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Model order reduction applied to ALE-fluid dynamics
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The Arbitrary Lagrangian Eulerian formulation allows the description of fluid dynamics involving moving and deforming
fluid domains as they are found in many fluid-structure interaction problems. This paper discusses a reduced order approach
for ALE incompressible Navier-Stokes flow formulated on a fixed reference configuration. Based on the proper orthogonal
decomposition (POD) for generation of the reduced basis, the supermizer technique is adapted to the formulation involving a
non-affine term and used to ensure the fulfilment of the inf-sup condition among the velocity and pressure basis. The approach
is studied for an extended version of the classical driven-cavity setup involving a non-affine parameterization of the prescribed
mesh deformation and a time-dependent non-homogeneous lid-flow boundary condition.
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1 ALE-Fluid Dynamics

Many problems in fluid-structure interaction involve a fluid flow on a deforming domain due to a deformation of the structure
or moving fluid boundaries. Energy harvesting devices driven by flow-induced vibrations [1] are an exemplary engineering
application. However, proper representation of the multi-physics problem requires high-fidelity unsteady simulations which
are computationally demanding. This is particularly the case when design studies require parameterization of the problem on
the material parameters, boundary conditions and geometry.

An incompressible flow is considered, described by the Navier-Stokes equations in velocity-pressure form. Let Ωf be the
spatial domain occupied by the current fluid body, the formulation in the ALE framework reads

ρ
∂v

∂t
+ ((v −w) · ∇)v −∇ ·T = f , on Ωf × (0, T ) (1)

∇ · v = 0 on Ωf × (0, T ) (2)

where v is the velocity and ρ the density. The advective velocity v − w takes into account the relative motion of fluid and
discretization, where w denotes the mesh velocity, which is assumed to be known in order to simplify the present study. The
stress tensor T of a Newtonian fluid is defined as T = −pI + 2µD(v) with D(u) = 1

2 (∇v + (∇v)T ), where p denotes
the pressure and µ the dynamic viscosity. The functional spaces for the state variables velocity and pressure are defined
on the (fixed) reference domain Ωr := χ−1(Ωf ) by Vg = {v|v ∈ H1(Ωr),v = gv on Γru}; W = {w|w ∈ H1(Ωr),w =
gw on Γw},Qg = {p|p ∈ L2(Ωr), p = δ(x−xc) on Γrp}. Introducing the weak parameterized formulation, the incompressible
Navier-Stokes in ALE formulation in the reference configuration reads: find (v, p) ∈ Vg ×Qg such that

∫

Ωr

δvρJ · ∂v
∂t
· dx +

∫

Ωr

∇δv : J(µ · (F−T · (∇v)T +∇v · F−1)) · F−T · dx (3)

+

∫

Ωr

δv · ρ J · ∇v · F−1 · (v −w) · dx +

∫

Ωr

δp · ∇ · (JF−1v) · dx−
∫

Ωr

δv · J · f · dx (4)

+

∫

Ωr

∇δv : J(−pI) · F−T dx = 0 (5)

where ρ and µ are constant and the presence of J in terms of the prescribed mesh deformation leads to non-affinity of the
parameterization. The mesh displacement d(x, t) provides mesh velocity w = ∂d

∂t and F = (I+∇d) together with J = detF.

2 Reduced order method: POD-EIM

The fundamental idea of projection-based reduced order method relies on the mapping of a high dimensional system to a
low-dimensional subspace. Among different techniques described in [2], in this study the proper-orthogonal decomposition
method (POD) is used to define the basis that span the sub-space manifold. The computational effort of the reduced order
method is separated in offline stage, where snapshots of velocity and pressure are collected and the POD basis is generated; and
the online stage where the main operations are the projection of pre-computed discrete full-order system and the reconstruction
of the solution in the high-dimensional manifold.
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2 of 2 Section 7: Coupled problems

In this study, the snapshot matrix has dimension (M×S)×N , withM the number of parameter realisations (e.g. Reynolds
number), S the number of time-steps and N the number of degree of freedom of full-order discretization. In addition, to
satisfy the inf-sup condition for the reduced velocity-pressure basis, the velocity POD basis is enriched by the supermizer
approach, introduced in [3], before the online projection. The enriched velocity space is defined as V = 〈{vi}Nv

i=1〉 ⊕
POD({Sµp(µi);Np}Np

i=1) where the inner pressure supermizer operator is defined as

(Sµq,v)H1
0

= J(d(x, t)) · (q,∇ · (J(d(x, t))F−T (d(x, t))v)) ∀v ∈ POD({vi}Nv

i=1 ;Nv). (6)

3 Numerical Test

The ALE fluid discussed here is investigated for the driven-cavity test-case to show the challenges associated with the POD
approach. The time-dependent displacement of the mesh d(x, t) = [0.1 · sin(4 · π · x0) · sin(π · t), 0] is prescribed at each
node. The pressure level is prescribed at the upper left corner. An additional source of non-affine and non-linear term arises
with the lid velocity v(t) = tanh(t) boundary condition. The development of the cavity vortex is studied in the time interval
[0, 2] seconds for different Reynolds numbers (10-100) as problem parameterization. The implementation uses the open-source
finite element library FEniCS [4]; the reduced order method is implemented with the RBniCS package [5]. The number of
degree of freedom of the full-order model is 20402 for velocity and 2601 for pressure.

Fig. 1: Magnitude and vector field of the velocity basis (3 left) and enriching supermizer POD basis (2 right) for the driven cavity problem.

A selection of basis vectors for the velocity state are given in Figure 1 together with the basis enrichment obtained with the
supermizer approach. The POD-generated velocity basis captures the complexity of the developing cavity vortex induced by
the lid velocity, while the supermizer basis contributes the complementary components required for stability of the discretized
velocity-pressure fluid formulation. Figure 2 shows the relative error with respect to the number of modes used in the reduced
model. The non-monotone pressure error is assumed to be caused by the mesh motion and requires further investigation.
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Fig. 2: POD eigenvalues and relative error in norm H1
0 and L2 for velocity and pressure with respect to the FEM solution.
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