforementioned issues, inspired by the work of Yoo et al.,15, Liu

et al.,16 proposed the Smoothed Finite Element Method (SFEM). For recent devel-

opments of the SFEM and its applications, readers are referred to the recent review

paper17. Liuet al., 16 extended the cell based SFEM for stochastic analysis based

on generalized stochastic perturbation technique. Huet al.,18 generalized the nth

order stochastic perturbation technique based on a stable node-based smoothed

finite element method. Wuet al.,19 applied the generalized edge based smoothed

finite element for stochastic analysis of Reissner Mindlin plates, with the aim of

overcoming the shortcomings of conventional 2nd order perturbation approach with

small perturbations. Wuet al., 20 introduced the first order perturbation technique

into the edge-based smoothed FEM for probabilistic analysis of structural acoustic

systems. To the best of knowledge of the authors, there exists no literature that

deals with random field representation within a smoothed finite element setting.

In this paper, a novel stochastic formulation using smoothed FEM, namely

Stochastic Galerkin Cell-based Smoothed Finite Element Method (SGCS-FEM) is

presented in detail. Numerical studies are presented for two-dimensional elasticity

problems (stochastic static displacements and an eigenvalue problems) and a three-

dimensional problem with parametric uncertainty. The results are presented for the

first two statistical moments of displacements in all the examples obtained using

the novel method and are compared with MCS results.

The remainder of this paper is organized as follows. Section 2 presents the

governing equations, the corresponding weak form and a description to represent

the random input variable. An overview of the cell-based SFEM is given in Section
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3. The novel stochastic Galerkin SFEM and the solution schemes for static and free

vibration problems are discussed in Section 4. Section 5 demonstrates the accuracy

of the proposed framework with a few benchmark problems. The relative accuracy

obtained using the proposed method and that from using the conventional FEM in

terms of error in the mean and the standard deviation predictions are discussed in

detail, followed by concluding remarks in the last section.

2. Governing equations and weak form

Consider a homogeneous linear elastic body occupying domain S ⊂ Rd, where d =

2, 3. The boundary (∂S) is considered to admit the decomposition with the outward

normal n into disjoint sets, i.e., ∂S = ∂SD ∪ ∂St and ∂SD ∩ ∂St = ∅, where on ∂SD
and ∂St, Dirichlet boundary and Neumann boundary conditions are specified. In

the absence of body forces, the coupled governing equations for linear elasto-statics

undergoing small deformation is: find (u) : S → Rd such that

∇ · σ = ρü in S, (2.1)

with the following boundary conditions:

σ · n =t on ∂St,
u =u on ∂SD, (2.2)

where ρ is the mass density, t and u are the externally applied traction and dis-

placements, respectively, n is the unit outward normal and σ is the Cauchy stress

related to the small strain ε by

σ = Dε (2.3)

where D is the material constitutive matrix and ε =
1

2

(
∇uT +∇u

)
. By following

the standard Galerkin procedure, the corresponding weak form is given by: find

u ∈ U such that:∫
S
σ(u) : ε(v) dS +

∫
∂St

t̄ · v d∂S +

∫
Ω

v ρ üdS = 0 (2.4)

where

U (S) =
{
u : S → Rd|uI ∈ H1(S), I = 1, · · · , d,u = ū on ∂Su

}
V (S) =

{
v : S → Rd|vI ∈ H1(S), I = 1, · · · , d, v = 0 on ∂S

}
are the displacement trial and the test function space, respectively, and H1 denotes

the Hilbert-Sobolev first order space.

In this study, the Young’s Modulus is modeled as a random field, say E(x;ω). In

other words, for each x ∈ R2, E: Ω → R is a random variable on a probability space

(Ω,=, Γ ), where Ω is the set of elementary events, = is the σ-algebra associated

with Ω and Γ is a probability measure. We use ω to indicate the dependence of a

quantity on the random dimension of the problem. Since the Young’s Modulus is
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treated to be a random field, the elasticity matrix becomes a function of the spatial

coordinate and a random dimension (ω), and can be represented as follows:

D(x;ω) = E(x;ω)D0 (2.5)

where D0 is the deterministic part of the elasticity matrix. Random field discretiza-

tion is a key step in the numerical solution of stochastic PDEs. Various discretiza-

tion techniques are available in the literature to approximate the random fields

including the mid-point method, shape function methods, optimal linear estima-

tion, weighted integral methods, orthogonal series expansion and Karhunen-Loève

(KL) expansion scheme. For a detailed overview and comparison of these methods,

the reader is referred to 21,22. In our present study, the KL expansion technique is

used to discretize random fields.

Let the covariance function of a random field E(x;ω) be RE(x1,x2). A typical

example for an exponential covariance function between two points x1 = (x1, y1, z1)

and x2 = (x2, y2, z2), commonly found and quoted in literature is shown below:

RE(x1,x2) = exp

(
−
∣∣∣x1 − x2

`cx

∣∣∣− ∣∣∣y1 − y2
`cy

∣∣∣− ∣∣∣z1 − z2
`cz

∣∣∣) (2.6)

Then, the KL expansion of the random field E(x;ω) can be written as

E(x;ω) = 〈E(x;ω)〉+

∞∑
i=1

√
λiσθiEi(x) (2.7)

where λi and hi(x) are the eigenvalues and eigenfunctions of RE(x1,x2), respec-

tively, θi, i = 1, 2, ...,∞ are a set of uncorrelated random variables, σ denotes

the standard deviation and 〈·〉 denotes the expectation operator. The eigenvalues

and eigenfunctions of the covariance function can be computed using a Fredholm

integral equation of the second kind, i.e.,∫
Ω

RE(x1,x2)Ei(x1)dx1 = λiEi(x2) (2.8)

Analytical solutions of the above integral eigenvalue problem can be obtained only

for a special class of functions (e.g., the exponential covariance function) defined on

geometrically simple domain. However, for more general cases, numerical discretiza-

tion schemes have to be employed to compute the eigenvalues and eigenfunctions of

RE(x1,x2). This procedure is discussed in Appendix 1. Truncating Equation (2.7)

at the M th term gives a finite-dimensional approximation of the random field as

Ê(x;ω) = 〈E(x;ω)〉+

M∑
i=1

√
λiσθiEi(x) (2.9)

Substitution of the discretized random field representation into Equation (2.5) re-

sults in a representation of the elasticity matrix in terms of a finite number of

random variables.
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3. Overview of the CS-FEM

The basic idea within the framework of the SFEM is to write a ‘smoothed’ strain

field as a spatial average of the compatible strain field. Mathematically,

ε̃h(xc) =

∫
Ωh

εhij(x)ϕ(x− xc)dx (3.1)

where ϕ is a smoothing function that generally satisfies the following properties 23

ϕ(x) ≥ 0 ∀x and

∫
Ωh

ϕ(x) dΩ = 1 (3.2)

Of the different variants of the SFEM, in this study we adopt the cell-based SFEM.

Within this framework, the finite element is sub-divided into ‘smoothing cells’ and

the smoothed strain field is computed over the smoothing cells. Figure 1 a schematic

representation of the smoothing cells for two and three dimensional elements. It is

noted that the purpose of sub-division is to compute the smoothed strain field and

it does not add any additional degrees of the freedom. For sake of brevity, the

smoothed strain matrix computation is detailed only for two dimensions. Its exten-

sion to three dimensions is considered to be straight forward here and interested

readers are referred to 24,25, for detailed derivation and implementation aspects. To

use Equation (3.1), the subcell containing point xc must be first located in order to

compute the correct value of the weight function ϕ. The discretized strain field is

computed through the so-called smoothed discretised gradient operator B̃, defined

by:

ε̃h(xc) = B̃c(xc)u (3.3)

where u contains the unknown nodal displacements of a finite element. The

smoothed element stiffness matrix for an element e is computed by adding up

the contributions from each of the subcells within that element

K̃e =

nc∑
C=1

∫
ΩC

B̃C
T
DB̃CdΩ =

nc∑
C=1

B̃C
T
DB̃C

∫
Ωc

dΩ =

nc∑
C=1

B̃C
T
DB̃CAC (3.4)

where nc is the number of smoothing subcells in the element. The strain displace-

ment matrix B̃C is treated to be constant over each subcell ΩC and is of the

following form

B̃C = [ B̃C1 B̃C2 B̃C3 · · · B̃Cn] (3.5)

where for all the shape functions I ∈ {1, 2, ..., n}, the 3×2 submatrix B̃CI represents

the contribution to the strain displacement matrix associated with shape function

I and cell C and writes

∀I ∈ {1, 2, ..., n},∀C ∈ {1, 2, ..., nc} B̃CI =
1

AC

∫
SC

nT (x)NI(x)dS (3.6)

=
1

AC

∫
SC

nx 0

0 ny
ny nx

 (x)NI(x)dS (3.7)
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(c)

Fig. 1. Subdivision of an eight noded trilinear hexahedral element and four noded quadrilateral
elements into subcells. Note that the subdivision is solely for the purpose of numerical integration
and does not introduce additional degrees of freedom.

Only one Gauss point is sufficient for an exact integration of the above equation

along the boundary of the subcell ΩC .

B̃CI(xC) =
1

AC

nb∑
b=1

NI(xCb )nx 0

0 NI(x
C
b )ny

NI(x
C
b )ny NI(x

C
b )nx

 lCb (3.8)

where xCb and lCb are the center point coordinates and the length of a boundary of

subcell, ΓCb respectively. The procedure outlined so far is general and is applicable

to polygons of arbitrary shapes. However, in the forthcoming studies, we will be

limiting ourselves to quadrilateral elements, so as to facilitate the comparison of

the performance of the stochastic CSFEM with the conventional FEM. As a result

of strain smoothing, only the computations of shape functions are involved in the

evaluation of the field gradients and thereby the stiffness matrix. The shape func-

tions at the Gauss points along each edge of a sub-cell are computed as the average

of the shape function values at the two ends of the edge.
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4. Stochastic Galerkin Smoothed Finite Element formulation

In this section, we derive the stochastic stiffness matrix, the mass matrix and briefly

discuss the solution procedure adopated to compute the stochastic response. Unless

mentioned otherwise, the random field is assumed to be homogeneous with constant

mean across the domain. Upon substituting Equation (2.9) into Equation (3.4), the

smoothed element stiffness matrix with a random Young’s Modulus can be written

as:

K̃e =

nc∑
C=1

B̃C
T
D(x;ω)B̃CAC

=

nc∑
C=1

B̃C
T

(
M∑
i=0

Eiθi

)
D0B̃CAC

=

M∑
i=0

nc∑
C=1

EiB̃C
T
D0B̃CACθi

=

nc∑
C=1

〈E(xC0 , y
C
0 ;ω)〉B̃C

T
D0B̃CAC

+

M∑
i=1

nc∑
C=1

B̃C
T√

λiθiσEi(x
C
0 , y

C
0 )D0B̃CAC

= K̃e
0 +

M∑
i=1

K̃e
i θi (4.1)

During the assembly process over the subcells while defining an elemental stiffness

1,1 2,2

3,34,4

5

6

7

8
9

FEM Q4 element connectivity: 1-2-3-4

Mid-point of i'th subcell in SFEM

Gauß quadrature points in FEM Q4

Node numbering with mid-side nodes in SFEM

Fig. 2. Nodal connectivity of a conventional FEM Q4 element and SFEM with 4 subcells. Internal
points marked as × are cell mid-points where the random constitutive matrix D(`) are evaluated
in the case of SGCS-FEM. Whereas, the • represents the Gauss quadrature points in an FEM Q4
element (full integration) where the same random constitutive matrix D(θ) is evaluated
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(x1

0
; y1

0
)

Ω
1

Random field representation: E(x; θ) = hEi+
P

4

i=1

p
λiθiEi(x)

E(x1

0
; y1

0
; θ)

~ke
1
(θ) = ~BT

1
D(x1

0
; y1

0
; θ) ~B1A1

~ke =
Pnc

C=1
~ke
C
(θ)

(x4

0
; y4

0
)

(x2

0
; y2

0
)

(x3

0
; y3

0
)

Q4 element with 4 subcells

Fig. 3. Projection scheme between the solution and stochastic domain for a smoothed element
with 4 subcells.

matrix, the centroid of the Crmth sub-cell, namely (xC0 , y
C
0 ) is projected onto the

random field, as shown schematically in Figure 3. In juxtaposing this projection

scheme with that from a stochastic FEM with random material field domains,

we see that the projection points, namely the Gauss quadrature points in the FEM

with full integration and the centroids of the subcell are not far apart, as illustrated

schematically in Figure 2. The mass matrix is given by:

Me =

∫
Ωe

NTρN dΩ (4.2)

where N is the matrix of shape functions.

4.1. Static case

For static case, the assembly of the smoothed element stiffness matrices results in

the following system of linear random algebraic equations:(
K̃0 +

M∑
i=1

K̃iθi

)
u(θ) = f or

(
M∑
i=0

K̃iθi

)
u(θ) = f (4.3)
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where K̃0 ∈ Rn×n and K̃i ∈ Rn×n are deterministic stiffness matrices, u(θ) ∈ Rn
is the random displacement vector, θ0 = 1, f ∈ Rn denotes the force vector which

is assumed to be deterministic for simplicity reasons and n is the total number of

degrees of freedom. The vector of unknown random displacement vector is computed

by employing the polynomial chaos projection scheme 1.

In this scheme, the random nodal displacements are expanded using a set of

multidimensional Hermite polynomials for Gaussian input data, which results in

the following expansion for the random process

u(θ) =

P−1∑
i=0

uiΨi(θ) (4.4)

where ui ∈ Rn, i = 0, 1, 2, ..., P−1, are sets of vectors formed from the undetermined

coefficients in the PC expansion for each nodal displacement. Ψj(θ) is a set of

orthogonal Hermite polynomials. The number of terms in the expansion, P, is given

by

P =
(M + p)!

p! (M)!
(4.5)

where p is the highest order of the set of Hermite polynomials Ψj . Substitution of

the PC expansion of u(θ) into the governing random algebraic equations given in

Equation (4.3) gives (
M∑
i=0

K̃iθi

)P−1∑
j=0

ujΨj(θ)

 = f (4.6)

The undetermined terms in the PC expansion can be uniquely computed using

the Galerkin projection condition, which involves orthogonalizing the stochastic

residual error to the approximating random subspace as shown below 1

〈ε(θ), Ψk(θ)〉 = 0, k = 0, 1, 2, ..., P − 1 (4.7)

where the stochastic residual ε(θ) is given by

ε(θ) =

(
M∑
i=0

K̃iθi

)P−1∑
j=0

ujΨj(θ)

− f (4.8)

Substituting Equation (4.8) into Equation (4.7) results in the following systems of

deterministic equations:

M∑
i=0

P−1∑
j=0

K̃iuj〈θiΨjΨk〉 = 〈Ψkf〉, k = 0, 1, 2, ..., P − 1 (4.9)

The expectation operations in Equation (4.9) can be readily carried out using

the properties of Wiener Hermite chaos 1,21. Now, expanding the above equation
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about the subscripts j and k, we arrive at the following system of linear algebraic

equations: 
K̃0,0 K̃0,1 · · · K̃0,P−1
K̃1,0 K̃1,1 · · · K̃1,P−1

...
...

. . .
...

K̃P−1,0 K̃P−1,1 · · · K̃P−1,P−1




u0

u1

...

uP−1

 =


f0
f1
...

fP−1

 (4.10)

which is of the form K̃û = f̂, where K̃ ∈ RnP×nP and û, f̂ ∈ RnP .

Remark 4.1 It can be noted that the computational complexity and memory

requirements of PC projection scheme increases significantly when M and p are

increased. However, the memory requirements can be reduced by precomputing and

storing the expectation terms of the form 〈θiΨjΨk〉. Furthermore, the sparsity of the

tensor products can also be exploited to accelerate the stochastic computations. In

the interest of the reader, a detailed overview of numerical schemes which exploits

the sparse structure of equation Equation (4.10) can be found in the literature 26,27.

After solving Equation (4.10) and substituting back the results in Equation (4.4),

one arrives at an explicit expression for the response process. This enables the

statistics of the displacements as well as other response quantities of interest to

be computed efficiently in the post-processing phase. For example, the mean (first

moment) of displacements is computed as

〈u(x, ω)〉 = u0(x) (4.11)

and the standard deviation (square root of the second moment about the mean) is

stdev(u(x, ω)) =

√√√√〈(P−1∑
i=1

ui(x)Ψi(θ)

)2〉
(4.12)

which, when using the orthogonality property of Wiener-Hermite chaos, simplifies

to

stdev(u(x, ω)) =

√√√√(P−1∑
i=1

u2
i (x)〈Ψ2

i (θ)〉

)2

(4.13)

4.2. Free vibration

In this case, the assembly of the smoothed element stiffness matrices and the mass

matrix results in the following system of linear random algebraic equations:

K̃(θ)u(θ) + Mü(θ) = 0 (4.14)

Upon substituting u(θ) = δ(θ)e−iλ(θ)t, we get:[
K̃(θ)− λ(θ)M

]
δ(θ) = 0 (4.15)
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where

K̃(θ) =

M∑
i=0

K̃iθi (4.16)

is the stochastic stiffness matrix. Using Equation (4.16), Equation (4.15) can be

rewritten as: [
R̃(θ)− λ(θ)

]
δ(θ) = 0 (4.17)

where, R̃(θ) = M−1K̃(θ) = M−1
∑M
i=0 K̃iθi. Equation (4.17) is a stochastic eigen-

value problem and in this study, the stochastic subspace inverse iteration method

is used to solve for the eigenvalues and the eigenvectors. As the covariance of the

eigenvalues and the eigenvectors are not known, these are represented by using a

truncated PC expansion as:

λ(θ) =

P−1∑
j=0

λjΨj(θ)

δ(x, θ) =

P−1∑
j=0

δjΨj(θ) (4.18)

where Ψj(θ) are the Hermite polynomials, P is the number of terms in a truncated

PC expansion as given in Equation (4.5). The first step is to solve the determinis-

tic eigenvalue problem and compute the first (lowest) fundamental eigenvalue and

eigenvector, which is used as the initial guess for the Stochastic Subspace Inversion

Method (SSIM) 28. In this study, the QR algorithm is employed to solve the de-

terministic eigenvalue problem. The SSIM computes a correction of the expected

value of the eigenvector from the mean and the coefficients of the terms in KL

expansion. Similar to the deterministic inverse subspace method, after each itera-

tion, the eigenvectors have to be normalized. The eigenvectors considered here (c.f.

Equation (4.18)) have the form of stochastic polynomials. This makes it feasible to

sample a given random vector, θ using a discrete projection rule combined with col-

location points 28. The eigenvalue expansion coefficients, λj (c.f. Equation (4.18))

are computed from the stochastic Rayleigh quotient through a discrete projection,

given by:

λk = 〈λ, Ψk〉 k = 0, · · · , P − 1

=
1

〈Ψk, Ψk〉

P−1∑
j=0

P−1∑
i=0

M∑
`=0

cijk` δ
T
i R̃`δj ; cijk` = 〈ψi, ζ`, ψj , ψk〉 (4.19)

These steps are detailed in Algorithm 1.

5. Numerical examples

In this section, the stochastic response of a few two and three dimensional problems

are studied to demonstrate the efficiency of the proposed framework. The first two
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Algorithm 1: Stochastic inverse subspace iteration

Input : First fundamental eigenvector (δ) from the deterministic

eigenvalue problem

Output: Stochastic first fundamental eigenvalue and eigenvector

δ0o ← δ

δ0i ← 0, i = 0, · · · , P − 1

m = 0; error = 1

while error > errormax do
m = m+ 1

// Solve the stochastic Galerkin system for the eigenvector

M∑
i=0

P−1∑
j=0

cijkR̃iv
m
j = δmk k = 0, · · · , P − 1

// Normalize vmj using a discrete projection and a quadrature rule to get

the normalized eigenvector

δmk =

Nq∑
q=1

v
(
ζ
(q)
)

∣∣∣∣∣∣v(ζ(q))∣∣∣∣∣∣
2

ψk

(
ζ
(q)
)
w(q) k = 0, · · · , P − 1

// Compute the error between successive iterations

error = ||δm − δm−1||
end

// Compute the coefficients of the eigenvalue expansion by

λk =
1

〈ψk, ψk〉

P−1∑
j=0

P−1∑
i=0

M∑
`=0

cijk` δ
T
i R̃`δj cijk` = 〈ψi, ζ`, ψj , ψk〉 k = 0, · · · , P−1

statistical moments of the displacements using the proposed method is compared

with thos obtained using deterministic MC simulations and with the conventional

FEM. The two and the three dimensional domains are discretized with four noded

bilinear quadrilateral and eight noded trilinear hexahedral elements, respectively.

Table 1 shows the convention adopted to compute the terms in the stiffness matrix.

To study the convergence properties of the SGCS-FEM and the FEM, the following
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Table 1. Number of integration points and subcells employed to compute the terms in the stiffness
matrix in case of the FEM and SGCS-FEM, respectively.

Dimensions Element Type FEM CS-FEM
(number of integration points) (number of subcells)

Two Four noded quadrilateral 4 4
Three Eight noded hexahedral 8 8

error norms are used:

Errormean =

∑ndof
i=1 |Umeani − UMCS

i |∑ndof
i=1 |UMCS

i |

Errorstdev =

∑ndof
i=1 |Ustdevi − UMCS

i |∑ndof
i=1 |UMCS

i |
(5.1)

where Ui are the nodal degrees of freedom obtained using either the proposed SGCS-

FEM method or by conventional FEM, and UMCS
i are the displacements obtained

using Monte Carlo simulations.

5.1. Stochastic two dimensional cantilever beam

Consider a cantilever beam of length L and width D as shown in Figure 4. In this

section, the stochastic static response and the free vibration is studied. In both

the cases, the Young’s modulus is assumed to be random. The Poisson’s ratio is

assumed to be deterministic with ν = 0.3 and a state of plane stress condition is

assumed.

y

x

D

L

A

B

CE

O

F

Fig. 4. Cantilever beam geometry

Static bending case with random E In this case, the statistical moments of

maximum static deflection of a two dimensional cantilever beam under a determin-

istic parabolic shear loading is investigated. The geometry is length L = 8m, height

D = 4m. The material properties are: mean value of Young’s Modulus, 〈E〉 = 20000
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N/m2 with a coefficient of variation COV (COV = σE/µE) of 0.2 and the parabolic

shear force P = 250 N. The exact solutions for displacements are given by:

u(x, y) =
Py

6ĒI

[
(9L− 3x)x+ (2 + ν̄)

(
y2 − D2

4

)]
v(x, y) =

−P
6ĒI

[
3ν̄y2(L− x) + (4 + 5ν̄)

D2x

4
+ (3L− x)x2

] (5.2)

where I = D3/12 is the moment of inertia, Ē = E
1−ν2 , ν̄ = ν

1−ν . The left end of

the beam E-O-F is subjected to analytical displacements given by Equation (5.2),

whilst the right end of the beam A-B-C is subjected to a parabolic shear load with

magnitude of P = 250 N. Four levels of progressive mesh refinement is considered (

8×4, 16×8, 32×16, 64×32). Table 2 compares the L2 norm of the displacement at

Table 2. L2 norm of the displacement at
node A of the cantilever beam: comparison of
the CS-FEM with 4 sub-cells and FEM results
with analytical solution

Mesh
CS-FEM FEM

4 SC % error Q4 % error
8 × 4 0.488 0.94 0.447 9.25
16 × 8 0.491 0.26 0.480 2.46
32 × 16 0.492 0.07 0.489 0.64
64 × 32 0.492 0.02 0.491 0.17

node A (see Figure 4), obtained using a deterministic CS-FEM and the conventional

FEM. From the tabulated results, it is clear that the solution provided by the CS-

FEM is within 1% from that provided by the analytical even with a coarse mesh

of 8×4, while that given by the FEM is off by ≈10%. Henceforth, for subsequent

analysis, a mesh size of 8× 4 will be used for the solution domain of the stochastic

cantilever beam, unless otherwise specified.

Next, we compare the stochastic displacement solution obtained using the

SGCS-FEM and the conventional FEM with the MCS. The Young’s modulus is as-

sumed to be random with an exponential covariance function (c.f. Equation (2.6)),

with a correlation length of `c = 10L for which a maximum of 4 terms in the KL

expansion of random field was found to be sufficient enough to capture the ran-

domness. Tables 3-4 compares the statistical moments of Ux and Uy displacements,

respectively, at nodes A,B and C (see Figure 4) using SGCS-FEM and FEM for

various orders of PCE. The accuracy of the first two statistical moments (the mean

and the standard deviation) obtained using the proposed method is compared with

that of MCS using 10,000 samples. For brevity reasons, the MCS results are not

repeated under the FEM columns. Following observations can be made from both

the tables:

• Mean of displacements at points A and C are symmetrical about zero, due

to their respective positions about the mid-plane of the geometry. Moreover,
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the standard deviations of the displacements at these points are mirror

images of each other, for the above same reason.

• Mean Ux displacement at point B turns out to be zero, as it can be seen

by substituting its mid-plane coordinates (x = L, y = 0) into equation

Equation (5.2).

• The statistical moments produced by the proposed SGCS-FEM formulation

converges faster towards that of MCS, for the same random field represen-

tation and PC order expansions.

Figures 5 depicts the convergence of the error with mesh refinement for the SGCS-

FEM and the conventional FEM. Following observations can be made from these

two plots:

• From the mean displacement error convergence plot, one can observe that

the slope of the error obtained with SGCS-FEM is consistently lower than

that of the FEM across the mesh sizes considered. Compounded with

the presence of higher order PC expansions, the rate of convergence for

the mean displacements increases dramatically when using the proposed

method, especially in the region of finer mesh size.

• From displacement error convergence plot based on the standard deviation,

the SGCS-FEM yields higher convergence rate towards MCS results over

the conventional FEM, for the same order of PC expansions. However, such

an advantage offered by the proposed method appears to be indistinguish-

able from that of the FEM, in fine mesh regions.

Table 3. Statistical moments of Ux displacements at nodes marked A,B and C using SGCS-FEM (4 SC)
and conventional FEM (Q4). Accuracy of the results are compared with MCS using 10000 samples

SGCS-FEM FEM
A B C A B C

Mean 1st order -0.1548 0.0 0.1548 -0.1413 0.0 0.1413
2nd order -0.1554 0.0 0.1554 -0.1418 0.0 0.1418
MCS -0.1572 0.0 0.1572

Std dev 1st order 2.98×10−2 1.77×10−3 2.98×10−2 2.72×10−2 1.63×10−3 2.71×10−2

2nd order 3.35×10−2 2.06×10−3 3.34×10−2 3.07×10−2 1.91×10−3 3.06×10−2

MCS 3.70×10−2 2.12×10−3 3.70×10−2

Until now, the coefficient of variance was kept fixed at 0.2. Next, the ability

of the proposed method to capture the coefficient of variance in stochastic Quan-

tity of Interest (QoI) as a function of CoV of an input random parameter will be

studied. The CoV of random Young’s Modulus is taken over the range from 5% -

20%. Figure 6 shows the mean along with the error bounds (defined by twice the

standard deviation) for the Uy displacement at node A using a mesh of 8×4, as a
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Fig. 5. Comparison of convergence rates between SGCS-FEM and FEM using: (a) the mean dis-
placement norm definition and (b) the displacement norm definition based on standard deviation.



February 15, 2019 3:26 WSPC/INSTRUCTION FILE output

18 Tittu et.al

Table 4. Statistical moments of Uy displacements at nodes marked A,B and C using SGCS-FEM and
conventional FEM. The accuracy of the results are compared with MCS using 10,000 samples

SGCS-FEM FEM
A B C A B C

Mean 1st order -0.4832 -0.4839 -0.4832 -0.4428 -0.4456 -0.4428
2nd order -0.4848 -0.4856 -0.4848 -0.4443 -0.4472 -0.4443
MCS -0.4912 -0.4913 -0.4912

Std dev 1st order 9.56×10−2 9.57×10−2 9.56×10−2 8.85×10−2 8.90×10−2 8.85×10−2

2nd order 1.09×10−1 1.09×10−1 1.09×10−1 1.01×10−1 1.01×10−1 1.01×10−1

MCS 1.15×10−1 1.15×10−1 1.15×10−1

function of CoV of the random Young’s Modulus. From Figure 6, it can be inferred
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Fig. 6. Mean and variance of Uy displacements at point A against the CoV of random Youngs’
modulus

that the proposed SGCS-FEM reproduces similar results as that of MCS, both in
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mean and standard deviation of output displacements, over the considered range of

input CoV. However, the FEM tends to consistently generate an under-predicted

results, both in terms of mean and standard deviation, for the same mesh in solu-

tion domain.

Free vibration with random E Next, the stochastic vibration of a cantilever

beam with L = 100 mm and D = 10 mm is studied. A plane stress condition is

assumed considering a unit thickness into the plane. The Young’s modulus is as-

sumed to be random with mean value of 〈E〉 = 2.1 × 104 Kgf/mm4 and coefficient

of variation, CoV = 0.2. Poisson’s ratio ν = 0.3 and mass density ρ = 8 × 10−10

Kgf s2/mm4. Using the Euler-Bernouilli beam theory, the first deterministic nat-

ural frequency of the beam is found to be f1 = 0.08276× 104 Hz. The domain is

meshed with Q4 elements, with each element further subdivided into 4 subcells in

case of SGCS-FEM. While the stiffness matrix is assembled using the smoothing

technique, the lumped mass matrix, as in FEM, is adopted for stochastic vibration

studies.

From a mesh convergence study, a mesh size of 50x5 was found to be suffi-

cient enough, using CS-FEM, to reproduce the first natural frequency within 1%

deviation from that of analytical values (see table 5).

Table 5. First four natural frequencies (×104 Hz) of a cantilever beam using
SFEM/FEM (Euler-Bernouilli beam theory: f1 = 0.08276 × 104 Hz)

Number of elements Number of nodes SFEM (4 SC) FEM (Q4) Reference29

10×1 22 0.087 0.100
0.533 0.608
1.286 1.286
1.459 1.642

20×2 63 0.084 0.087 0.0926
0.506 0.526 0.5484
1.284 1.284 1.2832
1.350 1.401 1.4201

50×5 306 0.082 0.083 0.0844
0.495 0.499 0.5051
1.283 1.283 1.2828
1.308 1.317 1.3258

For an assumed correlation length of `c = 12 L for the random field, five terms

in the KL expansion was found to be sufficient enough to capture the decay in

covariance function. The maximum order of PC expansions was chosen to be 1.

Table 6 summarizes the mean and the standard deviation of the first natural fre-

quency obtained using the proposed SGCS-FEM and conventional FEM, using the

stochastic inverse subspace method as detailed in algorithm 1. Meanwhile, Figure 7
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plots and compares the probability density function of the first natural frequency

of the cantilever beam obtained using FEM and SGCS-FEM against that of MCS.

Table 6. Mean (×104 Hz) and standard deviation of the 1st natural
frequency computed using different numerical techniques

Numerical technique FEM SGCS-FEM
Mean [Hz] 1st order PCE 0.0827 0.0832

MCS 0.0820

Std Dev [Hz] 1st order PCE 8.27×10−3 8.31×10−3

MCS 8.39×10−3
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Fig. 7. Comparison of probability density function between MCS and KL-PCE using FEM and
SGCS-FEM. Mesh size of 50×5, KLterms = 5, `c = 12L

From both the table 6 and the Figure 7, it is observed that the proposed SGCS-

FEM predicts almost the same statistical moments for the first natural frequency

as that of MCS, producing an almost equivalent probability density function plot

of the same. There exists not much of difference between the results produced by
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FEM and that of SGCS-FEM, as the converged mesh of 50×5 was used in the

studies (refer back to table 5).

5.2. Thick cylinder under internal pressure

Consider a two dimensional hollow cylinder with an internal radius ri = 1 m and

an external radius ro = 5 m subjected to an internal pressure Pi = 3× 104 Pa on

its inner surface ri, while the outer surface ro is traction free (see Figure 8). Due

to symmetry, only one-quarter of the domain is modeled and a structured mesh of

100 quadrilateral elements is chosen for this analysis (see Figure 8(b)). The Youngs’

modulus is assumed to be random over the domain with a mean value of 〈E〉 =

3×107 Pa and CoV of 0.2, with a correlation length equal to ro. A plane stress

condition is assumed for this problem.
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Fig. 8. Hollow cylinder under internal pressure: (a) Geometry and boundary conditions and (b)
quarter model and a representative FE mesh.

Table 7. Displacement and standard deviation at selected target nodes along x
direction for CoV of 0.2

Target points Node A Node B Node C Node D
Mean First order of PCE 0.4203 0.0668 0.3006 0.9573

Second order of PCE 0.4211 0.0669 0.3011 0.9593
MCS 0.4251 0.0673 0.3043 0.9664

Std Dev First order of PCE 0.0709 0.0133 0.0522 0.1640
Second order of PCE 0.0776 0.0147 0.0569 0.1804
MCS 0.0993 0.0157 0.0711 0.2259

The number of KLterms chosen to represent the random field is fixed at 4, while

the Hermite polynomial order is varied from 1 to 2. A two dimensional exponential
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Table 8. Displacement and standard deviation at selected target nodes along y
direction for CoV of 0.2

Target points Node A Node B Node C Node D
Mean First order of PCE 0.0668 0.4203 0.3006 0.9573

Second order of PCE 0.0669 0.4211 0.3011 0.9593
MCS 0.0673 0.4251 0.3043 0.9664

Std Dev First order of PCE 0.0133 0.0709 0.0522 0.1640
Second order of PCE 0.0147 0.0776 0.0569 0.1804
MCS 0.0157 0.0993 0.0711 0.2259

covariance function is chosen to represent the randomness across the domain. Tables

7 - 8 compares the statistical response results at 4 different points A,B,C and D,

using the proposed SGCS-FEM formulation with the MCS using 10000 samples. It

is clear from the table that the present formulation approximates the mean of the

statistical response at all points to within 1% from that of the MCS. Moreover, the

current formulation with a setting of KL terms as 4 and polynomial order as 2, was

found to predict the standard deviation within 20% deviation from that predicted

by the MCS. Furthermore, this relative difference is bound to decrease further with

increasing polynomial order representation in random space.

5.3. Three dimensional Cooks membrane

As a last example, consider a three dimensional Cooks’ membrane subject to end

shear as shown in Figure 9. The applied end shear results in a deformation domi-

nated by bending. The domain is discretized with eight noded hexahedral element

and each element is further sub-divided into eight subcells. For this example, the

Young’s modulus is assumed to be random across the domain, with a mean value

of 〈E〉 = 20000 and CoV = 0.2. Poisson ratio is taken to be ν = 0.3. The shear

force loading, F is given a value of 500 and the correlation function is chosen to be

of exponential in nature with the same correlation length of 10 times the maximum

dimension for all the 3 mutually perpendicular directions.

The statistical moments in terms of the mean and the standard deviation of

Ux,Uy and Uz at points marked A and B (see Figure 9) are first estimated by

running the three dimensional model using 10000 random samples as part of the

MCS. They are then compared with the ones computed using the proposed method.

Tables 9- 11 tabulates the mean and the standard deviations of Ux, Uy and Uz
displacements at points marked A and B.

Comparing the results from the above table, one can see that the proposed

method agrees well with that of deterministic MCS results within a maximum

deviation of less than 2%.
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Fig. 9. Three dimensional Cooks membrane: geometry and boundary conditions

Table 9. Mean and standard deviation of Ux displacements at
selected target nodes

Target points Node A Node B
Mean First order of PCE -0.1108 -0.4363

Second order of PCE -0.1111 -0.4378
MCS -0.1093 -0.4347

Std Dev First order of PCE 2.17×10−2 8.50×10−2

Second order of PCE 2.45×10−2 9.60×10−2

MCS 2.60×10−2 10.4×10−2

Table 10. Mean and standard deviation of Uy displacements at
selected target nodes

Target points Node A Node B
Mean First order of PCE 0.5626 0.5971

Second order of PCE 0.5645 0.5991
MCS 0.5606 0.5952

Std Dev First order of PCE 1.10×10−1 1.16×10−1

Second order of PCE 1.24×10−1 1.31×10−1

MCS 1.34×10−1 1.42×10−1

6. Conclusions

In this paper, the cell-based smoothed finite element technique is extended for solv-

ing stochastic PDEs with random field domains for the first time as a more efficient

alternative to the conventional stochastic FEM. The performance of the proposed

SGCS-FEM method in terms of the accuracy, was studied comprehensively using

a few benchmark examples under static and free vibration modes. The accuracy of

the method was correlated using the statistical moments obtained from the MCS. It
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Table 11. Mean and standard deviation of Uz displacements at
selected target nodes

Target points Node A Node B
Mean First order of PCE -0.0477 -0.0427

Second order of PCE -0.0287 -0.0237
MCS -0.0055 -0.0005

Std Dev First order of PCE 1.90×10−2 1.80×10−2

Second order of PCE 9.45×10−3 8.82×10−3

MCS 1.32×10−3 1.27×10−4

could be inferred that the proposed formulation yields commensurate results with

that of the MCS. The influence of the input coefficient of variance on the statistical

moments of the output response produced by the proposed method was studied in

detail and compared with that of the MCS. It was observed that with a relatively

coarser mesh, SGCS-FEM was able to reproduce the same mean and the standard

deviation as that of the MCS for a range of input COV, while clearly outperforming

the FEM consistently.

Appendix A

Analytical solutions of Equation (2.8) are readily available in the literature 1 for

simple triangular and exponential covariance function across a rectangular domain.

However, for a random field with arbitrary covariance function across complex

domains, the eigensolutions of Fredholm equation need to be computed numerically.

In this work, the Galerkin method using finite element bases is adopted for the

same. Within this framework, the ith eigenfunction θi is represented as a linear

combination of finite element bases {Φk}Nk=1 with unknown nodal coefficients dik.

hi(x) =

N∑
k=1

dik Φk(x) (6.1)

where N stands for the number of nodes in the FE mesh. Substituting Equa-

tion (6.1) in Equation (2.8) and minimizing the error in the Galerkin sense, and

upon further simplification, we get the following:

N∑
k=1

dik

[∫
Ω

∫
Ω

Rh(x1,x2) Φk(x2) Φj(x1) dΩ dΩ

]
−γi

N∑
k=1

dik

[∫
Ω

Φk(x1) Φj(x1) dΩ

]
= 0

(6.2)

where j goes from 1 to N. The above relation can be written in the form of a

generalized matrix eigenvalue problem as follows:

AD = ΛBD (6.3)
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where

Ajk =

∫
Ω

∫
Ω

Rh(x1,x2) Φk(x2) Φj(x1) dΩ dΩ,

Bjk =

∫
Ω

Φk(x1) Φj1(x) dΩ

Dji = dji Λji = δjiγi

where D,Λ are the eigenvectors and eigenvalues, respectively, of size N × N .

The integrals in matrices A and B are computed by Gauß quadrature rule. Since we

are dealing with two dimensional structures, the integral in matrix A is a quadruple

integration, whereas for B, it is a double integral.
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