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Abstract. NORX is one of the fifteen authenticated encryption algo-
rithms that have reached the third round of the CAESAR competition.
NORX is built using the sponge-based Monkey Duplex construction. In
this note we analyze the core permutation 𝐹 . We show that it has ro-
tational symmetries on different structure levels. This yields simple dis-
tinguishing properties for the permutation, which propagate with very
high probability or even probability one. We also investigate differential
symmetries in NORX at the word level. A new type of truncated dif-
ferentials called symmetric truncated differentials (STD) is proposed. It
is shown that, under the Markov assumption, up to 2.125 rounds of the
𝐹 function of NORX32 and NORX64 can be distinguished using STD.
Finally, we note that our analysis covers only the permutation 𝐹 and
does not immediately threaten the security claims of the designers.

Keywords: NORX, CAESAR, authenticated encryption, sponge, crypt-
analysis

1 Introduction

CAESAR is a competition of authenticated ciphers aiming to select a portfolio
of ciphers suitable for different usage scenarios. NORX [1] is one of the fifteen
candidates that have reached the third round. NORX is based on the Mon-
key Duplex [2,3] construction which is a sponge mode tailored for authenticated
encryption schemes.

In this paper we report on some new non-random properties of the NORX
permutation. More specifically, we show that it exhibits some rotational symme-
tries on different structure levels. The latter yields simple distinguishing prop-
erties for the permutation, which propagate with very high probability or even
probability one.

We also investigate differential symmetries in NORX at the word level. A new
type of truncated differentials called symmetric truncated differentials (STD) is
proposed. It is shown that, under the Markov assumption, up to 2.125 rounds
of the 𝐹 function of NORX32 and NORX64 can be distinguished using STD.

The rest of the paper is organized as follows. We begin by briefly outlining
the NORX algorithm in Sect. 2. In Section 3 we describe rotational symmetric
properties in its core permutation, both at the state and at the word level.
This is followed by an analysis of NORX with respect to symmetric truncated
differentials in Sect. 4. Section 5 concludes the paper.
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2 Description of NORX

NORX has a sponge structure and is based on the monkeyDuplex construction.
It uses ARX (Addition/Rotation/XOR) primitives, with exception of modular
addition. More specifically, it is inspired by the ChaCha stream cipher, where the
addition operation is replaced by the 1-st order approximation: 𝑥⊕𝑦⊕(𝑥∧𝑦) ≪ 1.

The original submission proposes versions of NORX with 32- and 64-bit
words called resp. NORX32 and NORX64. Subsequently two more versions were
proposed with 8- and 16-bit words called resp. NORX8 and NORX16 [4]. The
word size is denoted by 𝑤. The internal state of all NORX variants is composed
of 16 words organized as a 4× 4 matrix.

The basic building block of NORX is a permutation 𝐹 on 𝑏 = 𝑟+𝑐 bits where
𝑏 is called the width, 𝑟 is the rate and 𝑐 is the capacity. 𝐹 is also called a round,
and 𝐹 𝑙 is an 𝑙-fold iteration of 𝐹 . The recommended instances of NORX use 𝑙 = 4
or 𝑙 = 6 rounds. The initialization phase is always followed by a data processing
phase and as a result the state effectively goes through 𝐹 2𝑙 before any absorption.
NORX allows parallelization but we consider only the sequential construction
(the parameter 𝑝 = 1). The parameter combinations of the NORX variants are
given in Table 1. A description of the full scheme is shown on Fig. 1.

Table 1: Parameters of the NORX variants.

word size (𝑤) rounds (𝑙) rate (𝑟) capacity (𝑐) state size (𝑏) nonce key tag (𝑡)

8 4 or 6 40 88 128 32 80 80
16 4 or 6 128 128 256 32 96 96
32 4 or 6 768 256 1024 128 128 128
64 4 or 6 1536 512 2048 256 256 256

Fig. 1: The NORX AE scheme with parallelization parameter 𝑝 = 1. 𝐾 and 𝑁
denote a key and a nonce resp., 𝐴 and 𝑍 denote a header and a trailer resp.,
𝑀𝑖 and 𝐶𝑖 denote plaintext and ciphertext blocks resp., 𝑇 is the authentication
tag. (credits: NORX specification [1])
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𝐹 is composed of 8 steps: 4 column steps denoted by 𝐹𝑐𝑜𝑙, followed by 4
diagonal steps denoted by 𝐹𝑑𝑖𝑎𝑔. 1, 2, . . . , 7 and 8 steps are denoted resp. by
𝐹 0.125, 𝐹 0.250, . . ., 𝐹 0.875 and 𝐹 1.000 = 𝐹 = 𝐹𝑑𝑖𝑎𝑔 ∘ 𝐹𝑐𝑜𝑙. The first 4 steps of
𝐹 represent an ARX circuit called 𝐺 applied to the 4 columns of the state in
parallel. The next 4 steps represent the 𝐺 circuit applied to the 4 diagonals
of the state in parallel. The 𝐺 circuit of NORX is depicted on Fig. 2 and its
application to the columns and diagonals is illustrated on Fig. 3.

Fig. 2: The 𝐺 circuit of NORX. It is applied in parallel first to each of the 4
columns of the state followed by an application to each of the 4 diagonals (see
Fig. 3). This constitutes one round of 𝐹 . (credits: NORX specification [1])

Fig. 3: The 𝐺 circuit applied to the columns (left) and diagonals (right) of the
state. (credits: NORX specification [1])

The security of each of the four versions of NORX is limited by the size of
the key and tag. The designers require unique nonces and abort on verification
failure. In addition, at most 2𝑒 messages are allowed to be processed with a single
key, where 𝑒 is equal to 24, 32, 64, 128 resp. for NORX8, NORX16, NORX32,
NORX64.
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For a more detailed description of NORX we refer the reader to the specifi-
cation [1].

3 Rotational Symmetries

In this section we describe rotational symmetries in the permutation 𝐹 of NORX.
They exist both on the word level and on the state level.

3.1 State Symmetries

We can see a 4x4 NORX state 𝑆 as a list of 4 columns: 𝑆 = (𝑐0, 𝑐1, 𝑐2, 𝑐3).
The following proposition shows that the permutation 𝐹 is column rotation-
symmetric.

Proposition 1. Let 𝑐0, 𝑐1, 𝑐2, 𝑐3 be four arbitrary 4-word columns and denote
by 𝑅𝑛 the function rotating of the columns left by 𝑛 positions, for example
𝑅1(𝑐0, 𝑐1, 𝑐2, 𝑐3) = (𝑐1, 𝑐2, 𝑐3, 𝑐0). Then 𝑅𝑛 can be moved freely through any num-
ber of rounds of the permutation 𝐹 , that is, 𝐹 𝑙 ∘ 𝑅𝑛 = 𝑅𝑛 ∘ 𝐹 𝑙 for any positive
integer 𝑙.

Proof. Clearly, rotation of columns do not affect the column step 𝐹𝑐𝑜𝑙, since it
transforms each column separately: 𝐹𝑐𝑜𝑙 ∘ 𝑅𝑛 = 𝑅𝑛 ∘ 𝐹𝑐𝑜𝑙. Such rotations do
not break the diagonals as well, the diagonals are simply reordered by rotation
with the same amount. Therefore, 𝐹𝑑𝑖𝑎𝑔 ∘𝑅𝑛 = 𝑅𝑛 ∘𝐹𝑑𝑖𝑎𝑔. By applying the two
equations 𝑙 times, we obtain the required result.

Consider any state 𝑆 that is column rotation-invariant with respect to 𝑅𝑛, i.e.
𝑅𝑛(𝑆) = 𝑆 for a fixed integer 𝑛, 1 ≤ 𝑛 ≤ 3. By the proposition, the state 𝐹 (𝑆)
is also column rotation-invariant with respect to 𝑅𝑛: 𝑅𝑛(𝐹 (𝑆)) = 𝐹 (𝑅𝑛(𝑆)) =
𝐹 (𝑆). There are two cases:

1. 𝑛 = 1 or 𝑛 = 3. It means that (𝑐0, 𝑐1, 𝑐2, 𝑐3) = (𝑐1, 𝑐2, 𝑐3, 𝑐0) and it follows
that all columns are equal: 𝑐0 = 𝑐1 = 𝑐2 = 𝑐3. There are 24𝑤 out of 216𝑤
such states. The designers of NORX noted these states in [5].

2. 𝑛 = 2. It means that (𝑐0, 𝑐1, 𝑐2, 𝑐3) = (𝑐2, 𝑐3, 𝑐0, 𝑐1) and it follows that the
two pairs of columns are equal:𝑐0 = 𝑐2 and 𝑐1 = 𝑐3. There are 28𝑤 out of
216𝑤 such states.

The first case is quite obvious: if all columns are equal, then they will stay
equal after any number of rounds of 𝐹 . The second case shows that if the left
and the right halves of the state are equal, then they will be equal after any
number of rounds of 𝐹 as well.

Hitting such a special state is not easy under the NORX’s security claims.
However, 28𝑤 is a more serious fraction of states than the 24𝑤 weak states which
were known to the designers. To illustrate possible dangers of such properties, we
describe a hypothetical weak-key set in NORX8 [4], an 8-bit NORX version for
low-end devices. We remark though that NORX8 is not a part of the CAESAR
submission.
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A hypothetical attack on NORX8. The initial state of NORX8 is shown
in Equation 1. 𝑛𝑖 and 𝑘𝑖 denote bytes of nonce and key respectively, 𝑢𝑖 are
constants and 𝑤, 𝑙, 𝑝, 𝑡 are constants encoding parameters of NORX. It is possible
to construct valid initial states with two equal halves, i.e. a special state from
case 𝑛 = 2 described before. Indeed, let us fix the four key bytes (𝑘2, 𝑘3, 𝑘6, 𝑘7)
and let us choose the two nonce bytes (𝑛2, 𝑛3) arbitrarily. Then we can set the left
half of the state equal to the right half, i.e. (𝑛0, 𝑛1) = (𝑛2, 𝑛3), (𝑘0, 𝑘1) = (𝑘2, 𝑘3)
and so on. There are 232 keys for which this construction works. The column
rotation-invariant of such state is preserved through arbitrary number of rounds
of 𝐹 . After the first 𝐹 𝑙 rounds the domain separation constant will be XORed
to the last word of the state. This constant is not symmetric and therefore it
will break the property. Therefore, we consider a slightly modified version of
NORX8 where the domain separation constant is symmetric (for example, if
original constant is XORed not only to the last word, but to all words of the
state or to all words in the last row). In such case the invariant is be preserved
through the next 𝐹 𝑙 rounds and the rate part of the state is then observed by an
adversary. This leads to an obvious distinguisher: the adversary simply compares
the left and right halves of the exposed part of the state. In NORX8 the rate
part consists of only 5 bytes. It allows to check only the topmost 4 words with
error probability 2−16. By using a few more encryptions (with another symmetric
nonces) the error probability can be decreased to negligible.⎛⎜⎜⎝

𝑛0 𝑛1 𝑛2 𝑛3

𝑘0 𝑘1 𝑘2 𝑘3
𝑘4 𝑘5 𝑘6 𝑘7

𝑘8 ⊕ 𝑤 𝑘9 ⊕ 𝑙 𝑢14 ⊕ 𝑝 𝑢15 ⊕ 𝑡

⎞⎟⎟⎠ (1)

We remark that this attack is quite weak and requires symmetric domain
separation constants. On the other hand, it applies independently of the number
of rounds.

Cycles of 𝐹 and Nonlinear Invariants. States consisting of four equal
columns under application of the 𝐹𝑐𝑜𝑙 or 𝐹𝑑𝑖𝑎𝑔 functions form cycles that cor-
respond directly to cycles of the 𝐺 function. Indeed, such states always consist
of four copies of a single column and application of 𝐹𝑐𝑜𝑙 or 𝐹𝑑𝑖𝑎𝑔 to a state is
equivalent to applying 𝐺 to the corresponding column. For instance, it is possi-
ble to enumerate all cycles of the 𝐺 function for NORX8, where 𝐺 permutes 232
elements. All these cycles of 𝐺 can be transformed into cycles of 𝐹𝑐𝑜𝑙 or 𝐹𝑑𝑖𝑎𝑔

by simply making 4 copies of the column. Since in this case 𝐹𝑐𝑜𝑙 = 𝐹𝑑𝑖𝑎𝑔 = 𝐹 0.5,
these cycles will work for 𝐹 as well, except that all even cycles will split into
two cycles each. We provide the cycle decomposition of 𝐺 from NORX8 in Ap-
pendix A.1.

Recently, a nonlinear invariant attack was introduced by Todo et al. in [6].
They show that, for any SPN-based cipher, if there exists a quadratic invariant
for the S-Box and the binary matrix of the linear layer is orthogonal, then it
is possible to construct a nonlinear invariant for the full round of the cipher.
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Moreover, they show that all nonlinear invariants of the S-Box can be obtained
from its cycle structure.

We investigate this possibility for NORX8 using the cycle decomposition of
𝐺. We treat the 𝐺 function as a 32-bit S-Box. There are 222 combinations of 22
cycles and they correspond to the same amount of invariants of 𝐺. Computing
Algebraic Normal Form of these functions in order to find their algebraic degree
would take 32 × 232 operations per function and it is infeasible to check all
of them. However, we can use the following property: XOR-sum of any boolean
function of degree at most 𝑑 on any affine subspace of dimension 𝑑 is equal to zero.
Consider multiple random 2-dimensional affine subspaces such that there are
values from all cycles involved. A necessary condition for any invariant to have
degree at most 2 then is that any such subspace contains even number of values
for which the invariant is equal to one. It is possible to check if these constraints
are consistent using simple linear algebra. Our computations yielded that there
are no linear or quadratic invariants for the 32-bit function 𝐺. Moreover, the
algebraic degree of any such invariant is at least equal to 20 (except for the trivial
constant invariants). Therefore, it is not possible to find a nonlinear invariant
for the full 𝐹 round of NORX8 using the method from [6].

3.2 Word Symmetries

A similar symmetry exists on the word level too. Denote by 𝑟𝑛 the mapping which
rotates its input word left by 𝑛 bits. We call a word 𝑣 rotation-invariant with
respect to 𝑟𝑛 if 𝑟𝑛(𝑣) = 𝑣. Rotation invariant is preserved through all operations
in 𝐺 except the left shift by 1 bit inside the 𝐻 function (for binary operations
we require both operands to satisfy same rotation-invariant). Nevertheless, the
left shift by 1 bit is very similar to the left rotation by 1, which also preserves
the invariant. In fact, the left shift by one is equivalent to the left rotation by
one when the most significant bit of the input word is equal to zero. The words
that are shifted inside the 𝐻 function are computed as binary ANDs of some
two other words. Therefore, any bit of that words is biased to be zero in a 3/4
fraction of all inputs and all four shifts inside the𝐺 function can be approximated
with rotations with probability (over all inputs of 𝐺) equal to (3/4)4 ≈ 2−1.66.
However, the bits that must be equal to zero in the approximation are not
independent and experimentally we observed a slightly smaller probability of
2−1.84. The function 𝐹 contains 8 applications of the 𝐺 function (4 times on
columns and 4 on diagonals), therefore we can approximate all shifts in 𝐹 with
rotations with probability around 2−14.72.

The largest fraction of states consisting of rotation-invariant words is ob-
tained when 𝑛 is equal to half of the word size. Moreover, this set contains words
that are rotation-invariant for all other 𝑛. There are 28𝑤 out of 216𝑤 such states.
The fraction is the same as for the state symmetry described in the previous
section, but here the invariant is probabilistic.
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4 Differential Symmetries

In this section we investigate non-random properties of NORX with respect to
symmetric differences. We begin with introducing some terminology.

By definition, a symmetric difference (SD) 𝛥 = (𝛥𝐿||𝛥𝑅) is a difference in
which the left half is equal to the right half: 𝛥𝐿 = 𝛥𝑅. A symmetric differential
state (of NORX) is a state composed of symmetric differences. By analogy, a
symmetric differential characteristic (SDC) is a characteristic composed of SD.
Finally, a symmetric truncated differential (STD) over 𝑙 rounds of NORX is a
differential composed of many symmetric characteristics that share the same
input SD and can have any output SD after 𝑙 rounds. Note that symmetric
differences propagate through XOR and bit rotation with probability 1 i.e. if the
inputs to XOR or rotation are SD, then the output is also SD.

4.1 Symmetric Truncated Differentials in NORX

We are interested in estimating the probability of STDs over multiple rounds
of NORX. The motivation is the huge number of SDs per word (bounded by
2𝑛/2 for every 𝑛-bit word), which causes the number of SDC conforming to the
same STD to increase exponentially in the number of rounds. As a result the
probability of the corresponding STD is also expected to increase significantly.

We apply a branch-and-bound strategy to find high probability SDC in
NORX. Our algorithm is similar to Matsui’s algorithm for finding the best
differential characteristics in DES [7]. From a given SDC found in this way,
we construct an STD containing a huge number of SDCs and we estimate its
probability. The search is performed for NORX32 and NORX64 in the scenario
init𝑁 [5] in which the attacker is allowed to modify only the nonce. This is also
the most realistic scenario. The results are shown in Table 2.

Table 2 shows that at most 2.125 rounds of 𝐹 can be distinguished from
random using symmetric truncated differentials. Note that since one half of each
word of the state is equal to the other half, the probability to randomly obtain
a symmetric output state for NORX32 and NORX64 is respectively 2−256 and
2−512.

4.2 Estimating the Probability of STD

The STD probabilities are estimated under the Markov assumption i.e. it is as-
sumed that the column/diagonal rounds of NORX are independent. This allows
to multiply the probabilities of several non-linear components.

In more detail, the probabilities given in Table 2 are computed in the follow-
ing manner. Let 𝛼, 𝛽 and 𝛾 resp. be the input and output XOR differences to
an H operation and let xdp𝐻 be the probability of the corresponding differential
(𝛼, 𝛽 → 𝛾). Let 𝑥𝑖 denote the 𝑖-th bit of the 𝑤-bit word 𝑥: 0 ≤ 𝑖 < 𝑤.

In [5, Sect.3.1, Lemma 3], the designers of NORX state the following suffi-
cient and necessary condition for the differential (𝛼, 𝛽 → 𝛾) to have non-zero
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Table 2: Symmetric truncated differentials in NORX32 and NORX64: 𝐹 𝑙 – 𝑙
applications of the 𝐹 function of NORX; #H – total number of H operations for
the given value of 𝑙; HWavrg – Hamming weight of the quantity (𝛼 ∨ 𝛽) ≪ 1,
averaged over the number of𝐻 operations, where 𝛼 and 𝛽 are input differences to
an 𝐻 operation; 𝑃std – estimation of the probability of the best found symmetric
truncated differential (STD) for the given 𝐹 𝑙.

NORX32 NORX64
𝐹 𝑙 #H HWavrg/2 𝑃std HWavrg/2 𝑃std

𝐹 0.125 4 0.00 −0.0 0.00 −0.0
𝐹 0.250 8 0.19 −1.5 0.19 −1.5
𝐹 0.375 12 0.25 −3.0 0.25 −3.0
𝐹 0.500 16 0.34 −5.5 0.38 −6.0
𝐹 0.625 20 0.40 −8.0 0.53 −10.5
𝐹 0.750 24 0.63 −15.0 0.85 −20.5
𝐹 0.875 28 0.91 −25.5 1.21 −34.0
𝐹 1.000 32 1.28 −41.0 1.68 −53.5
𝐹 1.125 36 1.46 −52.5 2.33 −84.0
𝐹 1.250 40 1.92 −77.0 3.05 −122.0
𝐹 1.375 44 2.15 −94.5 3.65 −160.5
𝐹 1.500 48 2.46 −118.0 4.22 −202.5
𝐹 1.625 52 2.76 −143.5 4.87 −253.0
𝐹 1.750 56 3.00 −168.0 5.52 −309.0
𝐹 1.875 60 3.32 −199.0 6.17 −370.0
𝐹 2.000 64 3.49 −223.5 6.84 −437.5
𝐹 2.125 68 3.75 −255.0 7.39 −502.5

probability:
(𝛼⊕ 𝛽 ⊕ 𝛾) ∧ (¬((𝛼 ∨ 𝛽) ≪ 1)) = 0 . (2)

If condition (2) holds, the probability xdp𝐻 is computed according to the for-
mula:

xdp𝐻(𝛼, 𝛽 → 𝛾) = 2−HW((𝛼∨𝛽)≪1) , (3)

otherwise it is zero. Eq. (2) translates into the following system of bitwise con-
ditions: {︃

(𝛼𝑖 ⊕ 𝛽𝑖 ⊕ 𝛾𝑖) = 0 if 𝑖 = 0 ,

(𝛼𝑖 ⊕ 𝛽𝑖 ⊕ 𝛾𝑖) ∧ (¬(𝛼𝑖−1 ∨ 𝛽𝑖−1)) = 0 if 𝑖 > 0 .
. (4)

In (4), note that whenever (¬(𝛼𝑖−1 ∨ 𝛽𝑖−1)) = 0 any value of 𝛾𝑖 is possible. This
equation is fulfilled if either 𝛼𝑖−1 = 1 or 𝛽𝑖−1 = 1 or both. Therefore, for fixed
𝛼, 𝛽 the quantity 2HW((𝛼∨𝛽)≪1) gives a number of possible output differences
𝛾. If we fix half of each 𝛾 to be equal to the other half, then the number of
symmetric differences in this set is 𝐴 = 2HW((𝛼∨𝛽)≪1)/2.
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Assume that for 𝐹 𝑙 we have found a symmetric differential characteristic
with probability 𝑃 using the mentioned Matsui-like algorithm. Denote with 𝐵
the number of 𝐻 operations in this characteristic and let 𝐴avrg be the Ham-
ming weight of the quantity (𝛼 ∨ 𝛽) ≪ 1 divided by 2 and averaged over all
𝐻 operations. Then (𝐴avrg)

𝐵 is an estimation of the number of possible sym-
metric characteristics derived from the original one and forming a symmetric
truncated differential. Under the assumption that all these characteristics have
probability equal or close to 𝑃 , the probability of the STD can be estimated as
𝑃std = 𝑃 (𝐴avrg)

𝐵 which is the quantity shown in Table 2.

Example 1. The probability of the best SDC for 𝐹 2.125 of NORX32 found with
our algorithm is 𝑃 = 2−510. The number of H operations in this characteristic is
𝐵 = 68 and the average Hamming weight of ((𝛼∨𝛽) ≪ 1) across all H operations
is 510/68 = 7.5. Therefore the average number of symmetric output differences
𝛾 per H operation is 𝐴avrg = 27.5/2 = 23.75. Thus the estimated number of
possible symmetric characteristics that can be derived from the original one is
(𝐴avrg)

𝐵 = (23.75)68 = 2255. The probability of the cluster composed of these
characteristics is estimated as 𝑃 (𝐴avrg)

𝐵 = 2−510 2255 = 2−255, which is the
value shown in the last row of Table 2 for NORX32.

4.3 Closed Sets of Differences

As a second contribution within this section, we performed a search for a set
of four differences that is closed under the atomic component of NORX8 com-
posed of one application of the H function, one rotation (under all 4 rotation
constants) and one XOR. By closed, we mean that if an input difference to the
component belongs to a given set, then there will always be an output differ-
ence from the same set that has non-zero probability. Our search showed that
the only such set is composed of the following 4 symmetric differences (in bi-
nary) (0000 . . . 002, 0101 . . . 012, 1010 . . . 102, 1111 . . . 112), where the dots denote
repetition of the preceding pattern.

In this section we presented analysis of NORX w.r.t. symmetric differences.
The latter are a useful tool for clustering multiple symmetric characteristics into
single truncated differentials (STD). Although the number of such characteristics
in NORX is huge, it is still not enough to compensate for the relatively low
probability of every individual characteristic. We conclude that STDs do not
pose a threat to the security of NORX.

5 Conclusion

In this paper we presented new non-random properties of the NORX permuta-
tion. We showed that it possesses rotational symmetries on different structure
levels, which allow to construct efficient distinguishers with very high probabil-
ity. The security of NORX was also evaluated with respect to a new type of
truncated differentials called symmetric truncated differentials (STD). It was
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shown that up to 2.125 rounds of the 𝐹 function of NORX32 and NORX64 can
be distinguished using STD. Our results do not pose an immediate threat to the
security of the full scheme.
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A Appendix

A.1 Cycle Decomposition of 𝐺 from NORX8

In Table 3 we provide the starting points and lengths of cycles of the function
𝐺 from NORX8.

10

https://competitions.cr.yp.to/round3/norxv30.pdf
https://competitions.cr.yp.to/round3/norxv30.pdf


Table 3: Cycles of 𝐺 from NORX8. Starting points are of the form (𝑎, 𝑏, 𝑐, 𝑑)
(see Figure 2).

Starting point Cycle length

(00,00,00,02) 3294443807
(00,00,00,11) 621984749
(00,00,00,01) 212798071
(00,00,00,05) 56236016
(00,00,00,0c) 55712043
(00,00,00,bc) 21461014
(00,00,00,ca) 9062510
(00,00,00,f3) 7374122
(00,00,03,7d) 7328319
(00,00,01,6b) 5608893
(00,00,02,45) 2463170
(00,00,1a,c2) 399843
(00,02,57,2c) 52972
(00,01,bd,15) 23344
(00,0f,3a,7a) 8301
(00,07,f5,35) 6339
(00,1d,8b,54) 2124
(00,92,69,ea) 848
(00,05,31,d5) 595
(02,46,c2,5e) 137
(01,c0,8e,d5) 78
(00,00,00,00) 1
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