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ABSTRACT 

Davidson, Laura Christine. M.S.M.S.E., Department of Mechanical and Materials Engineering, 

Wright State University, 2018. Microstructural Characterization of LENSTM Deposited 

Ti-6Al-4V: Investigating the Effects of Process Variables Across Multiple Deposit Geometries. 

Laser based additive manufacturing of Ti-6Al-4V components is under consideration for 

aerospace applications. The mechanical properties of the finished components depend on their 

microstructure. Process mapping compares process variables such as heat source power, heat 

source travel speed, material feed rate, part preheat temperature and feature geometry to process 

outcomes such as microstructure, melt pool geometry and residual stresses. In this work, the 

microstructure of two-dimensional pads, multilayer pads, thin walls, and structural components 

at the steady state location was observed. A method for measuring β grain widths that allows for 

the calculation of standard deviations, confidence intervals, and variances in grain size was 

developed. This represents an improvement over the commonly used line-intercept method. The 

method was used to compare variability of β grain widths across different part geometries. It 

was found that thin wall parts have the highest β width variability and that the width of the β 

grains varies more towards the top of multi-layered samples than towards the bottom. 

Experimental results for α and β grain size across multiple deposit geometries are presented that 

offer new insight into the effect of process variables on microstructure. β grain widths are also 

compared for different deposit geometries with the same power, velocity, and feed rate. Single 

layer pad geometries were found to have the smallest β grain widths, multi-layer pads had larger 

β grain widths, and thin wall samples had the largest β grain widths. Trends in α width with 

Vickers hardness were also considered in the context of thermal gradient measurements.  
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Hardness maps were created for the structural component samples. Optical microscopy was 

used to observe a layering effect in structural component samples. It was found that light and 

dark bands had different Vickers microhardness values.  
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1 Introduction and Literature Review 
1.1 Motivation 

Additive manufacturing is used for many applications that require parts with complex 

geometries. For those parts to have consistent mechanical properties, it is necessary to be able to 

predict and control their solid-state microstructures. Solid-state microstructure depends on the 

thermal conditions at the time of manufacturing.  

This thesis examines the microstructures in single layer pads, multi-layer pads, and thin wall 

specimens of Ti-6Al-4V manufactured via the LENSTM process. β grain widths and how they 

vary with height from the substrate were observed. Vickers microhardness measurements were 

collected and correlated to α-lath thicknesses. Vickers hardness is known to be correlated to 

other mechanical properties such as tensile strength [1]. Through these investigations, this work 

aims to contribute new potential target outcomes for use in solidification microstructure process 

mapping approaches. 

1.2 Additive Manufacturing in general 

Additive manufacturing is any manufacturing process where parts are built up from materials 

rather than being chipped down. For comparison, the latter process could be called “subtractive 

manufacturing” and includes processes such as machining, or an artist making a sculpture from a 

block of stone. The simplest additive manufacturing method then would be building with blocks. 

When used in an engineering context however, most people take additive manufacturing to mean 

something similar to three-dimensional printing, where a machine builds a part layer by layer 

using a computer model. Additive manufacturing is forecast to continue growing very rapidly 

[2]. 
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Additive manufacturing has several important advantages over traditional manufacturing 

methods. First of all, additive manufacturing can be used to create parts with complex geometries 

that could not be created using traditional methods [3]. The ability to design parts with complex 

geometries can also allow for designs that reduce the weight of a part. An example of that 

principle is that General Electric held a design competition to reduce the weight of an aircraft 

engine bracket by changing the geometry. GE encouraged participants to look at additive 

manufacturing to make the part. Some of the designs were able to reduce the weight by up to 

80% [4]. 

Not only can additive manufactured parts take advantage of designs that use less material 

than conventional methods- additive manufactured parts generate less waste material than 

conventionally manufactured parts [5]. Some transportation related additively manufactured 

parts also have a reduced life-cycle energy usage compared to similar conventionally 

manufactured parts [6].   

 There are multiple different types of additive manufacturing processes, as well as different 

material systems. Metals, polymers and even ceramics can be used to additively manufacture 

parts. Metal additive manufacturing processes can be classified in many ways. This review will 

outline four different types. Some additive manufacturing processes melt material using a laser 

beam and others use an electron beam. Some processes add material as the beam travels along 

and others use a powder bed. Figure 1.1 summarizes the methods discussed in this section.  
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Figure 1.1: The additive manufacturing methods discussed [7, 8, 9, 10] 

The Sciaky Electron Beam Additive Manufacturing (EBAM®) process is an example of 

a wire feed electron beam process. An electron beam is used to melt wire feedstock and build 

parts layer by layer [11].  

An example of a powder bed electron beam process is Arcam. In powder bed additive 

manufacturing, powder is spread before sintering each layer. Then an energy source such as an 

electron beam or laser travels across the area to be melted. More powder is spread, and the 

process is repeated layer by layer until the part is complete [12]. The Arcam electron beam 

melting process occurs at an elevated temperature in a vacuum. Pre-heating parts can help to 

prevent residual stresses and the formation of martensitic microstructures. Once the melting 

process has begun, the inert gas, helium is added to prevent oxidation [13]. Machines made by 

EOS also use a power bed, however they utilize a laser as the energy source rather than an 

electron beam [8].  

 An example of a powder stream laser beam process is the Laser Engineered Net Shaping 

(LENSTM) process. It was developed in 1996 by Sandia National Laboratories [14]. It sprays 

powder that is melted by a laser. CO2 lasers, Nd:YAG lasers, and Yb fiber lasers have all been 
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used in LENSTM machines [15]. Figure 1.2 shows a schematic of the LENSTM process. Figure 

1.3 shows the powder nozzles and laser for the LENSTM process. 

Figure 1.2: A schematic of the LENSTM process [16]

Figure 1.3: The LENSTM process performing a single-line build [17] 

The LENSTM process is conducted in an inert-gas chamber, typically argon, to ensure that 

titanium does not oxidize during the build [18]. 

1.3 Process mapping 

Process mapping is the mapping of process outcomes such as microstructure, melt pool 

geometry and residual stress in terms of process variables, such as heat source power, heat 

source travel speed, material feed rate, part preheat temperature and feature geometry [19]. 
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In 1999, Vasinonta, et al developed process maps from numerical models of laser-based 

material deposition of thin-walled structures. The effects of changes in laser power, deposition 

speed, and part preheating on process parameters were mapped [20]. 

In 2000, Vasinonta, et al used simulations to develop process maps that quantified the effects 

of changes in wall height, laser power, deposition speed and part preheating on melt pool size 

(for consistent build conditions) and thermal gradients (for limiting residual stresses) [21]. The 

geometry was thin-walled structures. Models were applied to the LENSTM process. 

In 2002, Klingbeil, et al compared 2-D continuum finite element model and 3-D cellular 

automaton model predictions to observed microstructures in thin wall LENSTM deposited Ti-6Al-

4V [22]. The laser deposition process was modeled as a moving point heat source. The 2-D 

models suggested that increasing laser power for a constant velocity would also increase grain 

size, but the 3-D model predictions and samples themselves did not confirm that suggestion. 

In 2003, Kobryn and Semiatin published a map of thermal gradient vs. solidification rate for 

LENSTM deposited Ti-6Al-4V that included qualitative descriptions of microstructures [23]. That 

same year, Bontha and Klingbeil considered thin-wall (2-D) and bulky (3-D) geometries of 

LENSTM deposited Ti-6Al-4V. They numerically extracted cooling rates and thermal gradients 

from the Rosenthal solution for a moving point heat source traversing an infinite substrate. 

Dimensionless process maps were presented and results for both small-scale (LENSTM) and large 

scale (higher power) processes were plotted on solidification maps for predicting grain 

morphology in Ti-6Al-4V [24]. 

In 2004, Klingbeil, et al discussed analytical approaches based off Rosenthal solution and 

numerical modeling approaches to look at process variables and size scale on solidification 

microstructure in LENSTM deposited Ti-6Al-4V [25]. 
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In 2006, Bontha developed thermal process maps for dimensionless thermal gradient and 

solidification rate for two-dimensional thin wall and bulky three-dimensional structures made 

from Ti-6Al-4V using the LENSTM process [26]. That same year, Bontha, et al plotted 

dimensionless process maps for predicting solidification microstructure in thin-walled LENSTM 

Ti-6Al-4V samples. Cooling rates and thermal gradients at the onset of solidification were 

extracted using the two-dimensional Rosenthal solution. Their results indicated that changes in 

laser power and velocity can have a substantial effect on solidification cooling rate and thermal 

gradient [27]. 

In 2009, Bontha, et al looked at solidification microstructure in beam-based fabrication of 

bulky 3-D structures. The paper suggests “that changes in process variables (beam power and 

velocity) can result in a grading of the microstructure throughout the depth of the deposit, with a 

transition from columnar to mixed or equiaxed microstructure at higher powers.” [28] 

That same year, Davis, et al examined the effect of free-edges on melt pool geometry and 

solidification microstructure for 2-D thin wall geometries. They used the 2-D Rosenthal solution 

for a moving point heat source to numerically extract cooling rates and thermal gradients at the 

onset of solidification throughout the depth of the melt pool. They plotted solidification maps for 

predicting trends in grain size and morphology for Ti-6Al-4V. The geometry that was observed 

was thin-wall structures [29]. In 2010, the authors extended that same work to bulky 3-D 

geometries [30]. 

Davis modified the Rosenthal solution to include the effects of free edges. MATLAB was 

used to determine dimensionless results for melt pool geometry, solidification cooling rate and 

thermal gradient. Those results were plotted as a function of distance from the free-edge [31]. 
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In 2013, Doak investigated the effects of process variables on solid-state phase 

transformations below the solidification temperature through Finite Element Modeling, the 3-D 

Rosenthal Solution and experimental results. The results suggested that constant melt pool area 

leads to constant solid-state α-lath morphology [18]. 

Gockel and Beuth predicted solidification microstructure using a solidification map for Ti-

6Al-4V and the cooling rates and thermal gradients from finite element material added models. 

They focused on single bead deposits made using an electron beam wire feed additive 

manufacturing process [32]. 

 Beuth, et al published an overview of their work capturing the dependence of melt pool 

geometry and microstructure on primary processing variables under steady-state and transient 

conditions. They included a chart showing the regions of P-V space occupied by commercial 

direct metal additive manufacturing processes, as shown in Figure 1.4 [19]. 

Figure 1.4: A process map showing the regions of P-V space occupied by direct metal additive manufacturing processes 
[19]

In 2014, Gockel developed solidification microstructure process maps for single bead and 

thin wall deposits of Ti-6Al-4V via an electron beam wire feed and electron beam powder bed 
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additive manufacturing process. It was shown that indirect microstructure (prior β grain size and 

morphology) control is possible through direct melt pool dimension control in single bead 

deposits of Ti-6Al-4V [33]. 

In 2015, Montgomery, Beuth, Sheridan, and Klingbeil compared models to experimental 

results for Inconel 625 made using laser powder bed additive manufacturing. Single and multi-

layer pad geometries manufactured using different combinations of power and velocity were 

examined. Finite element modeling was used to simulate the thermal effects of added powder. A 

process map was constructed with curves of constant melt pool width and cross-sectional area 

plotted against power and velocity [34].  

In 2016, Kuntz utilized a process mapping approach to look at four different additive 

manufacturing processes for Ti-6Al-4V. The Optomec LENSTM, Sciaky, EOS and Arcam 

processes were evaluated. An analytical model was introduced that focused on the bottom of the 

melt pool [35].  

That same year, Sheridan constructed process maps for Ti-6Al-4V, Inconel 718 and Inconel 

625. Both geometric and microstructural process maps were constructed. A geometric process

map compares melt pool geometry to process variables such as beam power and velocity. A 

microstructural process map compares part microstructure to process variables such as power 

and velocity. A correction factor for the Rosenthal solution was introduced, reducing the error 

between it and non-linear simulation results. This reduces computation time for creating process 

maps [36].  

In 2017, Francis created microstructural process maps for Ti-6Al-4V parts manufactured 

using electron beam wire feed and laser powder feed processes. Spot size was considered as a 
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process variable. Models were developed and tested through experiments across processes and 

alloys [37]. 

1.4 Ti-6Al-4V Material System 

 In certain titanium alloys, as the alloy cools, a stable hexagonal closed packed phase and a 

stable body centered cubic phase form [38, 39, 40]. The hexagonal close packed phase is known 

as the α phase and the body centered cubic phase is known as the β phase [38]. Figure 1.5 shows 

unit cells for α and β titanium. 

Figure 1.5: Unit cells for α and β titanium [41]. α titanium has a hexagonal close packed (HCP) crystal structure and β 
titanium has a body centered cubic (BCC) crystal structure. 

 A Widmanstätten microstructure, also known as a “basketweave” structure occurs when 

parallel plates of these phases “have formed with a crystallographic relationship to the phase 

from which they formed” [42, 43]. Figure 1.6a shows titanium that solidified with a 

Widmanstätten microstructure. Figure 1.6b shows titanium that has what is known as a “colony 

α” microstructure.  
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Figure 1.6: (a) shows titanium with a Widmanstätten microstructure and (b) shows titanium with a “colony α” 
microstructure [44] 

The focus of this research is titanium alloy Ti-6Al-4V. This alloy is 90% titanium, 6% 

aluminum, and 4% vanadium by weight [38]. By weight, this alloy is the most commonly used 

titanium alloy in the world [38, 42, 45]. 

In pure titanium, when the alloy is above what is called the “β transus” temperature, the 

microstructure consists entirely of large β grains [42]. As pure titanium cools below that point, 

all of the material undergoes solid-state phase transformations and becomes the hexagonal close 

packed phase known as α [42, 43]. Adding alloying elements allows for more control over 

titanium microstructure. 

 In titanium, there are two main types of alloying elements: α stabilizers and β stabilizers [38]. 

In Ti-6Al-4V, aluminum serves as an α stabilizer and vanadium serves as a β stabilizer. Figure 

1.7 shows α plus β titanium (Ti-6Al-4V). The red lines are where the large β grain boundaries 

were at temperatures above the β transus. Even after titanium cools and undergoes the solid-state 

phase transformations, the prior β grain boundaries remain and can be seen if a sample is etched. 
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Figure 1.7: Ti-6Al-4V microstructure at 100x magnification. The red lines indicate prior β grain boundaries. 

As-manufactured β grain morphologies in Ti-6Al-4V are important because 

Widmanstätten microstructures cannot be converted to equiaxed microstructures by heat 

treatment alone [38]. After one transformation from β to α plus β, the basic crystallographic 

texture cannot be changed by heat treatment.  

1.5 Existing techniques for characterizing Ti-6Al-4V microstructures 

In 2004, Tiley, et al used Fovea Pro 3.0 to characterize Ti-6Al-V [46]. Fovea is a set of plug-

ins for use within Adobe’s Photoshop software that is available commercially. They developed 

stereological procedures for quantifying the thickness of Widmanstätten α-laths, colony scale 

factor, prior β grain size and volume fraction of Widmanstätten α-laths. 

Later that year, Searles, et al used Fovea Pro 3.0 to characterize Ti-6Al-4V [47]. They looked 

at microstructural characteristics that are most likely to influence mechanical properties. They 

developed procedures to quantify mean equiaxed α size, volume fraction of equiaxed α, volume 

fraction of total α and the thickness of Widmanstätten α-laths in transformed β. 

In 2009, Collins et al use Fovea to characterize Widmanstätten microstructures in titanium 

[44]. That work continued to look at the microstructural characteristics most likely to influence 

mechanical properties.  
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In 2014, Sosa, et al developed MIPARTM, or Materials Image Processing and Automated 

Reconstruction [48]. MIPARTM is MATLAB based. The software allows a user to develop a 

procedure for stereological analysis, then save the steps as a “recipe” to apply to a series of 

micrographs.  

In 2015, Loughnane, et al performed microstructural characterization of LENSTM 

manufactured Ti-6Al-4V α-laths using MIPARTM [49]. Mean α-lath thickness was quantified at 

several heights for tall thin walled components. Discrete probability distributions were compared 

using a modified version of the Bhattacharyya coefficient. α-lath thicknesses were then 

compared to thermal data that had been gathered when the samples were manufactured. 

That same year, Leicht and Wennberg used Digital Image Correlation analysis to compare 

strain fields in tensile tested samples. The samples observed were made from selective laser 

melted (SLM) Ti-6Al-4V and EBM Ti-6Al-4V. Digital image correlation involves taking 

multiple images. The first is used as a reference, and subsequent images are measured to 

determine the displacement of features. This allows for the collection of finer details about 

strains than can be acquired by the use of an extensometer alone [50].  

1.6 Microstructure and Mechanical Properties 

Mechanical properties are an indication of how materials will perform when a load is applied 

[1]. This is in contrast to physical properties, which are inherent qualities of the material and do 

not depend on having a load applied. Examples of physical properties include density and color.  

This thesis will not discuss all mechanical properties of materials but will offer a short 

overview. Mechanical properties include tensile strength, ductility, hardness, stiffness, yield 

strength and Young’s modulus; however, that list is far from exhaustive. 
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In order to find the tensile strength of a material, a sample is gripped in a machine and pulled 

apart [51]. Figure 1.8 shows a sample of Al-6061 that underwent tensile testing.  

Figure 1.8: a sample of Al-6061 that underwent tensile testing.

The tensile strength is the maximum load applied to the sample divided by its original cross-

sectional area [52]. In metals, the maximum load is typically applied to the sample when necking 

initiates [39]. Finding the compressive strength of a material is similar; the material is 

compressed until it breaks and the maximum load is divided by the original cross-sectional area 

[1]. 

Multiple factors affect the tensile strength of metals. Alloys have higher tensile strengths than 

their pure metal counterparts [39]. Strain hardening increases the strength of a part by 

introducing dislocations which impede the movement of other dislocations [53]. Decreasing the 

grain size increases tensile strength. In Ti-6Al-4V, not only is the thickness of α lamellae a factor 

in determining strength, but also the diameter of the α colonies [54]. 

Solid solution strengthening increases the strength of metals by introducing atoms of 

different elements in order to create lattice distortions which impede dislocation motion. In 

titanium specifically, hydrogen, nitrogen, and oxygen have a very high solubility [42].  
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It is important to note that in titanium alloys, the addition of interstitial elements such as 

hydrogen, oxygen and nitrogen can greatly increase strength but it also decreases ductility and 

makes components quite brittle [38]. Ductility is a mechanical property that describes how much 

plastic deformation a material can undergo before it breaks [1]. Even adding too much aluminum 

to a titanium alloy can make it too brittle; the practical upper limit is around 7% [38]. 

Adding precipitates to a metal makes it stronger [53]. Precipitates are formed when so much 

solute is added to a metal that it forms a secondary phase. For example, in titanium, carbon has a 

low solubility but can dramatically increase strength. When carbon is added beyond the 

solubility limit, it forms a titanium carbide precipitate, TiC [42]. 

For additively manufactured Ti-6Al-4V, the orientation of the build can affect the ultimate 

tensile strength and the ductility. Epitaxial growth of columnar β grains can create an anisotropic 

crystallographic texture in additively manufactured parts. In 2014, Simonelli, et al found that 

tensile testing SLM Ti-6Al-4V samples led to fracture along the grain boundaries [55].  

The type of additive process also matters. Interlayer porosity can occur when building parts 

using powder bed processes, leading to differences in yield strength and ultimate tensile strength 

across build orientations.  

In 2015, Leicht and Wennberg found that Ti-6Al-4V manufactured using both SLM and 

EBM methods showed differences in tensile strength with respect to the build orientation [50]. 

Samples that were built perpendicular to the direction of the tensile test were found to have 

higher tensile strengths.  

Powder stream processes can also show differences depending on build orientation. In 2001, 

Kobryn and Semiatin performed tensile tests for LENSTM deposited Ti-6Al-4V and found that 
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yield strengths were lowest for samples tested in a longitudinal orientation with respect to the 

build layers [56].  

Carroll, et al performed uniaxial tensile testing on LENSTM deposited Ti-6Al-4V and found 

that tensile strengths were similar for both longitudinal and transverse orientations of the build 

layers. However, elongations were found to be different. For samples tested in a longitudinal 

orientation with respect to the build layers, elongation was 11% and for samples tested in a 

transverse orientation with respect to the build layers, elongation was 14%. A lack of porosity in 

the components could contribute to the observed mechanical properties [57]. 

In addition to determining tensile strength, a tensile test can allow for the determination of a 

sample’s yield strength, toughness, Poisson’s ratio, and modulus of elasticity, also known as the 

Young’s modulus [53, 51]. The ability to determine multiple mechanical properties from a single 

test makes tensile tests very useful. The disadvantages are that the sample must be machined to 

the proper specifications for the tensile testing equipment to be used, and tensile testing destroys 

the sample. 

A material’s yield strength is its “maximum resistance to elastic deformation” [52]. The yield 

strength of a material typically increases as the material’s grain size decreases [58]. Specifically, 

the relationship between yield strength and grain size can be approximated using the Hall-Petch 

equation: 

𝝈𝝈𝒚𝒚 = 𝝈𝝈𝟎𝟎 + 𝒌𝒌𝒚𝒚𝒅𝒅
−𝟏𝟏𝟐𝟐; (1) 

where 𝜎𝜎𝑦𝑦 is the yield strength, 𝑑𝑑 is the average grain diameter, and 𝜎𝜎0 and 𝑘𝑘𝑦𝑦 are constants that 

depend on the material in question [1]. In 2017, Zhang, et al tested the mechanical properties of 

commercially pure (CP) titanium and extra-low interstitial (ELI) Ti-6Al-4V that underwent a 

multidirectional isothermal forging (MDF) process. Figure 1.9 shows their experimental data 
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illustrating the Hall-Petch relationship. Note that the x-axis of the plot is the grain diameter to the 

-1/2 power.

Figure 1.9: A plot illustrating the Hall-Petch relationship for pure titanium and Ti-6Al-4V [59]

Smaller grains increase the yield strength by two mechanisms. Dislocations have to change 

direction as they pass through grains with different orientations, and more grains per unit volume 

means that the dislocations have to change direction more as they pass through the sample [1]. 

Grain boundaries have disorder on an atomic level. That means that slip planes cannot be 

continuous from grain to grain. Slip planes can be defined as “the crystallographic plane along 

which [a] dislocation line traverses” [1]. In other words, anything that impedes dislocation 

motion will make a part stronger. It is important, however, to view the extrapolation of the Hall-

Petch equation to extremely small grain sizes with caution. The equation can predict yield 

strength levels that are unrealistic for real world materials [53]. 
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Grain morphology can also affect yield strength in titanium alloys. Samples that have 

equiaxed, or globular grains have higher yield strengths than samples with acicular, or needlelike 

grains [38].  

In 2017, Hayes, et al investigated the yield strength of additively manufactured Ti-6Al-4V. 

The Sciaky EBAM process was used to create samples and three different heat treat conditions 

were used. Tensile coupons were created at 6 different orientations and tested. Equations were 

developed to predict the yield strength of additively manufactured Ti-6Al-4V [60]. 

Not all mechanical properties are dependent on a material’s microstructure. If two materials 

are tested that have different microstructures but the same chemical composition, then the 

Young’s modulus should be the same [39]. Young’s modulus is “the ratio of stress to strain 

within the elastic region” [61]. In titanium, heat treatment does not drastically change modulus 

of elasticity either [38]. The orientation of prior β grains for SLM Ti-6Al-4V specifically has 

also been shown to have little effect on modulus of elasticity [55].  

Modulus of elasticity is dependent on the bond strength of the atoms making up the material 

rather than grain size and morphology [39]. It is a measure of the stiffness of a material [62]. A 

material’s stiffness is its “resistance to elastic deformation” [1]. Stiffness is sometimes also 

called “rigidity” [52]. 

Hardness is the ability of a material to resist plastic deformation by an indenter [1, 61, 

63]. Hardness tests are not as destructive as other tests for mechanical properties, such as tensile 

testing. It is also possible to estimate other mechanical properties such as tensile strength based 

on the hardness of the material. The specific relationship depends on the material being tested 

[1]. 
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There are different types of hardness tests; the geometry of the indenter varies depending 

on the test used, and the method for determining the material’s resistance to indentation vary. 

Rockwell hardness tests use a diamond cone shaped indenter and the hardness of the material is 

determined by the depth of the indentation [64]. The Vickers, Knoop and Brinell tests determine 

the hardness of the material by the size of the indent. The Vickers and Knoop tests use diamond 

pyramid shaped indenters and the Brinell test uses a spherical indenter. 

The choice of hardness test depends on factors such as how hard the material is estimated 

to be, how thick the sample is, the size and shape of the sample, how flat the sample is, and its 

surface condition [65]. If the material being tested is very hard, it is possible for the hardness 

indenter to deform rather than the material being tested. Problems can also arise when testing a 

material that is not hard enough for a given hardness test. For example, the Rockwell hardness 

test should not be considered accurate if a hardness lower than 20 is calculated. This is because 

ball indenters can penetrate the sample so deeply that the indenter cap contacts the sample [66]. 

Diamond indentation tests become less sensitive “as the diamond indenter penetrates further 

down the conical portion of the diamond.”  

For tests that use a diamond shaped indenter, the thickness of the material being tested 

should be at least ten times the depth of the indentation. For tests that use a ball shaped indenter 

the material should be at least fifteen times as thick as the indentation [65].  

It is also important to not make indentations too close to the edge of the sample. A 

distance of three indentation diameters should be left between the edge of the specimen and an 

indentation, otherwise the measurement will not be accurate [1]. If two indentations are too close 

together, then the results will not be accurate. At least 3 indentation diameters should be left 

between indentations.  
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For samples that do not have a flat surface, a correction factor must be applied. A 

hardness testing machine will register a lower hardness than the true value for a convex surface 

and a higher hardness than the true value for a concave surface [65]. 

Hardness tests can be conducted on different size scales. The terms macrohardness, 

microhardness and nanohardness do not refer to how hard a material is, but rather the size of the 

indenter being used to perform the test [67]. Larger indenters, such as the ones used for 

macrohardness testing, do not require a finely polished material surface [64]. Macrohardness is 

useful for large parts; sometimes so large that the hardness tester needs to be brought to the 

sample rather than the other way around [68]. It is also useful for determining the bulk hardness 

of parts that do not have a homogeneous microstructure.  

Microhardness testing requires that a sample be polished to the same level that would be 

required for microstructural observation under an optical microscope. Microhardness testing can 

be used to observe differences in hardness across a sample [69]. 

Nanohardness testing makes indentations so small that they cannot be easily measured 

using optical microscopy techniques [70]. Nanohardness testing is very sensitive to vibration and 

differences in temperature. Even just handling a sample can require waiting for the sample and 

the indenter to reach thermal equilibrium before testing. 

 This work utilized the Vickers microhardness test. Figure 1.10 shows the indenter for the 

Vickers hardness test.  
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Figure 1.10: The indenter and an indent for Vickers microhardness testing [64] 

In order to get a hardness value from the indent, the following formula is used: 

𝐻𝐻𝐻𝐻 =
2000𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 �𝛼𝛼2�

𝑑𝑑2
=

1854.4𝑃𝑃
𝑑𝑑2

(2) 

𝐻𝐻𝐻𝐻 is the Vickers hardness, 𝑃𝑃 is the applied load in gf, 𝑑𝑑 is the mean diagonal length of the 

indent in µm and α is the face angle (136°) [67]. A gf is a “gram-force”. It is calculated by 

multiplying one gram times the standard acceleration due to gravity [71]. 1 gf is equal to 

approximately 0.0098 N. It is not the preferred SI unit- Newtons are. However, it is the unit that 

was displayed on the hardness testers at both the Air Force Research Laboratory and The Ohio 

State University. It was also the unit reported in the literature. 

The Vickers Microhardness test can utilize loads between 1 and 1000 gf, but loads between 

100 and 500 gf are most common [63] [67]. In general, for metals, microstructure and Vickers 

microhardness are correlated. Smaller grain sizes lead to higher hardness values [72].  
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1.7 LENSTM Additive Manufacturing with Ti-6Al-4V 

This section briefly highlights research involving Ti-6Al-4V manufactured using the 

LENSTM process that has not already been discussed in previous sections. For more information 

about process mapping involving LENSTM manufactured Ti-6Al-4V, see section 1.3.  

In 2001, Kobryn and Semiatin compared laser forming methods for Ti-6Al-4V powder. Two 

systems that utilize a low power Nd-YAG laser, including the Optomec LENSTM system, were 

compared to a system that utilized a high-power CO2 laser. Optical microscopy was used to 

compare the microstructures of finished parts. All of the finished parts exhibited columnar 

grains, with the highest power laser producing grains with the largest average width [73].  

      In 2003, Kobryn published a map of thermal gradient vs. solidification rate for LENSTM 

titanium that included qualitative descriptions of microstructures against thermal gradient and 

solidification rate [23]. Figure 1.11 shows the solidification map. 

Figure 1.11: a microstructural solidification map for LENSTM manufactured Ti-6Al-4V [23] 

In 2007, Mudge and Wald discussed the usage of LENSTM for repairing aircraft, gas turbine 

and drive shaft parts. A Ti-6Al-4V component for a gas turbine engine was repaired for half the 
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cost of buying a new part. Using LENSTM to repair the part also saved time compared to 

acquiring a new part [74].  

In 2013, Das, et al discussed the use of LENSTM manufactured Ti-6Al-4V for biomedical 

implants. Porous structures are desired for hip implants. It was found that increasing powder feed 

rate or decreasing laser power increased porosity of finished parts. Increasing hatch distance was 

also found to increase porosity [75].  

In that same year, Zhai and Lados conducted microstructural characterization and tensile 

testing of LENSTM deposited Ti-6Al-4V samples. Microstructures were characterized using 

optical microscopy and Elements-D software. LENSTM deposited Ti-6Al-4V was found to have 

higher strength and lower ductility than the mill-annealed Ti-6Al-4V substrate [76].  

In 2015, Sterling, et al investigated the fatigue behavior of LENSTM Ti-6Al-4V. Wrought 

Ti-6Al-4V samples were compared to the additively manufactured samples. The fracture 

surfaces of the samples were observed using scanning electron microscopy. The wrought 

Ti-6Al-4V samples were found to have longer fatigue lives than the additively manufactured 

samples due to porosity and sample microstructure [77]. 

In 2018, Harun, et al reviewed different additive manufacturing processes that use Ti-6Al-

4V. Selective Laser Sintering Direct Metal Laser Sintering, SLM, EBM and LENSTM were 

compared for biomedical applications. Microstructures across manufacturing processes were also 

compared [78]. 

1.8 Approach 

In this work, the microstructure of LENSTM additively manufactured Ti-6Al-4V samples is 

observed. Sample preparation is discussed. Optical microscopy is used to observe β grain 

morphologies in single layer pad geometries, thin wall geometries and multi-layer pad 
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geometries. Mean β grain widths, standard deviations, and 95% confidence intervals are 

calculated and compared to powers and velocities. Structural component geometries are 

observed using electron microscopy. α-lath widths are quantified using Adobe Photoshop CS5 

and the Fovea plug-in suite. Vickers microhardness values are mapped using Igor Pro software. 

The α-lath widths and Vickers microhardness data are compared to thermal data taken when the 

samples were manufactured.  

1.9 Overview and Contributions

This thesis is organized into four total chapters. The first chapter contains the background 

information necessary to understand this work. Chapter 2 discusses the metallographic procedure 

used to prepare the samples for imaging. It also discusses the approach for α-lath and β grain 

analysis. Optical microscopy is used to observe β grain morphologies. Adobe Photoshop 

Elements is used to stitch micrographs together and trace β grains. Image J is used to measure β 

grains. Mean β grain widths, standard deviations and 95% confidence intervals are calculated 

and compared to powers and velocities.  

Scanning electron microscopy is used to image α-laths. α-lath widths are calculated using 

Adobe Photoshop and the Fovea plug-in suite. Vickers microhardness measurements are mapped 

using Igor Pro. The α-lath widths and Vickers microhardness measurements are then compared 

to thermal data obtained when the samples were manufactured. Chapter 3 discusses the 

experimental results. Chapter 4 offers a summary and conclusions from this work. Suggestions 

for future work are offered as well.  
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The contributions of this thesis are as follows: 

1. This thesis outlines a method for measuring β grain widths that allows for the calculation of

standard deviations, confidence intervals, and variances in grain size. This represents an 

improvement over the commonly used line-intercept method. 

2. This thesis offers new insight into the effect of deposit geometry on the variability of β grain

size in additive manufacturing. β grain widths are also compared for different deposit geometries 

with the same power, velocity, and feed rate.  

3. Experimental results for α and β grain size across multiple deposit geometries are presented

that offer new insight into the effect of process variables on microstructure. Trends in α width 

with Vickers hardness were also considered in the context of thermal gradient measurements. 

4. This thesis offers new insight into the layering effect in additive manufacturing and its relation

to hardness. 
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2 Approach and Methods 
This section discusses the procedure used to prepare the samples for imaging and analysis. 

2.1 Metallographic Procedure 

 The first step in preparing the samples was to cut them out of the plate on which they were 

fabricated. Figure 2.1 shows an example of a plate with samples on it. The samples are Ti-6Al-

4V and were produced in an Optomec LENSTM MR-7 system. Figure 2.2 shows an Optomec 

LENSTM MR-7 system. 

Figure 2.1: An example of a plate with samples on it 

Figure 2.2: An Optomec LENSTM MR-7 system [79] 
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There are two methods available to cut the samples from the plate. The first is to use 

EDM, which stands for Electrical Discharge Machining [80]. This method makes very precise 

cuts, but it is expensive, and it takes time waiting for availability of the equipment and a 

technician to assist with it. Samples that are cut using EDM experience less deformation from the 

cutting and are faster and easier to grind and polish. Samples that undergo EDM also do not have 

any sharp burrs that need to be filed off. 

The other method is to use a large oscillating abrasive saw. This method is faster and 

cheaper, but it deforms the samples as it cuts them. The saw also strain hardens the samples, 

making the grinding and polishing process take longer. The samples that were observed in this 

work were cut from their plates using an oscillating abrasive saw. After the samples were cut, 

any sharp spurs were ground off with sandpaper or a file.  

The samples were then hot mounted in Polyfast mounting media [81]. Polyfast was used 

because it is a conductive media, so the samples could be observed using an electron microscope. 

The mount size used was 3.18 cm because that size mount can hold a slightly larger 

sample, but also fits well into the autopolisher. Using a 2.54 cm mount size would require taking 

more time to cut smaller pieces of sample from the starting plates. Using a 3.81 cm mount size 

would mean that fewer samples can fit into the autopolisher. A vibrating Dremel tool was used to 

label the mounted samples after they came out of the press. 

For hand polishing samples, some metallographers will bevel the top side of a sample 

using a sander so that the sample can be held more comfortably. For autopolishing samples, it is 

recommended that a 2-4 mm bevel be applied to the underside (the side with the metal) of the 

sample to avoid damaging the polishing cloths [82]. 
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The autopolisher used was a Buehler EcoMet 250 with a Buehler AutMet 250 attachment. Figure 

2.3 shows the autopolisher setup. 

Figure 2.3: The autopolisher setup that was used [83]. 

It is important to note that an autopolisher wheel must contain a minimum of at least 3 samples 

in order to keep the weight balanced. The maximum number of samples is 10. If an autopolisher 

must be used, but a metallographer has fewer than 3 samples, he or she can always mount a piece 

of scrap metal from the substrate and put it into the autopolisher along with the samples in order 

to keep the machine balanced. It is recommended that an autopolisher be used rather than hand 

polishing in order to maximize the ability to reproduce results and to ensure that the polished 

surface is as flat as possible [84].

2.1.1 Coarse Polishing 

The samples were first ground using 120 grit sandpaper. Coarser paper is typically 

reserved for ceramics and would damage most metal samples [85]. The samples were run in the 
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auto-polisher for 4 minutes at a time. After 4 minutes, the sandpaper was observed to see if the 

grit had been worn off and the samples were visually inspected.  

At the 120 grit stage, a stream of water was used on the autopolisher to sweep metal 

shavings away from the samples and down the drain. It is recommended that the machine be set 

to 44.5 N or less [85]. The force should divide up to no more than 4.45 N per sample for coarse 

grinding. Coarse grinding paper needs to be replaced after every 8 to 10 minutes when used with 

titanium samples. 120 grit paper was used until all of the samples were completely uncovered.  

After the samples were uncovered, the samples were washed with soap and water. 240 

grit paper was then put on the autopolisher wheel. The samples and paper were checked every 4 

to 5 minutes and the paper was replaced every 8 to 10 minutes. The samples did not need to be 

run for very long at the 240 grit stage. 

At this point, there were two possible approaches to take. The first approach is cheaper, 

but takes more time, and involves moving onto 320 grit silicon carbide paper, then 400 grit 

silicon carbide paper, then 600 grit silicon carbide paper. The second approach is more 

expensive, but faster and involves switching to diamond slurry and more expensive polishing 

cloths. Most of the samples in this work were polished using the second method. 

45 µm diamond slurry is the equivalent of about 250 grit sandpaper, so it is not very 

different from the 240 grit stage. This is also why the samples did not spend very long in the 240 

grit stage. Samples can be run using Gold Cloth, 45 µm diamond slurry, a drop of Dawn dish 

soap and no water if the slurry is water-based. Gold Cloth is a woven nylon polishing cloth with 

an adhesive back [86].  

If the slurry is oil based, then the samples should be run using Gold Cloth, the diamond 

slurry and no soap and no water. With water-based polishes, a drop of soap is used to keep 
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everything lubricated. With oil-based slurries, dish soap breaks oil down, so it would be 

counterproductive. 

At this polishing stage, the polishing cloth and slurry were inspected every 5 minutes. If 

there did not appear to be enough slurry, then more was added along with more soap. The 

polishing cloth did not need to be swapped out as long as the same grit of polish was being used. 

After every 10 minutes, the whole wheel was taken from the auto-polisher and washed 

with soap and water. It was then dried with a hot hand drier, similar to those used to dry hands in 

public restrooms. After that, the samples were squirted with isopropanol. Isopropanol, ethanol or 

methanol could be used. The samples were then blasted with compressed air. The samples were 

then observed under an optical microscope while still in the polishing wheel. 

 The magnification of the microscope does not matter and the direction of the scratches do not 

matter at this point. It is simply important to make sure that no scratches are much bigger than 

the rest. The size of the scratches should be uniform before moving onto the next step. Figure 2.4 

shows an example of a sample with a few large scratches. 

Figure 2.4: A sample with a few large scratches [87] 

Once the scratches are all of a uniform size, it is possible to move on to the 15 µm stage. 

At that point, a 15 µm diamond slurry was used with Gold Cloth. While grit sizes between 15 
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µm and 45 µm do exist, they were not necessary. 15 µm diamond slurry was used with the same 

pressure, same time intervals, and no water on Gold Cloth. The samples were observed under the 

microscope and the polishing cloth was visually inspected the same as for the 45 µm stage.  

After the 15 µm stage, 9 µm water-based diamond slurry was used with a drop of soap on 

Gold Cloth. The procedure used was the same as for the 15 µm diamond slurry. 

2.1.2 Fine Polishing 

After polishing with 15 µm diamond slurry, 6 µm water-based diamond slurry with a 

drop of dish soap on TexMet C cloth was used. TexMet C is a polishing cloth manufactured by 

Buehler that is used for polishing with diamond slurry [88]. The auto-polisher was set to apply 

4.45 N of force per sample. The samples were washed with soap and water, dried with a hand 

dryer, squirted with isopropanol, and inspected with an optical microscope after every 10 

minutes. When the 6 µm polishing stage was complete, the samples looked like a mirror to the 

naked eye.  

Next was the 3 µm stage. 3 µm diamond slurry with a drop of soap on TexMet C cloth 

was used. When done with 3 µm, there should be no scratches visible to the naked eye. 

Beyond the 3 µm stage, polishing is impractical on the autopolisher. It does not work as 

well as doing it by hand on a polishing wheel. The samples need to be polished one at a time 

rather than all at once when the polishing wheel is used.  

It should also be noted that beyond the 3 µm stage, index card lapping no longer works. 

Index card lapping is when diamond paste is smeared on an index card and a metallography 

sample is rubbed against the index card to polish it. The reason it is no longer practical beyond 

that stage is because the paper fibers in the index card are too large for such fine polishing [85].  
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      There are two ways to do the 1 µm stage of polishing. One way is easy and one way is fast. 

The easy way is to put samples into a VibrometTM vibratory polisher with 1 µm diamond slurry 

for at least 4 hours, then into a VibrometTM with 0.5 µm diamond slurry, then overnight into a 

VibrometTM with 0.05 µm diamond slurry and a solution of 10% hydrogen peroxide with 

colloidal silica. Figure 2.5 shows a VibrometTM polisher. 

Figure 2.5: VibrometTM vibratory polisher [89] 

The solution of hydrogen peroxide with colloidal silica is used as a form of chemical 

mechanical polishing [90]. The hydrogen peroxide reacts with titanium and helps ensure that 

there is not mechanical deformation on the sample surface. This allows for a sample surface with 

fewer scratches. 

The fast way to do the 1 µm stage of polishing is to put a piece of microcloth onto a 

polishing wheel and add 1 µm water-based diamond slurry with a drop of soap. Microcloth is a 

polishing cloth manufactured by Buehler [91]. After polishing the sample on that, the sample can 

be placed overnight into a VibrometTM polisher with 0.05 µm diamond slurry and a solution of 

10% hydrogen peroxide with colloidal silica.  
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After the samples were polished in the VibrometTM polisher, they were cleaned with soap 

and water. To clean the samples, they were put sideways (so not metal side up or metal side 

down) into a 100 mL beaker with distilled water and a 2% micro-organic soap solution. The 

beaker was put into a vibrating cleaner for 10 minutes. After that, the sample was removed using 

a clean pair of tongs. It was then rinsed with a squirt bottle of distilled water, and dried using 

compressed air.  

Next, the samples were cleaned using alcohol. The samples were placed one at a time 

into a 100 mL beaker. The sample was then covered with either high purity ethanol or 

isopropanol. The beaker was put into a vibrating cleaner for at least 5 minutes. After that, the 

sample was removed and squirted with alcohol from a squirt bottle. The samples were dried with 

compressed air, then sample caps were put on them.  

Several different microscopy methods were attempted. Those methods looked at both etched 

and unetched samples. The methods tested were scanning electron microscopy with secondary 

detection, scanning electron microscopy with back scatter detection, optical microscopy, and 

polarized light optical microscopy. Optical microscopy with unpolarized light looking at an 

etched sample was found to be the fastest and easiest way to observe β grain morphologies for 

single layer pads. Optical microscopy with polarized light looking at an etched sample was 

found to be the fastest and easiest way to observe β grain morphologies for thin walls and multi-

layer pads. Scanning electron microscopy with back scatter detection was found to be the 

method that produces the best micrographs for analyzing α-laths.  
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2.1.3 Etching 

The samples which were prepared for β grain analysis were etched. Etching is a technique 

predominantly used when observing microstructures under optical light microscopy [92]. 

Background on etching is provided in the article “Contrast Enhancement and Etching” in 

Volume 9 of the ASM Handbook and is summarized here. 

Etching increases the contrast of microstructural features in a sample by preferentially 

attacking certain features on the surface of the sample. Etching can be accomplished using 

chemical means such as acid mixtures, or physical means such as ion etching or thermal etching. 

This work utilized chemical etching. 

In two-phase alloys such as Ti-6Al-4V, one phase will have a higher electrochemical 

potential than the other, and that phase will be preferentially attacked by the etchant. Grain 

boundaries are also attacked by chemical etchants due to their higher concentration of impurities 

and structural defects relative to the inside of the grain.  

Before the samples were etched, they were placed in a VibrometTM vibratory polisher 

overnight to remove any titanium dioxide that formed on the surface. The samples were then 

etched shortly after being polished and cleaned.  

The single layer pad and multilayered pad geometries were etched using Kroll’s Reagent. 

Kroll’s Reagent is one of the most commonly used chemical etchants for titanium samples [93]. 

It is made by combining 92 mL of distilled water, 6 mL of nitric acid and 2 mL of hydrofluoric 

acid. The hydrofluoric acid in Kroll’s reagent preferentially targets the α phase.  

 It was attempted to use Kroll’s reagent to etch the thin wall samples, but it did not reveal the 

grain structure well enough for analysis. As a result, the thin wall samples were etched using 

Macro Kroll’s Reagent rather than the regular Kroll’s reagent. Macro Kroll’s reagent is made by 
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combining 8 mL of hydrofluoric acid, 24 mL of nitric acid and 100 mL of distilled water. For 

some of the thin wall samples, the top etched at a different rate than the bottom. Because of that, 

it was necessary to observe the top and bottom of the sample under an optical microscope 

between etchings. 

A standard etching time was not used because samples made with different powers and 

velocities etch differently due to differences in grain morphology. Rather, the samples were 

etched for a set time, then observed under an optical microscope to determine how well the β 

grains could be seen. Etching times for metals can vary greatly, so it is not unusual to judge the 

sample based on its appearance when a recommended etching time is not provided [92]. 

Single layer pads were etched for 30 seconds at a time before being observed under an 

optical microscope. Thin wall samples were etched for 10 seconds at a time before being 

observed under an optical microscope. Multilayered pad samples were etched for 30 seconds at a 

time before being observed under an optical microscope.  

 Figure 2.6 shows the effects of etching on a single layer pad sample. The images were taken 

using a Keyence VHX-600 series optical microscope with unpolarized light at 100x 

magnification. Figure 2.6a shows a sample that had not been etched long enough. Figure 2.6b 

shows a sample that had been etched too long. The etchant had attacked the grain boundaries for 

long enough that it left voids in the surface of the sample. An overetched sample needs to go 

through the fine polishing stages again. Figure 2.6c shows a sample that has been properly 

etched.  
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Figure 2.6: (a) An underetched single layer pad sample. (b) An overetched single layer pad sample. (c) A properly etched 
single layer pad sample.  

2.2 β Grain Analysis Procedure 

2.2.1 Single Layer Pads 

      This section considers single layer pad geometries and their analysis. The top view of a  

single layer pad geometry is shown in Figure 2.7. 

Figure 2.7: a top view of a single layer pad geometry

Following the polishing and etching procedures previously described, the samples were viewed 

at 100x magnification using a Keyence VHX-600 series optical microscope. Figure 2.8 shows an 

example micrograph for β analysis. 
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Figure 2.8: an example micrograph for β analysis 

 Optical microscopy was chosen because it allows for greater visibility of β grains than 

electron microscopy. The single layer pad samples were examined under non-polarized light. 

Many micrographs were taken for each sample. The images were then stitched. Rather than using 

a predetermined offset, the images were stitched by aligning features in Adobe Photoshop 

Elements. In order to align the features, the ability to alter the transparency of different layers in 

Photoshop was used. Figure 2.9 illustrates the stitching process.  

Figure 2.9: the stitching process

The stitching process was repeated with micrographs until the entire length of the sample had 

been made into a single image. Figure 2.10 shows an example of an entire stitched sample:  
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Figure 2.10: A stitched single layer pad sample

The β grains were then traced. This was done by creating a new layer in Photoshop, then using 

the brush tool. Figure 2.11 shows an example of traced β grains for a single layer pad: 

Figure 2.11: Traced β grains for a single layer pad

It is important to note that care must be taken when tracing β grains to determine whether the 

region being traced is a boundary between prior β grains or rather a boundary between α 

colonies.  

 The middle third of the pad was the focus of β grain measurements, because it was assumed 

that the middle third would be at steady-state conditions. Figure 2.12 shows the middle third of a 

sample with the β grains traced. 
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Figure 2.12: The middle third of a single layer pad sample with the β grains traced

The next step was to determine at what height the β grain widths should be measured. 

The determination of the height was made by measuring β grain widths at different heights and 

analyzing the results. The width of the β grains was measured using the ruler tool in ImageJ [94]. 

ImageJ is a public domain image processing program developed at the National Institutes of 

Health [95].  

 The ruler tool was calibrated to the micron bar in a micrograph. Figure 2.13 shows the ruler 

tool being calibrated in ImageJ. In order to calibrate the ruler, a set distance was measured and 

then input into the program. This was accomplished by clicking on the scale bar in each image. 

Figure 2.14 shows the data table in ImageJ. The measurements were then copied and pasted into 

Microsoft Excel.  
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Figure 2.13: The ruler tool being calibrated in ImageJ 

Figure 2.14: The data table in ImageJ 

 The three potential measurement heights that were tested were: the top of the substrate, at 

half of the maximum melt pool depth, and at half of the average melt pool depth. All three were 

examined for a test case: 450 Watts power and 7.5 inches per minute velocity. Figure 2.15 shows 

the three possible measurement heights superimposed on a section of the sample micrograph 

with traced β grains: 
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Figure 2.15: possible measurement heights superimposed on a section of the sample micrograph with traced β grains

Line Placement 
Number of β 

Grains 

Average Width 

(μm) 

95% Confidence 

Interval (μm) 

Standard 

Deviation (μm) 

Top of Substrate 37 191.7 ± 33.3 103.4 

Half of max melt 

pool depth 
43 162.4 ± 30.9 90.6 

Half of average 

melt pool depth 
40 175.1 ± 32 87.7 

Table 2.1: Measurements from the test case 

 Table 2.1 shows the results of the test case. The measurements were made at half the 

maximum melt pool depth, because it has the smallest confidence interval. A 95% confidence 

interval means that a person can be 95% confident that the true mean falls within a certain range 

[96]. That range is the sample mean plus or minus the reported confidence interval in the table.  

Measuring half of the maximum melt pool depth was also found to yield the most consistent 

results.  
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2.2.2 Thin Wall Geometries 

 This section will look at β grain analysis for thin wall geometries. Figure 2.16 shows some of 

the thin wall samples before they were cut and mounted. The samples were made from Ti-6Al-

4V using the LENSTM process. 

Figure 2.16: Thin wall samples on the substrate

The samples were viewed at 200x magnification using a Keyence VHX-600 series optical 

microscope. It was the lowest magnification at which grains could be seen well enough to 

measure. 

It was found that regular light microscopy as was used for the single layer pads made it 

difficult to see the β grain morphology of the thin wall samples. It was found to be easier to see 

the β grains when the samples were imaged under polarized light. Materials with non-cubic 

crystal structures, such as α-Ti respond well to polarized light [97].  

 Figure 2.17(a) shows a micrograph under regular light and Figure 2.17(b) shows the same 

micrograph under polarized light. The sample that is pictured is a LENSTM Ti-6Al-4V thin wall 

that was manufactured at Penn State. The beam power was 400 W, the velocity was 16.4 ipm and 

the powder feed rate was 2 gpm. 
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Figure 2.17: (a) an etched thin wall sample under regular light (b) an etched thin wall sample under polarized light

 The micrographs were stitched using Adobe Photoshop CS5. Stitching was completed 

manually via feature alignment rather than using a standard overlap. ImageJ was used to measure 

from the middle of the substrate level to the top of the sample. The height of the sample was 

divided into thirds. Figure 2.18 shows a thin wall divided into thirds.  

Figure 2.18: a thin wall sample divided into thirds
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 β grains were traced by creating a new layer in Photoshop and using the brush tool. The 

procedure was the same as for tracing β grains for the single layer pads. Figure 2.19 shows part 

of a thin wall sample with the β grains traced. 

Figure 2.19: a thin wall sample with traced β grains

The width of the β grains for each section was measured in the middle of each section. The green 

lines in Figure 2.20 show where the β grain measurements were made. 

Figure 2.20: a thin wall sample. β grain measurements were taken along the green lines
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2.2.3 Multi-layer Pads 

 This section considers multi-layer pad geometries and their analysis. Figure 2.21 shows one 

of the multi-layer pad samples before it was cut and mounted. 

Figure 2.21: a multi-layer pad sample

The samples were viewed 200x magnification using a Keyence VHX-600 series optical 

microscope. It was the lowest magnification at which grains could be seen well enough to 

measure. The samples were imaged using polarized light.  

 The micrographs were stitched using Adobe Photoshop CS5. An attempt was made at using 

Adobe Photoshop Elements, but the images were too high resolution for that software to handle. 

Stitching was completed manually via feature alignment rather than using a standard overlap. 

Figure 2.22 shows the stitching process using feature alignment. Figure 2.23 shows multiple 

images being stitched together in Photoshop. 
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Figure 2.22: Manual feature alignment being used to stitch micrographs for a multi-layer pad in Adobe Photoshop CS5

Figure 2.23: Micrographs for a multi-layer pad sample being stitched in Adobe Photoshop CS5

 ImageJ was used to measure from the middle of the substrate level to the top of the sample. 

Both the height and the width of the sample were divided into thirds. Figure 2.24 shows the 

height of the sample divided into top, middle, and bottom thirds. Figure 2.25 shows the width of 

the sample being divided into thirds.  
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Figure 2.24: a multi-layer pad sample being divided vertically into thirds

Figure 2.25: a multi-layer pad sample being divided horizontally into thirds

β grains were traced by creating a new layer in Photoshop and using the brush tool. The 

procedure was the same as for tracing β grains for the single layer pads and thin walls. The 

widths of the β grains for the multi-layer pads were measured in the middle third of the sample to 

avoid measuring pinched grains at the edges of the sample. 
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2.3 α-lath Analysis for Single Layer Pads 

Five single layer pad samples were prepared for α-lath analysis. After being mounted and 

polished, they were imaged using a Sirion XL30 scanning electron microscope. Back scatter 

detection was used, and the images were taken at 2000x magnification [98]. The images were 

saved using the tagged image file format (*.tiff), so they were not compressed. 

The images were then imported into Adobe Photoshop CS2 along with the FoveaPro 

plugin by Reindeer Graphics. The micron bar was measured and converted to a number in pixels 

then saved. That allowed the software to properly scale its measurements. 

Next the brightness and contrast were increased for the micrographs. A copy of the image 

was then made and superimposed on the original. A Gaussian Blur was applied to one of the 

layers, and one layer was subtracted from the other. A Gaussian Blur is a type of filter that 

eliminates components of an image with large variations in brightness [99]. In other words, it 

helps to remove speckles and noise.  

A threshold filter was then applied using FoveaPro. A threshold filter converts a 

grayscale image into a binary image that only contains black and white pixels [99]. Finally, a 

skeletonization filter was used. The skeletonization filter decreases the thickness of all the lines 

in an image to a single pixel [99]. 

 Figure 2.26 shows the image processing for a Ti-6Al-4V single layer pad laser glazed (no 

added material) using the LENSTM process. The power was 350 watts and the velocity was 7.5 

inches per minute.  
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Figure 2.26: Image processing using FoveaPro for α-lath measurements for a single layer pad 

After the micrograph was converted to a binary image with thin lines, it could be 

measured. The mean inverse intercept was measured using FoveaPro. In order to find the mean 

inverse, the software generates a grid of parallel lines and determines the lengths of the 

intercepts. It then rotates the grid by 10 degrees and repeats the process through a full 360 degree 

rotation [99]. The software takes the inverse of every intercept value and then calculates the 

mean [100].  

Simply calculating the mean intercept without taking the inverse of the values is suitable 

for equiaxed grains, but not for Widmanstätten α-laths. The mean inverse intercept is what is 

used to estimate the “true three-dimensional thickness” of thin structures such as oxide layers 

and α-laths [44]. 
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2.4 Structural component geometries 

 Two structural component geometry samples were constructed using an Optomec® LENSTM 

MR-7 system at Penn State [101]. The components were made from Ti-6Al-4V. One sample was 

built with a 0s dwell and the other was built with a 4s dwell time between layer depositions. 

Figure 2.27(a) shows the 0s dwell component and Figure 2.27(b) shows the 4s dwell component. 

Figure 2.27: The structural component geometries as manufactured [101] 

Figure 2.28 shows the deposition path that the laser followed as the samples were constructed. 

Each layer was constructed using 8 passes of the laser. 

Figure 2.28: the hatch pattern for laser deposition of the structural component geometries [101] 

Thermal data for the structural component geometries was collected as they were deposited. 

A Stratonics, Inc. ThermaViz® optical sensor was used to record thermal images [101]. The 

images were analyzed to determine temperature and the thermal gradient at the trailing edge of 

the melt pool.  
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 The samples underwent metallographic preparation. First, the sample was cut vertically using 

an Allied TechCut 5TM precision high speed saw. Liquid coolant was sprayed on the blade and 

sample as it was cut. Figure 2.29 shows the saw. 

Figure 2.29: The saw used to make the vertical cut in the structural component samples [102] 

 Figure 2.30 shows a 3-D representation of the sample. The striped translucent plane is 

the cutting plane. 

Figure 2.30: A 3D representation of the vertical cut that was made in the structural component sample 
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 After that, most of the substrate was removed using the same saw. The sample was still too 

large to fit into the mounting press, so it was cut into three pieces. Figure 2.31 shows a 

representation of the sample. The striped translucent plane was where it was cut.  

Figure 2.31: a 3D representation of cuts that were made in the structural component samples 

The saw used to cut the sample was an Allied TechCut 4TM precision low speed saw. Figure 2.32 

shows the saw. 

Figure 2.32: The Allied TechCut 4TM precision low speed saw that was used to cut the structural component samples [103]

 The samples were mounted in Polyfast conductive mounting media. Figure 2.33 shows the 3-

bead leg of the 4 second dwell component, in its mount. 
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Figure 2.33: the 3-bead leg of the 4 second dwell component in its mount 

The samples were polished on a polishing wheel rather than using an autopolisher. They 

were ground using 120 grit silicon carbide paper until they were uncovered. Next, they were 

polished using 240 grit, 320 grit, 400 grit then 600 grit silicon carbide sandpaper. The samples 

were washed with soap and water between grinding stages. Scratches were observed the same 

way as described in the metallographic procedure for the single layer pad, thin wall and multi-

layer pad samples. 

After the coarse grinding was completed, the samples were polished on gold cloth 

polishing cloth with 9µm water-based diamond slurry along with a solution of 20% hydrogen 

peroxide with colloidal silica and a drop of dish soap.  

The sample was washed with soap and water, dried with a hot hand drier, squirted with 

isopropyl alcohol and blasted with compressed air. The scratches were observed under an optical 

microscope and once it was determined that they were of uniform size and direction, the sample 

went on to the next step. 

Next the samples were polished on a Texmet C polishing cloth with a 3 µm water-based 

diamond slurry, a solution of 10% hydrogen peroxide with colloidal silica and a drop of dish 

soap. The sample was washed with soap and water, dried with a hot hand drier, squirted with 

isopropyl alcohol and blasted with compressed air. The scratches were observed under an optical 

microscope and once it was determined that they were of uniform size and direction, the sample 

went on to the next step. 
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The sample was then polished on a microcloth polishing cloth along with 1 µm water-

based diamond slurry, a solution of 10% hydrogen peroxide with colloidal silica and a drop of 

dish soap. The sample was washed with soap and water, dried with a hot hand drier, squirted 

with isopropyl alcohol then blasted with compressed air.  

The sample was put into a VibrometTM vibratory polisher with 0.05 µm diamond slurry, 

and a solution of 10% hydrogen peroxide with colloidal silica overnight. Unlike the single layer 

pad, thin wall and multi-layer pad samples, the structural component samples did not need to 

undergo polishing in a VibrometTM with 1µm diamond slurry. This is because the 1µm polishing 

stage for the structural component samples was completed by hand. 

After the samples were polished in the VibrometTM polisher, they were cleaned with soap 

and water. To clean the samples, they were put sideways (so not metal side up or metal side 

down) into a 100 mL beaker with distilled water and a 2% micro-organic soap solution. The 

beaker was put into a vibrating cleaner for 10 minutes. After that, the sample was removed using 

a clean pair of tongs. It was then rinsed with a squirt bottle of distilled water, and dried using 

compressed air.  

Next, the samples were cleaned using isopropyl alcohol. The samples were placed one at 

a time into a 100 mL beaker. The sample was then covered with either high purity ethanol or 

isopropanol. The beaker was put into a vibrating cleaner for at least 5 minutes. After that, the 

sample was removed and squirted with alcohol from a squirt bottle. The samples were dried with 

compressed air, then sample caps were put on them.  

After polishing was complete, the samples were examined using a Sirion XL30 scanning 

electron microscope. The samples were not etched before being placed in the SEM. The 

microscope has an electron backscatter diffraction (EBSD) detector which was also used.  
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 Images were taken at six different locations on the samples. Figure 2.34 shows the locations 

at which SEM images and EBSD data were collected. The pictured sample is the 4 second dwell 

sample. The middle column of the figure shows SEM and EBSD images. The black and white 

images are SEM and the color images are EBSD. The right column shows binary images that 

were produced using MIPAR.TM  

Figure 2.34: Heights at which measurements were taken for the structural component samples [104]

MIPARTM stands for Materials Image Processing and Automated Reconstruction [48]. It is a 

MATLABTM based program for material analysis. When using MIPARTM, a “recipe” of steps 
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can be developed to transform a greyscale image into a binary image. A batch processor allows 

the same recipe to be quickly applied to many images.  

The collection of α-lath data is detailed by Loughnane [104]. That work developed 

uncertainty quantification by comparing probability distribution functions for mean linear 

intercepts and compared α-lath widths to thermal data collected by Kriczky et al [101]. This 

work compares the α-lath widths and thermal data to Vickers hardness data.  

2.5 Hardness measurements and hardness maps 

This section discusses the procedure used to test the hardness of the structural component 

samples. This work utilized the Vickers microhardness test. Two of the samples were tested on 

automated hardness equipment at The Ohio State University. Those samples were the 3-bead leg 

sections of the components. The 1-bead leg sections of the components were tested manually at 

the Air Force Research Laboratory.  

The spacing used for the automatic hardness measurements was 500 µm. The hardness 

tests in this work did not all utilize the same load. As discussed in the first chapter of this thesis, 

different loads can be used for Vickers microhardness testing. The size of the indent relative to 

the applied load is what matters, not the load itself. The 3-bead leg of the 0 second dwell sample 

was tested with a load of 100 gf. Approximately 550 data points were collected for that sample. 

The 3-bead leg of the 4 second dwell sample was tested with a load of 300 gf. Approximately 

500 data points were collected for that sample. 

 Data was collected for the top, bottom, and middle portions of the sample then stitched 

together. Figure 2.35 shows the hardness maps for the portions of the sample and a complete 

map for the 3-bead leg of the 4 second dwell sample. 
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Figure 2.35: Portions of the sample and a complete hardness map for the 3-bead leg of the 4 second dwell sample 

The maps were made in portions because the structural components were too large to fit into a 

metallographic mounting press.  
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3 Results and Discussion 
3.1 β Analysis Results 

3.1.1 Single Layer Pads 

 Table 3.1 shows data collected from the single layer pads. The power, velocity, and feed rate 

were given process variables. The incident energy was calculated by dividing the power by the 

velocity.  

Incident Energy 
(kJ/m) Power (Watts) Velocity (inches 

per minute) 
Feed (grams per 

minute) 
Grain Size 
(microns) 

24 250 25 3 69 
24 250 25 3 78 
110 350 7.5 0 183 
110 350 7.5 0 160 
110 350 7.5 3 248 
50 350 16.4 2 125 
50 350 16.4 2 125 
65 400 16.4 0 116 
65 400 16.4 2 176 
65 400 16.4 3 143 
142 450 7.5 0 225 
142 450 7.5 0.9 242 
142 450 7.5 3 405 
43 450 25 0 91 
43 450 25 3 172 
43 450 25 3 119 

Table 3.1: Incident energy, power, velocity, feed rate and β grain size for single layer pad samples 

 Figure 3.1 shows the β grain width vs. the beam power for sets of single layer pads that were 

made using the same velocity and feed rate. Linear regressions were calculated and the trend 

lines are shown on the chart. 
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Figure 3.1: Mean β grain width vs. beam power for single layer pads 

 When power and feed rate are held constant, increasing velocity was found to decrease β 

grain widths. Figure 3.2 shows the β grain width vs. the beam velocity for sets of single layer 

pads that were made using the same power and feed rate. The pads manufactured with a beam 

power of 450 W were chosen because that set had the most samples with different velocities. 

Linear regressions were calculated and the trend lines are shown on the chart. When velocity and 

feed rate are held constant, increasing power was found to increase β grain widths.  
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Figure 3.2: Mean β grain width vs. beam velocity for single layer pads 

 The incident energy was compared to the average β grain width for single layer pads. The 

comparison was made looking at pads that had the same feed rate in order to not introduce an 

additional variable. Figure 3.3 shows the average β grain width vs. incident energy for single 

layer pads. 
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Figure 3.3: Mean β grain width vs. incident energy (P/V) for single layer pads

It was found that for constant feed rate, increasing incident energy increases β grain width in 

single layer pads. The more energy that is put into a part, the longer it takes to cool. This allows 

the β grains to grow wider.  

For the same incident energy, samples with a larger feed rate appear to have larger β grain 

widths. This could be because more material means more time needed to heat it up and cool it 

down. In 2015, Bagheri, et al performed an experiment to determine the effects of powder feed 

rate on parts made from LENSTM deposited Ti-6Al-4V [105]. It was found that increasing feed 

rate while keeping power and velocity constant increases grain size at the bottom of the part. The 

effect of feed rate on grain size in the middle and top of the part was found to be “negligible”.   

As incident energy increases, melt pool size also increases. In 2010, Soylemez, et al observed 

single beads of electron beam deposited Ti-6Al-4V [106]. Experimental results showed that 

decreasing beam velocity increases the cross-sectional area of the melt pool. Modeling results 
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showed that while generally increasing 𝑃𝑃
𝑉𝑉
 increases melt pool dimensions, the relationship is not 

perfectly linear, and it would be unwise to assume a “rule of thumb” that keeping incident energy 

constant keeps melt pool cross sectional area constant.  

In 2016, Kusuma observed single beads of Ti-6Al-4V produced by selective laser melting 

[107]. Rather than “incident energy”, “linear laser energy density” was the terminology used to 

refer to energy put into the current deposition layer. Linear laser energy density shares similar 

units to incident energy (J/mm instead of kJ/m) and is also calculated by dividing the beam 

power by the scanning speed. It was found that melt pool width increases as linear laser energy 

density increases. Melt pool width can be related to the cross-sectional area of the melt pool, and 

controlling melt pool cross sectional area allows for the maintenance of a constant beta grain size 

in additively manufactured Ti-6Al-4V [33]. 

Research conducted by Gockel suggested that as melt pool areas increase, β grain sizes 

increase as well [33]. In fact, in a set of single beads manufactured with different power and 

velocity settings that changed the melt pool cross-sectional area, the number of β grains across 

the melt pool stayed relatively constant. For the single layer pads in this work, an increase in 

melt pool cross-sectional area as incident energy increases could offer another explanation as to 

why beta grain widths increased with incident energy.  
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3.1.2 Thin Walls 

Table 3.2 shows the β grain data for the bottom third of the thin walled structures.  

Incident 
Energy 
(kJ/m) 

Power 
(Watts) 

Velocity 
(inches 

per 
minute) 

Feed 
Rate 

(grams 
per 

minute) 

Number 
of Grains 

Mean 
Width 

(microns) 

Standard 
Deviation 
(microns) 

95% 
Confidence 

Interval 
(microns) 

110 350 7.5 0.9 6 387 235 ± 188 
110 350 7.5 0.9 4 648 371 ± 363 
110 350 7.5 3 6 428 316 ± 253 
65 400 16.4 2 9 257 160 ± 105 
65 400 16.4 3 9 253 144 ± 94 
43 450 25 3 7 308 155 ± 115 
43 450 25 3 10 216 90 ± 56 
43 450 25 3 5 401 414 ± 363 

Average    7 362 236 ± 192 
Table 3.2: Incident energy, power, velocity, feed rate and β grain size for the bottom third of the thin wall samples 

 Figure 3.4 shows the mean β grain width versus the incident beam energy for the bottom 

portion of the thin walled structures. Increasing β grain with increasing incident energy makes 

sense. More energy means longer for the grain to cool and longer for it to grow. 
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Figure 3.4: Mean β grain width vs. incident beam energy for the bottom portion of the thin walled structures

While β grain size was found to increase with incident energy, there was high variability. 

Part of this could be due to the small sample size; all of the thin wall samples had ten β grains or 

less across the width. It is difficult to draw any conclusions about the effect of feed rate for this 

set of samples, also possible because the small number of grains across each thin wall. 

Standard deviation can be defined as “a quantity that measures the degree of spread in a 

sample” [96]. Standard deviation is calculated as 

𝑆𝑆𝑥𝑥 = �
∑ |𝑥𝑥 − 𝑥𝑥|� 2

(𝑛𝑛 − 1) ; (3) 

where 𝑆𝑆𝑥𝑥 is the standard deviation, 𝑥𝑥 is the width of a β grain, 𝑥̅𝑥 is the mean, and 𝑛𝑛 is the sample 

size. A smaller sample size will always yield a larger standard deviation, if all else is equal. It is 

important to note that the above formula is for the sample standard deviation rather than the true 

standard deviation because the measured prior β grains are part of a finite data set [108].  
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This thesis discusses the variability of β grains, which is a qualitative observation. It is 

not to be confused with variance, which is a quantitative measure calculated by taking the square 

of the standard deviation. Sample standard deviations can also be reported as percentages of the 

mean, and they can be used to calculate confidence intervals [84]. Standard deviation is often 

used to report sample spread instead of variance because it uses the same units as the raw data.  

Confidence intervals are used in order to estimate the true mean of a finite sample of 

measurements [96]. A 95% confidence level means that 95% of possible confidence intervals 

contain the true mean of the sample. In other words, if a population is sampled repeatedly and 

confidence intervals are calculated for each sample, 95% of them will contain the true mean. For 

microstructural characterization applications, a 95 percent confidence interval is useful [84]. The 

95% confidence level is calculated as 

95% 𝐶𝐶𝐶𝐶 =
𝑡𝑡𝑡𝑡

(𝑁𝑁 − 1)
1
2

; (4) 

Where 𝑁𝑁 is the sample size, 𝑠𝑠 is the sample standard deviation and 𝑡𝑡 varies with the sample size. 

The value of 𝑡𝑡 can be taken from the student’s 𝑡𝑡 table.  

According to Vander Voort, sometimes rather than varying 𝑡𝑡 with sample size, a value of 

2 or 1.96 will be used as a standard value instead [84]. In this research, Microsoft Excel 2010 

was used to calculate the 95% confidence intervals, and the software uses a standard value of 

1.96 for 𝑡𝑡 rather than varying it with sample size [109]. Like the standard deviation, it is also 

possible to report confidence intervals as a percentage of the mean. When it is reported that way, 

it is called “percent relative accuracy” [84].  

 Some of the β grains also appeared to be pinched or squished at the free edge. Figure 3.5 

shows an example of a thin wall with the prior β grains traced.  
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Figure 3.5: A thin wall sample with the β grains traced

Table 3.3 shows the β grain data for the middle portion of the thin walled structures. The middle 

zone had even greater variability than the bottom zone.  
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Incident 
Energy 
(kJ/m) 

Power 
(Watts) 

Velocity 
(inches 

per 
minute) 

Feed 
Rate 

(grams 
per 

minute) 

Number 
of Grains 

Mean 
Width 

(microns) 

Standard 
Deviation 
(microns) 

95% 
Confidence 

Interval 
(microns) 

110 350 7.5 0.9 8 369 262 ± 182 
110 350 7.5 0.9 5 588 523 ± 459 
110 350 7.5 3 6 564 421 ± 337 
65 400 16.4 2 2 1275 660 ± 915 
65 400 16.4 3 8 353 239 ± 166 
43 450 25 3 5 497 303 ± 265 
43 450 25 3 6 421 225 ± 180 
43 450 25 3 4 695 478 ± 469 

Average 5.5 595 389 ± 371 
Table 3.3: Incident energy, power, velocity, feed rate and β grain size for the middle zone of the thin wall samples

The mean number of β grains at the middle height for the thin wall samples was 5.5, 

whereas the mean number of β grains for the bottom was 7. Because the middle height level had 

fewer grains, the effects of small sample sizes on standard deviations and confidence intervals 

are even more pronounced.  

Cooling rates are higher towards the bottom of the sample because the substrate acts as a 

heat sink. If the steady state Rosenthal solution for a moving point heat source on an infinite 

half-space is assumed to be valid, then heat must be conducted out in order to satisfy the constant 

temperature boundary condition as the melt pool approaches the bottom surface [110]. Because β 

grain size is determined by cooling rate at the liquidus temperature, higher cooling rates will 

result in smaller β grains [33]. The mean β grain width at the bottom of these thin wall samples is 

smaller than at the middle and top (362 µm vs. 595 µm and 606 µm respectively).  

In 2009, Kuchi developed thermal finite element models for thin wall laser deposited Ti-

6Al-4V [110]. It was found that decreased sample height resulted in increased dimensionless 
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cooling rate and increased thermal gradient. This could serve as an explanation for the 

“blooming” prior β grains seen in the thin wall samples in this work. 

It has been reported that partially remelted equiaxed grains towards the bottom of a multi-

layer sample can act as nuclei for columnar grains, possibly encouraging the blooming 

microstructure seen here. But later research found that process parameters changed grain 

morphology development [111]. 

In 2010, Davis found that as a free-edge is approached in the LENSTM process, large 

columnar grains are expected. Solidification rates and thermal gradients decrease near free-

edges, which results in larger grains [31].  

 Figure 3.6 shows the mean β grain width versus incident beam energy for the middle portion 

of the thin walled structures. It is difficult to make conclusions about trends in grain size with 

incident energy for this region of this part geometry. 

Figure 3.6: Mean β grain width vs. incident beam energy for the middle portion of the thin walled structures
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Table 3.4 shows the β grain data for the top portion of the thin walled structures. 

Incident 
Energy 
(kJ/m) 

Power 
(Watts) 

Velocity 
(inches 

per 
minute) 

Feed 
Rate 

(grams 
per 

minute) 

Number 
of Grains 

Mean 
Width 

(microns) 

Standard 
Deviation 
(microns) 

95% 
Confidence 

Interval 
(microns) 

110 350 7.5 0.9 9 380 277 ± 181 
110 350 7.5 0.9 4 778 303 ± 297 
110 350 7.5 3 10 289 156 ± 289 
65 400 16.4 2 4 790 357 ± 350 
65 400 16.4 3 9 348 195 ± 127 
43 450 25 3 3 884 529 ± 599 
43 450 25 3 4 686 322 ± 316 
43 450 25 3 4 695 478 ± 469 

Average 6 606 327 ± 304 
Table 3.4: Incident energy, power, velocity, feed rate and β grain size for the top portion of the thin wall samples

The mean β grain width for the top portion is similar to that of the middle. The variability 

in β grain size at the top of the thin wall samples is similar to that of the middle portion of the 

thin walled samples. 

3.1.3 For Multi-layer pads 

Table 3.5 shows the data for the bottom third of the multi-layer pads. 

Incident 
Energy 
(kJ/m) 

Power 
(Watts) 

Velocity 
(inches 

per 
minute) 

Feed 
Rate 

(grams 
per 

minute) 

Number 
of Grains 

Mean 
Width 

(microns) 

Standard 
Deviation 
(microns) 

95% 
Confidence 

Interval 
(microns) 

110 350 7.5 0.9 23 213 138 ± 57 
110 350 7.5 0.9 12 450 178 ± 100 
65 400 16.4 2 33 145 54 ± 18 
65 400 16.4 2 23 205 96 ± 39 
43 450 25 3 33 146 85 ± 29 
43 450 25 3 22 241 159 ± 66 

Average 24 233 118 ± 52 
Table 3.5: Incident energy, power, velocity, feed rate and β grain size for the bottom portion of the multi-layer pads
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 The bottom of the multilayer pad samples was found to have much less variability than the 

thin wall samples. This is probably because there are more grains to measure, reducing the issue 

with sample sizes and standard deviations. Also, the β grains for the multilayer pads were 

measured in the middle third of the sample, so free-edge effects do not come into play. Again, 

the bottom samples have the smallest β grain widths. This is probably because the substrate acts 

as a heat sink, increasing the cooling rate for the bottom layers of the sample. It is difficult to 

draw conclusions purely based on grain size vs. incident energy for this set of samples because 

different feed rates were used. Table 3.6 shows the data for the middle zone of the multilayer pad 

samples. 

Incident 
Energy 
(kJ/m) 

Power 
(Watts) 

Velocity 
(inches 

per 
minute) 

Feed 
Rate 

(grams 
per 

minute) 

Number 
of Grains 

Mean 
Width 

(microns) 

Standard 
Deviation 
(microns) 

95% 
Confidence 

Interval 
(microns) 

110 350 7.5 0.9 16 303 159 ± 78 
110 350 7.5 0.9 9 641 385 ± 252 
65 400 16.4 2 21 239 170 ± 73 
65 400 16.4 2 15 323 227 ± 115 
43 450 25 3 17 285 205 ± 98 
43 450 25 3 12 424 273 ± 155 

Average 15 367 236 ± 128 
Table 3.6: Incident energy, power, velocity, feed rate and β grain size for the middle portion of the multilayer pad samples

 The middle zone had higher variability in β grain widths than the bottom of the sample. The 

average standard deviation was double that of the bottom portion of the multilayer pad samples. 

The average 95% confidence interval was more than double that of the bottom section. The 

bottom section of the multilayer pads has an average of 24 β grains per sample measured and the 

middle section has an average of 15 β grains per sample measured. This difference in sample size 
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could contribute to some of the difference in standard deviations and confidence intervals. Table 

3.7 shows the data for the top zone of the multilayer pads. 

Incident 
Energy 
(kJ/m) 

Power 
(Watts) 

Velocity 
(inches 

per 
minute) 

Feed 
Rate 

(grams 
per 

minute) 

Number 
of grains 

Mean 
Width 

(microns) 

Standard 
Deviation 
(microns) 

95% 
Confidence 

Interval 
(microns) 

110 350 7.5 0.9 11 428 224 ± 133 
110 350 7.5 0.9 13 421 283 ± 154 
65 400 16.4 2 16 330 223 ± 109 
65 400 16.4 2 17 300 289 ± 138 
43 450 25 3 17 305 206 ± 98 
43 450 25 3 20 246 163 ± 71 

Average 16 338 231 ± 117 
Table 3.7: Incident energy, power, velocity, feed rate and β grain size for the top zone of the multilayer pads

In general, β grain widths increase as height up the sample increases. Variability in β 

grain size is lowest in the bottom portion of the samples. Multilayer pads have lower variability 

in β grain structure than thin walls. This is probably in part because they have more β grains at 

each height. 

3.1.4 Comparison of β Grain Widths across Geometries 

      Mean β grain widths were compared across single layer pad, thin wall and multi-layer pad 

geometries for two sets of process parameters. The comparison is shown in Figure 3.7. The sets 

of process parameters were a power of 400 W with a velocity of 16.4 ipm and a feed rate of 2 

gpm, and a power of 450 W with a velocity of 25 ipm and a feed rate of 3 gpm. Those sets of 

parameters were chosen because they were the sets that had the most samples to compare across 

geometries; single layer pads, thin walls and multi-layer pads were characterized for both sets. 
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Figure 3.7: Mean β grain width vs. part geometry for two sets of process parameters

There are no error bars for the single layer pad samples. This is because there were not 

enough measurements taken for the calculation of error bars. For both sets of samples, thin walls 

had the largest mean β grain widths. This could be because of the decrease in cooling rates and 

thermal gradients as a free edge is approached [31]. Those factors cause larger β grains to form. 

The measurements for the single and multilayer pads were made in the middle third of the 

samples, so the effect of approaching an edge would not have played any part in those β grain 

measurements. For the 450 W power, 25 ipm velocity and 3 gpm feed rate case, mean β grain 

widths are highest at the top of the thin wall sample. This is in line with Kuchi’s models [110].  

3.2 α-Lath Results for Single Layer Pads 

α-lath measurements for single layer pads were taken using scanning electron microscopy 

with backscatter detection and FoveaPro. Table shows the α-lath measurements for the single 

layer pads.  
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Incident 
Energy (kJ/m) 

Power 
(watts) 

Velocity 
(ipm) 

Lath Thickness 
(microns) 

Feed Rate 
(gpm) 

24 250 25 0.623 Scaled Feed 
24 250 25 0.614 Scaled Feed 
110 350 7.5 0.621 0 (Laser Glaze) 
110 350 7.5 0.609 3 
142 450 7.5 0.600 Scaled Feed 

Table 3.8: Incident energy, power, velocity, α-lath thickness and feed rate for the single layer pads

A “scaled feed” rate means that the powder feed rate was scaled with the anticipated melt 

rate. Similar α-lath thicknesses were measured across powers and velocities. It was found that 

increasing β width does not necessarily increase α thickness, at least for single layer pads. 

3.3 Structural components 

3.3.1 α results for structural components 

 α-lath measurements for structural component geometries were taken [49]. Images were 

taken using scanning electron microscopy with backscatter detection, and electron back scatter 

detection. The images were analyzed using MIPARTM software. Table 3.9 shows the α-lath 

widths and 95% confidence intervals. Figure 3.8 shows the zone designations.  
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Zone ⍺-Lath Width (microns) 95% Confidence Interval # Images 

0s Dwell 
1-Bead Leg

1 0.55 n/a 1 
2 0.58 0.14 5 
3 0.69 0.03 5 
4 0.67 0.26 2 
5 0.59 n/a 1 

0s Dwell 
3-Bead Leg

1 0.54 n/a 1 
2 0.94 0.10 5 
3 0.92 0.06 5 
4 1.00 0.14 5 
5 0.58 n/a 1 

4s Dwell 
1-Bead Leg

1 0.32 n/a 1 
2 0.35 0.07 4 
3 0.41 0.06 5 
4 0.30 0.02 5 
5 0.53 n/a 1 

4s Dwell 
3-Bead Leg

1 0.50 n/a 1 
2 0.68 0.12 5 
3 0.66 0.16 5 
4 0.77 0.13 5 
5 0.58 n/a 1 

Table 3.9: α-lath widths and confidence intervals for the structural component samples [49] 

Figure 3.8: Zone designations for the structural component geometries [49] 
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3.3.2 Hardness measurements and hardness maps 

 Vickers hardness testing was performed on the samples. The 3-bead leg samples were tested 

using automatic hardness testing equipment. Spacing for the automatic hardness tests was 500 

microns. Maps were made for the top, bottom, and middle portions of the samples, then stitched 

together. The 1-bead leg samples were tested manually. The 1-bead samples had smaller 

horizontal spacing than the automatically tested samples, but larger vertical (z-height) spacing. 

Figure 3.9 shows a comparison of the hardness maps. It was made using IgorPro software [112]. 

Table 3.10 shows the Vickers hardness across the structural component samples. It also shows 

maximum hardness, minimum hardness, mean hardness and standard deviation for the samples. 

Figure 3.9: Comparison of Vickers hardness maps 
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Number of 
Beads per 

Layer 

Dwell Time 
[s] 

Maximum 
Hardness 

[HV] 

Minimum 
Hardness 

[HV] 

Mean 
Hardness 

[HV] 

Standard 
Deviation 

[HV] 
1 0 369 308 330 11.4 
1 4 364 307 332 11.8 
3 0 374 296 343 13.4 
3 4 378 296 333 13.5 

Table 3.10: Vickers hardness measurements across structural component samples

Approximately 200 hardness measurements were taken for the 0 second dwell 1-bead 

sample. The minimum hardness was found approximately 95% of the way up the sample. The 4 

second dwell, 1-bead sample also had approximately 200 hardness measurements taken. The 

minimum hardness was found approximately 90% of the way up the sample.  

Approximately 550 hardness measurements were taken for the 0 second dwell, 3-bead leg 

sample. The minimum hardness was found approximately 80% of the way up the sample. For the 

4 second dwell, 3-bead leg sample, approximately 500 hardness measurements were taken. The 

minimum hardness was found approximately 95% of the way up the sample. The maximum 

hardness measurements for all four samples were found near the bottom. 

Overall, the 1-bead leg samples had smaller standard deviations for their hardness 

measurements. The 3-bead leg samples had higher average hardness values, but also had lower 

minimum hardness values than the 1-bead leg samples. The hardness maps indicate that hardness 

vs. height is periodic at steady state.  

 Hardness depends heavily on α morphology [105]. Figure 3.10 shows a plot of Vickers 

hardness values vs. α-lath widths for the structural component samples. Linear regressions were 

calculated and the trendlines are shown on the plot. It can be seen that Vickers hardness 

decreases as α-lath width increases. This is as expected, because the α effect dictates that larger 

α-lath widths are associated with lower hardness values.  
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 The Hall-Petch equation for yield strength was discussed in the first chapter of this thesis. It 

is worth mentioning that the relationship between grain size and Vickers hardness can be 

expressed in a similar form 

𝐻𝐻 = 𝐻𝐻0 + 𝑘𝑘ℎ𝑑𝑑
−12; (4) 

Where 𝐻𝐻 is the Vickers hardness, 𝑑𝑑 is grain size, 𝐻𝐻0 is the hardness intercept at 𝑑𝑑−1/2 = 0, and 

𝑘𝑘ℎ is the Hall-Petch slope [113]. Figure 3.11 shows a Hall-Petch hardness plot for the structural 

component samples. To make a Hall-Petch plot, the inverse of the square root of the grain size is 

plotted on the x-axis and either yield strength or hardness is plotted on the y-axis. 

Figure 3.10: Vickers hardness vs. α-lath widths for the structural component samples 

315

320

325

330

335

340

345

350

355

360

0 0.2 0.4 0.6 0.8 1 1.2

Vi
ck

er
s H

ar
dn

es
s [

HV
]

α-Lath Width [μm]

Vickers Hardness vs. α-Lath Width

0 second dwell 1 bead leg

0 second dwell 3 bead leg

4 second dwell 1 bead leg

4 second dwell 3 bead leg

Trendline (0 s dwell 1 bead
leg)

Trendline (0 s dwell 3 bead
leg)

Trendline (4 s dwell 1 bead
leg)



77 

Figure 3.11: A Hall-Petch hardness plot for the structural component samples 

 Mean thermal data collected during the build was compared to Vickers hardness 

measurements for the 0 second dwell sample as shown in Table 3.11. 

Thermal Gradient (K/cm) Vickers Hardness (units) 

Build Location Mean 
Standard 

Deviation 

Sample 

Size 
Mean 

Standard 

Deviation 

Sample 

Size 

Lower 10% of 1-bead leg 6047 1101 99 349.7 9.3 29 

Upper 90% of 1-bead leg 5112 1206 853 326.8 7.9 174 

Lower 10% of 3-bead leg 6177 2999 576 340.4 15.6 50 

Upper 90% of 3-bead leg 6469 3653 4686 323.0 12.0 491 

1-bead leg (100% average) 5209 1229 952 330.1 11.4 203 

3-bead leg (100% average) 6437 3588 5262 324.6 13.4 541 
Table 3.11: Thermal data compared to Vickers hardness for the 0 second dwell structural component sample [101]

A higher thermal gradient was associated with a higher mean Vickers Hardness for the 1-bead 

leg of the part but a higher thermal gradient was association with a lower Vickers Hardness for 

the 3-bead leg of the part.  
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Cooling rates are not the only thing that comes into play when determining microstructures 

and hardnesses. High 𝐺𝐺/𝑅𝑅 yields columnar grains and low 𝐺𝐺/𝑅𝑅 yields equiaxed/mixed grains, 

where 𝑅𝑅 is the ratio between cooling rate and gradient of temperature and 𝐺𝐺 is the thermal 

gradient at the interface solidus-liquidus [23] [111]. The Hall-Petch effect dictates that larger 

grains have lower hardnesses, so anything that makes the grains bigger will have that effect. 

 Mean thermal gradient for the entirety of the 1-bead leg was found to be lower than the mean 

thermal gradient for the 3-bead leg. Mean Vickers hardness was found to be higher for the 1-

bead leg of the 0 second dwell sample than for the 3-bead leg. Mean thermal data was compared 

to mean hardness data for the 4 second dwell sample as shown in Table 3.12. 

Thermal Gradient (K/cm) Vickers Hardness (units) 

Build Location Mean 
Standard 

Deviation 

Sample 

Size 
Mean 

Standard 

Deviation 

Sample 

Size 

Lower 10% of 1-bead leg 7061 2643 113 346.8 10.5 21 

Upper 90% of 1-bead leg 6630 2931 664 330.1 10.7 181 

Lower 10% of 3-bead leg 6925 2205 497 354.5 12.6 50 

Upper 90% of 3-bead leg 6893 2394 3110 330.2 11.2 441 

1-bead leg (100% average) 6692 2893 777 331.9 11.8 202 

3-bead leg (100% average) 6897 2369 3607 332.7 13.5 491 
Table 3.12: Thermal data compared to Vickers hardness for the 4 second dwell structural component sample [101]

A higher mean thermal gradient was associated with a higher mean Vickers hardness for 

the 1-bead leg sample. A higher mean thermal gradient was also associated with a higher mean 

Vickers hardness for the 3-bead leg of the 4 second dwell sample.  

Mean thermal gradient for the entirety of the 1-bead leg was found to be lower than the 

mean thermal gradient for the 3-bead leg. Mean Vickers Hardness for the 1-bead leg of the 4 

second dwell sample was found to be slightly lower than the Vickers Hardness of the 3-bead leg. 
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3.4 Discussion of layering effect 

 The samples were polished then etched using Kroll’s reagent. Dark and light bands were seen 

when the samples were observed using polarized light microscopy. Figure 3.12 shows the 

banding at three different heights on the 4 second dwell 1-bead leg sample. 

Figure 3.12: The layering effect 

The bands were not visible at the top of the sample. They were also not visible under 

scanning electron microscopy using either secondary electron detection (SE) or backscatter 

electron detection (BSE). The dark and light bands could not be seen with electron backscatter 

diffraction (EBSD).  
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Curved light and dark banding was also seen towards the edges of the multi-layer pad 

samples, as shown in Figure 3.13. The sample shown was made using a beam power of 350 W, a 

velocity of 7.5 ipm and a feed rate of 0.9 gpm.  

Figure 3.13: Light and dark banding in a multi-layer pad sample

The author refers to one cycle of a light band combined with a dark band as a “Heat 

Affected Layer” (HAL), because it is possible that they are a product of the thermal cycling 

involved in additive manufacturing.  

Leicht and Wennberg noted a similar dark and light banding effect in SLM and EBM Ti-

6Al-4V samples in 2015 [50]. It was postulated that a change in the melt path of the beam 

between layer depositions could cause layers to etch differently. It was reported that the bands 

were more visible in SLM samples than EBM samples.  
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 This work focused on the HALs in the 1-bead legs of the structural component samples. The 

thickness of the HALs was measured using ImageJ. Figure 3.14 shows the HALs being measured 

in ImageJ. Five measurements were taken per band. The mean thickness for a single dark or light 

band was found to be 180.8 µm. This is similar to the reported deposition layer thickness of 180 

µm.  

 The HAL thickness was compared to the height above the substrate. The height for each 

layer was measured from the bottom of the substrate up to the layer in question rather than taking 

the sum of the thicknesses of the layers, in order to reduce error propagation.  

Figure 3.14: Measuring heat affected layers in ImageJ

 Figure 3.15 shows the HAL thickness vs. the height above the substrate for the 0 second 

dwell 1-bead leg sample. The thinnest layers were found towards the bottom.  
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Figure 3.15: Heat-Affected Layer Thickness vs. height above substrate for the 0s dwell 1-bead leg sample 

 Regressions were calculated for the HAL thickness vs. the height above the substrate. No 

regression with a suitably low r-squared value was able to be calculated. This means that the data 

did not follow a trend that is linear, or periodic. The measurements of HAL thickness in the chart 

are for the thickness of a dark and light layer combined. The values staying close to 360 µm is 

what would be expected for two deposition layers.  

 Figure 3.16 shows the HAL thickness vs. the height above the substrate for the 4 second 

dwell 1-bead leg sample.  
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Figure 3.16: Heat affected layer thickness vs. height above the substrate for the 1-bead leg of the 4s dwell sample 

Regression analysis was conducted and like the data for the 0 second dwell 1-bead leg sample, 

no suitable regression could be found. Reported HAL thickness is for a dark and light layer 

combined.  

 Mean Vickers hardness was compared to HAL thickness for the 0 second dwell 1-bead leg 

sample, as shown in Figure 3.17. There appears to be no correlation between Vickers hardness 

and HAL thickness for the sample.  
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Figure 3.17: Vickers hardness vs. heat affected layer thickness for the 1-bead leg of the 0 second dwell sample 

 Average Vickers hardness was compared to HAL thickness for the 4 second dwell 1-bead leg 

sample as shown in Figure 3.18. There appears to be no correlation between Vickers hardness 

and HAL thickness for the sample.  

Figure 3.18: Vickers hardness vs heat affected layer thickness for the 1-bead leg of the 4 second dwell sample 
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No connection was found between Vickers hardness and HAL thickness for either sample. 

 Hardness measurements were taken in the dark and light bands for the 0 second dwell 1-bead 

leg sample. Figure 3.19 illustrates where the hardness indents were made relative to the banding 

[114]. Table 3.13 summarizes the results of the hardness measurements. 

Figure 3.19: The placement of hardness indents with respect to dark and light bands for the 0 second dwell 1-bead leg 
sample 

Left 
(HV) 

Middle 
(HV) 

Right 
(HV) 

Average 
(HV) 

Std Dev 
(HV) 

Light 300.2 298.2 301.5 299.97 1.66 
Dark 293 297 297.7 295.90 2.54 
Light 307 303.1 309.3 306.47 3.13 
Dark 299.7 294.6 291.3 295.20 4.23 
Light 305 305.6 306.5 305.70 0.75 
Dark 299.4 304 292.2 298.53 5.95 

Table 3.13: Vickers hardness across heat-affected layers

A one-way analysis of variance (ANOVA) between data sets was conducted to compare the 

effect of band color on Vickers hardness in the light-colored bands and dark colored bands in the 

0 second dwell 1-bead leg sample. There was a statistically significant effect of band color on 

Vickers hardness at the p < 0.05 level for the two conditions [F(1,16)=16.9, p=0.0008]. In other 

words, the probability of the difference in hardness between data sets being due to random 

chance is less than 0.1%. This suggests that whatever mechanism causes the observed coloration 

bands may also affect Vickers hardness. 

Dark Layers 

Light Layers 
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However, it should be noted that all of the standard deviations reported are less than 2% of 

the Vickers hardness measurement. Vickers hardness measurements are subject to error of 

approximately 1-2% [115]. Barbato and Desogus examined ISO and ASTM standards for 

Vickers microhardness equipment and found that the strictest standards for measuring hardness 

indents require an accuracy limit of 0.5 μm for the stage micrometer [116]. They stress that most 

Vickers hardness measurements have more error than that.  

The type of microscope used to observe the indents can also introduce error [116]. The 

hardness indents measured in this work had diagonals between 50 and 60 μm. Error in measuring 

the indents on the order of 0.5 μm could introduce a difference of ±1% in the measurements. A 

stereoscopic microscope was used to observe the hardness indents for the 1-bead leg samples in 

this work. Boundary lines for hardness indents are not always readily visible, and optical 

microscopy can produce a “shadow” that distorts the view of the hardness indent edges [116]. 

Using a lower load when performing microhardness testing allows for smaller indents that fit 

within individual dark or light bands. Experimental research on the Rockwell Hardness test, 

which also uses a diamond pyramid indenter, found that the tradeoff is that percent error for 

manually measured hardness indents increases as the size of the indent decreases [117].  

There is a possibility that more oxygen precipitates into the lighter bands [118]. The LENSTM 

setup in which the sample was manufactured had most of the air purged and replaced with 

Argon, but the oxygen content was “less than 10 ppm”, not zero. [101]  

Energy dispersive spectroscopy (EDS) was used to check the chemical composition up the 

length of the sample. Zinin provides an overview of EDS and Wavelength Dispersive 

Spectroscopy (WDS) for electron microscopy and it is summarized here [119]. EDS works by 

energizing atoms on the surface of a sample using an electron beam. The valence electrons in the 
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atoms jump up an energy level, then fall back down and release energy in the form of photons, 

typically X-rays.  

A detector attached to an SEM can use that information to determine the chemical 

composition of a sample. When an EDS scan is performed, a plot can be made showing the 

number of “counts” of detected X-rays vs. their energy. Figure 3.20 shows an example of such a 

plot that was made when measuring the chemical composition of the substrate of the 1-bead leg 

of the 0 second dwell sample.  

Figure 3.20: EDS data for the substrate of the 1-bead leg of the 0 second dwell sample

A line scan was performed. There were slight variations in aluminum and vanadium 

concentrations, but they could not be correlated to the layering effect. Figure 3.21 shows the 

weight percent of titanium, aluminum and vanadium in the 1-bead leg of the 0 second dwell 

sample vs. the height above the substrate. Weight percent was chosen rather than atomic percent 
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because the reported composition of Ti-6Al-4V is given as a weight percent. Data points that 

have a negative value for height were measurements of the substrate taken for comparison. 

Figure 3.2: Ti, V, and Al Weight Percent vs. Height Above the Substrate of the 1-bead leg of the 0 s dwell sample

It is probable that the variations seen were due to the EDS scanner picking up small 

differences in the chemical composition of α and β. The β phase of Ti-6Al-4V tends to have 

higher vanadium concentrations than the α phase [120].  

EDS determines the chemical composition of a sample based on the energy of the released 

X-rays whereas WDS determines the chemical composition based on the wavelength of the

released X-rays. A WDS detector can only measure one element at a time. Most systems have 

multiple detectors to get around that. WDS however has higher resolution, which makes it easier 

to search for trace elements like oxygen in a LENSTM sample [119].  
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4 Summary and Conclusions 
Microstructural characterization of LENSTM additive manufactured Ti-6Al-4V samples has 

been conducted. Samples manufactured using different process parameters were observed in 

order to facilitate process mapping.  

A method for measuring β grain widths that allows for statistical calculations was outlined. 

The method was used to compare variability of β grain widths across part geometries. It was 

found that thin wall parts have the highest β width variability and that the width of the β grains 

varies more towards the top of multi-layered samples than towards the bottom. Mean grain 

widths were also compared across part geometries. Single layer pad geometries were found to 

have the smallest β grain widths, multi-layer pads had larger β grain widths, and thin wall 

samples had the largest β grain widths.  

Vickers microhardness testing was conducted and hardness maps were created for tall thin 

walled structural component samples. Hardness values were compared to α-lath widths and 

thermal gradients at different heights on the sample. Optical microscopy was used to observe a 

layering effect in structural component samples. It was found that light and dark bands had 

different Vickers microhardness values.  

Next steps for research in this area would include observing β grain widths using different 

techniques such as EBSD in addition to optical microscopy. Grains could be measured at their 

maximum widths rather than across a line. Grain aspect ratios could also be measured and 

reported in order to quantify whether a microstructure is equiaxed, columnar or mixed. 

Vickers microhardness testing could be conducted across deposition geometries. Hardness 

values could be compared to mean β grain widths and variability in hardness could be tested 
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compared to the height of the sample. Making the same number of measurements up the height 

of the sample would ensure that sample size does not skew standard deviations or confidence 

intervals. An exploration of the connection between Vickers microhardness and band coloration 

could also be conducted using smaller loads. This would ensure that the resulting hardness 

indents are small enough that they are not close to the edges of the bands.  

Wavelength Dispersive Spectroscopy analysis could be conducted to check for oxygen or 

other interstitial impurities in the different colored layer bands. Since layer banding has also been 

observed by other researchers in SLM and EBM Ti-6Al-4V samples, if impurities are found, 

differences could be compared across manufacturing processes. Multiple EDS line scans could 

be performed to see if there is a difference in aluminum and vanadium concentrations between 

light and dark bands.  

The collection of α-lath data up the length of a tall thin wall geometry could be 

conducted. Image analysis could be achieved using the batch processing capabilities of a 

software like MIPARTM. That α-lath data could then be compared to Vickers microhardness data 

acquired using automated hardness testing equipment. This would allow for more information 

than what can be obtained by simply looking at a handful of measurement zones up the length of 

the sample. The α-lath data could also be compared to in-situ thermal monitoring data like that 

which was collected for the samples in this work.  
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Appendix A Additional Micrographs for Thin Walls

Figure A.1: Thin wall sample 
produced using 450 W beam 
power, 25 ipm velocity and 3 gpm 
powder feed rate 

Figure A.2: Thin wall sample 
produced using 350 W beam 
power, 7.5 ipm velocity and 0.9 
gpm powder feed rate 

Figure A.3: Thin wall sample 
produced using 400 W beam 
power, 16.4 ipm velocity and a 3 
gpm powder feed rate 
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Figure A.4: Thin wall sample 
produced with 450 W beam 
power, 25 ipm velocity and 3 gpm 
powder feed rate 

Figure A.5: Thin wall sample 
produced with 350 W beam 
power, 7.5 ipm velocity and 3 gpm 
powder feed rate 

Figure A.6: Thin wall sample 
produced with 350 W beam 
power, 7.5 ipm velocity and 0.9 
gpm powder feed rate 
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Figure A.7: Thin wall sample produced with a 400 W 
beam power, 16.4 ipm velocity and a 2 gpm powder feed 
rate 

Figure A.8: Thin wall sample produced with a 450 W 
beam power, 25 ipm velocity and 3 gpm powder feed 
rate 
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Appendix B Additional Micrographs for Multilayer 
Pad Samples 

Figure B.1: Sample 5-Feb-05 imaged at 100x magnification 

 Figure B.1 shows a multilayer pad imaged at 100x magnification under polarized light. The 

sample was produced with a beam power of 350 W, a velocity of 7.5 ipm and a powder feed rate 

of 0.9 gpm. It was determined that 100x magnification was not sufficiently high resolution for 

tracing beta grains. Figure B.2 shows the same multilayer pad imaged at 200x magnification 

under polarized light. The difference in coloration is due to 2 factors. First, it is darker because 

when a microscope zooms in further, less light is able to make it into the lens. Second, there is 

possibly a titanium oxide layer on the surface of the sample because the 200x samples were 

taken after the 100x samples.  
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Figure B.2: Sample 5-Feb-05 at 200x magnification 

 Figure B.3 shows sample 4-May-05 at 100x magnification under polarized light. This sample 

was also produced with a beam power of 350 W, a velocity of 7.5 ipm, and a powder feed rate of 

0.9 gpm. Figure B.4 shows the same sample at 200x magnification under polarized light. 

Figure B.3: Sample 4-May-05 at 100x magnification 
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Figure B.4: Sample 4-May-05 at 200x magnification 

Figure B.5 shows sample 5-Feb-10 imaged at 100x magnification under polarized light. 

The sample was produced with a beam power of 400 W, a velocity of 16.4 ipm and a powder 

feed rate of 2 gpm. Figure B.6 shows the same sample imaged at 200x magnification under 

polarized light.  

Figure B.5: Sample 5-Feb-10 at 100x magnification 
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Figure B.6: Sample 5-Feb-10 at 200x magnification 

Figure B.7 shows sample 4-May-10 at 100x magnification. This sample was also 

produced with a beam power of 400 W, a velocity of 16.4 ipm and a powder feed rate of 2 gpm. 

Figure B.8 shows the same sample at 200x magnification. 

Figure B.7: Sample 4-May-10 at 100x magnification 
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Figure B.8: Sample 4-May-10 at 200x magnification 

Figure B.9 shows sample 5-Feb-15 at 100x magnification. The sample was produced with 

a beam power of 450 W, a velocity of 25 ipm and a powder feed rate of 3 gpm. Figure B.10 

shows the same sample at 200x magnification. 

Figure B.9: Sample 5-Feb-15 at 100x magnification
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Figure B.10: Sample 5-Feb-15 at 200x magnification

Figure B.11 shows sample 4-May-15 at 100x magnification. The sample was also 

produced with a beam power of 450 W, a velocity of 25 ipm and a powder feed rate of 3 gpm. 

Figure B.12 shows the same sample at 200x magnification. 

Figure B.11: Sample 4-May-15 at 100x magnification 
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Figure B.12: Sample 4-May-15 at 200x magnification 
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Appendix C Additional Micrographs for Single Layer 
Pads 
This appendix contains additional SEM micrographs that were used for the α-lath analysis of 

the single layer pads. Figure C.1 shows an SEM image taken with backscatter detection at 2000x 

magnification. The sample, 3-Feb-5, was produced with a beam power of 450 W, a velocity of 

7.5 ipm and a scaled powder feed rate. The α-lath width for the sample was determined to be 

0.600 µm. 

Figure C.1: Sample 3-Feb-5 at 2000x magnification 

Figure C.2 shows sample 3-Feb-15 at 2000x magnification. The sample was produced 

with a beam power of 250 W, a velocity of 25 ipm and a scaled powder feed rate. The α-lath 

width for the sample was determined to be 0.623 µm. 
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Figure C.2: Sample 3-Feb-15 at 2000x magnification 

Figure C.3 shows sample 3-May-5 at 2000x magnification. The sample was produced 

with a beam power of 350 W, a velocity of 7.5 ipm and it was a laser glaze. In other words, there 

was no powder added. The α-lath width for the sample was determined to be 0.621 µm. This is 

the sample that was used to make the demonstration of the image processing steps in Chapter 2 

of this thesis. 

Figure C.3: Sample 3-May-5 at 2000x magnification 
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Figure C.4 shows sample 4-Feb-15 at 2000x magnification. The sample was produced 

with a beam power of 250 W, a velocity of 25 ipm and a scaled powder feed rate. The α-lath 

width for the sample was determined to be 0.614 µm. 

Figure C.4: Sample 4-Feb-15 at 2000x magnification 

Figure C.5 shows sample 5-Feb-5 at 2000x magnification. The sample was produced with 

a beam power of 350 W, a velocity of 7.5 ipm and a powder feed rate of 3 gpm. The α-lath width 

for the sample was determined to be 0.609 µm. 

Figure C.5: Sample 5-Feb-5 at 2000x magnification
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