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ABSTRACT

Vora, Jay Abhilash. M.S.A.S.E, Department of Mechanical and Material Engineering, Wright State
University, 2019. Blended Wing Design Considerations for A Next Generation Commercial Air-
craft.

The current aircraft design has not changed significantly in the last few decades. Grow-

ing environmental concerns and fuel prices are driving manufacturers to develop uncon-

ventional but efficient aircraft configurations. The blended wing body (BWB) configura-

tion provides an alternate and more efficient means of subsonic travel. The BWB aircraft

replaces the traditional wings and fuselage with hybrid wing shape where the fuselage and

wings have integrated. Major aircraft manufacturers are researching the BWB concept

incorporating electric propulsion for civil transport use.

In this research a 300 passenger BWB aircraft aerodynamic shape is designed. This

aircraft is used to assess the aerodynamic efficiency of the BWB design over a conven-

tional tube aircraft design. The study utilizes Computational Fluid Dynamics (CFD) tools

to analyze the fluid flow at different angles of attack for the BWB geometry. A conceptual

BWB aircraft was designed using the parameters of a conventional aircraft configuration.

During the design, the compatibility of the BWB aircraft with the current airports was also

considered. The 3D Computer Aided Design (CAD) software SolidWorks was used to cre-

ate the BWB design. ANSYS Fluent was used to perform the computational aerodynamic

analysis. Aerodynamic flow parameters were investigated to determine the feasibility of a

BWB aircraft for commercial flight.
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Introduction

The Wright Flyer was first designed and flown in 1903, a first heavier than air powered

aircraft. A short 30 years later Boeing introduced 247, a 10-passenger twin-engine mono-

plane - the first commercial aircraft. It was the first aircraft with fully cantilever wing

and retractable landing gear to reduce the drag. A comparison of the two aircraft shows a

remarkable engineering accomplishment within a short span of 30 years. A decade later

Boeing introduced the B47. The design of B47 represents the most fundamental design

characteristic of a modern subsonic aircraft: swept wing and empennage and podded en-

gines hung beneath the wing. Boeing 787 designed almost six decades later appears to be

equivalent. It suffices to say that the current design of commercial aircraft has not changed

significantly in the last few decades; rather incremental performance optimization has taken

place with each new generation of aircraft.

1.1 Project Overview

On a global scale, passenger air traffic is going to maintain positive growth rates up to 2030.

In the next 20 years the number of airline passengers is expected to grow at a compound

annual growth rate (CAGR) of 4.7 percent [22] as shown in Figure 1.1(a). In the next

20 years, it is projected that a total of 23000 new aircraft will be added into service[23] as

shown in Figure 1.1(b). These aircraft will have to fulfill the demands for reduction in envi-

ronmental impact and flight operating costs, particularly because of NOx limitations, noise

1



pollution around airports and rising fuel prices. In order to meet environmental limitations

and future traffic growth, a cross disciplinary effort is required that focuses on revolutionary

aircraft design, advanced propulsion system, noise reduction and efficient fuel consumption

to achieve desired flight attributes.

(a) Estimated compound annual growth rates for passenger air traffic from
2018 to 2037, by region[22]

(b) Size of aircraft fleets by region worldwide in 2017 and 2037 (in units)[23]

Figure 1.1: Annual Passenger Growth and Fleet Demand over the Next 20 Years

In recent years many aircraft manufacturers and universities are researching and de-

veloping unique aircraft configuration for future air transport needs. Within these uncon-
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Figure 1.2: NASA Next-Generation Aircraft System Level Metrics[26]

ventional designs, one of the most promising aircraft design concept is the flying wing

configuration. A BWB also known as a hybrid-wing body (HWB) essentially blends the

wings and the fuselage resulting in a large flying wing. The BWB design is essentially

a single lifting surface and thus a clean aerodynamic configuration. National Aeronau-

tics and Space Administration’s (NASA) subsonic fixed-wing project has identified four

technical design parameters for future aircraft designs. These parameters are presented in

Figure 1.2. The N+1 aircraft denotes the traditional tube and wing aircraft configuration.

NASA has been working on the concept of BWB for several years. The N3-X represents

the most recent generation of the BWB concept. It has a revolutionary propulsion concept

called Turboelectric Distributed Propulsion (TeDP) that uses electricity to generate all main

propulsion power thus drastically reducing the fuel requirements[18]. The BWB aircraft

and the TeDP will help in achieving the N+2 and N+3 goals.

1.2 Scope

The scope of this thesis focuses on the aerodynamic analysis of a conceptual BWB aircraft.

A hybrid wing body aircraft is characterized by airfoil-shaped fuselage which smoothly

blends into the wing. This concept has been widely studied and researched and the results

3



suggest remarkable performance improvements over the conventional aircraft. The BWB

configuration exploits a thick airfoil shaped fuselage in the center[15]. It accommodates

the passenger cabins, cargo, and the equipment in the thick central structure, effectively

reducing the aerodynamic load on the outboard wings. Since the biggest chord is located at

the center, it needs low lift coefficient to bear the elliptical spanwise lift distribution[15]. It

also reduces the total drag because its airfoil like central body with no tail, blends with the

wings[15]. In this configuration, most trapezoidal planform area is covered by the wings

thus reducing the wing area effectively reducing the skin friction drag[15].

The background of the BWB is discussed in chapter 2 which reviews the development

of the aircraft configuration and future challenges. NASAs N3-X, an excellent example

of BWB design is discussed. In chapter 3, the design methodology for the conceptual

BWB design are discussed. Chapter 4 discusses the computational approach taken for the

CFD analysis. The following two chapters discuss the results of the computational analysis

and aircraft performance. It also discusses the findings, conclusion and further areas of

research.

1.3 Objective

The primary objective of this research is to perform a preliminary aerodynamic analysis

on the BWB aircraft. More specifically the lift and drag force analysis of an BWB design

configuration. Design details like the turbogenerators, control surfaces, landing gear, are

not considered for this thesis. Hence an inviscid analysis followed by some spot checks for

viscous aerodynamic performance is carried out. The aircraft is designed using NASA’s

N3-X aircraft as a baseline. The main goal is to establish whether the configuration could

be better than conventional modern aviation aircraft. The task of the thesis are:

• Develop the 3D design of a BWB aircraft using the N3-X model as the baseline

4



• Perform aerodynamic simulation of the designed aircraft using computational meth-

ods.

• Perform grid independent study

• Develop the pressure and velocity contours to study the flow pattern.

• Calculate the coefficient of lift and coefficient of drag. Calculate the L/D for the

designed configuration

5



Background

BWB or HWB has been a design concept for a very long time. Some aircraft based on a

blended wing body from history are discussed.

2.1 Remington - Burnelli Airliner

Pioneering aviator Vincent J, Burnelli came up with the idea of an airfoil shaped fuselage

that could be used as a lifting body. In 1921, he designed an aircraft RB-1 (Figure. 1.2),

a twin biplane with airfoil shaped fuselage. The gross weight of the aircraft was 14,637 lb

and the normal fuel capacity of the machine was 7.5 hrs [25]. The designed wing loading

was 9 lb./sq. ft. and the airfoil shaped fuselage contributed to the lift by carrying 5 lb./sq.

ft.[25]

2.2 Northrop Flying-Wing

In the 1920s, John Northrop was a leading promoter of the flying-wing design aircraft in

the United States[17]. In 1929 the prototype for a flying wing known as X-216H (Fig-

ure.2.2(a)) was flown. After 11 years, the N-1M ’Jeep’ (Figure.2.2(b) ), one of the progres-

sions of experimental all-wing aircraft design was developed. The aircraft was first tested

at Muroc Dry Lake in July of 1941[20]. In the next two years, more than 200 flights were

6



Figure 2.1: Remington-Burnelli Airliner - RB1
[25]

made to gather performance data[17]. Northrop then developed a series of large Flying-

Wing bombers for the United States Army Air Force (USAAF) during the 1940s. The YB-

49 (Figure. 2.2(c)) developed after World War II (WWII) was a flying wing jet-powered

bomber. These two YB-49 were modified YB-35s, replacing four radial engines with eight

turbojet engines. The aircraft had four vertical stabilizers; two on each wing and four air

dams to minimize span-wise flow. Flight testing showed good performance; however, sta-

bility issues during the flight testing ensured that they never entered production[21][27].

The design work and the experimental data gathered during the testing laid the foundation

for the development of the B-2 stealth bomber nearly after 40 years. The B-2 ’Spirit’ stealth

bomber was developed in 1989 by Northrop Grumman. The bomber had a sophisticated

modern control system and can cover long ranges. (Figure. 2.2(d))

2.3 The Horten Brothers - All Wing Aircraft

The Horten Brothers, Reimar and Walter were German aircraft homebuilders. The treaty

of Versailles limited the construction of German military airplane, this led to an increase

in glider flying and soaring in Germany[13]. As teenagers, the Horten brothers became

7



(a) Northrop Flying Wing X-
216H[7]

(b) Northrop N1-M ’Jeep”[17]

(c) Northrop YB-49[27] (d) Northrop B-2 ’Spirit’ Bomber[3]

Figure 2.2: Northrop Flying Wing Family

involved in glider design and flying. During WWII, the Horten brothers designed all-wing

aircraft with continually improving performance. The first glider Horten Ho I (Figure.

2.3(a)), was first tested in July 1933[13]. Although it was not a complete success, it opened

way the for more flying wing models including the Ho IV [13](Figure. 2.3(b)). In 1944,

Horten Ho IX with turbojet engines made its first flight. It was a big success. As the war

ended, Horten brothers emigrated to Argentina where they continued to develop their flying

wing[13].

2.4 Armstrong Whitworth AW.52

Britain joined the Americans and Germans in the pursuit of a flying wing aircraft with their

Armstrong Whitworth AW.52 prototype (Figure. 2.4). It was a tailless configuration with
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(a) Horten Ho I[13] (b) Horten Ho IV”[13]

Figure 2.3: Horten Brothers Flying Wing Gliders

pure jet propulsion, 35◦ wing sweep-back and had vertical surfaces at each wing tip for

yaw control[24]. The aircraft first flew in 1947; however, it never entered production[24].

Figure 2.4: Armstrong Whitworth AW. 52
[6]

2.5 BWB design of NASA and Boeing Co.

In 1988, Dennis M. Bushnell, senior scientist of NASAs Langley Research Center ad-

dressed a gathering of innovative leaders with a question: is there a renaissance for the
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long-haul transport?[14]. His perspective was that the development in aerodynamic perfor-

mance for commercial transports had declined wherein incremental benefits were becoming

smaller and smaller [14]. Robert H. Liebeck of McDonnell Douglas Corporation (now The

Boeing Company) simulated by his discussion with Bushnell, along with his associates

conducted a clean piece of paper [14] brief study and arrived at a BWB configuration (Fig-

ure 2.5). This started the collaboration between Boeing and NASA for the development

of the BWB commercial aircraft. In 1994, NASA initiated the research and development

of a BWB aircraft under a new program Advanced Concepts for Aeronautics Program

(ACP)[14]. It was composed of the McDonnell Douglas team, NASA team and various

universities around America. One of the important highlights of the ACP studies was the

successful testing of a scaled, remotely controlled model of the BWB configuration. The

NASA ACP sponsored studies ended in 1998. It was concluded that the performance of

the BWB configuration over the convention aircraft in terms of L/D, reduced fuel burn and

reduction in direct operating cost was revolutionary. The research continued in the early

2000s with Boeing starting construction of an unmanned 14% scaled BWB transport. The

project was named X-48.

The Boeing X-48 series was an experimental, scaled Unmanned Aerial Vehicle (UAV)

specifically designed to research the characteristics of the BWB aircraft. The Boeing X-

48A was a 10.7m (35ft) span aircraft but the project was canceled in 2004[5]. Research

then focused on a new model, the X-48B (Figure. 2.6(a)). It had a wingspan of 6.4m

(21ft) and was built with composites. It was powered by three small turbojet engines.

Testing on the X-48B began in 2007 at the Dryden Flight Research Center in California.

During the initial test, low speed and low altitude characteristics were studied including

stall and handling characteristic[5][4]. In phase II, high-speed flight test and controllability

were investigated[5]. A modified version of the X-48B called the X-48C (Figure. 2.6(b))

was introduced later in 2012. It was a two-engine configuration with a wingspan of 6.4m.

The aircraft had upgraded flight control systems, an airframe-noise shielding configuration,
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Figure 2.5: BWB Configuration by McDonnell Douglas Company
[14]

vertical fins and flight control limiters[5]. The main objective of the X-48C was to test the

superior controllability and low-noise capability[4]

(a) Boeing X-48B[4] (b) Boing X-48C[4]

Figure 2.6: Boeing X- Series UAV

2.6 NASA Electric Propulsion HWB: N-3X

NASA N3-X is the most ambitious BWB design concepts. It integrates the flying wing

concept with an innovative propulsion concept to reduce the fuel burn as well as noise
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emissions. The thrust for the N3-X (Figure. 2.7) is provided by an array of 14 motor-

driven electric fans mounted on the top of the fuselage at the aft[18]. The electric power to

operate the fans is provided by wing-tip mounted turboshaft mounted engines. The aft fans

will also help with the boundary layer ingestion thus reducing the drag.

Figure 2.7: NASA N3-X Aircraft
[1]

The design specification for the N3-X is provided in Table. 2.1

Table 2.1: NASA N3-X Basic Design Specification
WingSpan 64.91 m2

Wing/Fuselage Gross Area 860 m2

Aspect Ratio 4.9 m
Overall Length 41 m
Max take-off Mass 225,022 Kg
Max Range 8,680 nm
Mach Limit 0.89
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Blended Wing Body Design

The N3-X was proposed as a 300-passenger aircraft employing a TeDP system. Two large

turbogenerators were placed at the wing tips to feed the engines with uniform free stream

velocity. The propulsors - array of fans are distributed on the upper surface of the fuselage

near the trailing edge of the BWB in a mail-slot inlet nozzle[9][10]. The 3D model for

the NASA N3-X was not provided. The conceptual model was created using the basic

dimensions of the N3-X and other known parameters for a BWB design. The design of the

BWB aircraft is strictly based on NASAs N3-X configuration.

3.1 Airfoil Selection

The design was divided into two parts the fuselage and the outer wing. The total span of the

aircraft was 64.908 m, and the total length was 41.0 m. The dimensions for the model were

obtained from the Cranfield N3-X drawings and reports[18]. The reports did not provide

any details on the airfoil used for the wing and the fuselage section. A preliminary study

was performed for suitable airfoil design for the fuselage and the wing design.

For a BWB design, the fuselage is airfoil shape and hence needs to be sufficiently

thick to hold 300 passengers and their cargo. For BWB configuration the fuselage is di-

vided into three sections: forward fuselage, center fuselage, and aft fuselage(Figure: 3.1).

The cross-section shape of the BWB fuselage changes dramatically from forward to aft.

The forward fuselage mainly houses the pilot cabin and the nose landing gear. The center
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fuselage houses most of the passengers and the cargo. The forward and center fuselage is

the pressurized section of the fuselage. The aft fuselage, on the other hand, is not pres-

surized and houses many essential components of the aircraft like cooling systems (LH2

tanks or the cryocooler)[18], batteries and multiple piping routes for the electric fans. The

wing as in a conventional aircraft houses the fuel tanks. It also houses electrical cables and

cooling pipes for electricity transfer from the turboshaft engines to the fan array.

Figure 3.1: Divison of Fuselage for BWB Aircraft
[18]

The criteria for the airfoil selection for fuselage and wing are:

• High L/D

• Positive pitching moment

• Medium airfoil thickness

The moment coefficient plays a significant role in the longitudinal stability of the

BWB aircraft. In a conventional aircraft, the cambered airfoil provides negative moment

coefficient which is compensated using the horizontal tail[12]. A BWB configuration obvi-

ously cant counter-attack the negative pitching moment. Longitudinal stability of a tailless

aircraft is achieved using reflex airfoils or by using sweep and twist of the wings[12].

Several airfoils were analyzed, but only the reflex airfoils were taken into consideration

because of their higher longitudinal stability. For fuselage and the wing, the following
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six airfoils were shortlisted: NACA 23012, NACA 25112, Eppler 635, FX 60-126, NASA

SC(2)-0606, and MH-62. DesignFOIL software was used to analyze these airfoils. The

results are listed in Table: 3.1.

Table 3.1: Comparison of Different Airfoil Data for Fuselage and Outboard Wing
Airfoil Clmax (L/D)max Angle of Attack

for (L/D)max

NACA 25112 1.5413 98.11 7.25
Eppler 635 1.4023 113.43 9
FX 60-126 1.7396 112.33 4.5
NACA 23012 1.5413 96.79 8.75
NASA SC(2)-0606 1.3761 103.65 5.1
MH-62 1.2614 94.64 5.5

The goal was to select an airfoil which provides maximum lift coefficient to ensure

center body acts as the main lift generating portion[12]. From Table: 3.1. NACA 23012

was the best airfoil configuration to be used for the center body. The graphs showing

variation in coefficient of lift (Cl), and L/D vs Angle of Attack (AoA) for the NACA 23012

are presented in Figure: 3.2(a) and Figure: 3.2(b). The outboard airfoil should have a good

lift to drag ratio, delay the onset of wave drag and good stall characteristics. NASA SC(2)-

0606 was selected for outboard and tip wing sections. The graphs showing variation in

coefficient of lift (Cl), and L/D vs AoA for the NASA SC(2)-0606 are presented in Figure:

3.3(a) and Figure: 3.3(b).

3.2 Conceptual 3D Model

The 3D modeling for the conceptual aircraft was done using SolidWorks 2018. The plan-

form boundary was created using the dimensions from the NASA N3-X (Figure: 3.4(a)).

The airfoil geometry was imported using the curve function in the software. The first part
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(a) Coefficient of Lift vs AoA - NACA 23012 (b) L/D vs AoA - NACA 23012

Figure 3.2: Polar Plots for NACA 23012

(a) Coefficient of Lift vs AoA - NASA SC(2)-
0606

(b) L/D vs AoA - NAS A SC(2)-0606

Figure 3.3: Polar Plots for NASA SC(2)-0606

modeled was the outer wing (Figure: 3.4(b)).The model was created using sections and the

”surface loft” feature of the SolidWorks software. Since the aircraft is symmetric only half

the aircraft was modeled. The ”mirror” feature was used to create the full geometry of the

aircraft.(Figure:3.5).
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(a) Planform View for BWB Aircraft (b) Outer Wing for BWB Aircraft

Figure 3.4: 2D Views for the BWB Aircraft

(a) Front View (b) Side View

(c) Top View (d) Isometric View

Figure 3.5: 3D Views for the BWB Aircraft

3.3 Control Volume

The use of control volumes are important for the fluent analysis. The computational domain

was modeled using SolidWorks. A rectangular shaped domain measuring 85 m x 72 m x

30 m was created. The aircraft model and the domain were brought together using the

”assembly” feature. The assembly feature results in two separate solid models(Figure:

3.6). Hence the ”cavity” feature in SolidWorks was used to create a single solid geometry

(Figure: 3.7). Due to the boundary conditions being used(See Section 4.4) the domain need
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not be large thus saving on the computation time.

Figure 3.6: CFD Domain

Figure 3.7: Sectional View for CFD Domain
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Computational Fluid Dynamics

Simulation and Validation

After the 3D model was created, the geometry was imported into the ANSYS Workbench

software for meshing and CFD simulation. For CFD simulation, ANSYS Fluent model

was used for obtaining the numerical results. The model was first imported into the De-

signModeler. A half model of the aircraft was utilized for CFD simulation to save on the

computation time and file size. A mesh or grid was then created around the geometry to

serve as locations at which to solve the flow equations. The mesh would be fine near the

geometry and in any other regions where there are large flow gradients. The mesh can be

coarse at a location far from the primary geometry. This helps in saving computation time.

The mesh quality near the wall is a critical parameter to study the viscous effects near the

aircraft wall. Once the mesh is complete, the meshed geometry is moved to the ANSYS

Fluent solver. Each step of the simulation set-up is explained in detail further in the thesis.

4.1 Basic Fluid Physics

In this section, the essential fluid dynamics equations such as aerodynamic forces, Reynolds

number, RANS equations and other equations used in the thesis are stated.
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4.1.1 Reynolds Number

Reynolds number is a dimensionless quantity that expresses the fluid behaviour. It is the

ratio of inertial forces to viscous forces[16]. It helps in predicting if the flow is laminar or

turbulent. The Reynolds number is calculated using Equation. 4.1

Re =
ρV C

µ
(4.1)

4.1.2 Lift and Drag Coefficient

The lift coefficient is a dimensionless coefficient that represents the lift force. It relates the

lift generated to the dynamic pressure around the body[16]. Lift always acts perpendicular

to the fluid flow direction. The lift coefficient is given by Equation. 4.2

CL =
FLift

1
2
ρV 2S

(4.2)

The drag coefficient is also a dimensionless number which helps in representing the drag

generated by the body[16]. The drag coefficient is given by Equation. 4.3

CD =
FDrag

1
2
ρV 2S

(4.3)

4.1.3 Navier-Stokes Equations

Navie-Stokes equations are use to mathematically examine the changes in a fluid flow. The

Navier-Stokes are non-linear partial differential equation (PDE) that describe the motion of

a viscous fluid. The equations are difficult to solve analytically and require an iterative

process to solve them. The governing equations based on the conservation laws build

the mathematical model for the fluid state. These equations along with the turbulence

model help in solving the CFD problem. The governing equations consist of the following
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conservation equations:

• Conservation of Mass: The equation for unsteady, 3-dimensional compressible flow

is given by
∂ρ

∂t
+
∂[ρui]

∂xi
= 0 (4.4)

For a steady case, the first term will disappear and density is constant for incompress-

ible fluid.

• Conservation of Momentum: The momentum equation is based on the Newton’s

second law of motion (mass time acceleration = force, or rate of change of momen-

tum = force). For 3D flow the equation for conservation of momentum is given by:

∂(ρui)

∂t
+
∂ (ρujui)

∂xj
= ρgi +

∂τij
∂xj

− ∂p

∂xi
(4.5)

∂(ρui)

∂t
+
∂ (ρujui)

∂xj
= ρgi −

∂p

∂xi
+ µ

∂2ui
∂xj∂xj

(4.6)

For flow in X-direction, Equation. 4.6 can be represented as Equation: 4.7

ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂x
+ w

∂u

∂x

)
= ρg − ∂p

∂x
+ µ

(
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

)
(4.7)

Navier-Stokes equation can similarly be written for flow in Y-direction and Z-direct-

ion.

• Conversation of Energy: The equation for conservation of energy is derived using

the first law of thermodynamics. It states that ’rate of change of energy is equal

to the work done by the fluid and the rate of heat transferred to the fluid due to

conduction’[16].
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∂ (ρE)

∂t
+
∂ (ρujE)

∂xj
=

∂

∂xj

(
k
∂T

∂xj

)
+

∂

∂xj
(τijvi) (4.8)

The momentum equation can be converted to Reynolds-Averaged equation for turbulent

flow. Reynolds-Averaged equation are time averaged. The variables in the momentum

equation get separated into mean (time-averaged or ensemble averaged) and fluctuating

components. For velocity, the components are denoted by ui = ui + ui
′. Hence the

Reynolds-Averaged momentum equation is given by [11]

∂ρui
∂t

+
∂

∂xj
(ρuiuj) = µ

∂2ui
∂xj∂xj

− ∂p

∂xi
− ∂

∂xj

(
ρui′uj ′

)
(4.9)

The term −ρui′uj ′ is called the Reynolds stress tensor and incorporates the effects of

turbulent motion. The reynolds stress tensor is symmetric [11] and must be modeled to

solve Equation: 4.9.

4.1.4 Inviscid Model

Inviscid flow is fluid flow, in which the viscosity is zero. There are very few real-life

inviscid fluid examples. However, the inviscid flow has many fluid dynamics applications.

When viscous forces are neglected, the momentum equation can be simplified further to

Euler Equation. For inviscid flow, µ = 0, hence the momentum (Equation. 4.6) can be

written as:

∂(ρui)

∂t
+
∂ (ρujui)

∂xj
= ρgi −

∂p

∂xi
(4.10)

Euler equations are hyperbolic equation governing adiabatic and inviscid flow. Under

many flight conditions, the effects of viscosity are minimal and can be ignored. Inviscid

flow model requires a relatively low computational time, and cost and hence are extensively

used in aerodynamic design applications.
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4.1.5 Turbulence Model

The flow at certain regions will turn turbulent at higher values of Reynolds number. For a

flat plate, the Reynolds number above which the flow is considered to be fully turbulent is

Re > 5 ∗ 105. It is an appropriate assumption that the flow will be turbulent for BWB anal-

ysis. In CFD analysis, variety of turbulence model available ranging from single-equation

to more complex models with multiple equations. Several issues need to be considered

before choosing the turbulent model.

For this study, the Shear Stress Transport (SST) k−ω model was used. The k−ω SST

model is a robust turbulence model developed by Menter [19]. The k− ω SST model is an

advance version of the original k − ω turbulence model. The SST formulation combines

the best of the two models - robust and accurate formulation of the k−ω model in the inner

parts of the boundary layer and the free stream independence of the k − ε model in the far

field[8]. The standard k − ω model and the k − ε model are both multiplied by a blending

function and added together. The blending function is designed in a way that activates the

standard k − ω model near the wall region and k − ε model while moving away from the

surface. The SST model incorporates a damped cross-diffusion derivative term in the ω

equation[8]. The k − ω SST model also has good behavior in adverse pressure gradients

and separating flow[8]. The k − ω SST model introduces two equations:

∂

∂t
(ρk) +

∂

∂xi
(ρkui) =

∂

∂xj

(
Γk

∂k

∂xj

)
+Gk − Yk + Sk (4.11)

∂

∂t
(ρω) +

∂

∂xi
(ρωui) =

∂

∂xj

(
Γω

∂ω

∂xj

)
+Gωk − Yωk + Sω +Dω (4.12)

The above equations model the transportation equations for turbulent kinetic energy

(k) (Equation: 4.11) and the specific dissipation rate (ω) (Equation: 4.12).
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4.2 Computational Fluid Dynamic Model Setup

CFD is the a numerical solution of flow based on governing equations, and flow properties

explained in Section: 4.1. CFD analysis consists of three steps:

• Pre-processor

• Solver

• Post-Processor

The pre-processor deals with the input of the 3D model and mesh generation. The

solver sets up the governing equations, the boundary conditions, and solver models. The

post-processor help in visualization, force calculation, particle tracking. ANSYS Fluent

19.1 software is used to perform the CFD analysis on the designed BWB aircraft. ANSYS

Fluent workbench is used to set up each iteration for the simulation.

4.2.1 Pre-Processor

The pre-processor converts the user-input into a mathematical problem for the solver. There

are various stages involved in the pre-processing. In ANSYS Fluent pre-processing is di-

vided into two parts: geometry import and meshing.

There are two options available in ANSYS for geometry import and modifications,

DesignModeler or SpaceClaim. SpaceClaim is the latest software from ANSYS offering

wide range modeling options. However, the 3D model was already created with the domain

and geometry, and therefore, Design Modeler was used to import the geometry in Parasolid

(.x_t) file format. In DesignModeler, the full model was imported(Figure: 4.1). A

symmetric plane was defined, so the geometry is split into half(Figure: 4.2) for mesh gen-

eration and further calculations. The geometry can also be split in SolidWorks and then

24



Figure 4.1: Geometry Import in DesignModeler

Figure 4.2: Geometry After Symmetry Plane

imported in the DesignModeler. However, defining the symmetry plane in DesignModeler

is convenient since it is defined for the entire setup.

4.2.2 Meshing

Meshing is merely dividing the control volume into smaller non-overlapping domains

called cells or elements. It is a very critical part of flow simulation. A carefully crafted

mesh influences the accuracy of the simulation. Before the final analysis, several mesh

models were created for the simulation. The mesh is created using ANSYS Meshing.

ANSYS ICEM can also be used to generate a mesh. ICEM is primarily used to create a

structured mesh. A structured mesh is an oriented mesh and therefore suitable for a simple

geometry. For a complex geometry like the BWB, a structured mesh will lead to a lot of

differently oriented meshes that need to be manually structured which will be very time-

consuming. Hence for the BWB aircraft, an unstructured tetra mesh was used to divide
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the volume. The tetra element is universal and is easy to use with complex geometry with

minimum user input.

Mesh for Inviscid Flow Analysis

The mesh was created using the minimum mesh size of 0.9 m. The mesh was set to capture

curvature and proximity. Curvature feature was used to ensure that more elements are

generated near the curved surfaces and proximity feature ensures fine grid near narrow

geometry. The growth rate was reduced to 1.05 to ensure that the mesh transition from

coarse to fine mesh is smooth. During mesh generation, body sizing was used to refine the

mesh on the aircraft body and near the aircraft geometry. A total of 19.5 million elements

were created using this method(Figure: 4.4) . A grid refinement study is of vital importance

to show that the numerical results are independent of the grid (i.e., the finer mesh yields the

same result). A coarse mesh was created using the body sizing with a minimum element

size of 1.5 m. The growth rate and other criteria were kept the same. The total number

of element for a coarse mesh was 16.9 million elements(Figure: 4.3). For a fine mesh the

body sizing with a minimum element size of 0.6 m. The growth rate was kept the same as

in the coarse and the medium mesh. The total elements in the fine mesh were 22.4 million

(Figure: 4.5). The above geometry was used to perform the inviscid flow simulation. Hence

no boundary layer meshing was performed.

Mesh for Viscous Flow Analysis

For viscous flow analysis using the k − ω SST turbulence model is used. The boundary

layer is defined as the thin region near the surface on the body in which viscous effects are

important. The boundary layer is very thin, and the gradients of the flow across the layer

are much greater. Hence very fine elements need to be created near the aircraft body. To
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Figure 4.3: Coarse Mesh Geometry

Figure 4.4: Medium Mesh Geometry
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Figure 4.5: Fine Mesh Geometry

distinguish different regions of the boundary layer the concept of wall y+ has been intro-

duced. y+ is a dimensionless quantity described as the distance from the surface measured

in terms of viscous lengths. ANSYS Inflation is used to generate the layers near the aircraft

body. Inflation creates a boundary layer of brick elements around the aircraft. The thick-

ness of the boundary layer is calculated using the y+ value. Based on the y+ value the first

cell height is calculated. 4.13

y+ =
ρuf∆y1

µ
(4.13)

where uf is the friction velocity and y1 is the first cell height. The friction velocity is

calculated using Equation. 4.14.

uf =

√
τ

ρ
(4.14)

The wall shear stress τ can be calculated using Equation. 4.15

τ =
1

2
CfρV

2 (4.15)
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Here Cf is the skin friction coefficient and can be estimated using Equation:4.16. It is

an empirical based estimation.

Cf = 0.058Re−0.2 (4.16)

For the majority of high-Reynolds-number flows, the wall function approach is suit-

able. The wall function approach is reasonably accurate and converges faster. The k − ω

SST turbulence model requires the y+ to be less than 300 for wall function approach. How-

ever, to capture the low-Reynolds number effect near the surface desired y+ value should

be less than 1. Hence more layers are needed to ensure that get y+ value around 1. For

k−ω SST turbulence model analysis, the first layer height was set to 0.001 m, and the total

number of layers was set to 40(Figure: 4.6).

Figure 4.6: Boundary Layer Mesh

The minimum element size for the viscous flow analysis was set to 1.5 m and the

body sizing minimum element size was set to 1.5 m. The growth rate was set to 1.05 as

in previous mesh geometry. The total of number of 21.8 Million elements were generated

for the k−ω SST turbulence model. The details for each mesh geometry is listed in Table.
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(a) Named Selection - Aircraft
Body

(b) Named Selection - Far Field (c) Named Selection - Symmet-
ric Plane

Figure 4.7: Named Selection for Mesh Geometry

4.1.

Table 4.1: Mesh Specification for Inviscid Flow Model
Mesh No. of Elements Min. El-

ement
Size(m)

Min. Body
Element
Size(m)

Growth rate

Coarse Mesh 16,973,529 1.5 1.5 1.05
Medium Mesh 19,583,736 0.9 0.9 1.05
Fine Mesh 22,365,997 0.7 0.6 1.05
Viscous Flow Mesh 21,895,934 1.5 1.5 1.05

Another important task in meshing is the naming of the boundary zones. This helps

in setting up the conditions in the solver of ANSYS. For all four geometry, the named

selection was the same. The aircraft surface was named as aircraft body, the symmetric

plane was named symmetry and all other surfaces were named as far-field(Figure: 4.7).

Figure. (4.8) shows some important views of the mesh.

4.3 Numerical Setup

ANSYS Fluent has two types of solvers - pressure based solvers and density based solvers.

The density-based solver is mainly used for simulating supersonic flows. For BWB simula-
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(a) Mesh Along Symmetry Plane (b) Cross - Section View - 1

(c) Cross - Section View - 2 (d) Cross - Section View - 3

Figure 4.8: Detail Mesh Images for Medium Mesh

tion, pressure based solver was used. For the pressure based solver, the governing equations

are nonlinear and coupled to one another and hence are solved using an iteration process.

There are two pressure based algorithms available in Fluent - segregated and coupled. In the

segregated algorithm, the governing equations are solved sequentially i.e., pressure equa-

tion is solved first and then the momentum equation. The pressure based coupled algorithm

solves the coupled system of equations[2]. Since the governing equations are resolved si-

multaneously, the solution converges faster compared to the segregated algorithm. On the

downside, the memory requirements increase by 1.5-2 times[2]. For the BWB simula-

tion, pressure based coupled solver with second-order upwind discretization was used. The

upwind discretization scheme is very stable even on a coarse mesh. The simulation was
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obtained using two separate flow models: inviscid flow, and k − ω SST turbulence model.

4.4 Boundary Conditions

The flow domain needs to have boundary conditions to define the flow problem and solve

the system of equations. ANSYS Fluent offers a variety of predefined boundary conditions.

Based on the numerical simulation performed, correct boundary conditions need to be de-

fined at the boundaries. The named selections defined in section 4.2.2 and shown in Figure:

4.7 was used to define the boundary conditions.

• Aircraft Body

Wall: Used to define the solid wall boundary with no-slip condition. The roughness

height and roughness constant are set to their default value.

• Far Field

PressureFarF ield: Pressure far field conditions are used define the free-stream

condition at infinity. We define the free stream Mach number and static conditions

used for the flow simulation. The static conditions used are at altitude of 35000 ft.

Hence the pressure is 23911.01 Pa, Mach number is 0.75, and the temperature is

219.477 K. The free stream velocity angle is also defined in this section. Using the

pressure far field conditions activates the ideal gas equation. Hence density and other

parameters are calculated using the ideal gas equation.

• Symmetry

Symmetry: Symmetry condition is used to define the symmetric plane. This helps

in reducing the computational time and cost.

The case was run for different angles of attack AoA = 0◦, 3◦, 5◦, 8◦, 9◦, 10◦, 11◦, 12◦,

and 15◦ for inviscid flow and AoA = 0◦, 3◦, and 5◦ for viscous flow. For the grid refinement
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study the simulation was performed at 3◦ angle of attack and atmospheric condition of

35000 ft. All the cases were hybrid initialize.
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Results

The primary function behind the modeling and simulation of the BWB aircraft is to deter-

mine the lift and drag coefficient and calculate the lift to drag ratio for the conceptual BWB

aircraft. The results are presented in three stages. First, the grid refinement study was per-

formed for inviscid flow analysis to ensure that the results obtained are not grid dependent.

Once the optimum mesh was determined analysis was performed for the various angles of

attack at 35000 ft altitude conditions. In the final stage, mesh with boundary layer was

utilized to perform viscous flow analysis using the k−ω SST turbulence model. The accu-

racy of the simulation was calculated by tracking the residuals for the governing equations

ensuring they converged. ANSYS default converging criteria was used. The stability of the

relevant integrated quantities is also considered to determine the solution convergence.

5.1 Grid Refinement Study

For the grid refinement study the coasre mesh, medium mesh and fine mesh were utilized.

The details for the each mesh are provided in Section. 4.2.2, Table, 4.1 and Figure. 4.3,

Figure. 4.4 and Figure. 4.5. The change in lift and drag forces are considered for the study.

The results of the mesh independence study are presented in Table. 5.1

There is no considerable difference between the lift and drag force values for all three

mesh size. However, the change is almost insignificant for the medium and the fine mesh.
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Table 5.1: Grid Independent Study
Mesh No. of Ele-

ments
Lift Force
(N)

Change Drag
Force (N)

Change

Coarse Mesh 16,973,529 1929036 0.381% 119351 0.131%
Medium Mesh 19,583,736 1922849 0.059% 119211 0.014%
Fine Mesh 22,365,997 1921704 119194

The minimum orthogonal quality for the medium mesh was 0.23, compared to 0.15 of the

coarse mesh. For a good quality mesh, the orthogonality should be close to 1. Hence the

medium mesh grid was used as the main mesh for all future angle of attack investigations.

5.2 Inviscid Flow Study

The BWB aircraft is investigated with ANSYS Fluent utilizing an inviscid flow initially.

This investigation is appropriate considering the goals of this study. A preliminary inves-

tigation of the overall aircraft aerodynamic shape is desired. The complexity of adding

the engines, control surfaces, landing gear, etc. will happen as part of a different project.

This thesis is to provide preliminary results detailing the overall aircraft design and to see

if it provides the required aerodynamic performance to justify going to the next level in

complexity (i.e., adding the engines, etc.). Therefore, an inviscid analysis followed up with

some spot checks of the viscous aerodynamic performance is appropriate. All the simula-

tion were run until the solution converged. It took a few hundred iterations for the solutions

to converged. The solution for inviscid flow converged until about 11◦ angle of attack, af-

ter which there were some oscillations in the residuals, but the solution was accepted as

converged since the lift force and drag force showed small change from the previous itera-

tion. For inviscid flow, simulation was carried out till 15◦ angle of attack for lift and drag

coefficients.

Studying the airflow around the aircraft with an increasing angle of attack is useful

in understanding the aircraft behavior in actual flight conditions. The variation of pressure
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and Mach number around the geometry are generated for four 2D cross-sections of the

aircraft given in Figure:5.1. The cross-section is located at 0.5 m, 6.418m, 18.92 m and 32

m from the centerline respectively.

Figure 5.1: 2D Cross-Section Locations on the Aircraft Body

The pressure and Mach number plots for each cross-section are provided for 0, 3, 5,

8, 9, and 10◦ angle of attack. The Mach number contour plots for each cross-section shows

the expected trend, in which the velocity on top of the aircraft is more than at the bottom.

This creates a low-pressure zone on top of aircraft and a high-pressure zone on the bottom

aircraft. This is expected behavior as the pressure distribution around the aircraft helps in

understanding the lift generation.

5.2.1 0◦ Angle of Attack

The flow properties around the BWB aircraft for 0◦ angle of attack are given in the fol-

lowing figures. From the pressure field and Mach number contours, we observe that the

difference in the velocity profile at the bottom and the top of the aircraft is not very large.

This can be observed in the lift force generated in Table: 5.2. It can be observed from

Figure: 5.2 that the stagnation point is at the leading edge. The high pressure and the low-

pressure region is clearly defined. Accordingly, the low velocity and high-velocity regions
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are observed in the velocity plot. The region on the top of aircraft has high velocity as

compared to the underside of the aircraft.

(a) Pressure Field at 1.5% (b) Pressure Field at 20%

(c) Pressure Field at 58% (d) Pressure Field at 98%

Figure 5.2: Pressure Field at 0◦ AoA

5.2.2 3◦ Angle of Attack

Cruise flight is the longest segment of a commercial flight. Aircraft usually fly at a slight

nose up angle of attack during cruise flight. The angle of attack is designed to ensure

maximum lift and minimum drag during the cruise. For most aircraft, the cruising angle

of attack is small, about 2-4◦. Hence a 3◦ of attack is assumed to be the cruising angle of

attack for the BWB aircraft. Increasing the angle of attack results in higher pressure at the

bottom surface (Figure: 5.4) compared to 0◦ angle of attack. The velocity values on the top

surface also increase as the angle of attack increases (Figure: 5.5).

Since the pressure difference between the top and the underside of the wing for 3◦ AoA
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(a) Mach at 1.5% (b) Mach at 20%

(c) Mach at 58% (d) Mach at 98%

Figure 5.3: Mach at 0◦ AoA

is higher as compared to 0◦ AoA, signaling an increase in lift. It is also worth pointing out

that as we move away from the center the velocity and pressure profile change significantly.

The change in pressure at the top and bottom surface is more significant as compared to the

center fuselage (Figure: 5.4(d) and Figure: 5.4(c)).

The velocity streamlines plot provides a better understanding of the flow around the

aircraft. At a low angle of attack, the flow is attached to the airfoil cross-section (Fig-

ure:5.6). The velocity streamlines are generated at 2D cross-sections given in Figure: 5.1

Since the geometry was designed without the engines at the wingtip, vortices are gen-

erated. The wingtip vortices leads to induced drag generated for the conceptual BWB

configuration. Typically this induced drag is removed by the addition of winglets at the

wing tips. Winglets will not be used on the BWB TeDP aircraft because the two turbo-

generators will be placed at the wing tips. These turbogenerators will act as winglets in
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(a) Pressure Field at 1.5% (b) Pressure Field at 20%

(c) Pressure Field at 58% (d) Pressure Field at 98%

Figure 5.4: Pressure Field at 3◦ AoA

(a) Mach at 1.5% (b) Mach at 20%

(c) Mach at 58% (d) Mach at 98%

Figure 5.5: Mach at 3◦ AoA
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(a) 2D Velocity Streamline at 1.5% (b) 2D Velocity Streamline at 20%

(c) 2D Velocity Streamline at 58% (d) 2D Velocity Streamline at 98%

Figure 5.6: 2D Velocity Streamlines at 3◦ AoA

addition to generating the electrical power required to power the turbofans.

Figure 5.7: Wing Tip Vortices at 3◦ AoA
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5.2.3 5◦ Angle of Attack

The results for 5◦ angle of attack are presented next. The pressure profiles of the aircraft

show an increase in the pressure difference between the top and the bottom surfaces of the

aircraft. The Mach number also increases for the top surface of the aircraft. It is shown

that the Mach number reaches the speed of sound for certain regions on the top surface

(Figure: 5.9). The continued increase of the vehicle angle of attack results in an increase in

the region of supersonic flow on the upper surface on the wings.

(a) Pressure Field at 1.5% (b) Pressure Field at 20%

(c) Pressure Field at 58% (d) Pressure Field at 98%

Figure 5.8: Pressure Field at 5◦ AoA

It is observed that the pressure contours and Mach number contours change signifi-

cantly with increasing angle of attack. The pressure region on the bottom surface increases

with the increasing angle of attack indicating an increase in lift. In regards to the Mach

number, the velocity at the top surface reaches the speed of sound at certain regions with

an increase in the angle of attack. The high-velocity region has a significant increase in
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(a) Mach at 1.5% (b) Mach at 20%

(c) Mach at 58% (d) Mach at 98%

Figure 5.9: Mach at 5◦ AoA

velocity compared to the actual velocity. Also, the area for high-velocity region increases

with angle of attack. This leads to an increase in drag at higher Mach number. The velocity

or Mach number plot for 8◦, 9◦, and 10◦ angle of attack are presented in Figure 5.10 thru

Figure 5.12 respectively.

It is observed that there is a small normal shock generated on the outer wing at 8◦.

The normal shock increases the aerodynamic losses generated by an increase in the angle

of attack. The shock region increases and grows stronger as the angle of attack increases.

This leads to flow separation eventually stalling the aircraft. The low or reversed velocity

region characterizes the flow separation region. The low-velocity region increases with the

angle of attack. These characteristics are observed in Figure: 5.11(c), and Figure: 5.11(d)

for 9◦ and Figure: 5.12(c), and Figure: 5.12(d) for 10◦.
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(a) Mach at 1.5% (b) Mach at 20%

(c) Mach at 58% (d) Mach at 98%

Figure 5.10: Mach at 8◦ AoA

(a) Mach at 1.5% (b) Mach at 20%

(c) Machat 58% (d) Mach 98%

Figure 5.11: Mach at 9◦ AoA
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(a) Mach at 1.5% (b) Mach at 20%

(c) Mach at 58% (d) Mach at 98%

Figure 5.12: Mach at 10◦ AoA

(a) Pressure Field at 1.5% (b) Pressure Field at 20%

(c) Pressure Field at 58% (d) Pressure Field at 98%

Figure 5.13: Pressure Field at 8◦ AoA
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(a) Pressure Field at 1.5% (b) Pressure Field at 20%

(c) Pressure Field at 58% (d) Pressure Field at 98%

Figure 5.14: Pressure Field at 9◦ AoA

(a) Pressure Field at 1.5% (b) Pressure Field at 20%

(c) Pressure Field at 58% (d) Pressure Field at 98%

Figure 5.15: Pressure Field at 10◦ AoA
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The pressure contours for 8◦, 9◦, and 10◦ angle of attack are presented in Figure 5.13

- Figure 5.15 respectively.

The pressure coefficient for each 2D sections given in Figure: 5.1 are plotted for 0,

3, 5 and 8◦ angle of attack. The increase in lift is evident as the area between the curves

increases. The coefficient of pressure plots are given in Figure 5.16 - Figure 5.19. For the

four different spanwise locations across the BWB aircraft. It is evident that at 1.5% span

(i.e., near the aircraft centerline) that there are no shocks present in the flow for all the

angles of attack. At 20% Figure 5.17, a normal shock first occurs at an angle of attack of

8, but it is not present at any of the lower angle of attacks. Next at 58% Figure 5.18, the

normal shock is present for all angles but 0. Finally, Figure 5.19 shows a normal shock for

all angles of attack at 98% span. Also at 98% span, the effect of the tip vortex is evident in

the distorted pressure distributions.

Figure 5.16: Pressure Coefficient Distribution on Top and Bottom of the Aircraft at 1.5%
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Figure 5.17: Pressure Coefficient Distribution on Top and Bottom of the Aircraft at 20%

Figure 5.18: Pressure Coefficient Distribution on Top and Bottom of the Aircraft at 58%
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Figure 5.19: Pressure Coefficient Distribution on Top and Bottom of the Aircraft at 98%
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5.3 Viscous Flow Study

A viscous analysis of the BWB aircraft was obtained for a few angles of attack. It is more

expensive to do a viscous analysis both in terms of the time taken to generate a viscous

model and the computational resources required to perform the analysis. At this stage in

aircraft design, it is appropriate to do a few viscous studies to ensure no significant flow

physics is being missed. For the viscous flow analysis, the k − ω SST turbulence model

was used. The residuals took longer to converge compared to inviscid flow. It took some

800 - 2500 iterations for all the residuals to converged. The viscous flow analysis accounts

for flow very close to the aircraft surface since it is considering the boundary layer effects.

The y-plus value plot shows that the value is in the specified region of y+ < 300. The

y+ contour plot can be found in Figure: 5.20 and Figure:5.21). This means the turbulence

model is being implemented properly. The analysis was performed for 0◦, 3◦, and 5◦ angle

of attack.

Figure 5.20: y-plus Contour Plot for 3◦ AoA
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Figure 5.21: y-plus Contour Plot for 5◦ AoA

5.3.1 Pressure Distribution

The pressure distribution is represented at the four 2D cross-sections represented in Figure.

5.1. The pressure contours show three major areas: the stagnation area, the low-pressure

region, and the high-pressure region as observed in the inviscid analysis. The low-pressure

region is at the top of the aircraft surface and the high-pressure region at the lower surface.

As the angle of attack is increased the pressure difference between the two regions increases

to a certain point. The difference observed in the viscous plots when compared to the

inviscid analysis is that the flow near the aircraft wall is more defined to understand the

aerodynamic effects better. The pressure distribution for 0◦, 3◦, and 5◦ angle of attack is

given in Figure:5.22 thru Figure:5.24.

It is observed that the low-pressure region on the top surface increases in extent and

intensity as the angle of attack is increased. The high-pressure region also increases with

the angle of attack. This leads to an increase in pressure difference thus increasing the lift.

This phenomenon is better understood in the pressure coefficient graphs. In Figure. 5.25 -
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(a) Pressure Field at 1.5% (b) Pressure Field at 20%

(c) Pressure Field at 58% (d) Pressure Field at 98%

Figure 5.22: Pressure Field at 0◦ AoA

(a) Pressure Field at 1.5% (b) Pressure Field at 20%

(c) Pressure Field at 58% (d) Pressure Field at 98%

Figure 5.23: Pressure Field at 3◦ AoA
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(a) Pressure Field at 1.5% (b) Pressure Field at 20%

(c) Pressure Field at 58% (d) Pressure Field at 98%

Figure 5.24: Pressure Field at 5◦ AoA

Figure. 5.28, the region below the x-axis increases with the angle of attack thus pushing the

wing upwards. This is expected and was already observed in the inviscid flow analysis. The

difference here is that area between the curve for an angle of attack is less when compared

to inviscid flow. Hence there is a decrease in lift force generated for the viscous flow. Also,

the normal shock is observed on the outer wing at 3◦ and 5◦ angle of attack.
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Figure 5.25: Pressure Coefficient Distribution on Top and Bottom of the Aircraft at 1.5%
for Viscous Flow

Figure 5.26: Pressure Coefficient Distribution on Top and Bottom of the Aircraft at 20%
for Viscous Flow
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Figure 5.27: Pressure Coefficient Distribution on Top and Bottom of the Aircraft at 58%
for Viscous Flow

Figure 5.28: Pressure Coefficient Distribution on Top and Bottom of the Aircraft at 98%
for Viscous Flow
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5.3.2 Velocity Distribution

The velocity distribution shows the flow around the wings. Zero velocity point is observed

at the leading edge and the high-velocity region on the top aircraft surface. This compli-

ments the low-pressure region observed on the top surface. As observed in the inviscid flow

the magnitude of velocity increases over the top surface as the angle of attack is increased.

A normal shock wave is also created on the top surface of the outer wing at 5◦ AoA.

The shock is prominently visible on the top surface moving towards the wingtip. The

velocity distribution is presented in Figure: 5.29 thru Figure: 5.31. To study the bound-

ary layer flow, we use the velocity streamline. For the viscous flows, 2D streamlines were

plotted and presented in Figure: 5.32 thru Figure: 5.34. We observe that the velocity

streamlines move smoothly over the aircraft surface. However reverse flow and flow sepa-

ration are observed near the trailing edge. At 0◦ AoA a reverse flow is visible with a small

vortex region at the trailing edge in Figure: 5.35. The flow separation region at the trailing

edge increases with angle of attack. Some sections of the aircraft with the boundary layer

are presented in the Figure: 5.37 - Figure: 5.40 . We can observe that at the wall, the flow

velocity is low and increases in magnitude as we move further away from the aircraft sur-

face. The velocity eventually reaches the local free stream velocity in that region. These

effects are observed for viscous flow analysis.

In Figure: 5.40, we observe near the aircraft wall, just after the normal shock wave

there is some reverse flow with flow separation at the aircraft surface. The flow reattaches

itself as we move further downstream. In transonic flow analysis, this flow physics is

complicated to predict. The ANSYS Fluent CFD model does a good job of predicting this

flow feature with the turbulence model.
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(a) Mach at 1.5% (b) Mach at 20%

(c) Mach at 58% (d) Mach at 98%

Figure 5.29: Mach at 0◦ AoA

(a) Mach at 1.5% (b) Mach at 20%

(c) Mach at 58% (d) Mach at 98%

Figure 5.30: Mach at 3◦ AoA
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(a) Mach at 1.5% (b) Mach at 20%

(c) Mach at 58% (d) Mach at 98%

Figure 5.31: Mach at 5◦ AoA

(a) 2D Velocity Streamline at 1.5% (b) 2D Velocity Streamline at 20%

(c) 2D Velocity Streamline at 58% (d) 2D Velocity Streamline at 98%

Figure 5.32: 2D Velocity Streamlines at 0◦ AoA
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(a) 2D Velocity Streamline at 1.5% (b) 2D Velocity Streamline at 20%

(c) 2D Velocity Streamline at 58% (d) 2D Velocity Streamline at 98%

Figure 5.33: 2D Velocity Streamlines at 3◦ AoA

(a) 2D Velocity Streamline at 1.5% (b) 2D Velocity Streamline at 20%

(c) 2D Velocity Streamline at 58% (d) 2D Velocity Streamline at 98%

Figure 5.34: 2D Velocity Streamlines at 5◦ AoA
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Figure 5.35: Velocity Vector at 1.5% from Centerline at the trailing edge for 0◦ AoA

Figure 5.36: Velocity Vector at 1.5% from Centerline at the trailing edge for 5◦ AoA

Figure 5.37: Velocity Vector at 58% from Centerline for 0◦ AoA
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Figure 5.38: Velocity Vector at 1.5% from Centerline for 3◦ AoA

Figure 5.39: Velocity Vector at 58% from Centerline for 5◦ AoA

Figure 5.40: Velocity Vector at 98% from Centerline for 5◦ AoA
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5.4 Aerodynamic Force Coefficients

The lift and drag force were obtained from the ANSYS Fluent CFD model are for the half

aircraft model. The lift coefficient (CL) and drag coefficient (CD) were calculated using

Equations 4.2 and 4.3. We use only half of the aircraft’s total area since the lift force, and

the drag force is also half. For calculating the coefficients, we need the density and velocity

values at 35000 ft altitude. The density varies as we go higher in altitude thus changing the

speed of sound. Since we are using the pressure far-field boundary conditions, we input

the flow velocity in terms of Mach number. Hence the Mach number needs to be converted

to free stream velocity using density obtained from ANSYS Fluent for an ideal gas. The

density for Ideal gas at 35000 ft is ρ = 0.3795 kg.m−3. This gives the velocity for 0.75 M

as V = 223.656 m2. The values for CL and CD for inviscid flow are provided in Table: 5.2

and for the viscous flow in Table: 5.3.

Table 5.2: Aerodynamic Coefficients for Inviscid Flow
Angle of -
Attack (◦)

Lift Force (N) Coefficient
of Lift

Drag Force(N) Coefficient
of Drag

0◦ 973,292 0.216 49,496 0.011
3◦ 1,922,849 0.428 119,211 0.026
5◦ 2,580,782 0.575 217,625 0.048
8◦ 3,335,057 0.743 422,483 0.094
9◦ 3,501,471 0.780 493,477 0.110
10◦ 3,606,306 0.803 557,840 0.124
11◦ 3,738,345 0.833 633,633 0.141
12◦ 2,288,114 0.510 446,913 0.099
15◦ 2,217,356 0.494 612,532 0.136

The lift coefficient increases gradually with increasing angle of attack until it reaches

11◦ at which point a drop in lift appears. (Figure:5.41). Thus the maximum lift coefficient

for the designed BWB aircraft is Clmax = 0.833. Comparing Figure:5.41 against the lift vs.

AoA graph from Cranfield University for NASA N3-X, a close resemblance for the Clmax

and the stall angle is observed. It is important to remember that the conceptual BWB and
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the NASA N3-X geometry uses different airfoil sections and hence some differences are

expected.

Figure 5.41: Lift Coefficient vs AoA for Inviscid Flow

The drag coefficient increases as the angle of attack is increased. As the flow analysis

showed, the separation region grows with the increase in the angle of attack the increase

in separation results in an increase in drag. An anomaly in the drag curve is observed after

the stall angle.

The L/D ratio is an essential parameter in understanding the aerodynamic performance

of an aircraft. For the designed BWB configuration, the L/D for the cruise condition is

16.12. The Airbus 380 has an L/D of 13.74[17]. Hence the L/D ratio is improved by 15%.

The L/D ratio can be improved further with boundary layer ingestion and the engines at the

wingtips acting as winglets.

It is observed that the lift coefficient decreases for the viscous flow analysis. The

decrease is attributed to the effects of the boundary layer and normal shock interaction at the
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Figure 5.42: Lift Coefficient vs AoA for NASA N3-X

Figure 5.43: Drag Coefficient vs AoA for Inviscid Flow
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Table 5.3: Aerodynamic Coefficients for Visocous Flow
Angle of -
Attack (◦)

Lift Force (N) Coefficient
of Lift

Drag Force(N) Coefficient
of Drag

0◦ 744,413 0.165 61,125 0.013
3◦ 1,642,467 0.366 116,147 0.025
5◦ 2,125,090 0.473 193,696 0.043

different angles of attack. At the cruise condition, there is a 15% decrease in lift generated.

The total lift generated should be higher than the weight of the aircraft. The weight of the

aircraft is 225,000 kg. Hence to sustain cruise flight one wing should generate 1,102,500

N of lift force. From Table. 5.3, it is calculated that one wing generates 1,642,467 N of

lift. So, the preliminary aerodynamic analysis of the BWB design presented in this thesis

shows improvement in aerodynamic performance over the conventional aircraft. Therefore,

the provided design can be used as the baseline for a detailed aerodynamic investigation by

adding the engines, flight control surfaces, and landing gear.
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Conclusion and Future Research

The goals and objectives set for the thesis have been achieved. A BWB aircraft based

on the design of the NASA N3-X was created, and aerodynamic analysis was performed.

NASA N3-X is a revolutionary aircraft not just from an aerodynamics point of view but

also for the propulsion systems, control surfaces, noise reduction, and boundary layer ma-

nipulation. Exceptionally few BWB aircraft have been designed and analyzed considering

these technologies. The conceptual BWB also considers the current aircraft demands - a

midsize passenger aircraft with more extended range and suitable for most airports without

any modifications. The conceptual design in this thesis was much inspired by the NASA

N3-X to consider these demands.

In this thesis, a BWB aircraft is designed using NACA-23012 and NASA SC(2) -

0606 airfoils. The outer dimensions on the aircraft were similar to N3-X. The length of the

aircraft is 41 m, and the span is 64.9 m. The BWB wingspan is almost equal to the Boeing

777 (B777) and hence can operate at all airports that accommodate the B777. The aircraft

is shorter by 22 m compared to the B777. The aircraft meshed, and aerodynamic analysis

performed using ANSYS Fluent. For saving computation time, a half model was used for

simulation.

The BWB configuration was simulated using inviscid flow and a k− ω SST turbulent

model using cruise altitude conditions. The simulations were performed for varying angles

of attack. The pressure and Mach number contours were studied to understand the aerody-

namics of the aircraft. For the inviscid flow, the maximum lift coefficient was 0.833 at 11◦
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of attack. The lift shows a gradual increase until it reaches the stall angle after which there

is a sharp drop. The drag also shows a linear increase with the angle of attack. The BWB

configuration achieved a higher L/D (16.12) compared to the Airbus 380. This proves that

BWB configuration has better aerodynamic features compared to the conventional aircraft

For viscous flow, the analysis was performed only till 5◦ of attack. This was decided

based on the fact that aircraft in cruise flight doesn’t have a high angle of attack. The results

show the same increase in lift forces as shown in inviscid flow. Comparing the results of

viscous and inviscid flow, we observe that lift decreases for the viscous flow analysis. This

is expected since the boundary layer effect close to the aircraft wall leads to a decrease

in lift forces. The viscous flow analysis takes 2.5 - 3 times more computational time as

compared to the inviscid flow analysis. Hence the inviscid flow results can be useful for

the initial study of the aircraft aerodynamics and to improve the model and the geometry

before the final model is created.

The velocity and the pressure contours show that velocity is higher on the top surface

corresponding to the decrease in pressure and the velocity is lower at the bottom surface;

thus the higher pressure. As the angle of attack is increased the magnitude and intensity

of the pressure reduction also increases. The standard shock is also visible especially on

the outer wing with variation in the angle of attack. The shock intensity increases, and it

moves further towards the leading edge with an increasing angle of attack. The aftershock

region, near the aircraft surface, shows signs of reverse flow and flow separation. The flow

attaches itself to the surface further downstream. The aftershock region increases as the

angle of attack is increased, eventually leading for the flow to be permanently separated

causing total loss of lift. This leads to the aircraft stalling. The shock effects are more

clearly visible towards the outer wing.

Although the aerodynamic simulation shows that the aircraft is capable of flight, fur-

ther analysis is needed. One of the primary areas of further research would be to simulate

the flow with the control surfaces operational. This will lead to more accurate aerodynamic
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lift and drag profile. The aircraft performs many maneuvers during flight - turn, roll and

climb. It would be of importance to understand the forces acting on the aircraft surface

and how the lift coefficient and drag coefficient vary during these maneuvers. It is recom-

mended that propulsor fans are modeled and study needs to be conducted to understand

the effects BLI will have on the overall aircraft performance. A detailed 3D model on the

aircraft needs to be created taking the control surface, landing gear, propulsor fans, and

turbogenerators. Aerodynamic analysis of detail model needs to be performed at various

flight stages namely takeoff, climb, cruise, descent, and landing.
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