
Wright State University Wright State University

CORE Scholar CORE Scholar

Browse all Theses and Dissertations Theses and Dissertations

2019

A Low-Area, Energy-Efficient 64-Bit Reconfigurable Carry Select A Low-Area, Energy-Efficient 64-Bit Reconfigurable Carry Select

Modified Tree-Based Adder for Media Signal Processing Modified Tree-Based Adder for Media Signal Processing

Priscilla Sharon Allwin
Wright State University

Follow this and additional works at: https://corescholar.libraries.wright.edu/etd_all

 Part of the Electrical and Computer Engineering Commons

Repository Citation Repository Citation
Allwin, Priscilla Sharon, "A Low-Area, Energy-Efficient 64-Bit Reconfigurable Carry Select Modified Tree-
Based Adder for Media Signal Processing" (2019). Browse all Theses and Dissertations. 2102.
https://corescholar.libraries.wright.edu/etd_all/2102

This Thesis is brought to you for free and open access by the Theses and Dissertations at CORE Scholar. It has
been accepted for inclusion in Browse all Theses and Dissertations by an authorized administrator of CORE
Scholar. For more information, please contact library-corescholar@wright.edu.

https://corescholar.libraries.wright.edu/
https://corescholar.libraries.wright.edu/etd_all
https://corescholar.libraries.wright.edu/etd_comm
https://corescholar.libraries.wright.edu/etd_all?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F2102&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F2102&utm_medium=PDF&utm_campaign=PDFCoverPages
https://corescholar.libraries.wright.edu/etd_all/2102?utm_source=corescholar.libraries.wright.edu%2Fetd_all%2F2102&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:library-corescholar@wright.edu

A LOW-AREA, ENERGY-EFFICIENT 64-BIT
RECONFIGURABLE CARRY SELECT

MODIFIED TREE BASED ADDER FOR MEDIA
SIGNAL PROCESSING

A Thesis submitted in partial fulfillment
of the requirements for the degree of

Master of Science in Electrical Engineering

by

PRISCILLA SHARON ALLWIN
B.E., Anna University, 2016

2019
Wright State University

Wright State University
GRADUATE SCHOOL

July 30, 2019

I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPER-
VISION BY Priscilla Sharon Allwin ENTITLED A Low-Area, Energy-Efficient 64-Bit
Reconfigurable Carry Select Modified Tree Based Adder for Media Signal Processing BE
ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DE-
GREE OF Master of Science in Electrical Engineering.

Henry Chen, Ph.D.
Thesis Director

Fred D. Garber, Ph.D.
Chair, Department of Electrical Engineering

Committee on
Final Examination

Henry Chen, Ph.D.

Saiyu Ren, Ph.D.

Raymond E. Siferd, Ph.D.

Barry Milligan, Ph.D.
Interim Dean of the Graduate School

ABSTRACT

Allwin, Priscilla Sharon. M.S.E.E., Department of Electrical Engineering, Wright State University,
2019. A Low-Area, Energy-Efficient 64-Bit Reconfigurable Carry Select Modified Tree Based
Adder for Media Signal Processing.

Multimedia systems play an essential part in our daily lives and have drastically im-

proved the quality of life over time. Multimedia devices like cellphones, radios, televi-

sions, and computers require low-area and low-power reconfigurable adders to process

greedy computation algorithms for the real-time audio/video signal and image processing

such as discrete cosine transform, inverse discrete cosine transform, and fast Fourier trans-

form, etc. In this thesis, a novel 64-bit reconfigurable adder is proposed and implemented

to reduce the area and power consumption. This adder can be run-time reconfigured to

different reconfigurable word lengths, i.e., one 64- bit, two 32-bits, four 16-bits or eight

8-bits addition, depending on the partition signal command. A Carry Select Modified Tree

(CSMT) based adder is used in the reconfigurable adder to reduce the area by 22 % and

the power consumption by 47 % when compared to the conventional design. The proposed

adder, implemented in 180 nm CMOS technology at 1.8-volt supply, has a worst-case De-

lay of 20.67 nanoseconds with an overall area of 36.417 µm2 and power consumption of

447.93 µW

iii

Contents

1 Introduction 1
1.1 High Speed Adders . 1

1.1.1 Description of a basic adder . 1
1.1.2 Critical path in adders . 3
1.1.3 Evolution of various adder designs 3

1.2 Applications of adders in Media Signal Processing 6
1.2.1 Goals of Multimedia Signal Processing 6
1.2.2 Usage of adders in MSP/DSP algorithms 7
1.2.3 Adders in processor units . 9

1.3 Reconfigurable Architecture . 10
1.3.1 Run time Reconfiguration . 10
1.3.2 Types of Implementation . 11
1.3.3 Benefits of Run time Reconfiguration 11

1.4 Research Motivation and Objective . 12
1.4.1 Research Objective . 12
1.4.2 Research Motivation . 12

1.5 Thesis Organization . 14

2 Proposed 64 - bit Reconfigurable Adder Architecture 15
2.1 Top-level Architectural Description . 15

2.1.1 Proposed Design Modification . 17
2.1.2 Description of a Carry Select Modified Tree Adder 17

2.2 Description of the Sub-components . 19
2.2.1 Design of the Least Significant Blocks 19
2.2.2 Design of the Most Significant Blocks 21

3 Design Implementation in 180 nm CMOS Technology 24
3.1 Implementation of the Sub-components 25

3.1.1 Implementation of the Least Significant Blocks 25
3.1.2 Implementation of the Most Significant Blocks 26

3.2 Implementation of the 64-Bit Architecture 28
3.3 Results and Discussion . 29

iv

3.3.1 Result Analysis of the Sub-components 29
3.3.2 Result Analysis of the 64-Bit Architecture 34
3.3.3 Result Comparison with the Original Design 37

4 Conclusion and Future Work 39
4.1 Conclusion . 39
4.2 Future Work . 40

References 41

Appendix 47

v

List of Figures

1.1 Half Adder Circuit . 2
1.2 Full Adder Circuit . 2
1.3 Ripple Carry Adder Design . 4
1.4 Carry Look Ahead Adder Design . 4
1.5 Carry Select Adder Design . 5
1.6 Carry Skip Adder Design . 5
1.7 Transfer Function Representation of FIR and IIR filter Design 7

2.1 Block diagram of the proposed 64-bit CSMT based Adder Design 16
2.2 1-bit CSMT based Adder Design . 18
2.3 1-bit Sub-block Design . 20
2.4 4-bit Sub-block Design . 21
2.5 6-bit Sub-block Design . 22
2.6 5-bit Sub-block Design . 22
2.7 9-bit Sub-block Design . 23
2.8 8-bit Sub-block Design . 23

3.1 Functional Verification of 1-bit block . 25
3.2 Functional Verification of 3-bit block . 26
3.3 Functional Verification of 4-bit block . 26
3.4 Functional Verification of 5-bit block . 26
3.5 Functional Verification of 6-bit block . 27
3.6 Functional Verification of 7-bit block . 27
3.7 Functional Verification of 8-bit block . 27
3.8 Functional Verification of 9-bit block . 27
3.9 Functional Verification of 10-bit block . 28
3.10 Functional Verification of 11-bit block . 28
3.11 Location of the fault and the modified circuit 30
3.12 Area comparison of Original and proposed design sub-blocks 31
3.13 Power comparison of Original and proposed design sub-blocks 32
3.14 Timing Comparison of Original and Proposed 64-Bit Designs 34
3.15 Fault Report for Proposed 64-Bit Design 35
3.16 Area Report for Proposed 64-Bit Design 36

vi

3.17 Power Report for Proposed 64-Bit Design 37

vii

List of Tables

1.1 The truth table of a Half Adder . 2
1.2 The truth table of a Full Adder . 3

2.1 Description of the partition signal commands 16
2.2 The truth table for Sum, Carry and Recoding of a 1-bit Adder 19

3.1 Area of each sub-block for both original and proposed designs 30
3.2 Power consumption of each sub-block for both original and proposed designs 32
3.3 64 Bit Reconfigurable Original design Data Arrival Time VS Bit Configu-

ration . 33
3.4 64 Bit Reconfigurable CSMT design Data Arrival Time VS Bit Configuration 33
3.5 Area, Power, and Timing results of both the original and proposed design . 38

viii

Acknowledgment
First and foremost I would like to thank God Almighty for giving me the strength and en-

couragement to complete this thesis.

I take this opportunity to express my sincere thanks to my Advisor Dr. Henry Chen, without

whom this research would have not been possible. I would also like to extend my thanks

to Dr. Saiyu Ren and Dr. Ray Siferd for serving as my committee members and offering

their valuable suggestions. I would also like to thank the Electrical Engineering Department

for giving me the opportunity and the required resources to complete this thesis sucessfully.

I would also like to thank my best friend Mano for always being there for me and constantly

encouraging and pushing me to do my best.

Finally, I would like to take this moment to thank my parents for giving me the freedom to

chase my dreams. Without their constant support and unconditional love, this would have

not been possible.

ix

Dedicated to

Amma and Appa

x

Introduction

1.1 High Speed Adders

An adder is a digital circuit that manipulates a combination of electronic signals where a

high signal is represented as 1 and a low signal is represented as 0. Various patterns of

signals are added to produce different results. Adders are the basic circuits for constructing

various complex designs such as subtractors, dividers and multipliers which perform more

advanced arithmetic operations in many media signal processing applications. Ultimately

an adder can be called as the fundamental unit of modern computing due to its extensive

usage in real-time signal processes. Modern-day circuits emphasize on the faster operation,

smaller area, and minimal power consumption, which leads to the need for better high

speed, low area, and energy-efficient adder designs.

1.1.1 Description of a basic adder

A simple adder circuit can be constructed using an XOR & AND gate. Such a circuit is

called the Half Adder (HA) which performs simple binary additions. The circuit below

describes the construction of a half adder along with its truth table.

1

Table 1.1: The truth table of a Half Adder

A B S C
0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

Figure 1.1: Half Adder circuit [28]

Another type of adder called the Full Adder (FA) takes a carry bit into account in

addition to adding two binary numbers. The carry bit is from the Least Significant Bit

(LSB) position. The logic expressions (Equations 1.1 and 1.2), truth table, and circuit

construction are as follows.

S = A⊕B ⊕ C (1.1)

COUT = AB +BC + CA (1.2)

Figure 1.2: Full Adder circuit [29]

2

Table 1.2: The truth table of a Full Adder

A B Ci S Co
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

1.1.2 Critical path in adders

A critical path is described as the longest path in the entire circuit, which has the maximum

delay. It is an important parameter which has more considerable significance when design-

ing high-speed circuits. As technology evolves, there is a need for circuits to compute large

amounts of data in a short period. Therefore, the need for reducing the length of the crit-

ical path becomes an essential factor for high-speed designs. Generally, for a Full Adder

circuit, the critical path begins from the carry-in bit and ends at the carry-out bit. It goes

through one XOR gate and two other gates (AND & OR) to reach the output; therefore, the

delay can be represented as given in Eq.(1.3).

TCRITICAL = TXOR + TAND + TAND (1.3)

1.1.3 Evolution of various adder designs

Ripple Carry Adder (RCA): A basic 1-bit adder circuit can be modified to perform N- bit

additions by cascading N 1-bit adders with the carry bit rippling from the first one to the

last one to reach the output. The design is simple but slow since each bit has to wait for the

carry bit rippling from the previous bit.

3

Figure 1.3: Ripple Carry Adder Design [30]

Engineers started developing better designs to try and minimize the computational

delay [1]-[4],[6] which gave rise to different architectures such as Carry Look Ahead Adder,

Carry Select Adder, Carry Skip Adder and so on.

Carry Look Ahead Adder (CLA): This type of adder introduces two signals for each

bit position called the Propagate (P) and Generate (G) signal. Both the signals are derived

from Eq. (1.4) and (1.5).

P = A+B (1.4)

G = A.B (1.5)

A carry is Propagated (either A =1 or B = 1), Generated (both A and B = 1) or Killed

(both A and B = 0), depending on the input values. Various modifications were made based

on this architecture such as Manchester Carry Chain, Brent Kung Adder and Kogge-Stone

Adder.

Figure 1.4: Carry Look Ahead Adder Design [31]

Carry Select Adder (CSA): The construction is simple; it consists of a set of identical

N-bit Ripple Carry Adders along with a Multiplexer. Each of the Ripple Carry Adder

performs normal addition, assuming that the carry-in is 0 (RCA 1) and 1 (RCA 2).

4

After both the results have been pre-calculated, the actual sum and carry out is selected

using the multiplexers depending on the correct carry-in (Cin) value. The number of bits in

each block can be uniform or variable depending on the application. This adder structure

can also be combined with other structures to improve adder performance based on the

circuits necessity.

Figure 1.5: Carry Select Adder Design [32]

Carry Skip Adder (CSK): This type of adder is also called the carry by-pass adder, and

it helps to improve the delay performance of a ripple carry adder in a much simpler manner.

It utilizes the propagate signal of each block which is combined to form a select line for

the multiplexer. Depending on the select signal the carry-out signal is obtained either by

rippling through the entire circuit or the original carry in by-passes and reaches the output.

Figure 1.6: Carry Skip Adder Design [33]

5

1.2 Applications of adders in Media Signal Processing

Modern communication technology is an integral part of our routine lives and has drasti-

cally evolved changing our lifestyle. There are four major places in which technical devel-

opments are happening all the time [7].

i. The rate at which the data is being transferred

ii. The presence of Packed Switch Networks in every realm

iii. The evolution of wireless communications

iv. The ever-increasing demand for broadband access

All the four points mentioned above require the need of very high speed data path

systems [1]- [6] that perform some of the most critical functions that are needed for the

proper functioning and coordination of various sub-blocks that make up a multimedia sys-

tem such as cellphones, radios, Personal Computers, workstations, etc. Adders find their

importance in various aspects of media signal processing and are continually evolving to

meet the growing needs of all consumers.

1.2.1 Goals of Multimedia Signal Processing

Multimedia signal processing is more than just putting texts, audio, video, and images

together. It is the integration and interaction among different media that gives rise to newer

systems with unforeseen challenges and opportunities. Media Signal Processing is defined

as [9] ”the representation, interpretation, encoding, and decoding of multimedia data by

utilizing signal processing tools.” The ultimate goal is the effective and efficient access,

manipulation, fast exchange, and storage of multimedia content for various applications.

6

1.2.2 Usage of adders in MSP/DSP algorithms

Digital Signal Processors / Media Signal Processors [8] [9] utilize various algorithms to

ensure the proper functioning of each block. The basic building blocks of these algorithms

are a combination of adders and multipliers, along with other components. Therefore, there

is a constant need for adders to perform computations faster to achieve faster processing

speeds. Some of the algorithms involving the use of adders are described below,

i. Digital Filters

Digital filters are used to remove unwanted components from a signal when it is being

processed. Depending on the type of application, it can be classified into two types, Finite

Impulse Response filters [3] [4] [8] and Infinite Impulse Response filters. These filters are

of enormous importance in multimedia applications. It is used for the noise suppression

in bio-imaging devices, bio-signal devices [5] and for retrieving signals stored in analog

media. Filters are also used for the enhancement of specific selective ranges of frequency

for audio systems (Equalizers) and some enhancement techniques of images [10] [11] [12]

[14].

Figure 1.7: Transfer Function Representation of FIR and IIR filter Design [34]

7

They also contribute to the process of attenuation/ removal of specific frequencies that

causes interference.Filters are also used in the bandwidth limitation for sampling through

the use of anti-aliasing filters to make sure that a transmitted signal is occupying only its

allotted frequency band.

ii. Discrete Fourier Transforms

Fast Fourier Transform (FFT) [8] is the algorithm, which is used for computing the

Discrete Fourier Transform, which is one among many computation greedy functions.

These algorithms are mainly used in signal and image processing [5]. FFT has made it

computationally possible to work with the frequency domain, making it similar to work-

ing in either time or space domain. These FFT algorithms are utilized to perform large

integer and polynomial multiplications, faster matrix multiplications for various structured

matrices, filtering algorithms such as over-lap add, over-lap save and also for generating

algorithms for Discrete Cosine or Sine Transforms [3] [4] in data encoding and decoding

techniques.

iii. Discrete Cosine Transforms

Discrete Cosine Transform [3] [4] [8] is another computation hungry function which

is majorly used in the lossy/irreversible compression of images (e.g., JPEG) and audio

(e.g., MP3, WMA). The usage of the Cosine function is significant in compression since

the number of cosine functions required to estimate a typical signal is fewer than the sine

function. DCT is also the best choice when it comes to image and signal processing due to

its high energy compression property.

8

1.2.3 Adders in processor units

Processors are the core of every multimedia device such as personal digital assistants, mo-

bile phones, digital cameras, gaming consoles, personal computers, and workstations. They

help in coordinating several processes to happen simultaneously. When we observe the

block diagram of any processor, we can keep the presence of adder circuits in different

configurations, each serving a different purpose. The Central Processing Unit (CPU) con-

tains the Arithmetic and Logic Unit (ALU) [6] which is a fundamental block that performs

various arithmetic operations such as addition, subtraction, multiplication and logical op-

erations, etc.

The fundamental unit of the arithmetic block is again the adder [21] which is modified

to create subtractors and multipliers which efficiently perform more complex operations.

Adders are also used in CPUs to fetch instructions, calculate addresses, table indices,and

perform increment/decrement operations. Graphical Processor Units (GPU) are similar

to CPUs, but the highly parallel structure makes them highly efficient when compared to

general-purpose CPUs. These processors are mainly used in applications that require high-

level manipulation of computer graphics and image processes [5] and are often found in

embedded systems, personal computers, game consoles, and workstations.

Digital Signal Processor (DSP) is similar to a microprocessor with instruction sets

which performs the following simple basic operations,

i. Arithmetic functions such as ADD, SUB, MUL, etc.

ii. Logic functions such as AND, OR, NOT, XOR, etc.

iii. Multiply and Accumulate function (MAC)

iv. Storage of immediate results using registers

v. Storage of signal samples and filter coefficients using on-chip memories

9

The adders are utilized in the Multiplier blocks, MACs, and Core ALU blocks in a

Digital Signal Processors [1]-[3]. The basic block of a multiplier is an Adder. Parallel

Multipliers (also called Array Multipliers) have replaced the traditional shift and add mul-

tipliers and takes only a single processor cycle to fetch, execute and store information.

Another place where the adder is used is in the Multiply and Accumulate Unit. Most signal

processing applications require a sum of products from a chain of continuous multiplica-

tions, for which the MAC unit is utilized. It comprises of a multiplier and a special register.

It implements the function described in Eq (1.6).

A+BC (1.6)

1.3 Reconfigurable Architecture

1.3.1 Run time Reconfiguration

Configuring an architecture at run-time or on-the-go is termed as run-time reconfiguration

(or) dynamic reconfiguration (or) in-circuit reconfiguration. Reconfiguration allows a sys-

tem to be modified during its normal operation, which means there is no need to reset the

remaining circuitry or remove any reconfigurable elements for programming. In principle,

any RAM or FLASH memory-based FPGAs [13] can be dynamically reconfigured to dif-

ferent configurations, even when the rest of the blocks are fully operational. The primary

purpose of reconfiguration approach is to reduce component count and power consumption.

Run-time reconfiguration is primarily used in communication technologies such as

multimedia signal processing, networking, and cryptography. Some examples being the

creation of signal processing algorithms such as adaptive image filtering [10], retrieval of

arbitrarily shaped objects within images or video frames [11], usage of FIR filters in re-

10

configurable FPGAs to store multiple lines of pixels [12] [13] and for implementing fractal

image compression techniques [14]. Other applications include military-based Software

radio, airborne applications, and remote sensors and for consumer applications such as

cellphones, televisions, computers and gaming consoles.

1.3.2 Types of Implementation

There are two main approaches in run-time reconfigurations: total reconfiguration and par-

tial reconfiguration. The FPGA resources are reconfigured or deleted between different

configurations. Partial reconfiguration is the one in which only the variations between the

configurations are modified.

1.3.3 Benefits of Run time Reconfiguration

A run-time reconfigurable system [13] offers the best performance with maximum hard-

ware utilization. They offer the fastest way possible to change an active FPGA circuit since

only those parts that require configuration are interrupted. This leads to quick system oper-

ation. The scope for employing dynamic reconfiguration is improved since the gate count

of individual FPGA’s continues to increase.

Current FPGA capabilities for dynamic reconfiguration is mainly applied in military

and wireless communication technologies. When the capacity of programmable logic de-

vices increases, the demand for the flexible re-use of FPGA is also increased. This leads to

the advancements in various areas such as device configuration and speed of reconfigura-

tion[15] [20]. The techniques also improve recovery and built-in error detection skills and

even in the design simplicity of reconfigurable modes[18].

11

1.4 Research Motivation and Objective

1.4.1 Research Objective

The objective of this thesis is to design a High speed, energy-efficient reconfigurable adder

architecture for Multimedia Signal Processing applications. A hybrid Carry Select Modi-

fied Tree (CSMT) [26] [27] based adder is utilized to implement this minimum area, low

power architecture. Data paths are generally built using efficient reconfigurable compo-

nents [15]-[18] [20]-[23] such as adders and multipliers which are used in media signal

processors to compute the real-time audio/video signals through signal processing algo-

rithms. Therefore, the need for high-speed adders is a necessity for the proper functioning

of these multimedia signal processes.

1.4.2 Research Motivation

Semiconductor companies are working towards incorporating billions of transistors on a

single chip due to a large number of functionalities it performs. Low-power design is a high

demand field since modern-day consumers require electronic devices that have long-lasting

battery life. The amount of power consumed for each task is reduced by compromising on

other vital functionalities such as the speed and area. Therefore, the critical goal is the

ability to meet the operational speeds while trying to reduce the rate of power dissipation.

The dream for every chip designer is to come up with designs that take up less power,

runs at high speed, and has a lower cost. But it is nearly impossible to achieve all param-

eters at the same time since there is always a trade-off [23] [25] between each component.

Consider the example of a Ripple Carry Adder, which is easier to design, but has a longer

critical path which makes the design slower. Similarly, individual parallel prefix adders

such as Kogge - Stone adder, Brent Kung style adders [15], Carry Propagate based Alti

12

Vec PowerPC architecture [35] reach higher speeds but has a substantial increase in silicon

area and power consumption [18] [19].

Specific reconfigurable architectures [16] can also be designed to reduce the chip area

by optimizing hardware utilization through sharing resources. These performance speci-

fications can be attained by appropriate scaling of transistor sizes. Presently, technology

scaling is moving to atomic dimensions. Proper scaling, along with innovative and compe-

tent techniques for implementing digital circuits, can assist in the reduction of silicon area

and power consumption while maintaining an optimal operational speed.

There are many advancements undertaken for the implementation of high speed, low

power adders. Multimedia devices [16] [17] such as cellphones, radios, tablets, computers,

and game consoles utilize specific computation hungry signal processing algorithms such

as discrete cosine transforms; inverse discrete cosine transforms, fast Fourier transforms,

motion compensation, etc. to achieve real-time processing of media signals efficiently.

The CMOS technologies are advancing rapidly; thus, circuit designers have to come up

with practical reconfigurable computational elements such as adders and multipliers [36]-

[38] which aid in the efficient functioning of these signal processing algorithms. Hence,

to come up with high-speed, low-power media signal processors (MSP), adder circuits are

required to be reconfigurable, consuming low power at high-speeds.

13

1.5 Thesis Organization

The rest of this thesis is organized as follows, Chapter 2 discusses the design features of the

proposed 64-bit adder and its sub-components. The implementation of the 64-bit architec-

ture and its subcomponents in the TSMC 180 nm CMOS technology and its corresponding

results are presented in Chapter 3, followed by the conclusion and future work in chapter

4.

14

Proposed 64 - bit Reconfigurable Adder

Architecture

2.1 Top-level Architectural Description

The Top-level description of the proposed 64-bit adder is similar to the original design [17].

It is made up of a series of non-uniform linearly increasing blocks of the following order:

1-bit, 3-bit, 4-bit, 5-bit, 6-bit, 7-bit, 8-bit, 9-bit, 10-bit and 11-bit with 1-bit being the Least

Significant Bit (LSB) block and 11-bit being the Most Significant Bit (MSB) block. This

adder is run-time reconfigurable and can be configured to perform one 64-bit addition, two

32-bit additions, four 16-bit additions or eight 8-bit additions,depending on the need.

This reconfiguration happens on demand and is made possible with the help of 2 partition

signals (P0 and P1) that control the partitioning. Since the lower precision of operation is

8 bits, the least significant blocks (1-bit, 3-bit, and 4-bit) do not require the partition sig-

nals. When no partitioning is required it works like a conventional 64-bit carry skip adder.

When partitioning is needed, the internal blocks are reconfigured to perform the necessary

operation. The most significant blocks are reconfigured by assigning a particular value for

each configuration, which is described in table 2.1.

15

Figure 2.1: Block diagram of the proposed 64-bit CSMT based Adder Design

Table 2.1 lists each individual (x + y) block as two sub-blocks of bits (x bit, y-bit) with

x-bit being the most significant and y-bit being the least significant. When the partition is

required, the control signals (P0 and P1) ensures that no carry propagation occurs between

these two separated sub-blocks. Take the example of an 8-bit addition partitioning, the 6-

bit block is split in the third-bit position, and the 5-bit block is split in the first-bit position

so that the carry from the previous blocks don’t enter into this block.

Table 2.1: Description of the partition signal commands

Sub-blocks
P0 = 0
P1 = 0

P0 = 0
P1 = 1

P0 = 1
P1 = 0

P0 = 1
P1 = 1

64-bit 32-bit 16-bit 8-bit
5-bit Previous block carry Previous block carry Previous block carry Original Cin
6-bit - - (3-b, 3-b) (3-b, 3-b)
7-bit - - - (2-b, 5-b)
8-bit - (2-b, 6-b) (2-b, 6-b) (2-b, 6-b)
9-bit - - - (3-b, 6-b)
10-bit - - (5-b, 5-b) (5-b, 5-b)
11-bit - - - (8-b, 3-b)

16

When observing the overall architecture Fig(2.1), it is noted that the odd number bit

blocks except the 1-bit have an inverted carry coming in and an inverted carry going out,

while the other blocks receive the normal carry in. This is due to the usage of inverted

multiplexers (IMUX) for the carry skip process. The IMUX is a suitable choice over nor-

mal multiplexer & AND-OR structures since it helps to reduce the power and delay more

efficiently.

2.1.1 Proposed Design Modification

Although the proposed design is functionally the same as the original one, a minor modifi-

cation is made in the sub-component level of the new design. The original design uses XOR

and XNOR gates to generate the sum and uses inverted 2:1 multiplexer (IMUX2) to create

the carry. The proposed design uses a Carry Select Modified Tree (CSMT) Adder which

uses multiplexers for both sum and carry generation, instead of using the XOR/XNOR and

inverted multiplexers. This simplifies the circuit, eliminating the need for auxiliary signals,

thereby reducing the cell count leading to a reduction in area. The architectural description

of the CSMT adder used in this design is described in the following section.

2.1.2 Description of a Carry Select Modified Tree Adder

Figure 2.2 describes a bit slice of a multiplexer-based adder, which is constructed using the

CSMT adder principle [27]. Consider an addition function, say

Y = A+B

Where, Y = Yw−1....Y0 and A = Aw−1....A0 and B = Bw−1....B0 represent the W-bit

binary numbers. A carry-save adder can be implemented as a multiplexer-based adder. The

17

carry update recursion in this CSMT principle does not use the propagate (P) and Generate

(G) signals. Instead, a new recording is defined in Eqs. (2.1) and (2.2) where,

air = ai.bi (2.1)

bir = ai + bi (2.2)

This new equation rewrites (ai, bi) = (1,0) as (0,1) creating a dont care condition which

reduces the complexity of the circuit and can be mapped to a multiplexer. Consider the

recursive sum and carry generate Eqs. (2.3) and (2.4),

S = ai ⊕ bi ⊕ ci (2.3)

Ci+1 = aibi + aici + bici (2.4)

Figure 2.2: 1-bit CSMT based Adder Design

18

Table 2.2 provides the truth table description for the sum, carry, and recoding. Using

this, we can come up with multiplexer-based equations for both the carry update and the

sum operations given in Equations (2.5) and (2.6).

Ci+1 = ci.bir + ci.air (2.5)

Si+1 = ci(bir + air) + ci(air + bir) (2.6)

Table 2.2: The truth table for Sum, Carry and Recoding of a 1-bit Adder

Ai Bi Recoding Ci+1 Si

Ai,r Bi,r

0 0 0 0 0 ci
0 1 0 1 ci ci
1 0 0 1 ci ci
1 1 1 1 1 ci

2.2 Description of the Sub-components

The sub-blocks fall into two categories one that requires partitioning and the other that

doesn’t require partitioning. The partitioning is done based on the partition signals decod-

ing table mentioned in table 3. The reconfigurable sub-blocks are designed in such a way as

to avoid the insertion of additional circuitry in the carry propagation path when compared

to the non-reconfigurable blocks.

2.2.1 Design of the Least Significant Blocks

The 1-bit, 3-bit, and 4-bit blocks do not require reconfiguration since the lowest bit oper-

ation is 8-bit, that is (1 + 3 + 4 = 8). The design of these blocks is simple and straight

19

forward. Figures 2.3 and 2.4 show the schematics of the 1- and 4-bit blocks, which are

coded using VHSIC Hardware Description Language (VHDL).

Figure 2.3: 1-bit Sub-block Design

The working principle of the 1-bit block is described as follows. The inputs, a, b and cin,

are given to the block, according to the updated multiplexer- based equations, the carry-in

bit acts as the select line for both the sum and carry out bit. The re-coded inputs are uti-

lized to produce the sum and carry. When extended to an N-bit block say 3-bit or 4-bit,

the carry-out bit of the previous block becomes the select line input for the next block as

seen in Figure 2.4. The skip signal is used as a select line for the inverted multiplexer in

the carry skip circuit to skip using the carry-out signal generated from the present block to

the next block.

20

Figure 2.4: 4-bit Sub-block Design

2.2.2 Design of the Most Significant Blocks

The design of the most significant blocks is more important since it involves the partition

process. This most significant blocks can be further divided into three categories depending

on the partition command equations.

i. 6-bit and 10-bit designs partitioning is needed only for 8- or 16-bit addition

ii. 5-bit,7-bit,9-bit, and 11-bit designs partition required only for 8-bit addition

iii. 8-bit design partitioning necessary for 8-, 16- and 32-bit additions

i. 6-bit and 10-bit designs

The 6-bit and 10-bit designs use a simple inverter and a multiplexer to perform the

partitioning. The 6-bit design is divided into (3-b,3-b) sub-block and the 10-bit design is

divided into (5-b,5-b) sub-block after decoding the partition signal PAR = P0. Depending

on the arrival of the partitioned signal, the carry-in from the previous block is either passed

to the current block, or by-pass to the next block. Both the designs are described as a

structural VHDL code. Figure 2.5 shows the 6-bit design. Both 6 and 10-bit designs are

constructed similarly.

21

Figure 2.5: 6-bit Sub-block Design

ii. 5-bit, 7-bit, 9-bit, and 11-bit designs

The 5-bit, 7-bit, 9-bit, and 11-bit blocks require partitioning only when it performs

an 8-bit addition operation. Therefore, a NAND gate along with a multiplexer is used

to decode the partition command PAR = P0.P1. The 5-bit block is split at the 1st-bit

position since it should not receive the carry from the previous 4-bit block during an 8-

bit addition partition. The 7-bit block is split into (2-b, 5-b) sub-block, the 9-bit block is

split into (3-b, 6-b) sub-block and the 11-bit block is split into (8-b,3-b) sub-blocks. The

schematics of the 5-bit and 9-bit blocks are shown in Figures 2.6 and 2.7.

Figure 2.6: 5-bit Sub-block Design

22

Figure 2.7: 9-bit Sub-block Design

iii. 8-bit design

The 8-bit design requires constant partitioning unless it performs the conventional

64-bit addition. A NOR gate is used along with a multiplexer to decode the partitioning

command PAR = P0 + P1 . The block is split into (2-b,6-b) sub-blocks, as shown in

Figure 2.8.

Figure 2.8: 8-bit Sub-block Design

23

Design Implementation in 180 nm

CMOS Technology

Chapter 2 discussed the design process of the 64-bit architecture and its sub-components

in detail. The basic schematics were translated into a structural VHDL code (RTL). The

VHDL codes were inputted into the Cadence simulation tool (NC-Sim) for checking and

functional verification, and after which the fault analysis is completed using the Synopsys

TetraMAX software.

The next step is to synthesize and optimize the design using Synopsys Design Com-

piler. Synthesis is the process of translating an RTL design into a generic design (GTECH

library), and after which it is optimized and mapped to its target technology (here 180 nm

CMOS technology) through the process of compiling and the reports for the area, power

and timing are generated. Detailed analysis of all the results will be explained in section

3.3. The implementation process of the sub-blocks and the entire architecture will be de-

scribed in sections 3.1 and 3.2.

24

3.1 Implementation of the Sub-components

3.1.1 Implementation of the Least Significant Blocks

The implementation process begins with verifying the functionality of the VHDL codes to

make sure that the sub-blocks are functioning the way test benches with various test cases

are designed. The next step involves checking the circuits for fault analysis using Synopsys

TetraMAX, where it provides a list of fault models that simulates logical problems that

might occur in the circuit namely stuck-at faults, bridging faults, transistor faults, open

circuit faults and so on.

The most common fault model taken for consideration is the stuck-at fault model,

which means that a wire in the circuit can always be stuck at signal 0’ or 1’. Once the

reports for each of the circuit is generated, the TetraMAX ATPG software provides several

test patterns which can be used to detect most of the listed faults. Once this is complete,

the sub-components are loaded into the Synopsys Design Compiler to synthesize the design

and map them to the target technology for further analysis. Figures 3.1, 3.2, and 3.3 show

the functional verification results for the 1-bit, 3-bit, and 4-bit blocks.

Figure 3.1: Functional Verification of 1-bit block

25

Figure 3.2: Functional Verification of 3-bit block

Figure 3.3: Functional Verification of 4-bit block

3.1.2 Implementation of the Most Significant Blocks

The functional verification of the most significant sub-blocks is highly essential since these

components involve the partitioning of bits within each sub-block. The test benches are

written accordingly, to verify a few test cases. Once the functionality is verified, the next

few steps are the same as described in sub-section 3.1.1. The functional verification results

for the most significant blocks are shown below in figures 3.4 to 3.10.

Figure 3.4: Functional Verification of 5-bit block

26

Figure 3.5: Functional Verification of 6-bit block

Figure 3.6: Functional Verification of 7-bit block

Figure 3.7: Functional Verification of 8-bit block

Figure 3.8: Functional Verification of 9-bit block

27

Figure 3.9: Functional Verification of 10-bit block

Figure 3.10: Functional Verification of 11-bit block

3.2 Implementation of the 64-Bit Architecture

Once the sub-blocks are verified, the entire 64- bit adder is tested to make sure it runs prop-

erly for all the partition signal commands (P0 and P1), for each reconfiguration 8-, 16-, 32-

and 64-bit additions. The test cases and their functional verification waveform for each of

the partition commands are generated.The design is then loaded onto the Synopsys Tetra-

MAX ATPG tool, which generates a report on the number of faults, location of the faults

and a test pattern report for detecting these faults so that it can be fixed.

The next step involves the Synopsys Design Compiler tool which translates the RTL

code into the gate-level netlist (GTECH library) and then mapped and optimized to the

target 180 nm CMOS technology library. These library files have a list of logic gate de-

scriptions, timing, and power specifications in accordance with that particular technology.

28

Once the data are analyzed and elaborated, the hierarchy of the circuit is checked to

make sure that it is the same as all the other schematics generated in each of the EDA

software that is used. Once that has been done, the design is compiled during which the

mapping and optimization take place. The final step in this process is to generate the area,

power, and timing reports for this design. A detailed analysis of all the results is provided

in the upcoming section.

3.3 Results and Discussion

3.3.1 Result Analysis of the Sub-components

i. Fault Analysis

The stuck-at fault analysis is completed for each of the sub-components using Tetra-

MAX ATPG software to generate a corresponding test pattern file listing test patterns to de-

tect the faults found by the software. The undetected redundant (UR) faults can be removed

by removing the redundant connections or gates to make the circuits 100% fault-free. The

primary fault location of the CSMT based adder [27] used in this design is in the input Ci

going to the multiplexer of the Co (through the inverter and input B of the AND gate).

The fault location is shown in Figure 3.11(a). This fault can be removed by removing

both the logic gates in the circuit, which leads rise to a fault-free design shown in Figure

3.11(b). Since each sub-block has the same fault, which is rippling through each bit con-

figuration, it can be removed by fixing the fault in the primary 1-bit slice.

29

(a) Fault location (b) Modified, Fault-free
Circuit

Figure 3.11: Location of the fault and the modified circuit

ii. Area

The table 3.1 below provides a detailed analysis of the area comparison between the

CSMT based sub-block designs and the original sub-block designs. When we observe the

values in the table, the 1-bit and 3-bit original design sub-blocks take up lesser area than the

proposed design, but as we go down the table, the trend changes and the area occupied by

the original design sub-blocks increases sharply when compared to the proposed sub-block

designs. This trend can be observed in the following graphical representation of the table

in Figure 3.12.

Table 3.1: Area of each sub-block for both original and proposed designs

Sub-blocks CSMT based 64-bit adder (µm2) Original 64-bit adder (µm2)
1-bit 582.83 368.93
3-bit 1794.43 1541.69
4-bit 2386.45 2317.84
5-bit 3051.95 3371.05
6-bit 3810.77 4235.01
7-bit 4439.50 5020.15
8-bit 5031.33 5768.38
9-bit 5660.32 6581.45

10-bit 6252.34 7413.12
11-bit 6881.10 8193.34

30

Figure 3.12: Area comparison of Original and proposed design sub-blocks

iii. Power

The power consumed by each sub-block is presented in table (3.2), and it is observed

that in the initial stages, the original sub-blocks seem to be consuming lesser power than

the proposed design, but in the later stages there is a shift in the observed pattern and

the power consumption of the original design increases when compared to the proposed

sub-block designs. This can be seen clearly in the following graph in Figure 3.13.

31

Table 3.2: Power consumption of each sub-block for both original and proposed designs

Sub-blocks CSMT based 64-bit adder (µW) Original 64-bit adder (µW)
1-bit 5.82 8.45
3-bit 17.38 27.31
4-bit 24.13 42.37
5-bit 30.27 57.28
6-bit 39.27 96.75
7-bit 42.52 122.02
8-bit 49.59 142.16
9-bit 57.20 153.22
10-bit 62.02 159.02
11-bit 65.12 192.36

Figure 3.13: Power comparison of Original and proposed design sub-blocks

iv. Time

Tables (3.3) and (3.4) show the data arrival times from the carry-in bit to the corre-

sponding sub-block carry output for both the original design and the proposed design. It is

shown that the proposed design achieves a timing delay more or less close to the original

32

design. The graph shown in Fig. (3.14) gives a clear comparison of speeds between both

the designs.

Table 3.3: 64 Bit Reconfigurable Original design Data Arrival Time VS Bit Configuration

Bit Configuration Source Destination Data Arrival time (nS)
1 Bit Ci Net C1 0.209
4 bits Ci Net C3 1.328
8 bits Ci Net C7 2.628

12 bits Ci Net G6/U20/Y 4.152
16 bits Ci Net G8/U11/Y 5.513
24 bits Ci Net G10/U25/Y 7.812
32 bits Ci Net G12/U32/Y 10.280
48 bits Ci Net G16/U25/Y 14.956
56 bits Ci Net G18/U11/Y 17.254
64 bits Ci Co 19.532

64 bits (Worst case) B [0] Co 19.819

Table 3.4: 64 Bit Reconfigurable CSMT design Data Arrival Time VS Bit Configuration

Bit Configuration Source Destination Data Arrival time (nS)
1 Bit Ci Net C1 0.237
4 bits Ci Net C3 1.439
8 bits Ci Net C7 2.879

12 bits Ci Net G6/G5/Co 4.684
16 bits Ci Net G8/G2/Co 6.132
24 bits Ci Net G10/G4/Co 8.988
32 bits Ci Net G12/G5/Co 11.839
48 bits Ci Net G16/G4/Co 14.732
56 bits Ci Net G18/G2/Co 17.608
64 bits Ci Co 20.465

64 bits (Worst case) B [0] Co 20.675

33

Figure 3.14: Timing Comparison of Original and Proposed 64-Bit Designs

3.3.2 Result Analysis of the 64-Bit Architecture

i. Fault Analysis

The fault analysis of 64-bit adder circuit is performed similarly as with the individ-

ual sub-blocks. The Fault analysis report for the entire 64-bit architecture is shown below.

It provides a detailed description of the number of faults that are Detected(DT), Unde-

tected(UD), Not Detected(ND), Possibly Detected(PT) or ATPG Untestable(AU). The fault

removal process is done using the same steps, which are described in the sub-component

fault analysis.

34

Figure 3.15: Fault Report for Proposed 64-Bit Design

ii. Area

The area report of the 64-bit design which was generated by the Synopsys Design

Compiler is shown below in Fig 3.16. It gives a detailed analysis of the number of cells

used to construct the design, the number of buffers/inverters used in the design, the number

of sequential components (registers, flip flops), and combinational components used and

the total area of the design.

35

Figure 3.16: Area Report for Proposed 64-Bit Design

iii. Power

The power analysis can be done by generating a report from the Synopsys Design

Compiler software. This report provides detailed information about the percentage of dy-

namic power, internal power, switching cell power, and leakage power of the given 64-bit

adder circuit shown in Fig. 3.17. It also provides a spilt up of the power used by various

components in the circuit (clock network, registers, sequential and combinational elements,

etc.)

36

Figure 3.17: Power Report for Proposed 64-Bit Design

3.3.3 Result Comparison with the Original Design

The proposed 64-bit reconfigurable adder circuit and the original 64-bit reconfigurable

adder circuit were both synthesized and optimized using Synopsys Design Compiler with

the 180 nm CMOS technology for uniform comparison. The results of the comparison are

provided in table (3.5).

37

Table 3.5: Area, Power, and Timing results of both the original and proposed design

Parameters CSMT based 64-bit adder Original 64-bit adder
Area (µm2) 36417 46851
Power (µW) 447.93 845.67
Timing (ns) 20.67 19.84

From the above table, it is observed that the proposed 64-bit reconfigurable adder

design has a 22% reduction in area, 47% reduction in power consumption and a slight 4%

increase in delay when compared with the original 64-bit reconfigurable adder architecture.

38

Conclusion and Future Work

4.1 Conclusion

This thesis presented a low area, energy-efficient, high-speed 64-bit reconfigurable adder

architecture, which can be run-time reconfigured to perform either eight 8-bits addition or

four 16-bits addition or two 32-bits addition. It is used as a data path for multimedia signal

processing applications. The proposed architecture utilized the carry select modified tree

(CSMT) - based adder to design the sub-blocks. All the designs were coded using VH-

SIC Hardware Description Language (VHDL) and verified for proper functionality, tested

for faults and optimized and synthesized with various design constraints for better per-

formance. This design achieved a 22% decrease in area and a 47% reduction in power

consumption with a slight 4% increase in delay when compared to the existing architec-

ture. This design was implemented in 180 nm CMOS technology at 1.8-volt supply at a

temperature of 25C to obtain these results.

39

4.2 Future Work

i. Improved high-speed media signal processing algorithms such as DCT, IDCT, FFT and

ii. high-speed, low-power, low-area multipliers can be implemented based on the proposed

adder.

iii. Carry propagation reduction approaches can be further analyzed and applied for further

delay reduction in the design.

iv. Process-voltage-temperature variations can be analyzed to test the robustness of the

design by conducting a Monte Carlo analysis to determine the best-case scenario.

40

REFERENCES

[1] Gowthaman, Naveen Balaji & Deni Johnson, S & Giridharan, S & Aswanth, R.

(2017). Approximate Adders for digital signal processing (DSP) applications A relative

study.

[2] N. Zhu, W. L. Goh, W. Zhang, K. S. Yeo, and Z. H. Kong, ”Design of Low-Power

High-Speed Truncation-Error-Tolerant Adder and Its Application in Digital Signal Process-

ing,” in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 18, no.

8, pp. 1225-1229, Aug. 2010. doi:10.1109/TVLSI.2009.2020591

[3] V. Gupta, D. Mohapatra, A. Raghunathan and K. Roy, ”Low-Power Digital Signal

Processing Using Approximate Adders,” in IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems, vol. 32, no. 1, pp. 124-137, Jan. 2013.doi: 10.1109/T-

CAD.2012.2217962

[4] M. Pashaeifar, M. Kamal, A. Afzali-Kusha and M. Pedram, ”Approximate Reverse

Carry Propagate Adder for Energy-Efficient DSP Applications,” in IEEE Transactions on

Very Large-Scale Integration (VLSI) Systems, vol. 26, no. 11, pp. 2530-2541, Nov. 2018.

doi: 10.1109/TVLSI.2018.2859939

[5] A. Madanayake et al., ”Low-Power VLSI Architectures for DCTDWT: Precision

vs. Approximation for HD Video, Biomedical, and Smart Antenna Applications,” in IEEE

Circuits and Systems Magazine, vol. 15, no. 1, pp. 25-47, First quarter 2015. doi:

10.1109/MCAS.2014.2385553

41

[6] P. Nautiyal, P. Madduri and S. Negi, ”Implementation of an ALU using modified

carry select adder for low power and area-efficient application,” in International Confer-

ence on Computer and Computational Sciences (ICCCS), Noida, India, 2015.

[7] Audio Signal Processing for Next-Generation Multimedia Communication Sys-

tems, Yiteng (Arden) Huang, Jacob Benesty, Springer Science & Business Media, 2007,

ISBN: 1402077696, 9781402077692, 374 pages

[8] https://elearningatria.files.wordpress.com/2013/10/ece-vii-dsp-algorithms-architecture-

10ec751-notes.pdf

[9] http://ptgmedia.pearsoncmg.com/images/chap3 013031398X/elementLinks /3139H.pdf

[10] N. Srivastava, J. L. Trahan, R. Vaidyanathan, and S. Rai, ”Adaptive image filter-

ing using run-time reconfiguration,” Proceedings International Parallel and Distributed Pro-

cessing Symposium, Nice, France, 2003, pp. 7 pp.-. doi: 10.1109/IPDPS.2003.1213332

[11] J. Gause, P. Y. K. Cheung and W. Luk, ”Reconfigurable shape-adaptive template

matching architectures,” Proceedings. 10th Annual IEEE Symposium on Field-Programmable

Custom Computing Machines, Napa, CA, USA, 2002, pp. 98-107. doi: 10.1109/F-

PGA.2002.1106665

[12] R. Kreuger, ”Virtex-EM FIR Filter for Video Applications,” Xilinx application

note XAPP241 Xilinx Inc., 2000.

42

[13] J. S. N. Jean, K. Tomko, V. Yavagal, J. Shah and R. Cook, ”Dynamic reconfig-

uration to support concurrent applications,” in IEEE Transactions on Computers, vol. 48,

no. 6, pp. 591-602, June 1999. doi: 10.1109/12.773796

[14] H. Nagano, A. Matsura, A. Nagoya, ”An Efficient Implementation Method of

Fractal Image Compression on Dynamically Reconfigurable Architecture,” Proc. 6th Re-

config. Arch. Workshop (Parallel and Distributed Processing; Lect. Notes Comp. Sci.

#1586), pp. 670-678, 1999.

[15] C. K. V., S. P. P., S. E. Ahmed, S. Veeramachaneni, N. M. Muthukrishnan, and M.

B. Srinivas, ”A Prefix Based Reconfigurable Adder,” 2011 IEEE Computer Society Annual

Symposium on VLSI, Chennai, 2011, pp. 349-350.doi: 10.1109/ISVLSI.2011.69

[16] S. Perri, P. Corsonello and G. Cocorullo, ”64-bit reconfigurable adder for low

power media processing,” in Electronics Letters, vol. 38, no. 9, pp. 397-399, 25 April

2002.doi: 10.1049/el:20020295

[17] Perri Stefania, Corsonello Pasquale, Cocorullo Giuseppe, ”A high-speed energy-

efficient 64-bit reconfigurable binary adder”, IEEE Trans. VLSI Systems, vol. 11, no. 5,

pp. 939-943, Oct. 2003.

[18] A.A. Farooqui, V. Oklobdzija, E Chechrazi, ”64-bit media adder”, IEEE Int.

Symp. on Circuits and Systems, May 1999.

[19] Jin-Fu Li, Jiunn-Der Yu, Yu-Jen Huang, ”A Design Methodology for Hybrid

Carry-lookahead/Carry-Select Adders with Reconfigurability,” IEEE International Sympo-

sium on Circuits and Systems, vol. 1, pp. 77-80, May 2005.

43

[20] Kumar, C. N. Vijay, and Sagara Pandu. ” Design and Implementation of CVNS

Based Low Power 64-Bit Adder”(2013).

[21] B. K. Mohanty and S. K. Patel, ”AreaDelayPower Efficient Carry-Select Adder,”

in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 61, no. 6, pp. 418-

422, June 2014. doi:10.1109/TCSII.2014.2319695

[22] Yajuan He, Chip-Hong Chang and Jiangmin Gu, ”An area efficient 64-bit square

root carry-select adder for low power applications,” 2005 IEEE International Symposium

on Circuits and Systems, Kobe, 2005, pp. 4082-4085 Vol. 4. doi:10.1109/ISCAS.2005.1465528

[23] V. Benara and S. Purini, ”Accurus: A Fast Convergence Technique for Accuracy

Configurable Approximate Adder Circuits,” 2016 IEEE Computer Society Annual Sympo-

sium on VLSI (ISVLSI), Pittsburgh, PA, 2016, pp. 577-582. doi: 10.1109/ISVLSI.2016.58

[24] B. Ramkumar and H. M. kittur, ”Low-power and Area-Efficient Carry Select

Adder,” in IEEE Transaction on Very Large Scale Integration (VLSI) Systems, 2012.

[25] R. Abhilash, S. Dubey and M. Chinnaiah, ”ASIC design of signed and unsigned

multipliers using compressors,” in International Conference on Microelectronics, Comput-

ing and Communications (MicroCom), Durgapur, 2016.

[26] K. K. Parhi, ”Low-energy CSMT carry generators and binary adders,” in IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, vol. 7, no. 4, pp. 450-462,

Dec. 1999. doi: 10.1109/92.805752

44

[27] K. K. Parhi, ”Comments on ”Low-energy CSMT carry generators and binary

adders,” in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 21,

no. 4, pp. 791-791, April 2013. doi: 10.1109/TVLSI.2012.219077

[28] http://www.theorycircuit.com/half-adder-circuit-diagram/

[29] http://www.theorycircuit.com/full-adder-circuit-diagram/

[30] https://www.gatevidyalay.com/ripple-carry-adder/

[31] http://verilogcodes.blogspot.com/2017/11/verilog-code-for-carry-select-adder.html

[32] http://fourier.eng.hmc.edu/e85 old/lectures/arithmetic html/node7.html

[33] https://www.researchgate.net/figure/4-bit-carry-bypass-adder fig2 259590209

[34] https://www.mikroe.com/ebooks/digital-filter-design/introduction-fir-filter

[35] M. S. Schmookler, M. Putrino, C. Roth, M. Sharma, A. Mather, J. Tyler, H. Van

Nguyen, M. N. Pham, and J. Lent, A low-power, high-speed implementation of a PowerPC

microprocessor vector extension, in Proc. 14th Arithmetic Conf., Adelaide, Australia, Apr.

1999.

[36] A. Peleg and U. Weiser, MMX technology, IEEE Micro, vol. 16, pp. 4250, Aug.

1996.

45

[37] R. B. Lee, Subword parallelism with MAX-2, IEEE Micro, vol. 16, pp. 5159,

Aug. 1996.

[38] M. Tremblay, J. M. OConnor, V. Narayanan, and H. Liang, VIS speeds new media

processing, IEEE Micro, vol. 16, pp. 1020, Aug. 1996.

46

BLOCK DIAGRAMS GENERATED BY SYNOPSYS DESIGN COMPILER

Schematic of a 1-bit block and its Hierarchy

Schematic of a 3-bit block and its Hierarchy

47

Schematic of a 4-bit block and its Hierarchy

48

Schematic of a 5-bit block and its Hierarchy

Schematic of a 6-bit block and its Hierarchy

49

Schematic of a 7-bit block and its Hierarchy

50

Schematic of a 8-bit block and its Hierarchy

Schematic of a 9-bit block and its Hierarchy

51

Schematic of a 10-bit block and its Hierarchy

52

Schematic of a 11-bit block and its Hierarchy

53

	A Low-Area, Energy-Efficient 64-Bit Reconfigurable Carry Select Modified Tree-Based Adder for Media Signal Processing
	Repository Citation

	Abstract
	Introduction
	High Speed Adders
	Description of a basic adder
	Critical path in adders
	Evolution of various adder designs

	Applications of adders in Media Signal Processing
	Goals of Multimedia Signal Processing
	Usage of adders in MSP/DSP algorithms
	Adders in processor units

	Reconfigurable Architecture
	Run time Reconfiguration
	Types of Implementation
	Benefits of Run time Reconfiguration

	Research Motivation and Objective
	Research Objective
	Research Motivation

	Thesis Organization

	Proposed 64 - bit Reconfigurable Adder Architecture
	Top-level Architectural Description
	Proposed Design Modification
	Description of a Carry Select Modified Tree Adder

	Description of the Sub-components
	Design of the Least Significant Blocks
	Design of the Most Significant Blocks

	Design Implementation in 180 nm CMOS Technology
	Implementation of the Sub-components
	Implementation of the Least Significant Blocks
	Implementation of the Most Significant Blocks

	Implementation of the 64-Bit Architecture
	Results and Discussion
	Result Analysis of the Sub-components
	Result Analysis of the 64-Bit Architecture
	Result Comparison with the Original Design

	Conclusion and Future Work
	Conclusion
	Future Work

	References
	Appendix

