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ABSTRACT 

 

Guthrie, Bradley Robert Ph.D., Engineering Ph.D. program, Wright State University, 

2018. Analyzing a Shopper’s Visual Experience in a Retail Store and the Impact on 

Impulse Profit 

 

 The retail industry in the U.S. contributed 1.14 trillion in value added (or 5.9%) to 

the GDP in 2017, an increase of 3.7% from the previous year. While store closures have 

dominated the news in the recent past (e.g., Toys-R-Us, Sears, and Bon-Ton) due to 

ineffective supply chain practices, inadequate in-store experiences, and competition from 

e-tailers, other retailers such as Ross, T. J. Maxx, Burlington Coat Factory, and Kroger 

have been expanding their footprint. Brick-and-mortar stores are unique as they allow 

shoppers the ability to see, touch, and try products, in addition to exploring new products. 

Kohl’s CEO has even indicated that 90% of their revenue is still generated in brick-and-

mortar stores. Besides reducing supply chain costs, retailers have been paying considerable 

attention to redesigning their stores by varying layouts and displays to improve shopping 

experience and remain profitable. However, a lack of scientific methods that correlate 

layout changes to improved experience has often led to time-consuming and expensive 

trial-and-error approaches for the retailers. 

This research focuses on the design of such brick-and-mortar stores by developing 

a quantitative approach that models the visual interaction between a 3D shopper’s field of 

view and the rack layout. This visual interaction has been shown to influence shopper 

purchasing habits and their overall experience. While some metrics for visual experience 

have been proposed in the literature, they have been limited in many ways. The objective 

of this research is to develop new models to quantify visual experience and employ them 

in layout design models. 

Our first contribution consists of quantifying exposure (which rack locations are 

seen) and the intensity of exposure (how long they are seen) by accounting for the dynamic 

interaction between the human 3D field of regard with a 3D rack layout. We consider 

several rack designs/layouts that we noticed at nearby retail stores, ranging from the typical 

rectangular racks placed orthogonal to the main aisle to racks with varying orientations, 
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curvatures, and heights. We model this 3D layout problem as a series of 2D problems while 

accounting for obstructions faced by shoppers during their travel path (both uni- and bi-

directional). We also validate our approach through a human subjects study in a Virtual 

Environment. Our findings suggest that curving racks in a layout with racks oriented at 90° 

could increase exposure by 3-121% over straight racks. Further, several layout designs 

could increase exposure by over 500% with only a 20% increase in floor space.  

In our second contribution, we introduce the Rack Orientation and Curvature 

Problem (ROCP) for a retail store, which determines the best rack orientation and curvature 

that maximizes marginal impulse profit (after discounting for floor space cost). We derive 

impulse profit considering the probability a shopper will see a product category, the 

probability the shopper will purchase a product from that category if seen, and the product 

category’s unit profit. We estimate the probability that a shopper will see a location through 

a novel approach that considers (i) the effective area of that location, (ii) probability 

distribution of a shopper’s head position based on real shopper head movements, and (iii) 

exposure estimates from our approach in Contribution 1. To solve the ROCP, we design a 

particle swarm optimization approach and conduct a comprehensive experimental study 

using realistic data. Our findings suggest that layouts with either high-acute and straight-

to-medium-curved racks or high-obtuse and high-curved racks tend to maximize marginal 

impulse profit. Profit increases ranging from 70-233% over common rack layouts 

(orthogonal and straight racks) can be realized depending on the location policy of product 

categories. The sensitivity of these solutions to shopper volume, cost of floor space, travel 

direction, and maximum aspect ratio is also evaluated.  

The implications of our proposed models and findings are wide-ranging to retailers. 

First, they provide retailers with insights on how design parameters affect both exposure 

and marginal impulse profit; this can help avoid expensive experiments with layout 

changes. Second, they reveal hot-warm-cold spots for specific layout designs, allowing for 

effective product location assignments. Finally, these insights can help enhance shopper 

interactions with products (i.e., ability to see more products, find products faster), which 

can improve their shopping experience and drive up sales.  
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1 Introduction 

The retail industry in the U.S. contributed 1.14 trillion in value added (or 5.9%) to the 

GDP in 2017, an increase of 3.7% from the previous year (Bureau of Economic Analysis, 

2018). Typically, retail shoppers make purchases by either visiting ‘brick-and-mortar’ 

stores or through online shopping environments (i.e., e-commerce). Some retailers even 

offer the option for customers to order online, then come to the store to pick up their 

purchases. There are varying reasons for customers favoring online shopping. According 

to a recent study, top reasons include the ability to shop 24/7, opportunity to compare 

prices, and overall lower prices (Leadem, 2017). Although these factors have contributed 

to the recent growth of e-commerce (14% increase in revenue from 2016 to 2017), 92% of 

retail sales still occur in brick and mortar stores (US Census Bureau, 2016). In fact, in 

2017, in-store revenue from retail purchases increased by 5% (from 2016), and more stores 

opened than closed (IHL Group). Even Amazon, a world leader in online retail sales, 

recently purchased 460 stores from Whole Foods in 2017, and has opened 13 bookstores 

since 2015 (Bloomberg News, 2018). 

This begs the question, why do shoppers continue to visit stores when they can achieve 

the same goal at their fingertips from home? Three of the most popular reasons include (i) 

the ability to see and/or touch products, (ii) trying items (apparel) on, and (iii) enjoying the 

experience of going to the shops (Leadem, 2017). Further, physical stores support impulse 

buying, where customers not intending to purchase an item may be reminded by seeing 

that item or be enticed to purchase it for self-gratification (Piron, 1991). Essentially, brick-
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and-mortar stores give shoppers the opportunity to interact with the retailer’s products, 

which can therefore make or break a retailer (Underhill, 1999). It is thus the retailer’s job 

to best present their products to customers. This is the basis of retail design, and the topic 

of this research.  

1.1 Retail Design 

There are many facets of retail design. These include visual communications (e.g., 

signage, commercials), merchandising (e.g., fixture selection and product presentation), 

store design (e.g., ambiance, lighting), and store planning (e.g., layout, space allocation), 

all of which contribute to the overall shopping experience by customers, and therefore the 

success of the retailer (Dunne et. al., 1995). Clear, visible, navigational cues facilitate 

customer flow through the store and, therefore, spending habits (Burke, 2006; Wang and 

Hsiao, 2012). Practical organization of products and transparent communication of their 

features bears less stress on customers allowing for a smooth shopping experience (Burke, 

2006). Longer travel paths by shoppers are associated with larger basket sizes (Hui et. al. 

2009). Further, designing a shopping environment that adheres to the comfort of shoppers, 

by means of sight, smell, feel, etc., allows shoppers to become more accessible to the store, 

easing their purchasing behavior (Gladwell, 1996; Spies et. al. 1997).  

Store planning, more specifically, refers to the decisions concerning the physical store 

area. In particular, the layout of a store is considered the backbone, as it serves as the 

organizational structure to how products are presented to customers. Layout decisions 

typically consist of department allocation/location decisions (e.g., allocation of facility 

space to different departments) and layout type/circulation decisions (e.g., aisle 

configuration to dictate a certain traffic pattern) (Dunne et. al., 1995). Four general layout 
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types are typically used in the retail stores: grid, free flow, serpentine, and racetrack (Peters 

et al., 2004; Kizer and Bender, 2007). The grid layout is usually found in grocery stores, 

where fixtures (usually rectangular gondolas) are placed in long rows parallel to each other, 

allowing shoppers to walk through each aisle (Dunne et al., 1995) (Figure 5a). Racetrack 

layouts are popular with mass merchandisers (e.g., Kohl’s, Target) where a main aisle loops 

around the store, leading shoppers quickly to their desired departments (Figure 5b). The 

less-organized free-flow layout often appears in specialty stores, where fixtures, usually in 

the form of clothing stands or glass display cases, are placed sporadically around the store. 

(Figure 5c). The serpentine layout is constructed to only allow shoppers to walk along a 

single path throughout the store, usually in a single direction (e.g., IKEA) (Peters et al., 

2004) (Figure 5d).   

 

 

(a) Grid layout 

 

(b) Racetrack layout 

 

 

(c) Free-flow layout 

 

(d) Serpentine layout 

 

Figure 1: Different types of store layouts 

 

Checkout
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1.2 Measures to Evaluate Retail Layouts 

There are numerous measures used in both literature and industry to evaluate retail 

layouts. Generally, layouts in the retail sector are measured by the amount of revenue that 

the store is pulling in (Peters et. al., 2004). Substantial literature supports the influence of 

layout design on total sales (Bitner, 1992; Turley and Milliman, 2000; Burke, 2006; 

Shankar et. al.., 2011; Lu and Seo, 2015). Simply relying on this high-level measure, 

however, gives little insight into (i) why a specific store layout results in a certain amount 

of sales and (ii) how sales could be increased by varying layout design parameters. 

Researchers and practitioners, therefore, have adopted many metrics specific to retailing. 

Sorensen (2009) defines aisleness as the percentage of store area that is occupied by all 

structures, products, and staff; in other words, the remaining area would be available for 

customers to walk upon. Shopper efficiency, he further defines, is the length of time it takes 

a shopper to spend a dollar in the store. Path length, travel deviations (i.e., shopper not 

following optimal path between products), and order deviations (i.e., shopper picking out 

products in non-optimal order) have been analyzed by Hui et al. (2009). Store coverage 

(i.e., how much of the store area a shopper covers), trip length (i.e., time in store), and 

basket size have also been observed (Sorensen, 2017).  

1.3 Exposure 

 One measure that has recently gained momentum in the literature is exposure (or 

visibility). While there are many variations on specific definitions, essentially exposure 

refers to the degree to which products, or a layout, is seen by shoppers. Many empirical 

studies in retail literature have supported the significance of exposure, most notably its 

effect on unplanned or impulse purchases (Cairns, 1962; Anderson, 1979; Dreze et al., 
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1994; Chen et al., 1999). In fact, Sorensen (2009) suggests that placing impulse products 

along a shopper’s already-intended path can potentially entice them to make 1-5 additional 

purchases on impulse; this could increase sales by more than 30%. Improving product 

exposure not only benefits the retailer, however. When shoppers are able to efficiently 

locate their planned purchases and experience the positive sensation associated with 

impulse purchases, their shopping experience is benefited (Piron, 1991; Yoo et al., 1998).  

 Nevertheless, studies have found that shoppers are only exposed to a small 

percentage of a store’s products on a given shopping trip. Sorensen (2009) found that most 

shoppers will be exposed to only 11%-41% of products in a store depending on the type of 

shopping trip. In a later study, Sorensen (2016) observed that shoppers will only visit 16% 

of the store in hypermarkets (e.g., Walmart, Kroger), and 30% in smaller supermarkets 

(e.g., Whole Foods, Food Lion), thus limiting their exposure to products. It is, therefore, 

critical to effectively design stores that increase exposure, thus improving shopper 

satisfaction and retailer revenue. In this research, we focus on layout design decisions. 

1.4 Motivation of our Research  

While there are many ways to increase exposure in a retail store (e.g., circulation 

design, aisleness, number of entrances), a common practice among retailers has been to 

vary their design of rack layouts. Recently, retailers have begun to implement designs that 

have varied from the typical straight rack, placed orthogonal to a main aisle; see Figure 1. 

Figure 2 shows racks at an acute angle; shoppers walking by can potentially see both sides 

of the rack without having to make large head turns. Similarly, racks at low heights (i.e., 

under eye-height) allow shoppers to see over racks, in addition to the top surfaces; see 
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Figure 4. Figures 3 and 5 

meanwhile demonstrate that 

racks or endcaps can be 

curved; these designs can 

potentially better 

synchronize with a 

shopper’s natural scanning 

pattern to increase exposure 

and are visually appealing. 

While it is possible to 

evaluate such rack designs 

based on intuition and qualitative studies, a quantitative analytical-based approach would 

prove valuable to both research (e.g., more precise, robust models) and retail communities 

(e.g., more informed decision making).  

Recently, Mowrey et al. (2017) suggest utilizing the shopper’s field of regard (i.e., 

the visual sector for where their line of sight may fall on) to quantitatively evaluate 

exposure of varying rack orientations. They estimate exposure of a rack layout (with a 

specific orientation) considering a shopper walking along a main aisle in a 2D setting. In a 

more recent work, they use these models to optimize the rack layout to maximize exposure 

given a constrained floor space (Mowrey et al., 2018). While their contributions offer a 

refined model of exposure, there are several limitations; (i) they rely on a 2D 

approximation of the 3D environment, (ii) their focus on layout design is limited to straight 

Figure 2. Racks oriented at 45°. 

Figure 3. Curved racks.  

Figure 4. Low rack heights.  

Figure 5. Curved endcaps.  
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racks, (iii) rack heights are all assumed to be above eye-height and identical, and (iv) 

exposure is not linked to sales. 

 The focus of our research is to quantify exposure in 3D by considering racks of 

varying orientations, curvatures, and heights. We further seek to link exposure to sales (via 

marginal impulse profit) for prespecified product assortment and shelf space allocation 

decisions, and various product category location policies. We also take into consideration 

the cost of floor space and aspect ratio (i.e., length/width). We summarize below the 

research questions and contributions. 

1.5 Research Questions  

We now summarize the research questions we address in this research, followed by 

our research contributions. 

Q1. How can exposure be quantified in 3D considering human field of regard? 

Q2. What effect does rack orientation, curvature, and height have on exposure? 

Q3. How sensitive are these findings to shopper traffic and scanning patterns? 

Q4. What is the trade-off between exposure and floor space? 

Q5. How can increases in exposure quantitatively be connected to gains in impulse     

profit? 

Q6. What is the optimal rack configuration that maximizes impulse profit? 

Q7. How sensitive is the optimal solution to the product location strategy, shopper 

volume, travel direction, floor space cost, and maximum aspect ratio?  

We address research questions 1-4 with contribution 1, and questions 5-7 with contribution 

2. These are both described below.  
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1.6 Research Contributions  

Contribution 1. Quantifying and Analyzing Exposure in 3D  

Our first contribution adds to the limited literature in retail layout design in several 

ways. To address Q1, we present a model for a human field of regard (FoR) as the extent 

to which the human head and eye movements occur in 3D (substantially extending previous 

research that considered only 2D). We do so by considering both head and eye movements 

in horizontal and vertical directions. Second, we develop a model for a generic curved rack 

in 3D (generalizing prior research conducted with straight racks). We develop an approach 

to design a layout of such generic curved racks oriented at a specific angle along the 

shopper pathway (similar to Figures 1 and 4), and at a specific height (similar to Figure 2). 

Third, we then propose a quantitative approach to model the dynamic interaction of a 

walking shopper’s FoR and layout of racks (both uni- and bi-directionally). We quantify 

this interaction using two measures, exposure and intensity. Whereas exposure is a binary 

value indicating whether or not a certain location on a rack face is visible anytime during 

the shopper travel, intensity indicates the time a location is exposed to the shopper. In so 

doing, we can estimate not only the rack area that may be exposed to the walking shopper, 

but also identify ‘hot-warm-cold spots’ on each of the rack faces based on how long they 

were exposed to the walking shopper. To address Q2, we evaluate various orientation, 

curvature, and rack height values to determine the best designs and their improvements 

over a 90º layout of rectangular racks. The relative impact of rack height against orientation 

and curvature is also explored. For Q3, we do sensitivity analysis on shopper traffic 

patterns (uni-directional vs. bi-directional) and shopper scanning patterns (small vs. large). 
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Finally (Q4), we present analytical models for space and shape of the rack layout and 

evaluate the impact of increasing exposure against space. 

There are several insights revealed in our study. They are summarized in the bullets 

below.  

• When the racks are required to be oriented orthogonally to the shopper travel (i.e., 

θ=90), use of curved racks in the layout could increase exposure (by 3-121%) over 

straight racks (α=0).  

• If such curved racks can be placed at any orientation, then there exist layouts that 

would further increase exposure (by 18-321%) over straight racks at 90º. If curved 

racks are not viable, then there exist orientations that allow achieving nearly this 

same increase in exposure. 

• If the rack height (H) can be changed, then it trumps both orientation (θ) and 

curvature (α) in impacting exposure; rack heights just below eye-height appear to 

maximize exposure when the top of the rack is allowed for product allocation. 

• The increase in exposure comes with a floor space tradeoff. Depending on the 

system parameters, it is possible to achieve nearly 530% increase in exposure with 

18% floor space increase; 48% increase in exposure with a modest increase in space 

(<5%).  

Contribution 2. Optimizing Rack Layout for Impulse Profit  

In our second contribution, we utilize the model for exposure we developed in 

Contribution 1 to optimize marginal impulse profit. First, to address Q5, we derive a 

probabilistic measure for a product being seen, referred to as visibility, based on the 

effective area of locations, distribution of actual shopper head positions (from a prior 
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human subjects study), and exposure estimates from Contribution 1. This measure will help 

estimate the impulse profit. To then address Q6, we propose a non-linear optimization 

model, which we refer to as the Rack Orientation and Curvature Problem (ROCP), that 

determines the optimal rack orientation and curvature to maximize marginal impulse profit 

(after discounting for floor space) for a given location strategy of product categories. 

Impulse profit is estimated based on the probability that a product category on the shelf is 

seen, impulse purchase rate of that product category, and its average unit profit. We 

consider four different product location policies commonly found in either practice or 

literature; assortment and shelf space allocation decisions (i.e., number of facings) are 

assumed to be known. Given the difficulty in solving the proposed optimization model 

using commercial solvers, we propose an effective heuristic based on particle swam 

optimization framework and demonstrate this heuristic’s performance against a grid search 

technique. Finally, for Q7, we evaluate the sensitivity of the optimal rack variables 

(orientation and curvature) to shelf location strategy, maximum aspect ratio, floor space 

cost, and shopper volume.  

There are several insights revealed in our study. They are summarized in the bullets 

below.  

• Varying rack orientation (θ) and curvature (α) from orthogonal and straight racks can 

improve marginal impulse profit by 70-233% depending on the location policy for 

product categories. 

• The values of orientation (θ) and curvature (α) that resulted in the best marginal 

impulse profits were either high-acute and straight-to-medium-curved (i.e., θ = 

[25°,35°] and α = [0°,90°]), or high-obtuse and high-curved (i.e., θ =160° and 
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α=180°). These layouts either contained a relatively large percentage of highly 

visible locations (ideal when using the Impulse Ordering Rule), or racks with a 

relatively large percentage of moderately visible (ideal when using the Demand 

Ordering Rule).  

• The Impulse Rule generally leads to higher absolute marginal profit, while the Demand 

Rule demonstrated a higher relative increase in marginal profit compared to a layout 

with orthogonal and straight racks.  

• The best values of θ trend toward either high-acute or high-obtuse as the tolerable 

aspect ratio increases; this increases the time a shopper can see locations on racks. 

The best values of α meanwhile generally increase.  

• As shopper volume increases and floor space cost decreases, orienting (i.e., to acute 

or obtuse) and curving (i.e., α>0°) racks lead to increased benefits over a {90°,0°} 

layout. 

1.7 Research Implications 

The implications of our research are worth mentioning. Our model and findings, 

we believe, would provide a store designer many benefits. First, retailers will gain insights 

into how key rack design parameters (e.g., orientation, curvature, height) affect exposure 

and impulse profit. Second, retailers can use our models to derive hot-warm-cold spots on 

racks to better locate products; i.e., more efficiently showcase novel and high impulse 

products. Third, top performing designs (based on exposure, impulse profit, space) can 

quickly be identified that adhere to unique design constraints of retailers; this can help 

avoid expensive experiments with layout changes.  Finally, improved decision making by 
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retailers will facilitate better experiences for shoppers via improved shop-ability and 

increased impulse purchases.   

Researchers, meanwhile, would experience a similar level of benefits from our 

research. First, the ROCP can be used as a baseline for developing more detailed models 

in store or category planning; incorporating additional decision variables such as product 

location and assortment would be viable options. Second, researchers interested in 

analyzing a wider variety of rack designs (e.g.., inverted pyramid, slanted racks) can adapt 

pieces from our models to understand the impact these designs have on exposure. Finally, 

our models to estimate exposure (and visibility) could be used as a reference to analyze 

layouts in other domains (i.e., airports, libraries, museums) where understanding the 

relationship between human visibility and layout design would be valuable.  

1.8 Dissertation Outline 

  The remainder of this dissertation is organized as follows. Chapter 2 presents details 

of Contribution 1, while Chapter 3 presents details of Contribution 2. Chapter 4 

summarizes conclusions from this research, and ideas for future research.  

 

 

 

 

 

 



13 
 

 

 

2 Evaluating Exposure of a Retail Rack Layout in 3D 

2.1. Introduction 

In chapter 1 we introduced the importance of exposure as a measure for retail layout 

design. Exposure, to reiterate, quantifies how well a layout presents its products to 

customers. Increasing a shopper’s exposure to products, as well as knowing exposure levels 

of specific fixture locations in a layout, can be beneficial to both shoppers and store 

managers. Shoppers would potentially experience less time searching for already planned 

purchases, as well as make more unplanned purchases, thus boosting their shopping 

experience. Managers meanwhile would benefit by strategically placing their products, 

while being better equipped to negotiate rack space with manufacturers. Considering that 

92% of retail sales still occur in brick and mortar stores, plus the fact that shoppers will 

typically only see around 11% - 41% of products (depending on the length of shopping 

trip), there is great potential and motivation to improve the customer shopping experience 

(Sorensen, 2009; US Census Bureau, 2016). 

While some major retailers have implemented newer rack designs as discussed in 

Chapter 1 (i.e., curved racks, oriented racks, rack of varying heights), these designs lack 

supporting quantitative studies; their implementation is often based on intuition and/or 

qualitative findings.  In that case, this research aims to fill this gap. Specifically, we 

question what is the best orientation of racks to increase exposure? Can such increases be 

quantified? Would curving a rack increase or decrease exposure? How does the height of 

a rack affect exposure?  



14 
 

To address these questions, this paper contributes to the limited literature in retail 

layout design in several ways. First, we present a model for a human field of regard (FoR) 

as the extent to which the human head and eye movements occur in 3D (substantially 

extending previous research that considered only 2D). Second, we develop a model for a 

generic curved rack in 3D (generalizing prior research conducted with straight racks). We 

extend this single-rack model to a layout of such racks oriented at a specific angle along 

the shopper pathway (similar to Figures 1 and 4), and at a specific height (similar to Figure 

2). Third, we then propose a quantitative approach to model the dynamic interaction of a 

walking shopper’s FoR and layout of racks (both uni- and bi-directionally). We quantify 

this interaction using two measures, exposure and intensity. Whereas exposure is a binary 

value indicating whether or not a certain location on a rack face is visible anytime during 

the shopper travel, intensity indicates the time a location is exposed to the shopper. In so 

doing, we can estimate not only the rack area that may be exposed to the walking shopper, 

but also identify ‘hot-warm-cold spots’ on each of the rack faces based on how long they 

were exposed to the walking shopper. Fourth, we conduct comprehensive experiments to 

illustrate the obstruction phenomenon that plays a vital role in altering the exposure and 

intensity values across designs. We then evaluate various orientation and curvature values 

to determine the best designs and their improvements over 90º layout of rectangular racks. 

The relative impact of rack height against orientation and curvature is also explored. 

Finally, we present analytical models for space and shape of the rack layout, and evaluate 

the impact of increasing exposure against space.  

The key insights from our study include: (i) curving racks alleviates preceding 

obstruction (racks are visibly blocked to shoppers by racks earlier on a shopper’s path), 
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yet increases self-obstruction (sections of a rack are visibly blocked by other sections of 

the same rack); (ii) either curving racks at an orientation of 90° or orienting straight racks 

to a more acute angle can provide a higher layout exposure (relative to straight racks at an 

orientation of 90°); (iii) racks with a height just below shopper eye-height can provide for 

increased exposure over racks just above eye-height due to top surfaces being potentially 

exposed; (iv) the height of racks is the most influential parameter on exposure, followed 

by orientation and then curvature; and (v) considering the floor space of layout, when head 

rotations are small, variations in θ and α from traditional racks become more beneficial in 

terms of exposure and space as the number of racks N increases.  

Our model and findings, we believe, would provide a store designer a more realistic 

and comprehensive understanding of the relationship between rack layout design and 

exposure. There are numerous potential benefits: (i) top performing designs (based on 

exposure and space) can quickly be identified that adhere to unique design constraints, (ii) 

the shopping experience of customers (e.g., navigation, searching) would potentially 

benefit with designs catered to visibility metrics, resulting in increased loyalty, (iii) our 

models would serve as an input to shelf-space allocation models to estimate revenue, where 

hot and cold spots on racks (based on intensity of exposure) can be appropriately allocated 

to high and low impulse products respectively. 

The remainder of this section is outlined as follows: 2.2 provides a review of related 

literature. In 2.3 we present our modeling approach. 2.4 presents our experimental study, 

while 2.5 discusses the impact on space. In 2.6, we present a human subjects study to 

validate our models. Finally, 2.7 discusses implications of our work for the retailers. 
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2.2 Literature Review 

Prior research has revealed a strong relationship between exposure and sales 

(Applebaum, 1951; Cairns, 1962; Granbois, 1968; Dreze et al., 1994; Dunne et al., 1995; 

Knox et al., 2011; Hui et al., 2013). However, Sorensen (2016) observed that shoppers will 

only visit 16% of the store in hypermarkets (e.g., Walmart, Kroger), and 30% in smaller 

supermarkets (e.g., Whole Foods, Food Lion), thus limiting their exposure to products.  

Clearly, there is a need and potential for improved layout designs in terms of product 

exposure. 

The  IE/OR research community has recently begun incorperated some form of a 

visibility measure into retail layout evaulations. Peters et al. (2004) proposed a 

mathematical model to maximize expected store revenue by finding a balance between the 

time a customer spends in the store and the number of products they are exposed to along 

their path. Botsali and Peters (2005) extend this work to formulate a network-based model 

where they specifically focus on the serpantine layout, again to maximize expected 

revenue. They found that implementing “shortcuts” into the serpentine path allows for 

increased exposure of products on the corners of the shortcut. Li (2010) proposed an 

optimization model considering the aisle structure design, department allocation, as well 

as department layout in a sequential design process with the objective of maximizing 

expected profit. To model exposure, they suggest a decay function in terms of a product's 

distance from the main aisle, considering surrounding shopper traffic as well. Further, 

Yapicioglu and Smith (2012) develop a bi-optimization model considering the design of a 

retail store, where they seek to maximize revenue and adjacency scores of department 

locations by determining the size and location of each department. They assume exposure 
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to be a function of the department location with respect to pre-defined store traffic zones, 

as well as the department size. (i.e., high departmental exposure would coincide with a 

large area, and its location within a zone that has a high traffic density). Recently, Mowrey 

et al. (2017) suggest that evaluating layouts for exposure must account for the shopper’s 

field of regard (i.e., the visual sector for where their line of sight may fall on). They estimate 

exposure of a layout with racks oriented at varying angles considering a shopper walking 

along a main aisle in a 2D setting. In a recent work, they use these models to optimize the 

rack layout to maximize exposure (Mowrey et al., 2018). While their contribution offers a 

refined model of exposure, there are three key limitations; (i), they rely on a 2D 

approximation of a 3D environment, (ii), their focus on layout design is limited to 

rectangular racks and (iii), rack heights are all assumed to be above eye-height and 

identical. 

There has also been a recent growth in human visibility research in the urban 

planning domain. However, while 3D environments have been extensively covered (Bartie 

et al., 2010; Suleiman et al., 2011; Koltsova et al., 2013; Kim and Jung, 2014; Fisher-

Gewirtzman, 2016), to our knowledge there has been no literature that provides an 

analytical framework, as all human visibility approximations rely on some form of a ray-

shooting algorithm. Further, they do not account for head movements distinctly, nor human 

scanning patterns.  

Eye-tracking measurements have often been used to understand human visibility. 

Specifically in the retail domain, Phillips and Bradshaw (1993) explored the simplicity 

(i.e., variety of product groups, geometric positioning) of shelf space with regards to 

attracting customer exposure, finding the simpler, the better. Both Pieters and Warlop 
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(1999) and Janiszewski et al. (1998) found a significant relationship between the time 

customers were exposed to certain products and the selection of those products. Chandon 

et al. (2006) model and empirically support the phenomenon that increased number of 

product fixations increases the probability the shopper will consider that product for 

purchase. Considering the layout of a retail setting, Sorensen (2009) utilized eye tracking 

to find a substantial drop-off in exposure from end-aisle displays and free-standing racks 

to all other fixture types. Further, Hendrickson and Ailawadi (2014) use eye-tracking to 

uncover several shopper habits relating to vertical eye fixation patterns, attention span, 

product consideration set, and reading patterns. While the above research supports the 

notion that visibility plays a key role in the shopping experience, none consider the 

implications on the design of a layout. With the emergence of a variety of rack layouts 

(some with curved racks), many of which can be found in stores of top U.S. retailers as 

highlighted in Section 1, it is imperative to characterize these layouts in terms of their effect 

on product visibility to shoppers. 

Realizing the above gaps in the literature, we reiterate the contributions of this 

paper: (i) a quantitative approach to model the dynamic interaction between a shopper’s 

3D field of regard (FoR) and a layout of racks, (ii) analysis of the effect of rack orientation, 

curvature, and height on exposure and intensity, (iii) evaluating the implications of floor 

space and aspect ratio, and (iv) generating managerial insights to aid the retailer in 

identifying promising rack layouts that tradeoff the exposure and space effectively. 

2.3 Modeling Exposure in a 3D Rack Layout 

Studies have shown that it is common for shoppers to recognize what the product is 

based on its distinct shape, size, color, or symbol on the package without necessarily 



19 
 

reading all the letters on that package (Wedel and Pieters, 2008). With this in mind, we 

define exposure as the visual connection between a shopper and area of rack space (on 

which a certain product may be placed). To evaluate if a rack location is exposed or not, 

we must first model the dynamics that ensue from the interaction of the traveling shopper’s 

3D FoR and the static racks. Our approach considers a shopper walking along a main aisle 

in a retail setting with racks on either side. Accordingly, we first present models for (i) the 

human FoR in 3D, (ii) a generic curved rack in 3D, and (iii) a layout of curved racks placed 

at a prespecified orientation before presenting our quantitative approach to estimate both 

exposure and intensity.  

2.3.1 Modeling the Human FoR in 3D 

The human FoR in 3D is an angular volume of possible viewing angles for a 

fixation point (line of sight) to fall on; approximately 2º immediately surrounding the 

center of a human’s fixation point perceives details necessary for information extraction 

(Monty and Senders, 1976; Wickens and Hollands, 2000; Ware, 2004). We model the 3D 

human (FoR) considering the angular limits of vision in both horizontal and vertical 

directions (Figures 6(a) and (b)), along with the depth of vision (DOV). The combination 

of both horizontal and vertical limits can be modeled as an elliptical sector of a sphere; see 

Figure 6(c), where we further break down these limits by head (𝛺) and eye (𝛷) rotations. 

Our parameters (Figure 6(d)) are based on those presented by Parker and West (1972).  

Typical values considering moderate movements are shown in Table 1.  
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To determine DOV, we utilize the visual angle (v) notated as v = 2arctan (
ℎ

2𝑑
); h 

represents the height of the object and d is the distance from the optical center of the eye 

to the object (Ware, 2004). Assuming a recognizable package label on a retail shelf to be 

at least 1 inch tall (e.g., the Nike swoosh or K on Kellogg’s cereal) or simply the color of 

the product package (e.g., orange on Tide detergent or blue on Oreos cookies) and a 
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shopper to have 20/20 vision (v = 5 arcmin), we can estimate the approximate DOV for a 

shopper to be approximately 50 ft.  

2.3.2 Modeling a Curved Rack in 3D 

Although a wide variety of racks can be found in retail stores, we focus on gondolas, 

which are the type of racks most prominent in grocery stores and mass retailers. We model 

a generic curved gondola (referred to as a rack from here on) in 3D as a combination of 

angle of curvature (α), perimeter (p), width (w), height (H), and curved end caps; see Figure 

7 (a-b). Each of the four rack faces (f) are denoted as A-D (see Figure 7 (c)).   

For such a 

curved rack, using 

the expression for 

arc length (i.e., 

𝐿𝑓 =
𝛼𝜋𝑟

180
 ), the arc 

lengths of faces A 

– D (LA, LB, LC, 

LD) can be 

calculated as 

𝛼𝜋

180
(
𝑤

2
), 

𝛼𝜋

180
(𝑟 −

𝑤

2
), 

𝛼𝜋

180
(
𝑤

2
), and  

𝛼𝜋

180
(𝑟 +

𝑤

2
) respectively, where r represents the radius of curvature to the 

midline of the rack. Radius r can be obtained as r=
90∗(𝑝−𝜋𝑤)

𝛼𝜋
, where p is the prespecified 

perimeter of the rack (which ensures that the total rack display remains the same across -

180°≤α≤180°). The corresponding chord length (c) is given by 2𝑟 sin (
𝛼

2
). For instance, 

(b) 
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Figure 7. Modeling 3D curved racks 
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given values of p=110 ft, α=90° and w=5 ft, we compute r=30.01 ft, c=42.45 ft, LA= 

LB=7.85 ft, LC = 43.22 ft, and LD=51.07 ft.  

Note that a straight, rectangular rack typically found in retail stores is a special case 

of a curved rack. That is, as α → 0, r approaches, lim
𝛼→0

90∗(𝑝−𝜋𝑤)

𝛼𝜋
= ∞, which is a straight 

rack. We, therefore, refer to such racks as racks with α=0° in our experiments later. 

2.3.3 Modeling a Layout of Racks 

Having now modeled a generic curved rack in 

3D, we illustrate how we model a layout of such racks on 

both sides along the shopper pathway, each identically 

oriented at a prespecified angle (0≤θ<180º) (see Figure 

8). We designate the minimum distance between racks as 

ac and the width of the main walking aisle as aw; the 

distance from the shopper to the nearest part of the racks 

is notated as am (Figure 9). For a given number of curved 

racks (n) with 

curvature (α) 

and orientation 

(θ), we ensure 

that the 

minimum 

cross-aisle 

(perpendicular) distance between the racks (ac) 

is maintained. Depending on the values of θ and α, the minimum perpendicular distance 

Figure 9. Designing a layout of racks 
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between the racks may occur along either endcap (faces A and C), or face D. See Appendix 

A for details on determining lr. All ensuing racks are accordingly placed a distance l 

following each previous rack. With these preliminaries (i.e.., models for human FoR, 

generic rack, and corresponding rack layout), we now present our proposed approach to 

quantify exposure and intensity of a given 

rack layout 

2.3.4 A Quantitative Model for Exposure 

and Intensity 

Our proposed approach to estimate 

exposure (seen or not) and intensity (time of 

exposure) in 3D considers a shopper walking 

along a path through a layout of racks while 

perpetually scanning. It is quite challenging 

to directly derive an analytical model of 

exposure in 3D given the complex and 

dynamic interaction of the FoR of a moving 

shopper with a layout of static racks. 

Consequently, we decompose this 3D 

problem into a set of 2D problems by 

discretizing the FoR by height (h) within the 

range of the vertical angular limits from the 

shopper’s eye-height (SE). Each height h is 

spaced k ft apart (depending on the average 

ΦVU + ΩVU

h1
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h4

h-1
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h 

h 

h 
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h 

h 

h 
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h 
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ΦVU + ΩVU 

Figure 10. Decomposing by height 

k 

 

Derive Intensity (𝐼𝑓𝑛𝑔ℎ𝑦
2𝐷  g,n,f) 

Estimate 2D Exposure (𝐸𝑓𝑛ℎ𝑦
2𝐷

 n,f) 

Sum 𝐼𝑓𝑛𝑔ℎ𝑦
2𝐷

 across y (𝐼𝑓𝑛𝑔ℎ
2𝐷 ) 

 Figure 11. 3D Exposure Algorithm 
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height of the products). We consider h  [hmin, hmax], where hmax (i.e., maximum height of 

FoR) = 𝑆𝐸 + 𝐷𝑂𝑉 ∗ sin(𝛷𝑉𝑈 + 𝛷𝑉𝑈) and hmin (i.e., minimum height of FoR) = 𝑆𝐸 −

𝐷𝑂𝑉 ∗ sin(𝛷𝑉𝐷 + 𝛷𝑉𝐷) (see Figure 9).  

  To estimate exposure in 2D, we first discretize the shopper path into a set of steps 

Y ( ft apart), where each step yY. At each discrete step y, we estimate 2D 

exposure, 𝐸𝑓𝑛ℎ𝑦
2𝐷 , as one or more continuous arc(s) in ft on each face (f) of rack (n) for all 

discrete heights (h) in the 3D FoR that fall within [0,Hn], where Hn is the height of rack n. 

That is, if Hmax > Hn then we only find exposure up to Hn; if Hmin < 0 then we find exposure 

beginning at h=0. Specific details on how we estimate  𝐸𝑓𝑛ℎ𝑦
2𝐷  are found in section 3.3.2. 

While our approach allows for estimating exposure of racks in 2D in a continuous space 

(i.e., as exposed arcs), to estimate intensity (i.e., time of exposure), we discretize racks into 

arc segments gG (of length lw) at each height h.  The values of lw will depend on the 

average width of products placed on the rack faces. Intensity (𝐼𝑓𝑛ℎ𝑦𝑔
2𝐷 ) at a step y is assigned 

either a 1 or 0 depending if any portion of arc segment g falls within the continuous exposed 

arc(s). For instance, consider Figure 12 (a), which illustrates exposure of a rack at a single 

shopper step y; the red arcs represent exposed arcs at each height h. Figure 12(b) shows the 

overlay of the discretized arc segments over the rack face and exposed arcs. In this specific 

case, for the exposed arc across h=4, arc segments g=0 through g=5 are considered as  

exposed, and thus their intensity values, 𝐼𝑓𝑛ℎ𝑦𝑔
2𝐷 , are set to 1 (see Figure 12(c)). Following 

the completion of a shopper’s pathway, we sum 𝐼𝑓𝑛ℎ𝑦𝑔
2𝐷

 across all y to find 𝐼𝑓𝑛ℎ𝑔
2𝐷 .  
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Now to estimate the 

total exposure of a layout (i.e., 

the rack segments that a 

shopper will see for at least 

one step y), we separate the 

segments that were exposed 

(i.e., with non-zero intensity 

value) from those never 

exposed (i.e., intensity value 

of 0). Let 𝐼𝑓𝑛ℎ𝑔
2𝐷  be a 0-1 

indicator such that  𝐼𝑓𝑛ℎ𝑔
2𝐷 =1, if 

the intensity 𝐼𝑓𝑛ℎ𝑔
2𝐷 >0, and 0 

otherwise. Then, total 2D 

exposure is given by 𝐸𝑛𝑓ℎ
2𝐷 = 𝑙𝑤 ∗ ∑ 𝐼𝑛𝑓ℎ𝑔

2𝐷𝐿
𝑙=1 . We then use the trapezoidal rule to aggregate 

these arcs (𝐸𝑛𝑓ℎ
2𝐷 ) across all heights (h) to estimate 3D exposure (𝐸𝑛𝑓

3𝐷 , in ft2) of face f on 

rack n; i.e., 𝐸𝑛𝑓
3𝐷 = 

k

2
[𝐸𝑛𝑓𝑎𝑠
2𝐷  +2𝐸𝑛𝑓(𝑎𝑠+𝑘)

2𝐷  +2𝐸𝑛𝑓(𝑎𝑠+2𝑘)
2𝐷  +…+𝐸𝑛𝑓𝑏𝑠

2𝐷 ], where 𝑎𝑠 and 𝑏𝑠 

represent the lowest and highest points of a rack face, respectively (see Figure 13(a)). The 

final step is to sum these 3D exposure estimates across each face f and each rack n; i.e., 

𝐸3𝐷 = ∑ 𝐸𝑛𝑓
3𝐷

𝑛,𝑓 , which is provides an estimate of the total exposed rack area (in ft2) of a 

given layout of n racks. Finally, the intensity of a location (l) on a rack (i.e., the bounded 

area between segment (g) and height (h)) can be estimated as 𝐼𝑛𝑓ℎ𝑙
2𝐷 =

 (
𝐼𝑛𝑓ℎ𝑔
2𝐷 + 𝐼𝑛𝑓(ℎ+1)𝑔

2𝐷

2
) ; see Figure 12(d). 

g=0 

g=5 g=6 

h=4 

(a) 

(b) 

(c) 

h=4 

h=0 

Figure 12. Exposure/intensity at step y 

(d) 

h=0 

l=0 

l=3 

h=4 

h=0 

l=4 

l=24 
l=16 
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Recall that racks in a layout may be of different heights. If the height of a rack (Hn; 

1≤n≤N) is below the eye height of the shopper (SE), the top faces can potentially be 

exposed. In order to incorporate these faces (i.e., E, F, and G) into our 3D exposure and 

intensity estimations, we discretize the top face into arcs spaced γd apart. At each shopper 

step (y) and each height (h), if h is equal to the height of any rack (Hn) in the layout, then 

we simply repeat the 2D algorithm at that height for (
𝑤

𝛾𝑑
) + 1 steps to estimate exposure at 

each discretized curve. To then estimate 3D exposure of the top faces, we again use the 

trapezoidal rule (see Figure 13(b)). The expressions for this calculation are presented in 

Appendix B. Details of our 2D approach to estimate continuous exposed arc(s) on a rack 

face at each height are found in Appendix C. 

 

 

 

 

 

To first illustrate the use of our approach to obtain exposure and intensity, we 

present four different designs with varying combinations of θ and α. Figure 14 shows these 

designs with overlaid intensity profiles (red=longest exposed, yellow=shortest exposed, 

and white=not exposed).  
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Figure 14. Rack layouts with overlaid intensity 

Observing these layouts, there are many questions that arise: Which layouts have 

the highest amount exposure? Which layouts experience obstruction? How do varying θ, 

α, and H affect exposure? To answer the above questions, and subsequently derive 

managerial insights, we conducted a comprehensive experimental study, as discussed 

below. 

2.4 Experimental Study 

The experimental study was conducted in 3 phases. First, we generated the intensity 

profiles of several layouts and analyzed the obstruction phenomenon. Second, we expanded 

our experiments to a range of values for rack orientation (θ), curvature (α), and height (H) 

to find combinations that provide the highest exposure. Third, we explore the effect of H, 

and the relative influence of θ, α, and H.  

2.4.1 Dynamics of Obstruction and Exposure 

As discussed in section 3.3.2, for a candidate point on a rack to be visible to the 

shopper, it must be mathematically feasible, be within the FoR, and not be obstructed. In 

(a) θ=90°, α=0° (b) θ=50°, α=90° 

(c) θ=90°, α=90° (d) θ=30°, α=0° 



28 
 

this section we visually examine the effect of varying of θ and α on the obstruction 

phenomenon. Specifically, we evaluate 6 different rack layouts considering 2 angles of 

curvature (α) and 3 angles of orientation (θ). Table 2 summarizes the system parameters. 

Unidirectional shopper travel (i.e., 𝜅=1, where 𝜅 represents the proportion of traffic one-

way) is considered. Shopper FoR parameters are based on moderate eye (horizontal and 

vertical) and head (horizontal) movements. Figure 15 shows the intensity profiles (red = 

longest exposed and yellow = shortest exposed; white = not exposed) for each of the 6 rack 

layouts. 

 

 

 

 

 

 

 

We first discuss the effect of preceding-obstruction (i.e., degree of rack area that 

lies within FoR, but is blocked by parts of the previous rack), which we found is less 

prevalent in racks with higher degrees of curvature or acute orientations; e.g., examine 

illustrations (a) and (i) in Figure 15. Notice the substantial difference in exposure between 

rack 1 (unobstructed) and rack 2 obstructed by rack 1 (and rack 3 obstructed by rack 2) in 

each layout.  

 

 

Table 2. Input parameters for experiments. 

Notatio

n 

Definition Value 
N Number of full length racks (right 

side) 

3 

 ac, aw Width of cross aisle, main aisle  8,10 ft 

am Shopper distance to racks 5 ft 

c,w,H Chord length, width, height of rack 40, 5, 7 ft 

DOV Depth of  focused vision 50 ft 

SE Shopper Eye Height 5 ft 

𝜌 Step size of shopper path 0.25 ft 

𝑙𝑤 , 𝑘 3D rack location 1 ft 

Field of Regard Parameter Values 

ΦH

L 

ΦHR ΦVU ΦVD ΩHL ΩHR ΩVU ΩVD 

15° 15° 15° 15° 30° 30° 30° 30° 
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Figure 15. Analyzing the obstruction phenomenon with varying θ and α. 
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Now consider illustrations (c) and (k) and notice how racks 2 and 3 have an 

increased amount of exposure compared to illustrations (a) and (i), respectively. We 

attribute this to the ability of the human eye to see more around the curved (α = 90) face 

D of preceeding racks, leading to increased exposure of face B on succeeding racks 

compared to when  = 0. Considering the effect of θ, notice how exposure on face B for 

all 3 racks in illustration (e) is identical; this is contrary to orthogonal and obtuse 

orientations in illustrations (a) and (i) where preceding obstruction is evident. 

 Further, we found self-obstruction (i.e., degree of rack area that lies within FoR, 

but is blocked by other parts of the same rack) is more prevalent in racks with higher 

degrees of curvature and acute orientations. For instance, compare the level of exposure 

on each face B in illustrations (e) and (g). As can be seen, when curving the rack at this 

orientation, there is no longer exposure on face B due to obstruction from face A (endcap).  

2.4.2 Determining Best Orientation (θ) and Curvature (α) 

Realizing how obstruction varies with θ and α, eventually affecting exposure and 

intensity, we then sought to determine the best values of θ and α corresponding to highest 

exposure. We considered a variety of combinations of shopper head movement, traffic 

pattern, and rack height. For each parameter combination, Table 3 summarizes the 

following: (i) the best combination of θ and α (θ*, α*), (ii) the improvement that this best 

design provides over the design with straight racks at their best orientation (θ*, α=0°) and 

straight racks at 90° (θ=90°, α=0°), (iii) the best curvature for racks oriented at θ=90°, and 

(iv) the improvement of this design over straight racks at 90°. We tested for 0°≤ θ<180° 

in increments of 10° and for -180°≤α<180° in increments of 10°. A small shopper scanning 

pattern (horizontal) was modeled as head and eye movement values ΦHR + ΩHR = 45°, while 
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a large pattern as ΦHR + ΩHR = 90°. A uni-directional traffic pattern, again, refers to one-

way traffic (𝜅 =1), while a bi-directional traffic pattern models two-way traffic (equal 

proportion of shoppers travelling in each direction, i.e., 𝜅 =0.5); exposure is calculated in 

both directions and subsequently averaged. Further, we consider racks at heights 3 ft, 5ft, 

and 7 ft, for a shopper eye-height at 5 ft (corresponding to average female eye-height). All 

additional parameter values are identical to those in Table 2. 

Table 3. Sensitivity experiments for exposure. 

Shopper 

scanning 

pattern 

Traffic 

pattern 

Rack 

height 

Best curvature 

for racks oriented 

at θ=90° 

Best combination of orientation (θ*) and 

curvature (α*) 

α* 

% better 

than 

straight 

rack 

 (α =0°) at 

θ=90° 

θ* α* 

% better than 

straight rack 

 (α =0°) at 

θ=90° 

% better than best 

straight rack 

(θ*, α =0°) 

Small  

(ΦHR + 

ΩHR = 

45°) 

Uni-

directional 

3 ft 180° 59% 30° 20° 120% 
4.46% 

30° 

5 ft 180° 121% 30° 10° 321% 
1.54% 

30° 

7 ft 180° 121% 30° 10° 320% 
1.60% 

30° 

Bi-

directional 

3 ft 180° 55% 30° 20° 89% 
3.55% 

20° 

5 ft 180° 80% 30° 20° 195% 
2.04% 

20° 

7 ft 180° 80% 30° 20° 193% 
2.09% 

20° 

Large             

(ΦHR + 

ΩHR = 

90°) 

Uni-

directional 

3 ft 150° 15% 50° 60° 37% 
4.24% 

60° 

5 ft 150° 38% 60° 20° 81% 
1.36% 

60° 

7 ft 150° 38% 60° 20° 82% 
1.18% 

60° 

Bi-

directional 

3 ft 150° 10% 50° 60° 18% 
4.88% 

60° 

5 ft 150° 3% 50° 70° 23% 
1.66% 

60° 

7 ft 150° 3% 50° 70° 23% 
1.33% 

60° 
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  (a) 𝜅 = 1, (ΦHR + ΩHR = 45°)                        (b) 𝜅 = 0.5, (ΦHR + ΩHR = 45°) 

   

                       

                  (c) 𝜅 = 1, (ΦHR + ΩHR = 90°)                             (d) 𝜅 = 0.5, (ΦHR + ΩHR = 90°)  

Figure 16. Heat maps of exposure for combinations of θ and α for H =7. 
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These results indicate the following: 

i. For designs with racks oriented at 90, the best curved racks (θ=90, α*) appear to 

exhibit higher exposure than traditional racks (θ=90, α=0) for all parameter 

combinations considered in our study; i.e., if θ=90°, then α* > α=0°. The magnitude 

of this improvement is higher for (i) rack heights at, or above the shopper eye height 

(except for large head rotations with bi-directional traffic), (ii) uni-directional traffic 

and (iii) small eye/head rotations. 

ii. The best curved racks (θ*, α*) appear to exhibit higher exposure than traditional racks 

(θ=90, α=0) for all parameter combinations considered in our study; i.e., (θ*, α*) 

> (θ=90°, α=0°).  The magnitude of this improvement is higher for (i) rack heights 

at, or above the shopper eye height (ii) uni-directional traffic and (iii) small eye/head 

rotations. 

iii. The best curved racks (θ*, α*) appear to exhibit approximately equal exposure to the 

best straight racks (θ*, α=0) for all considered combinations; i.e., (θ*, α*) ≈ (θ*, 

α=0°). 

These insights can visually be validated by observing heat maps of exposure in 

Figure 16 for rack heights of 7 ft (above eye-height). The darker shades indicate higher 

exposure improvement from the minimum exposure across all combinations of θ and α, 

whereas lighter shades represent the lowest exposure values. We mark each (θ, α) 

combination shown in Table 3. For instance, considering uni-directional traffic and small 

head movements (Figure 16 (a)), we mark the best combination of θ and α (θ=30°, α=10°), 

best straight rack (θ=30°), best rack oriented at θ=90° (α=180°), and a rack (θ=90°, α=0°). 
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2.4.3 Rack Height Sensitivity 

We further explored what rack heights provide the highest exposure values. To 

evaluate this, we selected a few of the top performing layouts from Table 3 and examined 

the effect of varying the rack height from 3 ft to 7 ft in 1 ft increments (maintaining an eye-

height of 5ft). Based on Figure 17(a), where we assume small head rotations (ΦHR + ΩHR = 

45°)  and uni-directional traffic (𝜅=1), we make note of an increasing trend in exposure 

with a discontinuity at the shopper eye-height; we present results of rack height just below 

5 ft (i.e., 4.95 ft) to better depict this. This discontinuity occurs due to the shopper being 

able to see the top surface of racks, and over racks onto succeeding racks when racks are 

below the eye-height. However, when the racks are equal to the eye-height or above, the 

top surfaces are no longer visible. Further, we notice that heights just below eye-height 

result in the highest exposure (considering the 3 – 7 ft range), while heights at eye-height 

result in the lowest exposures. These observations are robust to large head movements as 

well, and for both uni- and bi-directional traffic (Figure 17(b-d)). 

             

          (a) 𝜅=1, ΦHR + ΩHR = 45°                                     (b) 𝜅=0.5, ΦHR + ΩHR = 45°                                                
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                 (c) 𝜅=1, ΦHR + ΩHR = 90°                                        (d) 𝜅=0.5, ΦHR + ΩHR = 90° 

Figure 17.  Sensitivity of exposure to rack height; 

ΦHR + ΩHR = 90° refers to small head movements and ΦHR + ΩHR = 90° refers to large 

head movements. 

2.4.4 Relative Influence of θ, α, and H on Exposure 

To check the relative influence of θ, α and H, we developed a statistical model that 

uses all of our experimental data (across 0º ≤ θ ≤ 180º, -180º ≤ α ≤ 180º, and H ∈ {3,5,7}) 

with exposure as the dependent variable and θ, α, and H as the independent variables. 

Preliminary analysis suggested that the exposure errors from a simple linear regression 

model were not normally distributed (per the quantile-quantile plot). Thus, we chose a non-

parametric modeling approach, such as a decision tree. We developed four decision tree 

models (in JMP, a SAS product) considering each combination of head movement (small 

and large) and traffic pattern (uni-directional and bi-directional). Splits were determined 

based on chi-square values for each variable (i.e., largest ones were split at each level).  

The relative importance of each variable is based on the error sum of squares; i.e. 

the sum of squared difference between each observation and the mean for each respective 

variable. The higher the error sum of squares for a decision tree model, the higher variation 
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within a group (corresponding to a variable’s relative influence of the response variable). 

As illustrated in Figure 18(a) (uni-directional traffic) and Figure 18(b) (bi-directional 

traffic), we observe H to be the most influential parameter in terms of impacting exposure, 

followed by θ, and then α. The impact of H is pronounced when the rack height is closer 

to eye-height; as indicated in Section 4.4., just below eye-height exposes the top surface 

that adds additional exposure. We noticed that the first split in the decision trees was always 

at H=5 ft (eye-height). In contrast, between θ and α, θ (rack orientation) was much more 

influential as it affected the alignment of the rack faces to the human FoR much more than 

α (rack curvature); better alignment lead to better exposure. 

 

(a) 𝜅=1                            (b) 𝜅=0.5 

Figure 18. Impact of layout parameters for (a) uni-directional traffic and (b) bi-directional 

traffic 
 

2.5 Implications on Floor Space  

While the focus until now was on analyzing the impact of rack orientation (θ), 

curvature (α), and height (H) on exposure compared to straight racks oriented orthogonally 

(i.e., θ=90°, α=0°), we acknowledge that both θ and α could impact floor space and aspect 

ratio of the layout. To analyze these effects, we developed analytical models for space and 
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aspect ratio; see Appendix D for details. Below we compare and contrast a variety of rack 

layouts against their exposure and required floor space.  

With the layout (θ=90º, α=0°) as a baseline, we illustrate the % increase in exposure 

along the vertical axis and the resulting % increase in floor space along the horizontal axis 

(Figures 19 (a-d)). Thus, the best designs have relatively high increases in exposure with 

low increases in floor space (i.e., upper left corner). We present results for designs with 

θ=30º, θ=60º, and θ=90º and values of α ranging from 0° (indicated by smaller markers) to 

180° (indicated by larger markers) in increments of 10°. Graphs are shown considering 

rack heights above eye-height (7 ft) and small head rotations (ΦHR + ΩHR = 45°), for small 

(N=3) and medium-to-large (N=20) layouts, across both uni-directional (𝜅=1) and bi-

directional (𝜅=0.5) shopper traffic.  

  

           

                                      (a) N=3, 𝜅=1                                       (b) N=20, 𝜅=1 
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                     (c) N=3, 𝜅=0.5                                           (d) N=20, 𝜅=0.5 

Figure 19. Exposure vs. layout area with small head rotations; 

(a)-(b) = unidirectional and (c)-(d) = bidirectional 

 

While in Section 4.2 we observed that varying both orientation (θ) and curvature 

(α) can increase exposure compared to layout with θ=90° and α =0°, Figure 22 illustrates 

that these benefits come with an increase in floor space. In Figure 19(a), where we assume 

small head rotations (ΦHR + ΩHR = 45°), unidirectional traffic (𝜅=1), and a layout of N=3 

racks, we observe that the best design (θ=30°, α=10°) could result in nearly 320% increase 

in exposure over the (θ=90º, α=0°) design, but with a 69% increase in space. Similarly, the 

best designs for other values of θ (e.g., θ=60°, α=90° and θ=90°, α=180°), could increase 

exposure by 176% and 121%, but with floor space increases of 80% and 35%, respectively. 

While the patterns between designs across the two layout sizes (N=3 vs. 20; Figures 

19(a) and 19(b)) stay consistent, both the level of exposure and floor space requirements 

(compared to θ=90° and α=0°) become more favorable for medium-to-large rack layouts 

(i.e., N=20). That is, the % increase in exposure (relative to θ=90º, α=0°) increases and the 
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% increase in floor space decreases. For instance, the (θ=30°, α=10°) design with N=20 

now could increase exposure by 540% with a 24% increase in floor space. We attribute the 

increased benefit of exposure to exposure patterns among the interior racks (i.e., not the 

first or last racks in a layout). Rack designs with (θ=90°, α=0°) appeared to result in low 

exposure on among such racks due to a high level of succeeding obstruction. In contrast, 

interior racks in alternate designs provided at maximum 605% higher exposure. Since 

increasing N from 3 to 20 increases the number of interior racks in a layout, the overall 

exposure difference increases. So considering a limit of floor space increase of, say, 10%, 

two feasible designs for N=20 would be (θ=60º, α=0°) and (θ=90º, α=70°), which would 

increase exposure by 88% and 58%, respectively (compared to θ=90º, α=0°). 

When considering bi-directional traffic, we observed similar patterns as uni-

directional traffic, however to a lesser extent (notice the scaling of the vertical axes in 

Figure 19 (c,d)). The best combination of θ and α (θ=30°, α=20°) appears to provide 

exposure increases of 193% (N=3) and 315% (N=20), but again with considerable increases 

in the required floor space of 74% (N=3) and 30% (N=20). Since bi-directional traffic 

essentially averages supplementary acute and obtuse orientations together, the exposure 

benefits obtained with acute orientations are diffused when paired with their respective 

obtuse orientation. 

We also compared exposure and floor space considering large head rotations and 

observed that the % increase in exposure when increasing N from 3 to 20 remained rather 

stable (graphs not shown). Again, considering a 10% limit on floor space increase, the 

designs (θ=80°, α=0°) and (θ=60°, α=0°) can provide 80% and 48% increases in exposure 

for only 8% and 3% increases in floor space when N=20. We attribute the stable exposure 
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increase for an increasing N to the fact that the exposure values for all N racks (in designs 

where θ≤90°) are nearly similar; there is no substantial increase in succeeding or preceding 

obstruction between the first and last racks, and the interior racks given the large head 

movement.   

In summary, the tradeoff between exposure and floor space appears to be favorable 

to the retailer in situations where the expected shopper head movement is smaller compared 

to larger, and for larger sized layouts than smaller. The increase in exposure would likely 

offset the increase in space if products with high impulse purchase rates, high seasonality, 

or even promotional pricing were allocated to these prime, exposed locations.     

2.6 Validation Study 

To validate our proposed quantitative models presented above, we conducted a 

human subjects study in a virtual 

environment (VE); a high level 

summary will be presented in this 

section with additional details 

provided in Appendix E. The VE 

utilizes 27 LCD screens with LED 

backlight (each 55” in size) to achieve a 

12x12 sq. ft. of walkable area at a height of 87 inches (Wischgoll et al., 2017). This 

provides a three-walled CAVE-type immersive display (see Figure 20). The optical head 

tracking system is composed of 11 cameras to provide maximal redundancy and accuracy. 

Using the head position, the system is able to recreate the user’s perspective on all 27 

displays in such a way that the user feels completely immersed in the scenario. The head 

Figure 20. Virtual Environment 



41 
 

tracker also calculates both horizontal (x-axis) and vertical (z-axis) head movements for 

each human subject. 

 For our study, the scenario we developed in the VE corresponded to a rack layout 

of 10 racks on either side (a total of 20 racks in the layout), each placed at a prespecified 

orientation (θ) and with curvature (α). We recruited 27 participants between the ages of 19-

26 who have had several years of prior shopping experience.  We evaluated 9 rack layouts; 

3 values each of θ and α (i.e., θ=45°,90°,135° and α=0°, 30°, 90°). Each participant 

evaluated all 9 layouts. For each layout, a participant was asked to identify targets (12, 

1″x1″ red colored squares) strategically placed on the faces of the racks. The shopper travel 

was simulated by configuring the VE to move past the stationary participant at a speed of 

3.33 fps (similar to 3.41 fps in Daamen (2004)). We simulated the typical bidirectional 

travel in a store by first letting the shopper experience the environment in one direction 

(forward), and then reversing the environment to let them experience the other direction 

(reverse) in the same layout, each time calling out the aisle number and side (left or right) 

when they saw a target.   

To compare the actual human performance in these layouts with our model, we first 

predicted whether or not a target would be seen for a given layout (with identical 

placements of the targets). For this binary classification problem (target seen vs. not seen), 

we used several metrics; e.g., true positive (TP, model predicts participant will see, 

participant actually sees), false positive (FP, model predicts participant will see, participant 

does not see), true negative (TN, model predicts participant will not see, participant does 

not see) and false negative (FN, model predicts participant will not see, but participant 

sees).  We then calculated the sensitivity and specificity, where sensitivity = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
, and 
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specificity = 
𝑇𝑁

𝑇𝑁+𝐹𝑃
. In our problem, sensitivity refers to, ‘among the targets the participant 

saw (TP+FN), what proportion did our model predict would be seen (TP)?’ Contrarily, 

specificity refers to ‘among the targets the participant did not see (TN+FP), what 

proportion of our model predicted not to be seen (TN)?’ In other words, values of 

sensitivity lower than 1.0 suggest our proposed model underestimated human performance 

(for specific targets) and values of specificity lower than 1.0 suggest our model 

overestimated human performance (for specific targets). Figure 21 displays values of these 

three measures for each of the 9 different layouts (forward and reverse).  

 

 

Figure 21. Sensitivity and Specificity of model performance. 
 

Notice from Figure 21 that the sensitivity and specificity values seemed to have 

opposite trends in the forward and reverse directions; recall, a θ=135˚ (=0˚) rack in the 

forward direction will appear as θ=45˚(=0˚) in the reverse direction. We, therefore, will 

discuss results only for forward direction in detail. Considering sensitivity, notice that it is 
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high for acute orientations (average=0.95 across =0˚, 30˚, 90˚ when θ=45˚) compared to 

obtuse orientations (average=0.68 across =0˚, 30˚, 90˚ when θ=135˚). One explanation, 

is for acute orientations, the average participant head movement ranged from 8°-55° (we 

assumed 75˚ in our model, plus 15˚ eye rotation) causing nearly all of the targets that were 

predicted by the model actually being seen by the participants. We further noticed 

variations in scanning patterns by participants (i.e., how fast the head moved). This likely 

resulted in some participants seeing additional targets not predicted by the model (FN), 

causing the sensitivity to not equal 1.0. In contrast, for obtuse orientations in the forward 

direction, the average participant head movement ranged from 14-95, resulting in some 

participants seeing more targets that were not predicted to be seen by the model (FN) 

besides the predicted ones (TP); this reduced the sensitivity.  

We further noticed a general trend of increasing sensitivity with an increase in rack 

curvature (), as the number of FN decreased, and TP increased. An explanation for this 

outcome could be that the increased curvature creates sections of Face D that are impossible 

to see no matter how a participant turned their head, resulting in a more bounded 

environment. 

In contrast, our proposed model’s specificity had a noticeable increasing trend 

(forward direction) as the orientation changed from acute to obtuse, primarily because of 

the similar reasons discussed earlier. Note that the specificity values were relatively low 

for layouts θ=45˚, =0, 30˚ (forward direction). This was because our model predicted that 

there would be 1 and 0 targets respectively not seen by the participants. This resulted low 

TN values, and hence low specificity values. Discounting these two layouts, we obtained 

a specificity of .85 across the remaining layouts.  
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In summary, we believe our model has reasonably high sensitivity and specificity 

across a majority of the layouts (barring extreme cases) to allow a retail designer to narrow 

down the search space to a set of promising layouts among myriad choices.  

2.7 Conclusions 

Exposure has been recognized as a key metric in designing retail layouts, but to date 

no quantitative model exists that effectively utilizes the shopper’s 3D FoR (field of regard) 

to estimate exposure of a rack layout. Such a model would aid the retailer in comparing 

various layout designs and trading the corresponding exposure with floor space 

requirements.  

As a key contribution of this paper, we propose such a quantitative model based on 

first principles to model the dynamics of a moving shopper’s 3D FoR across a given rack 

design in order to estimate exposure and intensity. This model was used to analyze the 

impact of three primary parameters of a layout; i.e., rack orientation (θ), rack curvature (α) 

and rack height (H), considering uni- and bi-directional travel, small and large head 

movements, and small and medium-to-large layouts.  The key managerial insights from 

our study include the following: 

• When the racks are required to be oriented orthogonally to the shopper travel (i.e., 

θ=90), use of curved racks in the layout could increase exposure (by 3-121%) over 

straight racks (α=0).  

• If such curved racks can be placed at any orientation, then there exist layouts that 

would further increase exposure (by 18-321%) over straight racks at 90º. If curved 

racks are not viable, then there exist orientations that allow achieving nearly this same 

increase in exposure. 
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• If the rack height (H) can be changed, then it trumps both orientation (θ) and 

curvature (α) in impacting exposure; rack heights just below eye-height appear to 

maximize exposure when the top of the rack is allowed for product allocation. 

• The increase in exposure comes with a floor space tradeoff. Depending on the system 

parameters, it is possible to achieve nearly 530% increase in exposure with 18% floor 

space increase; 48% increase in exposure with a modest increase in space (<5%).  

The implications of our model and findings can be critical to the retailers. Knowing 

how long specific locations on racks will potentially be exposed to the shopper could allow 

retailers to better allocate products to the racks, effectively showcase novel and high 

impulse products, and better match the expectations of a shopper with their shopping needs. 

The ability to quantitatively compare and contrast alternate layouts against exposure and 

space requirements could help avoid expensive experiments with layout changes, which 

would not only reduce their retail facility costs, but also help them meet their objectives 

(of increased sales and better shopper experience) promptly.  

 Future work in this area could include extending our approach to model other 

fixtures used in retail stores and estimate the resulting exposure. For instance, how do the 

presence of clothing racks or other unique rack designs affect overall exposure? How can 

we estimate exposure at an intersection of multiple aisles? How do different orientations 

effect shopper traffic and congestion through cross-aisles? Quantitatively linking exposure 

to expected sales and then maximizing it through an appropriate optimization approach is 

an interesting research endeavor. We expect this research to trigger many more questions 

and solutions for retail store design that not only benefit the retailers, but also the shoppers. 
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3   Optimizing Rack Orientation and Curvature to Maximize Marginal 

Impulse Profit 

3.1 Introduction 

Retail stores encompass many supporting features that lead to a suitable environment 

for shoppers. Dunne et al. (1995) suggest visual communications (e.g., signage, 

commercials), merchandising (e.g., product presentation), store design (e.g., ambiance, 

lighting), and store planning (e.g., layout, category planning) as the four primary factors. 

Among these, store planning is considered the organizational structure of the store, 

effectively dictating the way shoppers interact with the products during their shopping trip.  

 Layout design, the vital backbone of store planning, includes decisions such as 

department location, aisle arrangement, and shelf orientation. These decisions affect 

shopper traffic density along the aisles, trip length, and what products shoppers will be 

exposed to (i.e., product exposure) (Dunne et al., 1995; Peters et al., 2004). Exposure has 

long been observed to have a significant relationship with revenue, as shoppers will 

ultimately only buy what they see (Suher and Sorensen, 2010; Ebster and Garaus, 2015). 

Since shoppers only visit 16% of the store in hypermarkets (e.g., Walmart, Kroger) and 

30% in smaller supermarkets (e.g., Whole Foods, Food Lion), it becomes imperative to 

consider exposure when designing a layout (Sorensen, 2017). 

The limited retail layout design approaches that consider exposure as a metric, 

however, have used approximations under narrow criteria. Such approximations include 

prespecified deterministic functions of (i) customer traffic (i.e., frequency of visits, density) 

and product shelf length (Botsali and Peters, 2005; Flamand et al., 2016) (ii) customer 
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traffic and department size (Yapicioglu and Smith, 2012) (iii) distance from the shopper 

(Li, 2010) or (iv) walking past a department (Ozgormus, 2015). These approximations are 

further limiting as they assume the environment to be fixed (i.e., rectangular racks 

orthogonal or parallel to the shopper). Since humans have a constrained field of regard (i.e., 

horizontal and vertical eye and head movements) through which they see, simply walking 

past a rack location may not be sufficient for the shopper to actually see it. For instance, a 

location on the bottom shelf, or one on the back side of a rack facing away from a walking 

shopper could be challenging or impossible to see.  

Only recently have models for exposure been proposed that account for the dynamic 

interaction between a traveling shopper’s field of regard and a rack layout, as specified by 

rack orientation and curvature (Mowery et al., 2017; Guthrie and Parikh, 2018). The 

approach in the latter study estimated which locations were exposed, and for how long, for 

both standard straight racks and newer curved rack designs currently in use at a wide 

variety of retailers (see Figure 22). They also show that a location’s time of exposure is 

dependent on the visual distance (based on shopper’s depth of view) and alignment (based 

on shopper’s field of regard)  

 .      

                           (a)                                (b)                                                 (c) 

Figure 22. Rack layouts with (a) curved racks (b) curved endcaps (c) non-orthogonally 

oriented racks. 
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It is vital, however, to quantify increases in exposure of products using a measure that 

retailers can act on, such as increases in revenue or profit, to evaluate layout changes or 

explore new rack designs. While planned purchases are primarily independent of layout 

(shoppers will search for them), unplanned, or ‘impulse’ purchases have been shown to be 

highly dependent on how well products are exposed to shoppers (Iyer, 1989; Abratt and 

Goodey, 1990; Peck and Childers, 2006). That being said, we do not know of an approach 

that translates exposure to impulse purchases considering the human FoR. Our research 

attempts to fill this void by incorporating the dynamic interaction between a traveling 

shopper’s FoR and a rack layout to directly estimate the probability of a shopper visually 

connecting with products (from here on, product categories) on racks This helps us address 

the following questions: How do specific layout design factors (e.g., rack orientation and 

curvature) affect expected impulse purchases? How sensitive is the best rack design to the 

product category location policy, traffic direction, maximum layout aspect ratio, cost of 

floor space, and shopper volume?  

We make the following contributions in addressing these questions. First, we propose 

a non-linear optimization model, referred to as the Rack Orientation and Curvature 

Problem (ROCP), that determines the optimal rack orientation and curvature to maximize 

marginal impulse profit (after discounting for floor space) for a given location policy (i.e., 

within aisles) of product categories. Impulse profit is estimated based on the probability 

that a product category on the shelf is seen, impulse purchase rate of that product category, 

and its average unit profit. We consider four different location policies commonly found 

in either practice or literature for given product assortment and shelf space allocation 

decisions (i.e., number of facings). Second, to help estimate impulse profit, we derive a 
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probabilistic measure for a product category being seen, referred to as visibility, based on 

the effective area of locations, distribution of actual shopper head positions (from a prior 

human subjects study), and exposure estimates from our prior work (Guthrie and Parikh, 

2018). Third, because the derivation of exposure estimates is algorithmic and cannot be 

expressed in closed-form, we propose an effective heuristic based on particle swam 

optimization framework and demonstrate its performance against a grid search approach. 

Finally, we derive several insights related to layouts that maximize marginal impulse profit 

and evaluate the sensitivity of these solutions to product category location policy, 

maximum aspect ratio, floor space cost, and shopper volume.  

Based on our experimental study, we observed that variations in rack orientation (θ) 

and rack curvature (α) from orthogonal and straight racks can increase marginal impulse 

profit as much as 70% or 233% depending on the product category location policy. Further, 

the best layouts consisted of racks that were generally high-acute and low-to-medium-

curved or high-obtuse and high-curved. These layouts exhibit a relatively large percentage 

of locations with either high or moderate visibility. Considering the location policies of 

product categories, we found the Impulse Rule to outperform the Demand Rule for absolute 

marginal profit; this ranking is reversed considering the relative improvement of the best 

layouts compared to orthogonal and straight racks. We also analyzed the sensitivity of 

maximum aspect ratio, shopper volume, and floor space cost. Relaxing the aspect ratio 

constraint allowed the best orientation (θ) to become more acute or obtuse; curvature (α) 

also generally increased. Further, the best combinations of θ and α (high-acute and low-to-

medium-curved or high-obtuse and high-curved) were generally robust to variations in 
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shopper volume and floor space cost. Only for low shopper volumes and high floor space 

costs did orthogonal and straight racks become more attractive. 

 We now present details of our research with the following outline. Section 2 

summarizes relevant literature in the areas of retail layout and shelf space allocation. 

Section 3 presents our proposed optimization model for ROCP and an approach to estimate 

the probabilistic visibility measure required to solve this model. Section 4 discusses a 

particle swarm optimization approach to solve the ROCP model. Section 5 discusses the 

performance of this approach and presents key insights derived from our experimental 

study. Finally, we summarize the implications of our research and discuss potential future 

endeavors in Section 6.  

3.2 Literature Review 

Many studies have alluded to a strong relationship between exposure and revenue 

(Applebaum, 1951; Cairns, 1962; Granbois, 1968; Dreze et al., 1994; Dunne et al., 1995; 

Knox et al., 2011; Hui et al., 2013). Several eye-tracking studies have investigated this 

phenomenon further by analyzing how shoppers interact with retail layouts and products. 

Janiszewski et al. (1998) and Pieters and Warlop (1999) found a significant relationship 

between the time customers were exposed to certain products and the selection decisions 

of those products. Chandon et al. (2006) found that the number of product fixations 

increases the probability that a shopper will consider that product for purchase. Sorensen 

(2009) utilize eye tracking to find a substantial drop-off in exposure from end-aisle displays 

and free-standing racks to all other display types. Further, Hendrickson and Ailawadi 

(2014) use eye-tracking to discover several shopper habits related to vertical eye fixation 

patterns, attention span, product consideration set, and reading patterns.  
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While marketing literature has provided ample evidence for the significance of 

exposure, only a few studies in the IE/OR domain have incorporated exposure into retail 

layout problems. Peters et al. (2004) propose a mathematical model to maximize expected 

store revenue by finding a balance between the time a customer spends in the store and the 

number of products they are exposed to along their path. In this study, if a shopper simply 

walks past a product, it is considered ‘exposed.’ Botsali and Peters (2005) extend this work 

to formulate a network-based model where they maximize expected store revenue in a 

serpentine layout. They use a visibility measure that is a function of a product’s shelf length 

and number of shopper visits.  Li (2010) proposes a sequential design process for a retail 

layout; the dimensions of the racetrack layout are found that maximizes exposure in the 

first stage. To model exposure, they suggest a decay function in terms of  distance from the 

main aisle, considering surrounding shopper traffic as well. Yapicioglu and Smith (2012) 

develop a bi-objective optimization model to determine the size and location of each 

department in order to maximize revenue and department adjacency scores. They assume 

exposure to be a function of the department location with respect to pre-defined traffic 

zones in the store as well as the department size; i.e., high departmental exposure is 

associated with a large area and its location within a high traffic zone. Recently, Mowrey 

et al. (2018) propose a non-linear optimization model to maximize exposure of a rack 

layout in 2D under space constraints. This model determines the number of rack columns 

in the layout and the angle of orientation for each column using a metaheuristic approach. 

Although their exposure estimates account for the shopper’s field of regard, as proposed in 

their prior work (Mowrey et al., 2017), they are limited to rectangular racks, each above 

shopper eye-height. Guthrie and Parikh (2018) address these limitations in evaluating the 
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effect of rack orientation, curvature, and height on exposure in 3D and suggest there are 

benefits to gain through non-orthogonal orientations and curvature of racks.  

Another area of research in store planning is category planning. Literature in this 

area has focused on product assortment, shelf space planning, and replenishment decisions 

(Hubner and Kuhn, 2012). Shelf space planning specifically determines how much shelf-

space (i.e., shelf space allocation) each product requires, and specifically where products 

should be placed (i.e., shelf location). Similar to layout design, shelf space planning also 

directly affects the level of visual interaction a shopper has with specific products; it has 

been shown to be directly linked to revenue through several empirical studies (Curhan, 

1972; Desmet and Renaudin, 1998).  

Many optimization approaches have addressed aspects of shelf space planning; see 

Hübner and Kuhn (2012) for in-depth review. More recently, Bai et al. (2013) present a 2D 

(height and length) shelf-space allocation model and solve using a hyper-heuristic 

approach. Geismar et al. (2015) further consider a similar 2D problem by allowing product 

displays to extend multiple shelves. Further, Flamand et al. (2016) formulate an 

optimization approach to maximize profit from impulse purchases considering location and 

space allocation decisions for product categories. Flamand et al., (2017) extend this work 

to include assortment decisions and considerations for product affinities.  

Our review of literature in these two domains reveals the following gaps. First, a 

model to estimate visibility directly from the shopper’s FoR, shopper head movement, and 

effective area of rack locations has not been explored. Second, the impact of location 

policies that modify visibility of product categories for a given layout has not been fully 

addressed. Third, an optimization approach that combines the above features, while 
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considering floor space, to determine the rack layout that maximizes marginal impulse 

profit is lacking. And finally, the impact of traffic direction, shopper volume, floor space 

cost, and maximum aspect ratio on the best layouts is yet to be studied. Through this 

research, we address these gaps in an effort to better connect retail layout and category 

planning literature. In the sections that follows, we present details of our modeling 

approach.  

3.3 Modeling Marginal Impulse Profit 

We define marginal impulse profit as the expected annual profit from impulse 

purchases (discounting cost of floorspace). Our proposed mathematical model determines 

the optimal values of rack orientation and curvature to maximize marginal impulse profit, 

accounting for the visibility of a specific layout. For a given product assortment (with 

known number of facings), we consider several policies to locate product categories on the 

racks. In the subsections that follow, we present the following: (i) a procedure for layout 

design (ii) a mathematical model for marginal impulse profit, and (iii) an approach to 

estimate visibility. 

3.3.1 Layout Design 

The layouts we consider consist of a series of generic curved gondolas (referred to 

as racks) on both sides of a main aisle (see Figure 23). The racks are identical, each with 

width (W), perimeter (M) measured along the top face of the rack, height (H), curvature (α) 

and curved endcaps. Each rack is further represented in terms of 4 faces; i.e., inner face 

(B), outer face (D), and two endcaps (A and C). Because we fix shelf space (or total display 

area), the radius of curvature (R) for a rack varies with angle of curvature (α); i.e., 

R=
90∗(𝑀−𝜋𝑊)

𝛼𝜋
. Observe that when α → 0˚, R = lim

𝛼→0

90∗(𝑀−𝜋𝑊)

𝛼𝜋
→ ∞ .  
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To then design the layout, we place each rack at a prespecified orientation (0º ≤ θ ≤ 

180º) ensuring a minimum distance between racks (Ac) and a width of the main walking 

aisle (Aw). The distance of the shopper to the nearest part of the racks is represented as Am. 

The procedure to design a feasible layout (i.e., determine the distance between successive 

racks (Lr) to ensure Ac is achieved) with a given set of parameters is discussed in Guthrie 

and Parikh (2018). To derive the area (al) and aspect ratio (ar) of our layout, we find the 

smallest bounding box that encapsulates the layout (both sides). Area is then simply the 

length  width (i.e., Le  Wi) of this bounding box, while the aspect ratio is length ⁄ width 

(i.e., Le/Wi)  

With this representation of the layout, we now present a mathematical model to 

maximize marginal impulse profit.  
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Figure 23. Layout design for ROCP 
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3.3.2 A Mathematical Model for Marginal Impulse Profit 

We define the Rack Orientation and Curvature Problem (ROCP) as the determination 

of optimal rack orientation and curvature for a layout that maximizes expected marginal 

impulse profit (after discounting cost of space). We assume that: 

• All racks are identical (in terms design parameters) and are placed at the same 

orientation. 

• Shoppers walk down the main aisle (in discrete steps) past the racks on route to a 

location specific to a planned purchase.  

• Planned purchases remain unchanged with changes in the layout, since the total 

display area in the layout is unchanged resulting in identical product types and 

inventories.  

• We consider dynamic product location decisions; i.e., product location decisions 

are dependent of the layout. 

Below we present our mathematical model, followed by Tables 4 and 5 that summarize the 

parameters and decision variables, respectively, used in our model. 

Maximize:  D*S*(∑ 𝑃𝑝
𝑃
𝑝 𝛵𝑝𝜈𝑝) – (C*al)     

Subject to: 

                  𝜈𝑝  = f(z𝑝𝑙, 𝜈𝑙 , 𝐹𝑝)               (1) 

𝜈𝑙  = 𝑓1(W, R, Ac, Am, Aw, α, θ, H, N, DOV, 𝛶, 𝜔, SE, Lh, Lw, g(𝛺𝐻 , 𝛺𝑉))      (2) 

al  = 𝑓2 (W, R, Ac, Am, Aw, α, θ, H, N, Lh, Lw)                              (3) 

ar  = 𝑓3 (W, R, Ac, Am, Aw, α, θ, H, N, Lh, Lw) ≤ ArMAX              (4) 

α  ∈ [-180°,180°]               (5) 

θ ∈  [0°, 180°]              (6) 
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Table 4. Parameters used in model 

Notation Definition 

p Index for product category; p = 1, 2. …, P 

l Index for location; l = 1, 2, …, L 

𝑃𝑝 Average unit profit of products in category p ($/unit) 

𝛵𝑝 
Probability of purchasing a product from category p if seen (i.e., impulse 

purchase rate) 

Fp Number of locations l allocated to product category p 

C Annualized cost of floor space for the layout ($/ft2) 

D Number of days a retail store is open per year 

ArMAX Maximum allowable aspect ratio for the layout 

H, W, M Height, width, and perimeter of racks (ft) 

Ac Minimum distance between successive racks (ft) 

Aw Width of main aisle (ft) 

Am Perpendicular distance of shopper from the rack endcaps (ft) 

Lh, Lw Height and width (ft) of a discrete product location on rack 

S Daily number of shoppers 

SE Shopper’s eye height (ft) 

𝜔 Shopper’s walking speed (fps) 

𝜌 Eye fixations per second (fps) 

DOV Shopper depth of vision (ft) 

  

 

Table 5. Decision variables in the model 

Notation Definition 

𝜈𝑝 Probability of visibility for product p during the shopping path 

𝜈𝑙 Probability of visibility for location l during the shopping path 

𝑧𝑝𝑙  Assignment of product p to location l; 1, assigned; 0, unassigned 

al Rectangular area of layout (ft2) 

ar Aspect ratio of layout  

θ Orientation of racks (º) 

α Curvature of racks (º) 

 

The objective of the ROCP is to maximize expected marginal impulse profit (i.e., 

the difference between expected impulse profit and cost of floor space). To estimate 

expected impulse profit per product category, we use (i) visibility (i.e., the probability a 

shopper will see product category p at least once as they walk past a layout). (ii) impulse 
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purchase rate (i.e., probability a shopper will purchase a product from category p if seen), 

and (iii) unit profit (i.e., average expected profit across all products in that category 

considering quantity of products purchased). We assume that (ii) and (iii) are known by 

the retailer a priori based on historical sales, and so we focus on estimating (i), which is 

dependent on the variations in the rack layout (see Section 3.3 and 3.4 for details).   

Constraint (1) estimates a product category’s visibility (𝜈𝑝) using the location 

assignments of each product category (z𝑝𝑙) and the visibility of each location (𝜈𝑙).  Because 

𝜈𝑙 in Constraint (2) is based on the cumulative effect of a shopper walking past the rack 

layout, it is difficult to estimate this value in a closed-form, and so we use the approach 

suggested in Guthrie and Parikh (2018). The function g(𝛺𝐻, 𝛺𝑉) is the distribution of 

shopper angular head positions derived from a prior human subjects study; see Section 3.4. 

Constraints (3) and (4) derive the area of floor space and aspect ratio of the layout (from 

Guthrie and Parikh, 2018), where we restrict aspect ratio to a maximum aspect ratio of 

ArMAX. Finally, Constraints (5) and (6) indicate bounds on the decision variables.  

3.3.3 Estimating the Probability, vp 

Recall that 𝑣𝑝  is the probability of product p being seen at least once during the 

shopper’s path. We define ‘seen’ as a fixation of the shopper’s focal point on product 

category p, such that a discrete step y on a shopper’s path corresponds to one possible 

fixation. To find 𝑣𝑝, we first estimate the probability of seeing a location l at step y (say, 

𝑣𝑙𝑦). The cumulative effect of 𝑣𝑙𝑦 across all shopper steps Y during the entire shopper path 

will allow the estimation of 𝑣𝑙; the probability of seeing a location l along the travel path. 

We can then estimate 𝑣𝑝 using 𝑣𝑙 and the assignment information, 𝑧𝑝𝑙. We now present 

details of how we estimate these probabilities; 𝑣𝑙𝑦, 𝑣𝑙, and 𝑣𝑝.  
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Consider a shopper walking past the layout at a speed of 𝜔 ft/s, where they make 𝜌 

eye fixations per second (fps). If we let x be the number of times the shopper’s focal point 

falls on location l throughout the path, then x follows a Poisson Binomial distribution with 

independent success probabilities 𝑣𝑙𝑦 for y = 1, 2, …, Y steps. Note that if 𝑣𝑙𝑦 are all 

identical, then x would follow a Binomial distribution. But these probabilities are not 

necessarily the same, as discussed in Section 3.4. Per the Poisson Binomial distribution, 

the probability of ‘not’ seeing location l, P(x=0) = ∏ (1 − 𝑣𝑙𝑦).
𝑌
𝑦=1  Subsequently, the 

probability of seeing location l at least once, 𝑣𝑙 = 𝑃(𝑥 > 0) = (1 −  ∏ (1 − 𝑣𝑙𝑦)
𝑌
𝑦=1 ).  

Finally, to estimate 𝑣𝑝, we again use the Poisson Binomial distribution and let xp equal 

the number of times the shopper sees a location l that contains product category p. We let 

sp and ep represent the minimum and maximum values of consecutive locations where 

product category p is located; these are derived from product category location decisions 

𝑧𝑝𝑙. Accordingly, 𝑣𝑝 = 𝑃(𝑥 > 0) = (1 - ∏ (1 − 𝑣𝑙))
𝑒𝑝
𝑙=𝑠𝑝

. That is, vp is dependent on the 

total shelf locations allocated to product category p (i.e., Fp), and where on the rack these 

locations l exist. Figure 4 illustrates an example placement of product categories A-G on 

Face B (inside face facing a shopper) of a rack (assuming each location is 1ft  1ft in size). 

We also illustrate how we derive sp and ep from 𝑧𝑝𝑙. Red shaded locations indicate higher 

values of vl for Figure 24 (a) and higher values of vp for Figure 24 (b). We now present 

details of how we estimate vly. 
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A A A A  A B B B B B C C C C D D D D D D D D D E E E E E F F F F F F F F G G G G G 

A A A A A B B B B B C C C C D D D D D D D D D E E E E E F F F F F F F F G G G G G 

A A A A A B B B B B C C C C D D D D D D D D D E E E E E F F F F F F F F G G G G G 
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A A A A A B B B B B C C C C D D D D D D D D D E E E E E F F F F F F F F G G G G G 

A A A A A B B B B B C C C C D D D D D D D D D E E E E E F F F F F F F F G G G G G 

A A A A A B B B B B C C C C D D D D D D D D D E E E E E F F F F F F F F G G G G G 

(a) 

A B C D E F G 

 

          (b) 

Figure 24. (a) vl for locations; (b) vp for products 

3.3.4 Procedure for Deriving 𝒗𝒍𝒚 

We derive vly by (i) calculating the angular coordinates (horizontal and vertical) of 

each corner point corresponding to each location l to determine the effective (i.e., angular) 

area visible to the shopper, (ii) deriving the probability of the shopper’s focal point falling 

within this effective area using data from a prior human subjects study, and (iii) overlaying 

the distribution from (ii) over the effective area for each location l. For (i), first let Sx, Sy, 

and SE represent the Cartesian coordinates for the shopper location, xli, yli, and zli represent 

the Cartesian coordinates for the four vertices of location l, where i=1,2,3,4 are indicators 

for each vertex. Also, let 𝛹𝑙𝑖  and 𝛤𝑙𝑖 represent the horizontal and vertical angles from the 

shopper’s eye to each of the four vertices for location l. For a given shopper height, SE, we 

𝑧𝐴𝑙 = 1 𝑓𝑜𝑟 𝑙[1,35]   sA = 1 and eA = 35 

 𝑧𝐵𝑙  = 1 𝑓𝑜𝑟 𝑙[36,70]  sA = 36 and eA = 70 

 

𝑣𝐴 = (1 - ∏ (1 − 𝑣𝑙))
35
𝑙=1  and 𝑣𝐵 = (1 - ∏ (1 − 𝑣𝑙))

70
𝑙=36  

l=1 l=36 l=71 

l=7 
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can calculate 𝛹𝑙𝑖 = sin
−1 (

𝑥𝑙𝑖−𝑥𝑠 

𝐵
𝑙𝑖

𝑆𝐸
) and 𝛤𝑙𝑖 = sin

−1 (
|𝑧𝑙−𝑆𝐸|∗𝐿ℎ 

𝐵𝑙𝑖
), where 

𝐵𝑙𝑖
𝑆𝐸=√(𝑦𝑙𝑖 − 𝑦𝑠)2 + (𝑥𝑙𝑖 − 𝑥𝑠)2 and Bli=√(𝐵𝑙𝑖

𝑆𝐸)
2
+ (|𝑧𝑙 − 𝑆𝐸| ∗ 𝐿ℎ)2. 𝐵𝑙𝑖

𝑆𝐸 represents the 

Euclidean distance (in 

2 dimensions) 

between the shopper’s 

eye and the point on 

the rack at eye-height 

directly below the 

vertex of location l 

denoted by indicator i. 

Bli meanwhile is the 

Euclidean distance (in 

3 dimensions) 

between the shopper’s 

eye and the vertex of location l denoted by i. See Figure 25 for an illustration of how the 

angular coordinates  Ψ𝑙=1,𝑖=1 and  Γ𝑙=1,𝑖=1 are found at a step y assuming an eye height (SE) 

of 5 ft. This process is repeated at each step y as the shopper’s angle and distance to location 

l will change with every step. 

 For (ii), we derive the probability distribution for the angular position of the 

shopper focal point at any given step using data obtained from a prior human subjects study 

(Guthrie et. al., 2018). Essentially, we designed a virtual environment to simulate a retail 

store with 10 racks on each side. We placed a total of 12 red-colored squares (1″1″ in size) 

Ψ𝑙=1,𝑖=1,𝑗=2 

𝑥𝑙=1,𝑖=1 − 𝑆𝑥 

𝑦
𝑙=
1
,𝑖
=
1
−
𝑆 𝑦

  

Figure 25. Determining angles for vertices of 

location l 

 

i=1 i=2 

i=4 i=3 

Location l 
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on these racks, strategically placed on the front (B) and back (D) faces at distinct rows (i.e., 

heights) and columns (i.e., distance from main aisle). We then recruited 18 participants to 

locate these targets in this virtual store section. We simulated walking by moving the 

environment past the stationary participant at the speed of 3.33 ft/s. We recorded the head 

position, using a head tracker, both horizontal (ΩH) and vertical (Ωv) angular coordinates 

at a refresh rate of 60 Hz (once every 0.016 seconds). 

We then compiled the head tracker data for each of the 18 participants who 

evaluated a layout with straight racks (α=0˚) oriented at 90˚ and discretized the horizontal 

and vertical head positions (across the entire path) into 0.25˚ range bins. We further added 

15˚ in both horizontal and vertical directions to account for potential eye movements and 

recorded the corresponding frequency (𝐹𝛺𝐻,𝛺𝑉) of head positions aggregated across all 

steps y. These frequencies were then converted to a probability distribution 𝑔(𝛺𝐻, 𝛺𝑉) 

associated with a shopper’s focal point falling in the direction (𝛺𝐻, 𝛺𝑉); 

𝛯𝛺𝐻,𝛺𝑉~𝑔(𝛺𝐻, 𝛺𝑉) and p(𝛯𝛺𝐻,𝛺𝑉) =  
F𝛺𝐻,𝛺𝑉  

∑ F𝛺𝐻,𝛺𝑉   
. Figure 26 shows the resulting probability 

distribution, where darker shades indicate higher probabilities, while lighter shades 

indicate lower probabilities. 

 

 

 

 

 

Figure 26. Probability distribution of shopper focal point direction;  

ΩH =0° and ΩV =0° indicate a shopper looking straight ahead. 

120° 0° 

 ΩH 
-120° 

30° 

 ΩV 

-30° 

0° 

Lower probability Higher probability 
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Finally, for (iii) – the probability of a shopper’s focal point falling on each location 

l at each step y (𝑣𝑙𝑦) – we aggregate the probabilities of a shopper’s focal point falling on 

to the effective area of a location. Specifically, we sum the probabilities of all the discrete 

intervals in the distribution set that fall within the rectangular boundaries dictated by the 

four angular coordinates of each location l. However, not all locations with non-zero 

probabilities will be exposed at a step y. In other words, a location may be obstructed (i.e., 

blocked by another rack) or outside the shopper depth of vision (i.e., too far away to be 

clearly seen). Thus, we define Ely as a binary indicator of whether location l is exposed at 

step y (based on the approach presented in Guthrie and Parikh (2018)). Consequently, 

𝑣𝑙𝑦 = 𝐸𝑙𝑦 ∗ ∑ (𝛯𝛺𝐻,𝛺𝑉𝛺𝐻,𝛺𝑉
) such that min{ Ψℎ,𝑖,  Ψℎ+1,𝑖} ≤  𝛺𝐻 ≤

max{ Ψℎ,𝑖+1,  Ψℎ+1,𝑖+1} and min{ Γℎ,𝑖,  Γℎ,𝑖+1} ≤  𝛺𝑉 ≤ max{ Γℎ+1,𝑖,  Γℎ+1,𝑖+1}. Note that 

the shopper’s focal point may not always fall on the rack location as the head may be 

pointing in directions with no rack locations (e.g., straight forward or in between two 

racks); i.e., for each step y, ∑ 𝑣𝑙𝑦𝑙 ≤  1. Figure 27 illustrates how we overlay the 

distribution of shopper’s focal point on the effective area of a location. The resulting vl for 

each location on a rack (i.e., 1 −  ∏ (1 − 𝑣𝑙𝑦)
𝑌
𝑦=1 )   across the entire layout is illustrated 

in Figure 28.  
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3.4 A Particle Swarm Optimization Algorithm for the ROCP 

It is evident by now that commercial solvers would not be viable to solve the 

mathematical model for the ROCP given the non-closed form nature of Constraints (1) and 

(2). We, therefore, propose a metaheuristic approach based on particle swarm optimization 

(PSO).   

3.4.1 PSO Description 

PSO was introduced by Kennedy and Eberhart (1995) as a population-based 

stochastic optimization technique. The key benefits of using PSO are that it can search 

within a continuous space, is simple and easy to implement, and provides a good balance 

between solution speed and quality (Shi & Eberhart, 1998, Bansal et al., 2011; Jolai et al., 

2012). PSO employs a finite number of particles, each carrying knowledge of its own 

solution history, searching through the solution space until convergence. Below is an 

outline of our proposed PSO algorithm: 

Figure 27. Overlaying shopper head 

position distribution with location l 

Figure 28. Probability 𝒗𝒍 of layout with 

θ=90°, α=90°;. Red areas indicate locations 

with higher values of 𝒗𝒍. 
 

2: ( Ψ𝑙,𝑖=2,ℎ=2 , Γ𝑙,𝑖=2,ℎ=2) 

4: ( Ψ𝑙,𝑖=2,ℎ=1 , Γ𝑙,𝑖=2,ℎ=1,) 

Location l 

1: ( Ψ𝑙,𝑖=1,ℎ=2 , Γ𝑙,𝑖=1,ℎ=2) 

3: ( Ψ𝑙,𝑖=1,ℎ=1 , Γ𝑙,𝑖=1,ℎ=1) 

𝑔(𝛺𝐻 , 𝛺𝑉)  

1 

2 

3 

4 
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              Initialize population of particles with random positions and velocities 

                Do  

For each particle:  

Evaluate feasibility (i.e., max aspect ratio) of the encoded solution 

(Layout Design subroutine)          

If Feasible:  

       Estimate vl (Location Visibility subroutine) 

Place products on rack per location rule (Product Category 

Placement subroutine) 

Estimate vp (Product Category Visibility subroutine) 

Evaluate fitness function  

If fitness value is greater than global best:  

       Set current solution as global best 

If fitness value is greater than neighborhood best:  

       Set current solution as neighborhood best 

If fitness value is greater than particle best:  

       Set current solution as particle best  

 Else: Reject solution  

       End  

       For each particle:  

              Update particle velocity  

                           Update particle position  

                    End  

  Until termination criterion is met  

 

 

3.4.2 Solution Representation 

We use a swarm of 10 particles, with each particle representing a candidate layout 

determined by the two decisions variables, {θ, α}. At each iteration, for each particle (i.e., 

candidate layout), the Layout Design subroutine creates a rack layout for the specific 

combination of θ and α; the resulting area of floor space and aspect ratio is also calculated. 

If the aspect ratio of this layout is within the maximum limit (ArMAX), then the particle is 

considered feasible and three additional subroutines are called. First, the Location Visibility 

subroutine estimates vl (the probability that location l is seen at least once by the shopper) 

for all locations. Second, the Product Category Placement subroutine then assigns product 

categories to rack locations l for a given location policy (see Section 5.2 for details). 
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Finally, the Product Category Visibility subroutine estimates vp (the probability that 

product category p is seen at least once by the shopper) for all product categories. Finally, 

the objective function is computed for this particle as S(∑ 𝑃𝑝
𝑃
𝑝 𝛵𝑝𝜈𝑝) – C*al.  

The resulting expected marginal impulse profit is compared to the particle’s best 

solution, the neighborhood’s best solution, and the global best solution. The particle’s best 

solution is the best solution of that particle found across all iterations. The neighborhood 

best solution is the best solution found among a finite set of particles, where each particle 

communicates information of its best solution to all particles in its neighborhood. We use 

a nearest neighbor topology of 3 particles, where each particle i shares a neighborhood with 

particles i+1 and i-1 (Kennedy, 2007). This strategy dissuades particles from immediately 

swarming to the first good solution that is found (Kennedy, 2007; Yapicioglu et al., 2007). 

The global best solution, meanwhile, is the best solution found among all particles across 

all iterations.  

3.4.3 Solution Updating 

The particles in our proposed PSO explore the search space while utilizing 

information of their personal history (i.e., particle best) and the history of particles in their 

neighborhood (i.e., neighborhood best). At each iteration t, the dimension d of particle i 

has a position 𝑥𝑖𝑑
𝑡 . This position is based on the particle’s previous position (𝑥𝑖𝑑

𝑡−1) and its 

velocity (𝑣𝑖𝑑
𝑡 ), where 𝑥𝑖𝑑

𝑡  = 𝑥𝑖𝑑
𝑡−1 + 𝑣𝑖𝑑

𝑡 . The velocity is computed using the following 

information across all particles: previous velocity (𝑣𝑖𝑑
𝑡−1), previous position (𝑥𝑖𝑑

𝑡−1), 

personal best solution (𝑝𝑖𝑑), and neighborhood best solution (𝑔𝑖𝑑), as 𝑣𝑖𝑑
𝑡 = 𝐾(𝑣𝑖𝑑

𝑡−1 +

 𝑐1𝑟1(𝑝𝑖𝑑 − 𝑥𝑖𝑑
𝑡−1) + 𝑐2𝑟2(𝑔𝑖𝑑 − 𝑥𝑖𝑑

𝑡−1).  The variables 𝑟1 and 𝑟2 are random numbers, 

uniformly distributed [0,1]. We further let K represent the construction coefficient (Clerc, 
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1999), which assists particles to converge faster. We let 𝑐1 and 𝑐2 be the acceleration 

constants. Per Clerc and Kennedy (2002), we set 𝑐1 = 𝑐2 = 2.05 and K = 0.7298. We 

additionally incorporate limits on velocity for both orientation (𝑉𝑚𝑎𝑥
𝜃 ) and curvature 

(𝑉𝑚𝑎𝑥
𝛼 ), where -180º ≤ 𝑉𝑚𝑎𝑥

𝜃 ≤ 180º and -180º ≤ 𝑉𝑚𝑎𝑥
𝛼 ≤ 180º. These limits are created 

based on the range of feasible values for both θ and α, and are included to prevent the 

particle’s velocity increasing (decreasing) to infinity (negative infinity). In our 

experiments, the PSO is considered ‘converged’ if the global solution does not improve for 

10 successive iterations.  

3.5 Experimental Study 

Having presented our approach to model and solve the ROCP problem, we present 

details of our input data and location policies, followed by an experimental study using our 

PSO.  

3.5.1 Data 

Demand data over a 1-month period was acquired from a U.S. grocery store across 

11,807 products, along with product dimensions (LxWxH), number of assigned shelf 

facings, and designated aisle. The grocer preassigned each product to an appropriate 

product category. Using available price and cost data for 670 of these products, for each 

product category (84 in total) we derived an average cost and price. Average profit for each 

product category was calculated by subtracting average cost from average price. Impulse 

purchase rates for product categories, meanwhile, are based on estimates used in Flamand 

et al., (2016). A table containing attributes for each product category can be found in 

Appendix F. We note that while we use product categories to derive insights in our 
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experimental study, applying our model on a product level would be possible given the 

necessary data. 

3.5.2 Product Category Location Policies 

Our PSO algorithm accepts an assignment of product categories to an aisle and the 

number of 1 ft x 1ft locations on the rack. Splitting of product categories within aisles is 

not allowed. To assign product categories to specific locations (within their respective 

aisle), we developed four location policies based on a location rule (i.e., how attractive is 

each location) and an ordering rule (i.e., in what order should product categories be placed 

into the most attractive locations). The specifics of each location policy are in Table 6. 

Table 6. Location policies. 
 Location 

Policy 

Location 

Rule 

Ordering 

Rule 
Description 

Distance-

Demand 
Distance Demand 

Products categories in order of decreasing demand (within 

each aisle) are assigned to locations closest to the main 

aisle 

Distance-

Impulse 
Distance Impulse 

The product of impulse purchase rate and average unit 

profit (i.e., impulse potential) is found for each product 

category, and product categories are assigned in decreasing 

order to locations closest to the main aisle 

Visibility-

Demand 
Visibility Demand 

Products categories in order of decreasing demand (within 

each aisle) are assigned to locations with the highest 

visibilities (𝑣𝑙) 

Visibility-

Impulse 
Visibility Impulse 

The product of impulse purchase rate and average unit 

profit (i.e., impulse potential) is found for each product 

category, and product categories are assigned in decreasing 

order to locations with the highest visibilities (𝑣𝑙) 

 Demand is widely utilized by both retailers and researchers as an ordering metric 

to place products (or product categories) on shelves; providing shoppers the opportunity to 

easily find the products they are looking for can positively impact shopping experience 

(Richins, 1997). Impulse purchase rate and profit have also been discussed as measures to 

rank products for location decisions (Flamand et al., 2016). We use these two approaches 

as the ordering rules. Evaluating rack locations by distance to the main aisle is the general 
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rule-of-thumb in retail literature (Samli et al., 2005). In contrast, evaluating locations by 

visibility is directly uses our vl measure and is our proposed improvement over the distance 

ordering rule. We, therefore, use both distance and visibility as the location rules. 

We illustrate how our location policies are used through the following example. 

Consider an assortment of products that are grouped into product categories A, B, …, AE 

(see Table 7). Each product category has a preassigned aisle, where an aisle is represented 

by two rack faces (Face D of preceding rack and Face B of the succeeding rack). If there 

is only one rack, we continue to call it an aisle for ease of exposition. Each product category 

is sorted within each aisle based on its total monthly demand (i.e., product category A has 

the highest demand in aisle 1, B has the second highest, and so on). Figure 29 shows how 

these product categories are assigned across the aisles for a given layout based on ordering 

product categories by demand (from here on, the Demand Ordering Rule). Notice how in 

Figure 29 (a) when evaluating locations by distance (from here on, the Distance Location 

Rule), categories with higher demand are placed closer to main aisle. However, moving to 

Figure 29 (b), when evaluating locations by visibility (from here on, the Visibility Location 

Rule) categories with higher demands are placed on Face A (near endcap) and Face B 

(front); these locations have higher visibility than those on Faces C (far endcap) and D 

(back). If ordering product categories by impulse (from here on, the Impulse Ordering Rule), 

this would simply require categories to be sorted based on their impulse potential (i.e., 𝑃𝑝 ∗

𝛵𝑝) instead of demand. 
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Table 7. Example product category assignments. 

Aisle Rack 
Assignment using Distance 

Rule 

Assignment using  

Visibility Rule 

1 1 A,B,C,D,E,F A,B,C,D,E,F 

2 1 I,K,M K,L,M,N 

2 2 G,H,J,L,N G,H,I,J 

3 2 S,U,W,Y V,W,X,Y 

3 3 O,P,Q,R,T,V,X,Z O,P,Q,R,S,T,U 

4 3 AA,AB,AC,AD,AE AA,AB,AC,AD,AE  

 

 

 

 

 

 

 

 

 

3.5.3 PSO Evaluation 

 For our experiments, we consider a store section with realistic parameters 

summarized in Table 8. Using these, we first evaluated the performance of our proposed 

PSO approach 

against a Grid 

Search 

approach across 

each product 

category 

Table 8. Baseline (realistic) parameters of a store section 

 

 

Notation Definition Value 
N Number of full length racks (right 

and left) 

3 
 Ac and Aw Width of cross aisle and main aisle  8 ft and 10 ft 

Am Shopper distance to racks 5 ft 
M,W, and 

H 

Rack perimeter, width, and height 110 ft, 5 ft, and 

7 ft DOV Depth of focused vision 50 ft 
SE Shopper eye height 5 ft 
𝜌 Eye fixations per second 3.33 fps 
𝜔 Shopper walking speed 3.33 ft/s 

Lh  Lw Size of the rack location 

(heightwidth) 

1 ft  1 ft 

Figure 29. Illustration of location policies.  

Darker shaded squares represent more attractive locations based on the respective location 

rule. 
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location policy for both uni-directional and bi-directional traffic (total of 8 configurations). 

For Grid Search, we evaluated combinations of θ and α both in increments of 10º and 

present the best solution. We then used our proposed PSO, and similarly present its best-

found solution.  

We assumed shopper volume (S) to be 5,000 shoppers per day, store is operational 365 

days a year, annual floor space cost (C) is $50/ft2, and the maximum aspect ratio is set to 

2. We also set ρ to 3.33 fixations per second, which is between 2-4 as suggested by Yarbus 

(1967). With walking speed set at 3.33 ft/s, this works out to a shopper being able to have  

 one fixation every 1 ft, allowing us to evaluate vly every 1 ft.  

 Columns A – C outline the 8 combinations, by traffic direction, location rule, and 

ordering rule. Column D indicates the solution approach. Column E presents the best layout 

found (combination of θ and α) using each approach, while Column F lists the marginal 

profit associated with the best layout. For values obtained from our PSO, we include the % 

increase from the best solution found by the Grid search approach. Column G lists the 

Table 9. Best solutions from PSO and Grid Search. 
A B C D E F G H 

Traffic 

Direction 

Location 

Rule 

Ordering 

Rule 

Solution 

Approach 

Best layout Marginal Profit 

(Objective) 

% Diff from  

{90°,0°} 

Time 

(min) 
 α 

U
n

i-
d

ir
ec

ti
o
n

al
 

Distance 

Demand 
Grid Search 20.0° -180.0° $14,013,546 205% 3942 

PSO 23.3° 0.0° $15,283,451 (9.1%) 233% 1154 

Impulse 
Grid Search 30.0° 70.0° $24,825,046 55% 3942 

PSO 27.4° 60.5° $25,116,899 (1.2%) 57% 2385 

Visibility 

Demand 
Grid Search 20.0° -180.0° $14,453,179 162% 3430 

PSO 17.7° -180.0° $15,002,593 (3.8%) 172% 998 

Impulse 
Grid Search 30.0° 80.0° $26,324,982 67% 3430 

PSO 27.8° 77.5° $26,703,069 (1.4%) 70% 1087 

B
i-

d
ir

ec
ti

o
n

al
 Distance 

Demand 
Grid Search 160.0° 180.0° $16,275,450 106% 4071 

PSO 27.8° 73.8° $16,718,756 (2.7%) 112% 468 

Impulse 
Grid Search 160.0° 180.0° $24,954,502 22% 4071 

PSO 162.3° 180.0° $25,021,508 (0.3%) 23% 461 

Visibility 

Demand 
Grid Search 160.0° 180.0° $16,365,303 112% 3565 

PSO 162.2° 180.0° $16,807,371 (2.7%) 118% 2337 

Impulse 
Grid Search 30.0° 60.0° $25,751,308 29% 3565 

PSO 25.4° 23.3°  $26,121,297 (1.4%) 31% 1980 

 



71 
 

relative increase in marginal profit from a {90°,0°} layout for that particular combination 

of traffic direction, location rule, and ordering rule. Finally, Column H contains the time 

for each solution approach.  

It is clear from Column F that our proposed PSO approach was able to achieve 

solutions that out-performed the Grid Search in substantially less time (in column H). A 

closer look at the values of best {θ,α} from both these solution approaches (Column E) 

suggests that while the PSO is able to obtain the best values close to the Grid Search values, 

there are instances where the best layouts between them are substantially different. For 

instance, for bi-directional traffic, considering the Distance-Demand policy, the best 

layouts were {160°,180°} and {27.8°,73.8°} for the Grid Search and PSO approaches, 

respectively. We attribute these differences to the coarseness of the grid (i.e., 10°10°) and 

the structure of the solution space. As we discuss later, marginal profit tends to increase as 

θ tends away from 90° towards both acute (until 0°) and obtuse (until 180°) orientations; 

so there exist nearly supplementary values of orientation (θ) with similar objective values. 

For the results in this table, we used a maximum aspect ratio of 2, which removed extremely 

acute (<17.7º) and obtuse (>162.3º) orientations; aspect ratio is also dependent on 

curvature however, so the cutoff point is slightly closer to 90° for smaller values of α.  So 

in the instance called out above, the {160°,180°} layout was the only layout from our grid 

search with θ=160º that had an aspect ratio under 2 (i.e., 1.95). If we had set ArMAX to say, 

1.9, then the new best layout from our grid search for this instance would be {30°, 70°}, 

much closer to the best solution from the PSO (i.e., {27.8°,73.8°}). 

Further, we note that some PSO solutions had alternative solutions within 1% 

marginal impulse profit from the best solution that had nearly supplementary values of ; 
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the values of  and α are bolded in Table 9 for these instances. For our study, it is intuitive 

that these instances all occurred for bi-directional traffic, where layouts had to tailor to a 

shopper’s field of regard in both directions.  Uni-directional cases however all exhibit acute 

orientations as best solutions; this is consistent with prior literature that suggests acute 

orientations are more align with a shopper’s field of regard.  

Given the ability of our proposed PSO to achieve better solutions in quick time, we 

use it in all subsequent experiments as our primary solution approach. We do utilize the 

Grid Search approach to provide visual evidence of specific observations in Section 6.6. 

5.4 Sensitivity of Ordering Rules and Location Rules 

Considering the solutions in Table 9 derived from our PSO, we now discuss key 

observations related to the four 

location policies: 

 Obs 1: When using the 

Impulse Ordering Rule, the most 

appealing layouts have a 

relatively large percentage of 

locations with high vl; however 

when using the Demand Ordering 

Rule, layouts with a relatively 

large percentage moderate vl 

locations are more appealing. 

We make our case for this observation by first introducing four general layouts 

noticed from Table 9, and subsequently presenting each layout’s unique distribution of 
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squares indicate higher values of vl. 
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visibilities (i.e., vl). Utilizing these details, we will then connect each ordering rule to the 

type of layout that best suits it. 

The four general layouts exhibited in Table 9 (from the PSO solutions) are 

illustrated in Figure 30, where shoppers are labeled to represent either uni- or bi-directional 

traffic; i.e., the combination of shoppers 2 and 2′ represent bi-directional traffic for layout 

2, whereas 2 and 2′ individually represent uni-directional traffic. Layout descriptions are 

labeled with respect to shoppers 1-4. For instance, layout 4 is labeled as high-obtuse, high-

curved considering shopper 4, while it is also high-acute, high-curved (negative) for 

shopper 4′. We define high-acute and high-obtuse racks as those with θ values in the range 

[1°,35°] and [145°,179°], respectively. Values of α, meanwhile, are classified by straight: 

α=0°, low: α=[1°,30°], medium: α=[31°,90°], and high: α=[91°,180°].  

  After identifying the general layouts from Table 9, we examined each layout’s 

distribution of vl values, as these values ultimately determine impulse profit (i.e., recall that 

vp used in the objective function is derived from vl ). Table 10 outlines the distribution for 

each of the layout types introduced above, in addition to a straight and orthogonal (i.e., 

{90°,0°}) layout for comparison purposes. For each layout, we list the percentage of 1ft1ft 

locations that fall within the specified range of vl. Gray scale is specific by range and by 

traffic direction along each row. Darker shades have a different meaning for the dotted and 

solid cells that indicate vl; for rows with solid lines, darker refers to higher % of visible 

locations (preferred), while for rows with dotted lines, darker shade indicates lower % of 

locations with low visibility (also preferred). For instance, layouts with a higher percentage 

of locations with vl < 1% is less preferred (considering impulse profit) than layouts with a 

lower percentage.  
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Table 10. Comparing the distribution of vl of top performing layouts against {90°,0°}. 

Traffic Direction Uni-directional Bi-directional 

Layout Type 

(Shopper) 
N/A 1(1) 3(3) 4(4′) N/A 2 3 4 

Orientation 
Orthogon

al 

High-

Acute 

High-

Acute 

High-

Acute 

Orthogona

l 

High-

Acute 

High-

Acute 

High-

Obtuse 

Curvature Straight Straight Medium 
High 

(negative) 
Straight Low Medium High 

vl > 0.20 0.10% 0.10% 1.20% 0.20% 0.00% 0.10% 1.50% 0.00% 

0.15 < vl < 0.20 0.60% 0.40% 2.00% 0.80% 0.30% 0.70% 0.80% 0.30% 

0.10 < vl < 0.15 0.80% 1.10% 2.30% 1.20% 1.00% 2.00% 3.80% 0.90% 

0.05 < vl < 0.10 2.40% 3.50% 4.10% 2.80% 1.70% 6.40% 5.60% 2.50% 

0.01 < vl < 0.05 10.60% 26.20% 15.90% 27.00% 11.50% 19.80% 15.90% 40.70% 

vl < 0.01 85.50% 68.60% 74.40% 68.00% 85.50% 70.90% 72.40% 55.60% 

 

   

 From Table 10, we find layouts 2 and 3 offer a (relatively) large percentage of 

locations with high visibility (i.e., vl > 0.05), while layouts 1 and 4 offer a (relatively) large 

percentage of locations with moderate visibility (i.e., 0.01 < vl < 0.05). For instance, 9.6% 

of locations in layout 3 (shopper 3) have high visibility, compared to 5.1% in layout 1 

(shopper 1). Meanwhile, layout 1 (shopper 1) exhibits 26.2% of locations with moderate 

visibility compared to 15.9% for layout 3 (shopper 3). Orthogonal and straight racks (i.e., 

{90°,0°}), in comparison, have a relatively small percentage of locations with either high 

or moderate visibility; 85.50% of locations for this layout (both traffic types) have low 

visibility (i.e., vl < 0.01). 

 Now going back to Table 9, we find that combinations using the Impulse Ordering 

Rule generally result in layouts 2 or 3 (i.e., relatively large percentage of locations with 

high visibility) as the best solution. Although the combination of the Distance-Impulse 

policy with bi-directional traffic resulted in layout 4 as the best solution from PSO, a layout 

3 solution exists that is within 1% (as noted by the bold font). On the other hand, 

combinations using the Demand Ordering Rule generally result in layouts 1 or 4 (i.e., 

Darker shades indicate higher 

% values (i.e., preferred) 

Darker shades indicate lower % 

values (i.e., preferred) 
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relatively large percentage of locations with moderate visibility) as the best solution from 

PSO. Similarly, while the best solution for the combination of the Distance-Demand policy 

with bi-directional traffic is layout 3, a layout 4 solution exists that is within 1% (i.e., bold 

font).  

 We attribute these pairings (i.e., Impulse Ordering Rule → layouts 2 & 3 and Demand 

Ordering Rule → layouts 1 & 4) to how each rule locates product categories with high 

impulse potential (i.e., 𝑃𝑝 ∗ 𝛵𝑝).  For the Impulse Ordering Rule, these categories are assigned 

to the most attractive locations (i.e., high vp or closer to the main aisle). Because the 

expression for expected impulse profit per shopper (i.e., ∑ 𝑃𝑝
𝑃
𝑝 𝛵𝑝𝜈𝑝) directly uses vp (which 

is derived from vl), it is intuitive that having a large percentage of locations with high 

visibility to accommodate categories with high impulse potential will benefit impulse 

profit. When using the Demand Ordering Rule, however, layouts with a large percentage of 

locations with moderate visibility are appealing because this rule assigns high demand 

items to the most attractive locations. So if the demand and impulse potential among 

product categories are uncorrelated (or negatively correlated), as observed in the data we 

collected (correlation=-0.2), then a substantial portion of product categories with high 

impulse potential will most likely be placed in less attractive locations per the Demand 

Ordering Rule. What we observed is that if these locations have moderate visibility (i.e., 

0.01 < vl < 0.05) to expose these product categories with high impulse potential to the 

shopper, then a relatively high impulse profit can be sustained. For instance, a product 

category that takes up, say, 21 1x1 locations each with vl=0.03 will have a vp=0.47 (derived 

from the Poisson binomial distribution) probability of being seen by the shopper at least 

once throughout the path.   
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 Obs 2: In absolute terms, the Impulse Rule results in the highest marginal impulse 

profit; however, in relative terms, the Demand Rule results in the highest percentage 

increase in profit (from {90°,0°}). 

 From Column F in Table 9, on average (across all 4 combinations), the Impulse 

Ordering Rule resulted in an (absolute) marginal impulse profit of $25,740,693; this was 

61% greater than the Demand Ordering Rule at $15,953,043. Considering the relative 

increase in marginal profit (from a {90°,0°} layout), the Demand Rule averaged a 159% 

increase (maximum 233%), while the Impulse Rule was only at 45% (maximum 70%).  

 Our finding considering absolute marginal impulse profit is consistent with existing 

literature (e.g., Flamand, 2016) that suggests there are benefits for assigning product 

categories with high impulse potential to the most attractive locations, as matching these 

categories to locations with high vl with benefit the objective function. In fact, considering 

only {90°,0°} layouts, the Impulse Ordering Rule produced marginal impulse profits 188% 

(on average across both location rules and traffic directions) higher than the Demand 

Ordering Rule. Placing product categories with high impulse potential in less attractive 

locations (as in the Demand Rule) significantly reduces their visibility (i.e., vp), in some 

cases to 0. While retailers may prefer to place high demand product categories in more 

visible locations to allow shoppers to easily find planned purchases, this is not an attractive 

option considering the negative impact on impulse profit. 

 For relative marginal profit, the Demand Ordering Rule outperformed the Impulse 

Ordering Rule due to the substantial increases in vp for product categories with high impulse 

potential gained from varying θ and α from {90°,0°}. Recall, categories with high impulse 

potential are often placed in less attractive locations when using the Demand Ordering Rule; 
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these are usually farther from the main aisle and/or on the back side of racks for a {90°,0°} 

layout. Since less than 15% of locations have vl above 0.01 for a {90°,0°} layout (from 

Table 10), categories with high impulse potential generally have a low, if not zero 

probability of being seen by shoppers. When varying θ and α, however, these same 

locations can become much more visible (because of greater effective area of the product 

facing visible to the shopper and extended duration of exposure), thereby substantially 

increasing the impulse profit gained from these product categories and overall marginal 

impulse profit. Both policies using the Impulse Ordering Rule, on the other hand, realize less 

benefits from variations in θ and α because these policies already place potentially 

profitable product categories in attractive locations for a {90°,0°} layout; although 

manipulating θ and α increases marginal profit, it is not as high as the Demand Ordering Rule 

(45% vs. 159%).  

 Observation 3. The Distance Location Rule can be limiting compared to the Visibility 

Location Rule. 

 While it is true for a {90°,0°} layout that locations closer to the main aisle have 

higher visibility than those farther away, this rule-of-thumb is often violated in layouts with 

high-curved and high-acute racks or straight and high-obtuse racks. For such layouts, there 

are locations that are farther from the main aisle with higher visibilities than locations 

closer to the main aisle. Further, it is often the case (e.g., {90°,0°}) where all visibilities on 

the front face (i.e., Face B) of racks are higher than those on the back (i.e., Face D). In both 

scenarios, using the Distance Location Rule will not always assign product categories (using 

either ordering rule) to locations with the highest visibilities. This limitation becomes 

prominent when using the Impulse Ordering Rule, as the Visibility Location Rule can directly 
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assign product categories with the highest impulse potential to locations with the highest 

visibilities (independent of distance to the main aisle). This ultimately resulted in the best 

solutions from Visibility Location Rule to perform, on average across both traffic directions, 

5% (6% uni-directional, 4% bi-directional) better than those using the Distance Location 

Rule.  

 3.5.5 Aspect Ratio Sensitivity 

We acknowledge that some retailers may require a smaller aspect ratio (ar= 

length/width or Le/Wi) of the store section considering overall store dimensions, location 

of adjacent store sections, customer travel paths, and replenishment policies. We, therefore, 

evaluated the sensitivity of the PSO solutions to allowable ArMAX (maximum aspect ratio) 

by varying it between 0.27 to 2.0 in increments of 0.25; in our experiments, 

ar=L/W=31/114=0.27 for the {90°,0°} layout. Figure 31 displays the best values 

corresponding to these intervals for each location policy and traffic direction. We let 

S=5,000 shopper/day and C = $50/ft2. We also depict the relative increase in marginal profit 

with respect to {90°,0°} through the size of each bubble.  

Based on the findings in Figure 31, we make the following observation: 

Obs 3: As the allowable aspect ratio (ArMAX) increases, the best layouts generally 

tend towards (i) either high-acute or high-obtuse orientations and (ii) large curvatures.  

Since the {90°,0°} layout provides the minimum aspect ratio, any variation in either 

curvature or orientation will result in a higher aspect ratio. However, increasing curvature 

has a much smaller effect on aspect ratio than varying the orientation from 90°. For 

instance, the layout {90°,180°} has an aspect ratio of 0.84, while {30°,0°} has an aspect 

ratio of 1.46; i.e., a change of curvature from 0° to 180° (when θ=90°) increases aspect 
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ratio by 0.57, while varying orientation by 60° (i.e., from 90° to 30° when α=0°) increases 

aspect ratio by 1.19. This phenomenon ultimately results in high-acute (and obtuse) 

orientations becoming infeasible for tighter constraints on aspect ratio, while high-curved 

racks oriented closer to 90° continue to remain feasible.   

 

Figure 31. Sensitivity of the solutions to the ArMAX constraint.  

Larger circles indicate higher relative increase in marginal profit from {=90°, =0°}.  

That being said, initially as ArMAX increases from 0.27, we notice the best values of 

θ slowly begin to deviate from 90°, while the best values of α rapidly increase from 0°; i.e., 

at ArMAX = 0.75, the best values of α are considered high-curved for all scenarios in Figure 

11, while the best values of θ are within 20° of 90°. As ArMAX approaches 2, however, the 

best values of α vary (some decrease, others approach 180°) and values of θ continue to 

move away from 90°. If we relax the aspect ratio constraint (i.e., ArMAX→), then θ would 

approach either 0° or 180°. We attribute these convergence patterns to the longer shopping 

paths associated with such long, skinny, layouts; longer paths result in overall higher 

visibility of layouts. A real-world example would be the serpentine layout implemented by 
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retailers such as IKEA. Thus, given the option, it might be beneficial to the retailer (in 

terms of impulse profit) if they were to implement a layout design that allows a longer 

window of visibility to the shoppers to view products. However, there is indeed a tradeoff 

with considerations such as shopper walking distance (i.e., shoppers prefer not to walk too 

far for products) and product replenishment (i.e., replenishment is more efficient with 

compact layouts). It is, thus, critical for the retailer to determine an appropriate value for 

allowable ArMAX while balancing the above considerations aspects against marginal profit. 

3.5.6 Sensitivity to Space Cost and Shopper Volume 

Incorporated into our objective function is the annual volume of shoppers and the 

annual cost of floor space. It is intuitive that higher shopper volume will increase marginal 

impulse profit and higher floor space costs will decrease marginal impulse profit. In this 

section, however, we explore the effect of these two parameters on the best values of θ and 

α, and the resulting relative change in marginal impulse profit (from {90°,0°}). Figures 32 

and 13 display results for uni-directional and bi-directional traffic across two shopper 

volumes of 500/day and 5,000/day, and two floor space costs of $50/ft2 and $200/ft2. The 

values of S used are based on the average daily foot traffic across drug, grocery, 

convenience, and grocery stores (Walmart, 2018; DistribuTech, 2014); we use 500 and 

5000 to provide a reasonable range. Floor space costs, meanwhile, are based off of 

estimates for suburban and high-end urban areas. The best layouts for each combination 

derived using the PSO are indicated (with a black star) along the spectrum of solutions 

derived using the Grid Search. The ArMAX constraint was set to 2. Only results for the 

Visibility-Impulse location policy are shown. 
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Figure 32. Sensitivity of floor space cost and shopper volume (uni-directional traffic).  

Large markers indicate layouts within the aspect ratio limit (2). Black stars are best solution from PSO. 

 

Figure 33. Sensitivity of floor space cost and shopper volume (bi-directional traffic).  

Large markers indicate layouts within the aspect ratio limit (2). Black stars are best solution from PSO. 
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The following can be observed from these results. 

Obs 4: As shopper volume increases and floor space cost decreases, orienting (θ) 

and curving (α) racks lead to increased benefits over a {90°,0°} layout.  

Our results show that the relative increase in marginal profit (from {90°,0°}) with 

uni-directional traffic increased from 35% to 70% as shopper volume increases and floor 

space cost decreases (Figure 32); the increase for bi-directional traffic was from 2% to 30% 

(Figure 33). We attribute this to the impact of a layout’s floor space on the objective 

function. Recall in Observation 1 where we discussed how high-acute and straight-to-

medium-curved racks allowed for either relatively high quantities of premium locations 

(i.e., vl > 0.10) or moderately appealing locations (i.e., 0.01 < vl < 0.05); these layouts 

resulted in the highest marginal impulse profits even though they have higher floor space 

requirements (e.g., {28º,78º} has a 116% higher floor space requirement than {90º,0º}). 

As S decreases and C increases from S=5000 shoppers/day and C=$50/ft2 (used in our 

experiments for Observation 1), these layouts continue to remain attractive (though to a 

lesser extent) because of the dominance of impulse profit in the objective function. In other 

words, these layouts provide such a high gain in impulse profit (from allowing shoppers 

the ability to view product categories with high impulse potential for extended durations 

of their path) that the higher costs associated with increased floor space are offset.  

Only under circumstances when S is low and C is high does the floor space cost 

component of the objective function begin to notably impact the objective function, as the 

layout with the least space requirement (i.e., {90º,0º}) becomes moderately attractive. Even 

under this scenario (i.e., low shopper volume, high floor space cost), however, a high-acute 

straight rack layout (i.e., {23°,0°}) is still attractive (but only by 2%) than the {90°,0°} 
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layout for bi-directional traffic; a tighter allowable aspect ratio (say, Ar=1.75 compared to 

Ar=2.0)) would result in {90°,0°} becoming the best layout. A similar situation arises for 

uni-directional traffic for which the best solution (when S=500 and C=$200/ft2) is a layout 

with {90°,180°} racks. Observing the Grid Search solutions for this shopper volume/floor 

space cost combination in Figure 32, however, we found that there were several high-acute 

rack layouts with similar relative marginal profit values. 

3.6  Conclusions 

A wide variety of new rack designs are being implemented in retail stores. However, 

to date no study has quantitatively evaluated their impact on impulse profit. Our research 

proposed the Rack Orientation and Curvature Problem (ROCP) and a corresponding 

optimization model to identify the best rack layout (i.e., orientation and curvature) that 

maximizes marginal impulse profit (discounting floor space cost) from a fixed assortment 

of product categories. To derive impulse profit, we modeled the dynamics of a shopper 

walking down the main aisle past a layout of racks to estimate a probabilistic visibility 

measure for product categories. We considered the effective area of product category 

facings, a distribution of head positions from a human study, and a binary exposure 

estimate. To place product categories on rack locations, we used four different product 

category location policies, as a combination of a location rule (e.g., distance and visibility) 

and an ordering rule (e.g., demand and impulse). 

 The key finding from this Chapter is that orienting and curving racks (from 

common orthogonal and straight racks) can result in increased marginal profit; our 

experiments suggested at maximum 70-233% depending on the location policy used to 

place product categories. The values of orientation (θ) and curvature (α) that resulted in the 
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best marginal impulse profits were either high-acute and straight-to-medium-curved, or 

high-obtuse and high-curved. These layouts either contained a relatively large percentage 

of highly visible locations (ideal when using the Impulse Ordering Rule), or racks with a 

relatively large percentage of moderately visible (ideal when using the Demand Ordering 

Rule).  

We propose the models presented in this Chapter will benefit retailers substantially 

as they can quantitatively evaluate new rack designs and layouts, avoiding expensive trial-

and-errors. Further, we advocate our insights considering sensitivity of location policy, 

traffic direction, shopper volume, maximum aspect ratio, and floor space cost will serve as 

guidelines retailers and researchers can refer to for future research.  
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4  Conclusions and Future Research 

Product exposure is an important element in a retail store, as shoppers only buy (or 

consider buying) what they see. Designing a layout of racks that better aligns with (and 

even utilizes) the scanning tendencies of shoppers is key to maximizing shopper 

satisfaction and a retailer’s revenue. Our research analyzed how varying several rack 

design parameters affected exposure and impulse profit; these designs were motivated by 

layouts we have seen in nearby retailers and online. Researchers can use our models as a 

foundation to formulate larger, more detailed models to address additional decision 

variables such as height, product location, and number of product facings. Practitioners can 

use our insights as a guideline for exploring and evaluating new rack layouts and product 

locations policies.  Below we summarize the contributions of this research.  

4.1 Summary of Contribution 1  

We proposed a quantitative approach, which combined analytical (dynamically 

evolving geometrical relationships) and numerical methods (e.g., Reimann Sum, 

approximation algorithms) to estimate exposure (continuous area) in 3D as a shopper 

walked down the main aisle past a layout of racks. Further, at discrete shopper steps, we 

evaluated if each discrete rack location was exposed (binary); thus, we were able to derive 

the number of steps (or time) of exposure for each location (i.e., intensity). We also 

conducted an experimental study where we analyzed how 3 key design parameters (i.e., 

orientation, curvature, and height) affected exposure and intensity. The experimental 

results revealed the following:  
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• When the racks are required to be oriented orthogonally to the shopper travel (i.e., 

θ=90), use of curved racks in the layout could increase exposure (by 3-121%) over 

straight racks (α=0).  

• If such curved racks can be placed at any orientation, then there exist layouts that 

would further increase exposure (by 18-321%) over straight racks at 90º. If curved 

racks are not viable, then there exist orientations with straight racks that allow 

achieving nearly this same increase in exposure. 

• If the rack height (H) can be changed, then it dominates both orientation (θ) and 

curvature (α) in impacting exposure; rack heights just below eye-height appear to 

maximize exposure when the top of the rack is allowed for product allocation (and 

thus considered as exposed). 

• The increase in exposure comes with a floor space tradeoff. Depending on the system 

parameters, it is possible to achieve nearly 530% increase in exposure with 18% floor 

space increase; 48% increase in exposure with a modest increase in space (<5%).  

4.2 Summary of Contribution 2  

We proposed the Rack Orientation and Curvature Problem (ROCP) and a 

corresponding optimization model to maximize marginal impulse profit by determining 

(near) optimal values of rack orientation and curvature. Marginal impulse profit was 

derived by subtracting the cost of floor space from the impulse profit obtained from 

shoppers as they walked past a layout of racks. Included in the ROCP is a novel 

probabilistic visibility measure that is derived from the effective area of rack locations, a 

distribution of real shopper head movements, and binary exposure estimates from 

Contribution 1. Due to the complexities in solving this model optimally, we developed a 
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particle swarm optimization approach (PSO) and demonstrated its performance against the 

Grid Search method. Using the PSO, we conducted an experimental study and evaluated 

the sensitivity of the optimal solution to product category location policy, maximum aspect 

ratio, shopper volume, direction of travel, and floor space cost. Below are the key insights 

from this study: 

• Varying rack orientation (θ) and curvature (α) from orthogonal and straight racks can 

improve marginal impulse profit by 70-233% depending on the location policy for 

product categories. 

• The values of orientation (θ) and curvature (α) that resulted in the best marginal 

impulse profits were either high-acute and straight-to-medium-curved, or high-obtuse 

and high-curved. These layouts either contained a relatively large percentage of 

highly visible locations (ideal when using the Impulse Ordering Rule), or racks with a 

relatively large percentage of moderately visible (ideal when using the Demand 

Ordering Rule).  

• The Impulse Rule generally leads to higher absolute marginal profit, while the Demand 

Rule demonstrated a higher relative increase in marginal profit compared to a layout 

with orthogonal and straight racks.  

• The best values of θ trend toward either high-acute or high-obtuse as the tolerable 

aspect ratio increases; this increases the time a shopper can see locations on racks. 

The best values of α meanwhile generally increase.  

• As shopper volume increases and floor space cost decreases, orienting (θ) and 

curving (α) racks lead to increased benefits over a {90°,0°} layout. 
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4.3 Future Research 

There are many future extensions this research could lead to. While we only derived 

a distribution of head position for a {90,0} layout, it would potentially be beneficial to 

derive more distributions for varying values of θ and α. In a human subjects study, Guthrie 

et al., (2018) found that shopper scanning patterns were dependent on the layout (e.g., more 

obtuse layouts resulted in larger head movements). Thus, using a more realistic distribution 

of head positions for varying layouts (from {90°,0°}) would allow for more precise results. 

However, since these studies are time consuming, methods of interpolation and 

extrapolation between values of θ and α would need to be considered.  

 Investigating optimal human scanning patterns would also be an interesting 

domain. We noticed during the human subjects study that nearly every participant adapted 

to alternative layouts by modifying their head movement (scanning pattern). That is, what 

they preferred for a {90°,0°} layout was quite different from what they preferred for 

{45°,0°} or {135°,30°}. While understanding the characteristics of the best scanning 

pattern among these participants can lead to interesting findings, identifying an optimal 

scanning pattern for a given layout and benchmarking them against participant data could 

reveal novel insights.  

 Considering extensions to our ROCP, a logical next step would be to incorporate 

the location of product categories as a decision variable to jointly optimize it with rack 

orientation and curvature. The resulting increase in complexity will require more 

sophisticated heuristic approaches. While including product assortment and shelf space 

allocation as decision variables would be viable, it will further increase the complexity 

within the model and the solution approach. If an efficient solution approach can be 
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developed building upon our work, then it would further tie together retail layout and 

category planning domains, essentially incorporating retail layout decisions into already 

well-studied category planning models.  

Further, in the ROCP, we assumed the height of racks to be a fixed parameter; i.e., 

7 ft (2 ft above eye-height) for our experimental study. In reality, retailers have a wide 

variety of heights in their fixture assortment. In some cases, rack heights are even staggered 

(in increasing heights) in a single section of a layout. Introducing height (as either a varying 

parameter or a decision variable) could lead to interesting questions: Which rack heights 

are the best (in terms of impulse profit) considering an average shopper height? Should 

rack heights be staggered in a layout? If placing products on the top surfaces of racks is 

feasible, which products should be placed there? Addressing these, and similar questions, 

would be an interesting path to pursue.  
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Appendices 

Appendix A. Determining the Distance lr  

 Recall that before we estimate exposure and intensity, we need to design the layout 

of curved racks with appropriate aisle spaces. Recall that we use ac as the minimum cross-

aisle distance between the racks and that we introduce lr as the linear distance between 

endcap midpoints on subsequent racks (n and n+1) measured in the direction of shopper 

travel (y-direction). To determine lr, we need to first find which face on racks n and n+1 

will produce the minimum distance; i.e., the minimum distance between racks n and n+1 

will occur between face fn and fn+1. These faces will change based on values of θ and α.   

 Including faces A-D, the number of possible combinations of faces would be 16 

(i.e., all combinations of 4 faces on racks n and n+1). However, we can immediately 

eliminate all combinations that include face B (since this face curves inward, and thus 

geometrically cannot be the closest face to a subsequent rack), as well as combinations that 

include like endcap faces (e.g., face A of rack n cannot be paired with face A of rack n+1). 

These eliminations leave us with 7 possible combinations where the minimum distance (ac) 

may occur. Figure A1(a) illustrates all 7 combinations, where line segments are drawn 

between the center of curvatures of each respective face; if a feasible ac were to occur 

between any two faces, it would fall on a connecting line segment. 
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Figure A1. Determining combination that produces minimum distance between racks (a) 

7 possible combinations (b) feasible combination for this example 

We also derived the following 4 rules that eliminate other infeasible combinations of 

faces on racks n and n+1 to consider: 

1. For either faces An and Cn to be feasible, they must be facing ‘upward’ (i.e., -90° 

≤ 𝜃𝐴,𝐶 ≤ 90° ) , and  𝑌𝐴(𝐶),𝑛 ≥ 𝑌𝐶(𝐴),𝑛 

2. For either faces An+1 and Cn+1 to be feasible, they must be facing ‘downward’ (i.e., 

90° ≤ 𝜃𝐴,𝐶  𝑜𝑟 𝜃𝐴,𝐶 ≤ −90°) and (𝑌𝐴(𝐶),𝑛+1) ≤  (𝑌𝐶(𝐴),𝑛+1). 

3. For face Dn to be feasible, 0° ≤ 𝛼 ≤ 180°. 

4. For face Dn+1 to be feasible, −180° ≤ 𝛼 ≤ 0°. 

 To illustrate the above approach, consider Figure A1(a). Since face An is facing 

‘downward,’ combinations (An, Cn+1) and (An, Dn+1) are infeasible. Similarly, face Dn+1 is 
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infeasible as α > 0, and so combinations (Cn, Dn+1) and (Dn, Dn+1) are infeasible. Face Cn is 

also facing ‘downward,’ and thus (Cn, An+1) is eliminated. Finally, combination (Dn, Cn+1) 

is eliminated as (𝑌𝐶,𝑛+1) ≥  (𝑌𝐴,𝑛+1). Combination (Dn, An+1) is, therefore, the only 

feasible combination. Figure A1(b) illustrates the line segment connecting the center of 

curvatures of this combination, with the bold portion representing the feasible ac.  

We note that there may be specific combinations of θ and α that result in more than 

one combination being feasible following the above procedure. In these cases, we perform 

addition feasibility checks to see if the line segments connecting pairs of center of 

curvatures pass through the physical part of another face, or a non-physical part of a self-

face. We explain these checks using Figure A2. Here, both combinations (Cn, An+1) and 

(Dn, An+1) are feasible after the above procedure. However, the line segment connecting 

the center of curvatures of Cn and An+1 passes though both the physical part of face Dn and 

the non-physical part of face Cn (i.e., through the imaginary part of the face C circle, which 

is actually part of face D). In other words, the distance between these two racks from the 

line segment is actually between faces Dn and An+1. The other combination, (Dn, An+1) 

meanwhile, passes these two checks.  

 Once the feasible combination of face fn and fn+1, is found we can calculate the 

corresponding value of lr that determines the distance along the y-axis between two 

subsequent endcap midpoints. Figure A3 illustrates the parameters to be used in the 

equation to find lr (combination (Dn, An+1)). Table A1 summarizes equations for all 7 

potential combinations, which are used when the corresponding face combination becomes 

feasible in certain layouts.       
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Table A1. Expressions to calculate lr 

Face 

Combination 
Expression to calculate lr 

(Dn, Dn+1) √4(r + 
𝑤

2
)
2

 +  4𝑎𝑐 (r + 
𝑤

2
) + 𝑎𝑐

2  

(An, Dn+1) √
(r + 

𝑤

2
)
2

+ 2(r + 
𝑤

2
) (
𝑤

2
) + 2 𝑎𝑐 (r + 

𝑤

2
) + (

𝑤

2
)
2

+  2 𝑎𝑐 (
𝑤

2
) + 𝑎𝑐

2

−(𝑋𝐴,𝑛) 
2 − (𝑋𝐷,𝑛) 

2 + 2(𝑋𝐴,𝑛)(𝑋𝐷,𝑛) + (𝑌𝐴,𝑛) − (𝑌𝐷,𝑛)
 

(Cn, Dn+1) √
(r + 

𝑤

2
)
2

+  2 (r + 
𝑤

2
) (
𝑤

2
) +  2𝑎𝑐 (r + 

𝑤

2
) + (

𝑤

2
)
2

+  2 𝑎𝑐 (
𝑤

2
) + 𝑎𝑐

2

− (𝑋𝐶,𝑛) 
2  −  (𝑋𝐷,𝑛) 

2  +  2(𝑋𝐶,𝑛)(𝑋𝐷,𝑛)  + (𝑌𝐶,𝑛) − (𝑌𝐷,𝑛) 
 

(Dn, An+1) √
(r + 

𝑤

2
)
2

 +  2 (r + 
𝑤

2
) (
𝑤

2
) +  2 𝑎𝑐 (r + 

𝑤

2
) + (

𝑤

2
)
2

+  2 𝑎𝑐 (
𝑤

2
) + 𝑎𝑐

2

− (𝑋𝐴,𝑛) 
2  −  (𝑋𝐷,𝑛) 

2  +  2(𝑋𝐴,𝑛)(𝑋𝐷,𝑛) − (𝑌𝐴,𝑛)  + (𝑌𝐷,𝑛)
 

(Cn, An+1) √
4(
𝑤

2
)
2

+ 4𝑎𝑐 (
𝑤

2
) + 𝑎𝑐

2 −  (𝑋𝐴,𝑛) 
2

−(𝑋𝐶,𝑛) 
2  +  2(𝑋𝐴,𝑛)(𝑋𝐶,𝑛) + (𝑌𝐶,𝑛)  − (𝑌𝐴,𝑛) 

 

(Dn, Cn+1) √
(r +

𝑤

2
)
2

+ 2(r + 
𝑤

2
) (
𝑤

2
) + 2𝑎𝑐 (r + 

𝑤

2
) + (

𝑤

2
)
2

+ 2𝑎𝑐 (
𝑤

2
) + 𝑎𝑐

2

−  (𝑋𝐶,𝑛) 
2  −  (𝑋𝐷,𝑛) 

2  +  2(𝑋𝐶,𝑛)(𝑋𝐷,𝑛)  − (𝑌𝐶,𝐶𝑜𝐶)  + (𝑌𝐷,𝑛)
 

(An, Cn+1) √
4(
𝑤

2
)
2

+  4𝑎𝑐 (
𝑤

2
) + 𝑎𝑐

2  −  (𝑋𝐴,𝑛) 
2 

− (𝑋𝐶,𝑛) 
2  +  2(𝑋𝐴,𝑛)(𝑋𝐶,𝑛) − (𝑌𝐶,𝑛)  + (𝑌𝐴,𝑛)
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Appendix B. Estimating 3D Exposure of Top Faces. 

To estimate exposed area on the top faces of racks (E, F, and G), we propose a 

procedure that first discretizes the top face of the rack (with width w) into s arcs 

(0 ≤ 𝑠 ≤
𝑤

𝛾𝑑
) such that distance between successive arcs is fixed at γ

d
, and then aggregate 

the area between these exposed arcs (𝐸𝑛𝑓𝑠
2𝐷  ) using the Riemann Sum and Trapezoidal Rule 

approximations; see the discretization of face F in Figure B1.  

At each arc s (beginning with s=1), we calculate the area of the sector (i.e., SA1) 

formed by arc length 𝐸𝑛𝑓𝑠
2𝐷  and radius (r-

𝑤

2
+(s−1)γ

d
), and the area of the sector (i.e., SA2) 

formed by arc length 𝐸𝑛𝑓𝑠
2𝐷 , and radius (r-

𝑤

2
+sγ

d
) . The difference in area between these two 

sectors (SA2 - SA1) forms the left Riemann Sum (𝐸𝑛𝑓𝑠,𝐿𝑒𝑓𝑡
3𝐷 ), or in the case of Figure B2, the 

‘underestimate.’ Figure B3 contains calculation steps to derive 𝐸𝑛𝑓𝑠,𝐿𝑒𝑓𝑡
3𝐷 . Similarly, the 

right Riemann Sum, or the ‘overestimate,’ is the difference in area between the sector 

formed by arc length 𝐸𝑛𝑓𝑠−1
2𝐷  and radius (r - 

𝑤

2
+(s−1)γ

d
), and the area of the sector formed 

by arc length 𝐸𝑛𝑓𝑠−1
2𝐷 , and radius (r - 

𝑤

2
+sγ

d
). These Right and Left Riemann Sums are then 

averaged to obtain the Trapezoidal Rule approximation. This procedure with calculations 

for estimating exposure on face F are shown in Figure B4. The below equations show the 

calculations for face F. Calculations for faces E and G are derived similarly, and thus not 

shown.  
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Figure B1. Approximated exposed area on face F 

 

 

Figure B2. Reimann Sum approximation of exposure of face F 

 

(1) SA1 = 
𝛼𝜋

360
(𝑟𝑠−1)

2 = 
𝛼𝜋

360
(𝑟 −

𝑤

2
+ (𝑠 − 1)𝛾𝑑)

2

 

(2) SA2 = 
𝛼𝜋

360
(𝑟𝑠)

2 = 
𝛼𝜋

360
(𝑟 −

𝑤

2
+ 𝑠𝛾𝑑)

2

 

(3) α  = 
180𝐸𝑛𝑓𝑠

2𝐷

(𝑟−
𝑤

2
+𝑠𝛾𝑑)𝜋

 

(4) SA1 = 
180𝜋𝐸𝑛𝑓𝑠

2𝐷

((𝑟−
𝑤

2
+𝑠𝛾𝑑)𝜋)/360

(𝑟 −
𝑤

2
+ (𝑠 − 1)𝛾𝑑)

2

 

(5) SA2 = 
180𝜋𝐸𝑛𝑓𝑠

2𝐷

((𝑟−
𝑤

2
+𝑠𝛾𝑑)𝜋)/360

(𝑟 −
𝑤

2
+ 𝑠𝛾𝑑)

2

 

(6) 𝐸𝑛𝑓𝑠,𝐿𝑒𝑓𝑡
3𝐷 = SA2 – SA1 = 

180𝜋𝐸𝑛𝑓𝑠
2𝐷

((𝑟−
𝑤

2
+𝑠𝛾𝑑)𝜋)/360

(𝑟 −
𝑤

2
+ 𝑠𝛾𝑑)

2

− 
180𝜋𝐸𝑛𝑓𝑠

2𝐷

((𝑟−
𝑤

2
+𝑠𝛾𝑑)𝜋)/360

(𝑟 −
𝑤

2
+ (𝑠 − 1)𝛾𝑑)

2

 

Overestimation Underestimation 

r 

𝑤

2
 

s=0 

s=5 

Area of sector 2 (right, overestimation) 

Area of annulus (right, overestimation) 

𝛾𝑑 
𝐸𝑛𝑓𝑠
2𝐷  s=5 

s=0 

Area of sector 1 (left, underestimation) 

Area of annulus (left, underestimation) 

Area of sector 2 (left, underestimation) 

Area of sector 1(right, overestimation) 

face F 
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(7) 𝐸𝑛𝑓𝑠,𝐿𝑒𝑓𝑡
3𝐷 = 0. 5𝐸𝑛𝑓𝑎𝑡+𝑠

2𝐷

(

 
 
((r-

w

2
)+(s)γ

d
) −  

((r-
w
2
)+(s-1)γ

d
)

2

((r-
w
2
)+(s)γ

d
)

)

 
 

 

Figure B3. Calculations steps to determine 𝑬𝒏𝒇𝒔,𝑳𝒆𝒇𝒕
𝟑𝑫  

 (1) For rack (n) 

(2)       For 0 < s ≤ 
𝑤

𝛾𝑑
 

(3)                 𝐸𝑛𝑓𝑠,𝑅𝑖𝑔ℎ𝑡
3𝐷 = 𝐸𝑛𝑓,𝑠−1

2𝐷 ∗

(

 
 ((r-

w
2
)+(s)γ

d
)

2

((r-
w
2
) +(s-1)γ

d
)
− ((r-

w

2
)+(s-1)γ

d
)

)

 
 

 

(4)               𝐸𝑛𝑓𝑠,𝐿𝑒𝑓𝑡
3𝐷 = . 5 ∗ 𝐸𝑛𝑓𝑠

2𝐷 ∗

(

 
 
((r-

w

2
)+(s)γ

d
) −  

((r-
w
2
)+(s-1)γ

d
)

2

((r-
w
2
)+(s)γ

d
)

)

 
 

 

(5)             𝐸𝑛𝑓𝑠
3𝐷 =

𝐸𝑛𝑓𝑠,𝑅𝑖𝑔ℎ𝑡
3𝐷 +𝐸𝑛𝑓𝑠,𝐿𝑒𝑓𝑡

3𝐷

2
 

 

Figure B4. Procedure for approximating the exposure of face F 
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Appendix C: Estimating Exposure in 2D (𝑬𝒏𝒇𝒚𝒉
𝟐𝑫 𝒏, 𝒇) 

Figure C1 outlines our proposed 2D algorithm. 

Essentially, at each shopper step (y) and height (h), we 

first find candidate points – (x,y) points used to 

designate the potentially exposed arcs on a curved 

rack -- for each of the 4 rack faces (A-D) on each rack 

n separately. These points are found analytically and 

numerically (in Appendix C (Sections C.1 and 

C.2)). See Appendix C (Section C.3) for additional mathematical considerations for 

estimating 3D exposure in 2D slices. Further, we present a detailed example of estimating 

exposure at a point in Appendix C (Section C.4). We categorize each of these candidate 

points as shown below in Table C1. Because there are geometrical differences between 

each of the four faces (e.g., face B curves inward, eliminating tangent lines), there are some 

categories which apply to only a select number of faces. 

Table C1. Candidate points to determine exposure. 

 

Once all candidate points are found for a 2D problem, we analytically evaluate the 

feasibility of these points. Table C2 lists each of these checks; they are carried out 

sequentially in the order presented.  

Category # Category Name Applicable face 

1 Face corners All 

2 Shopper FoR intersection points All 

3 Tangent line points A,C,D 

4 Horizontal tangent line points (from current rack) A,B,C 

5 Horizontal tangent line points (from preceding rack) All 

6 Horizontal tangent line points (from succeeding rack) All 

7 Dead zone curve intersection points All 

8 Vertical obstruction tangent line (from preceding rack) All 

9 Vertical tangent line (from succeeding rack) All 

10 Vertical obstruction tangent line (from current rack) All 

 

Find candidate points 

Determine feasibility of 

candidate points 

Derive 2D exposure (𝐸𝑛𝑓𝑦ℎ
2𝐷 h,y,f,n) 

 

Determine # of exposed arcs 

and pair feasible candidate 

points 

∀ At step y, height h, rack n, face f 

Figure C1. Estimating 𝐸𝑛𝑓𝑦ℎ
2𝐷  
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Table C2. Feasibility checks for candidate points. 

 

Existence:  It is likely that the 2D geometric shapes (i.e., circles and lines) may not 

intersect. Consequently, the check “Does point exist?” will not hold true, making the 

candidate point infeasible. Even if an intersection point exists, it is possible that it may lie 

on the imaginary circle surrounding the center of curvature of a curved rack, but not on the 

physical part of this rack.  

FoR:  FoR checks ensure a point must be within a specified DOV and within the horizontal 

angular limits to be considered feasible. Essentially, we first calculate the Euclidean 

distance between a (x,y) coordinates of the shopper and the candidate point, and compare 

it to the DOV. Likewise, we compare the angle to a candidate point from the shopper 

(relative to the shopper’s pathway) and compare it to the horizontal angular limit. Further, 

for levels below and above the shopper eye-height, points must be outside of the ‘dead 

zone’ which is formed from the vertical and horizontal eye and head movements of the 

shopper. This phenomenon is explained in Appendix C (Section C.2).  

Obstruction:  Finally, each candidate point on rack n is evaluated for obstruction by itself 

(self-obstruction), by previous racks n-j (1≤j<n) (preceding-obstruction), and by 

subsequent racks n+j (1≤j<n) (succeeding-obstruction). In other words, self-obstruction 

occurs when a rack n is obstructed by itself (Figure C2(a)). Preceding-obstruction occurs 

Category Check 

Existence 
Does point exist? 

Is point on rack? 

FoR 

Is point within DOV? 

Is point within the horizontal angular limit (𝛷𝐻𝑅(𝑅) +𝛺𝐻𝑅(𝑅))? 

Is point outside of Dead Zone? 

Obstruction 

Self-Obstruction? 

Succeeding Rack Obstruction? 

Preceding Rack Obstruction? 
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when a rack n is obstructed by another rack j that lies earlier on the shopper’s path (Figure 

C2(b)). Succeeding obstruction occurs when a rack n is obstructed by another rack j 

positioned later on the shopper’s path (Figure C2(c)).  

 

                (a) Self-obstruction           (b) Preceding-obstruction      (c) Succeeding-obstruction 

Figure C2. Classifications of obstruction where black shaded areas are obstructed 

Figure C3 illustrates several examples of potential feasible and infeasible candidate 

points. These points are further explained in Table C3 (feasible points) and Table C4 

(infeasible points). The light-shaded arcs represent exposed arcs to shopper step y and dark-

shaded arcs represent exposed arcs to shopper step y+1. Note that some points may not 

necessarily be candidate points for each shopper step (i.e., point 15 is not considered as a 

candidate point for step y+1). 

 

 

 

 

 

 

 

 

 

 

Figure C3. Illustration of example candidate points 

 

1 

2 

3 
4 

8 
9 

7 

6 

5 

10 

11 

12 

13 

16 

14 

17 

18 

15 

Step y 

Step y+1 

Rack n 

Rack n+1 

𝛷𝐻𝑅 +𝛺𝐻𝑅 
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Table C3. Explanation of example feasible candidate points 

 

 

Table C4. Explanation of example non-feasible candidate points 

  Once all feasible candidate points are found, each feasible point (e.g., (xa,ya)) is 

paired with another feasible point (e.g., (xb,yb)) to form a feasible arc i. We know of 

circumstances with 2, 4, or even 6 different feasible points on a face f of a rack n at a given 

shopper step y, resulting in a maximum of 3 exposed arcs. For instance, see Figure C4 

where points (xb,yb) and (xc,yc) form feasible arc 1, and points (xd,yd) and (xe,ye) form 

feasible arc 2 on face B for a curved rack (α=90º) placed at θ=130º. Points are paired 

together so that no overlapping arcs exist. To avoid pairing point (xb,yb) with (xd,yd) or point 

(xc,yc) with (xe,ye), we first calculate the Euclidean distance from each candidate point to a 

face corner. The points are then paired according to their respective distances (i.e., the two 

Point # Category # 
Shopper 

Step 
Rack face Feasible Candidate Point 

1 2 y n B Horizontal angular limit line intersection point 

2 4 y n B Self-obstruction point from face A 

3 3 y n A Right tangent line point 

4 3 y n A Left tangent line point 

5 3 y n+1 A Left tangent line point 

6 1 y n+1 A face A/ B corner 

6 1 y n+1 B face A/B corner 

7 5 y n+1 B Preceding obstruction point from rack 1 face A 

8 2 y+1 n D Horizontal angular limit line intersection point 

9 3 y+1 n D Left tangent line point 

10 3 y+1 n+1 A Left tangent line point 

6 1 y+1 n+1 A face A/B corner 

6 1 y+1 n+1 C face A/B corner 

11 2 y+1 n+1 C DOV curve intersection point 

Point # Shopper Rack Face Infeasible Candidate Point Failed Checks 

12 y N A/B face A/ B corner Self-obstruction from face A 

13 y N B/C face B/C corner Outside FoR  

14 y n D DOV curve intersection point Self-obstruction from face B 

15 y n+1 B DOV curve intersection point 
Preceding obstruction from 

rack 1 

16 y+1 n+1 D/A face D/A corner Self-obstruction from face A 

17 y+1 n+1 B/C face B/C corner 
Outside FoR & preceding 

obstruction from rack 1  

18 y+1 n+1 D DOV curve intersection point Self-obstruction from face B 
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points with the smallest distances would be paired together, and then the next two highest 

would be paired together).   

 Then, for each face,  the length L of each 

exposed arc i is then calculated (using the radius 

of the respective face rf ); i.e., 𝐿𝑖 =

2π𝑟𝑓
𝛽

360
, where the inside angle 𝛽 = 

cos−1 (
2𝑟𝑓
2− 𝑐2)

2𝑟𝑓
2 )  and the chord length (c) 

connecting feasible candidate point (xia,yia) and 

(xib,yib) is c = √(𝑥𝑎𝑖 − 𝑥𝑏𝑖)2 + (𝑦𝑎𝑖 − 𝑦𝑏𝑖)2. 

Finally, the 2D exposure (in ft) of face f on rack 

n at step y and height h can be estimated as 

𝐸𝑛𝑓ℎ𝑦
2𝐷 = ∑ 𝐿𝑖

𝑁
𝑖=1 . 

 Recall that this 2D approach is repeated for each height h in the range [0, Hn] that 

falls within the 3D FoR. At each shopper step we find continuous exposed arcs (2D), and 

then derive intensity of discrete segments that falls within these arcs. Once a shopper path 

is completed, we derive both total exposure and intensity of a layout in 3D. In so doing, 

we are able to capture, via our proposed quantitative approach, the complex dynamics that 

ensues between a walking shopper’s 3D FoR and a layout of static racks.  

 

 

 

 

h
2

(xa,ya) 
(xc,yc) 

(xd,yd) 

(xe,ye) 

(xb,yb) 

y 

x 

face B 

face C 

Figure C4. Pairing of feasible points 

θ 
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Appendix C.1: Approximation Algorithm for Vertical Tangent Curves 

When we consider racks at varying heights both above and below the shopper’s eye 

height, we must account for what the shopper can and cannot see over a rack. Thus, 

additional candidate points we derive are the intersection points (x,y) of vertical tangent 

curves (aggregation of tangent lines over the top of racks) with a height (h). Further, all 

other candidate points must lie above these curves in order to be considered feasible (these 

checks can be found analytically). We categorize these curves as either preceding, 

succeeding, or self, based upon the location of the obstructing rack compared to the rack 

of where the curve falls on. Figure C5 below illustrates each type of curve.  

 

 

 

 

 

 

                                                                     

 

 

 

 

 

 

 

 

Figure C5. Vertical tangent curves. (a) Self, (b) Preceding, and (c) Succeeding. 

 

shopper path 

shopper path 

shopper path 

(a) (b) 

(c) 
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To determine the extent to which a shopper can see over a rack onto another rack 

face f, we must find the intersection point (x, y) of the vertical tangent line that intersects 

face f at height h. To accomplish this, we propose a numerical/analytical approach shown 

in Procedure C1. Essentially, we increment an angular variable φ1 by γ1 degrees, in a range 

considering the minimum (φmin) and maximum (φmax) angles to face f (i.e., determined by 

the angles to tangent lines of face f; see Section 3.3.2 for examples of tangent lines to face 

f). At each increment, we project a vertical tangent line over the obstructing rack (e.g., self, 

preceding, succeeding) and find the height (VH) that this projected line intersects face f. We 

project these lines until VH crosses h (i.e., VH  > h ∀φ1 = [φmin, a], VH  < h ∀  φ1 = [a + γ1, 

φmax] where a is any increment of φ1). If a crossing in rank occurs between these two 

variables is found (i.e., one becomes larger than the other), then this entire process repeats 

for with progressively finer increment angles (γ2 > γ3 > γ4) where the respective count 

variable (φ2, φ3, φ4) is incremented (i.e., see line (8) for details of the second incremental 

stage).  At the 4th incremental stage, we check at each increment if VH = h. If so, the 

coordinates (XI, YI) are found of that intersection point with face f, and saved as a candidate 

point (see illustrations in Figure C6 and equations (13) and (14) in Figure C7). 
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Procedure C1. Numerical algorithm to determine candidate points of vertical tangent 

curves. 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

 

(15) 

For face (f) 

     For rack (n) 

          For previous rack (p) 

    Compute φmin and φmax based on tangent lines to face f 

                 For φ1 in φmin to φmax by γ1 

                     Find height (VH) where tangent line from obstruction point to rack (n-p)      

intersects with face (f) on rack (n). See Figure C2 and Figure C3. 

                     If VH crosses h  

                          For φ2 in φ1 - γ1 to φ1 by γ2 

  Repeat (6) – (7)  

       For φ3 in φ2 - γ2 to φ2 by γ3 

            Repeat (6) – (7) 

                 For φ4 in φ3 - γ3 to φ3 by γ4 

                      If VH = h  

             If there are no racks between the obstructing rack and  

the shopper that obstruct the tangent line 

      Save XI & YI coordinates of intersection point as a  

candidate point 

 

 

                                   

 

 

Figure C6. Illustration of vertical tangent lines 
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x 
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Rack n center of 
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Figure C7. Analytical expressions to determine vertical tangent lines 

 

 

 

 

 

 

 

 

 

(1) ΦA = (90 – φ1)+ ΦCOC,n-1 

(2) ΦB= sin−1 (
𝐷𝐶𝑂𝐶,𝑛−1 ∗sin(𝛷𝐴 )

𝑟+
𝑤

2

) 

(3) ΦC = 180 – (ΦA + ΦB) 

(4) DO = 
(𝑟+

𝑤

2
) ∗ sin(𝛷𝐶)

sin(𝛷𝐴)
 

(5) XO = DO * sin(90- φ1) 

(6) YO = DO * sin(φ1) 

(11) ΦC՛ = 180 – (ΦA՛ + ΦB՛) 

(12) DI = 
(𝑟+

𝑤

2
) ∗ sin(𝛷𝐶՛ )

sin(𝛷𝐴՛ )
 

(13) XI = DI * sin(90- φ1) 

(14) YI = DI * sin(φ1) 

(15) DV = DI * 
sin(𝛷𝐷)

sin( 90−𝛷𝐷)
 

(16) VH = 𝐻𝑛−1 - DV 
 

(7) DO,V  = √𝐷𝑂
2 + (𝑆𝐸 − 𝐻𝑛−1)

2 

(8) ΦD = sin−1 (
𝐷𝑂,𝑉 

𝐷𝑂
) 

(9)  ΦA՛ = (90 - φ1)+ΦCOC,n 

(10) ΦB՛ = sin−1 (
𝐷𝐶𝑂𝐶,𝑛 ∗sin(𝛷𝐴՛ )

𝑟+
𝑤

2

) 
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Appendix C.2: Approximation Algorithm for Dead Zone Curve 

When determining exposure at heights above and below the shopper’s eye height, 

we must also check if a candidate point falls within the “dead zone of vision” that exists 

due to the vertical angular limits (see Figure C8(c)). Points must lie beyond this zone to be 

considered feasible. Figure C8(a) displays an illustration of this curve on the X-Y plane at 

a height h (above or below eye-height), which is made up of two connecting curves (one 

for head movement (ΩHR), the other for eye movement (ΦHR)).  

Figure C8. Illustration of dead zone curve (a) top view (b) front view (c) side view 
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Figure C8(b) illustrates a front view of the shopper’s head looking down onto an 

X-Y plane below their eye-height. The dead zone from this perspective is in the form of a 

right triangle at a specific angle ΦH. We project this triangle at discrete values of ΦH in the 

range [0, ΩHR + ΦHR] to approximate the dead zone curve at height h. Values of ΦH from 0 

to ΩHR create the curve resulting from head rotation, and values of ΦH from ΩHR to ΩHR + 

ΦHR create the curve resulting from the eye’s curvature. A summary of the calculation steps 

to determine the coordinate points (XDZ, YDZ) of the dead zone curve at a given value of ΦH 

are shown in Procedure C2 below: 

Procedure C2. Calculation steps to determine candidate points of dead zone intersection 

with rack. 

(1) If  ΦH < ΩHR 

(2)           ΦV = 𝛷𝑉𝐷 

(3) Else 

(4)          ΦV = 
𝛷𝑉𝑈

𝛷𝐻𝑅
√(𝛷𝐻𝑅)2 − (𝛷𝐻)2   

(5) DDead Zone = (𝑆𝐸 − ℎ) ∗
sin(90−𝛷𝑉)

sin(𝛷𝑉)
 

(6) XDZ = DDead Zone * sin𝛷𝐻 

(7) YDZ = DDead Zone * sin(90 − 𝛷𝐻) 

 

We propose a numerical algorithm to determine this curve’s intersection with a face (f) 

on rack (n). An outline of this approach is as follows in Procedure C3. 
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Procedure C3. Numerical algorithm to determine candidate points of dead zone curve. 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

 

For face (f) 

   For rack (n) 

       Compute φmin and φmax based on tangent lines to face f 

           For φ1 in φmin to φmax by γ1 

               Compute Distance from Shopper to Dead Zone Curve (DDead Zone) 

    Compute Distance from shopper to intersection with rack circle (Dfn) 

    If rank changes (e.g.,  DDead Zone > Dfn ∀ [φmin, φ1], DDead Zone < Dfn ∀ [φ1 + γ1, φmax]) 

                    For φ2  in φ1 - γ1 to φ1 by γ2 

                        Repeat 5, 6,7  

For φ3 in φ2 - γ2 to φ2 by γ3 

    Repeat 5, 6,7 

        For φ4 in φ3 - γ3 to φ3 by γ4 

             Compute XDead Zone,YDead Zone 

                                       Compute Xnf,Ynf 

                                       If XDead Zone = Xnf & YDead Zone = Ynf 

     Save XDead Zone & YDead Zone coordinates of intersection point as a    

     candidate point      

 

The algorithm begins by determining angular bounds (φmin, φmax) where the 

intersection points could possibly exist (step 3). These bounds are based on the tangent 

lines to face f on rack n (i.e., see Section 3.3.2 for examples of tangent lines to face f). Once 

these are obtained, for angle φ1 in increments of γ1, the distance from the shopper to the 

dead zone curve (DDead Zone) and the Euclidean distance to face f on rack n (Dfn) are 

calculated (steps 4,5,6). Subsequently, a check is made to see if the rank of each distance 

changes from the previous increment (i.e., one distance suddenly becomes larger than the 
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other) (step 7). This indicates that there is an intersection point between the angle of the 

previous step (φ1- γ1) and the current step (φ1); we subsequently return φ1 to the previous 

step (φ1- γ1). In order for our approximation algorithm to be both fast and precise, we repeat 

steps 5, 6, and 7 two additional times using increasingly smaller increment sizes (γ1< γ2 < 

γ3) to pinpoint the location of the intersection point. We then include a fourth incremental 

stage (γ4<γ3) where we find the angle (φ4) where both the x and y coordinates of each 

intersection point are approximately equal (i.e., XDe=Xnf and YDZ=Ynf). 
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Appendix C.3: Additional Considerations for Estimating 3D Exposure 

Since the DOV of a shopper’s eye extends as a radius in a spherical form, the 

effective depth of vision will change based on the height at each height h. We define this 

effective depth of vision as DOVh, which can be calculated analytically considering DOV, 

h, and SE. Figure C9 below illustrates these calculations.  

   

 

 

 

 

Figure C9. Changing DOV with changes in height 

Further, the effective horizontal angular limit at height h (ΦH +Ω𝐻)h) will also 

change with respect to h. In other words, the maximum angular limits (left and right) for a 

human’s eye occurs at eye-height; these limits will shrink when shifting the focal point up 

or down. To determine (ΦH +Ω𝐻)h, we first determine the vertical angle v associated with 

h and then utilize the equation of an ellipse (approximation of the 3D FoR) considering the 

horizontal and vertical angular limits. Figure C10 below illustrates this procedure. 

 

 

 

 

 

 

Figure C10. Changing angular limits with changes in height 
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Appendix C.4. An Example of Illustrating our Proposed Approach 

We present in this appendix an example of how we estimate exposure in 3D at a 

shopper step y. In this example, we will present analytical expressions to derive select 

candidate points (at two different heights h), in addition to select feasibility checks.  Figure 

C11 illustrates, in 3D, a few candidate points that fall within the shopper’s FoR at that step 

y. These points are notated by their (x,y,z) coordinate points (i.e., 𝑋𝐶𝑃1 and 𝑋𝐶𝑃1 represent 

the x and y coordinates of candidate point 1; 𝑆𝐸 is the known z coordinate). Green shaded 

points are feasible, while the red shaded points are infeasible; these points are determined 

based on the approach presented in the main body of the paper. 

 

Figure C11. 3D view of select candidate points at shopper step y. 

 

(𝑋𝐶𝑃1 , 𝑌𝐶𝑃1 , 𝑆𝐸) 

 

(𝑋𝐶𝑃3 , 𝑌𝐶𝑃3,𝑆𝐸) 

 

(𝑋𝐶𝑃5 , 𝑌𝐶𝑃5 , 0) 

(𝑋𝐶𝑃4 , 𝑌𝐶𝑃4 , 0) 
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Candidate Points 1 and 2: We first present expressions to find candidate points 1 and 2. 

These points are illustrated as green circles on face B on rack n + 1 in Figure C12. Since 

both points are at height h=SE, racks in Figure C12 are shown on a 2D x-y plane at this 

height. We denote the position of the shopper at step y through coordinates (Xs, Ys). A non-

candidate point that is utilized in expressions is denoted by (𝑋𝑝, 𝑌𝑝). Midpoints of rack 

endcaps are denoted as (𝑋𝑀, 𝑌𝑀). All line segments are denoted as D in units of feet, while 

all angles are 𝜑, in units of degrees. 

For these expressions, and all others in this appendix, we use the design values in Table 

C5 and Table C6. 

Table C5. Design values for rack layout. 

Name Notation Value 

Rack height H 7 ft 

Rack width w 5 ft 

Orientation θ 90° 

Curvature α 90° 

Perimeter p 110 ft 

Min distance between racks ac 8 ft 

Shopper distance to racks am 5 ft 

Main aisle width aw 10 ft 

Depth of vision DOV 40 ft 

Radius r 30.01 ft 

Shopper eye-height SE 5 ft 

 

Table C6. Eye and head movement parameters. 

 Eye Movements 

Moderate Head Movements 

Moderate Eye Movements 

Moderate Head Movements 

Head Movements 

Moderate Head Movements 

Moderate Eye Movements 

Moderate Head Movements 

ΦH

L 

ΦHR ΦVU ΦVD ΩHL ΩHR ΩVU ΩVD 

15° 15° 15° 15° 75° 75° 25° 25° 
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Figure C12. Finding candidate points 1 and 2 at height h = SE. 

𝜑1 = tan−1 (
𝑌𝑝1−𝑌𝑆

𝑋𝑝1−𝑋𝑆
) =  tan−1 (

66.61−60

5.59−0
) = 49.79                                                          (1) 

𝐷1 = √(𝑋𝑝2 − 𝑋𝑝1)
2
+ (𝑌𝑝2 − 𝑌𝑝1)

2
 

𝐷1 = √(28.72 − 5.59)2 + (59.97 − 66.61)2 = 24.07                                                  (2) 

𝐷2 = 𝑟 −
𝑤

2
= 30.01 − 

5

2
= 27.51                                                                                   (3) 

𝜑2 = tan−1 (
𝑌𝑝2−𝑌𝑝1

𝑋𝑝2−𝑋𝑝1
) = tan−1 (

59.97−66.61 

28.72−5.59
) = −16.03                                                 (4) 
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𝜑3 = 𝜑2 -𝜑1= -16.03 – 49.79 = -65.82                                                                             (5) 

𝜑4 = sin−1 (
𝐷1∗sin(𝜑3)

𝐷2
) =  sin−1 (

24.07∗sin(−65.82)

27.51
) = −52.94                                        (6) 

𝜑5 = 180 − (𝜑4 + 𝜑3) = 180 – (-52.94 + -65.82) = 298.77                                            (7) 

𝐷3 = (
𝐷1∗sin(𝜑5)

sin(𝜑4)
) =  (

24.07∗sin(298.77)

sin(−52.94)
) = 26.44                                                             (8) 

𝑋𝐶𝑃 = 𝐷3 ∗ sin(90 − 𝜑1) + 𝑋𝑠 = 26.44 ∗ sin(90 − 49.79) + 0 = 22.66                     (9) 

𝑌𝐶𝑃 = 𝐷3 ∗ sin(𝜑1) +𝑌𝑠 = 26.44 ∗ sin(49.79) + 60 = 86.80                                    (10) 

Candidate Point 3: We now present expressions to find candidate point 3, which is the 

intersection of the shopper’s FoR with face B on rack n + 2. Figure C13 illustrates how 

this point is derived.  
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Figure C13. Finding candidate point 3 at height h = SE. 

𝐷4 = √(𝑌𝑠 − 𝑌𝑝3)
2
+ (𝑋𝑠 − 𝑋𝑝3)

2
= √(60 − 76.16)2 + (0 − 28.72)2 = 32.96     (11)                                                     

𝐷5 = 𝑟 −
𝑤

2
= 30.01 − 

5

2
= 27.51                                                                                 (12) 

𝐷6 = 𝐷𝑂𝑉 = 40                                                                                                              (13) 

𝜑5 = cos
−1 (

(𝐷6)
2−(𝐷5)

2+(𝐷4)
2

(2∗𝐷4∗𝐷6)
) =  cos−1 (

402−27.512+32.962

2∗32.96∗40
) = 43.29                         (14) 

𝜑6 = tan
−1 (

(𝑌𝑝3−𝑌𝑠)

(𝑋𝑝3−𝑋𝑠)
) =  tan−1 (

(76.16−60)

(28.72−0)
) = 29.36                                                   (15) 

𝜑7 = 𝜑5 + 𝜑6= 43.29 + 29.36 = 72.65                                                                          (16) 
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𝑋𝐶𝑃3 = 𝐷6 ∗ sin(90 − 𝜑7) + 𝑋𝑠 = 40 ∗ sin(90 − 72.65) = 11.84                              (17) 

𝑌𝐶𝑃3 = 𝐷6 ∗ sin(𝜑7) + 𝑌𝑠 = 40 ∗ sin(72.65) = 97.88                                                 (18) 

As illustrated in Figure C14, candidate point 3 is infeasible. In fact, it is obstructed 

by both face A and face D of rack n + 1. We present below expressions to check obstruction 

from face D of rack n + 1. Figure C15 illustrates how this check is completed.  

 

  

Figure C14. Finding obstruction points to candidate point 3. 
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2
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5

2
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𝐷8 = √(𝑌𝑠 − 𝑌𝑝6)
2
+ (𝑌𝑠 − 𝑌𝑝6)

2
= √(60 − 59.97)2 + (0 − 28.72)2 = 28.72      (20) 

𝜑8 = (tan
−1 (

(𝑌𝑝6−𝑌𝑠)

(𝑋𝑝6−𝑌𝑠)
)) =  tan−1 (

59.97−60

28.72−0
) = −.06                                                  (21) 

𝜑9 = 𝜑7 − 𝜑8  = 72.65 – -.06 = 72.71                                                                            (22) 

𝜑10 = sin
−1 (

𝐷8∗sin(𝜑9)

𝐷7
) =  sin−1 (

28.72∗sin(72.71)

32.51
) = 57.51                                         (23) 

𝜑11 = 180 − (𝜑9 + 𝜑10) = 180 − (72.71 + 57.51) = 49.78                                     (24) 

𝐷9 = (
(𝐷7)∗sin(𝜑11)

sin(𝜑9)
) =  (

32.51∗sin(49.78)

sin(72.711)
) = 26.00                                                         (25) 

𝑋𝑝4 = 𝐷9 ∗ sin(90 − 𝜑7) + 𝑋𝑠 = 26.00 ∗ sin(90 − 72.65) + 0 = 7.75                    (26) 

𝑌𝑝4 = 𝐷9 ∗ sin(𝜑7) + 𝑌𝑠 = 26.00 ∗ sin(72.65) + 60 = 84.82                                    (27) 

Once we know the location of this intersection point, we need to find out if this point is 

blocking the shopper’s view of the candidate point. In other words, we want to find out if 

this point is on physical part (i.e., the face D) of the circle it resides on, and if this point is 

between shopper and candidate point.  

If 𝑌𝑀1 = 𝑌𝑀2  (81.19 = 81.19) and 𝑋𝑀1 < 𝑋𝑀2 (7.5 < 49.95) then                                 (28) 

 If 𝑌𝑝4 > 𝑌𝑀1 (84.81 > 81.19) then                                                                      (29) 

  If 𝐷9 < 𝐷6 (26.00 < 40) then                                                                    (30) 

     Candidate Point 4 is infeasible                                                    (31) 

Since both of these conditions are true in this case, candidate point 3 is obstructed from 

face D of rack n+1, and thus infeasible.  

Candidate Points 4, 5, and 6 (at height h=0):  We now consider a few candidate points 

at height h=0. These three points fall on rack n, face A. Candidate point 4 (feasible) 

represents the intersection of the dead zone curve with face A; the procedure to obtain these 

coordinates are found in Appendix C.2. Candidate point 5 (feasible) is the corner of face 
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A and face D. Candidate point 6 is the intersection of the tangent line from the shopper to 

face A. We now present expressions to obtain the coordinates of candidate point 6, and 

provide expressions for the feasibility check that makes this point infeasible. Figure C15 

illustrates how these are derived. 

  

Figure C15. Finding candidate point 6 at height h = 0. 

𝐷10 = √(𝑋𝑀3 − 𝑋𝑠)2 + (𝑌𝑀3 − 𝑌𝑠)2 = √(7.5 − 0)2 + (65 − 60)2 = 9.01               (32) 
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𝐷12 = √(𝐷10)
2 − (𝐷11)

2 = √(9.01)2 − (2.5)2 = 8.66                                              (34)  

𝜑12 = sin
−1 (

𝐷11

𝐷10
) =  sin−1 (

2.5

9.01
) = 16.10                                                                   (35) 

𝜑13 = sin
−1 (

𝑌𝑀3−𝑌𝑠

𝐷10
) =  sin−1 (

65

9.01
) = 33.69                                                             (36) 

𝜑14 = 𝜑13 − 𝜑12 = 33.69 − 16.10 = 17.59                                                                (37) 

𝑋𝐶𝑃6 = 𝐷12 ∗ sin(90 − 𝜑14) + 𝑋𝑠 = 8.66 ∗ sin(90 − 17.59) + 0 = 8.26                   (38) 

𝑌𝐶𝑃6 = 𝐷12 ∗ sin(𝜑14) + 𝑌𝑠 = 8.66 ∗ sin(17.59) + 60 = 62.62                                  (39) 

We now present the expressions to check whether or not this candidate point falls within 

the dead zone. This dead zone is bounded by a curve at height h as shown in Figure C16.  

𝜑𝑣 =
(𝛺𝑉𝐷 + 𝛷𝑉𝐷 )

(𝛺𝐻𝑅 + 𝛷𝐻𝑅 )
√(𝛺𝐻𝑅  + 𝛷𝐻𝑅 )2 − (90 − 𝜑14)2                                                       

𝜑𝑣 =
25+15

75+15
√(75 + 15)2 − (90 − 17.59)2 = 23.8                                                       (40) 

𝐷13 = (𝑆𝐸 − ℎ) ∗
sin(90−𝜑𝑣)

sin(𝜑𝑣)
= (5 − 0) ∗

sin(90−23.8)

sin(23.8)
= 11.36                                       (41) 

𝑋𝑓 = 𝐷13 ∗ sin(90 − 𝜑14) + 𝑋𝑠 = 11.36 ∗ sin(90 − 17.59) + 0 = 10.83                  (42) 

𝑌𝑓 = 𝐷13 ∗ sin(𝜑14) +𝑌𝑠 = 11.36 ∗ sin(17.59) + 60 = 63.43                                   (43) 

If 𝐷13 > 𝐷12 (11.36 > 8.66) 𝑇ℎ𝑒𝑛                                                                               (44) 

 Candidate point 6 is infeasible                                                                            (45) 
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Figure C16. Determining if candidate point 6 is in dead zone. 
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Appendix D. Models for Space and Aspect Ratio 

We estimate the floor space A of a given layout by the rectangular area that bounds 

the perimeter of the layout. Let L and W be the length and width of this rectangular bounded 

area. To find L and W, we must determine the left-most and right-most edges of this 

rectangle along the width (x-direction) and the length (y-direction). Let these be represented 

as (Xmin, Xmax) and (Ymin, Ymax), respectively, such that W = Xmax - Xmin and L = Ymax - Ymin. 

Depending on the combination of θ and α for a specific layout, these extreme points may 

fall on Faces A, C, or D. We propose an exact procedure to determine L and W as illustrated 

in Figure D1. Subsequently, the floor space A (A = L ×W) and the aspect ratio R (R = 
𝐿

𝑊
) 

can be estimated.  

(1) For n = 1 or 𝑛 = 𝑁 

(2)          For f ∈ {A, C, D} 

(3)                                           Compute extreme points of face f in x and y directions                  

(4)                                                       Xmax,n,A = Xmidpoint,n,A + 𝑟𝑓 

(5)                                                       Xmin,n,A = Xmidpoint,n,A - 𝑟𝑓 

(6)                                                       Ymax,n,A = Ymidpoint,n,A + 𝑟𝑓 

(7)                                                       Ymin,n,A = Ymidpoint,n,A - 𝑟𝑓 

(8)                  Determine if points fall on the physical part of rack (per Table 2). 

(9) Compare the feasible extreme points to determine Xmax, Xmin, Ymax, and Ymin  

(10)        Xmax = max{Xmax,n,f; ∀ 𝑓, 𝑛}  

(11)             Xmin = min{Xmin,n,f; ∀ 𝑓, 𝑛}  

(12)             Ymax = max{Ymax,n,f; ∀ 𝑓, 𝑛} 

(13)             Ymin = min{Ymin,n,f; ∀ 𝑓, 𝑛} 

(14) Compute L = Ymax - Ymin and W = Xmax - Xmin 

Figure D1. Exact procedure to estimate L and W of the layout 
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Figure D2 illustrates 3 example layouts with their respective dimensions (L, W) and 

locations of values Xmax, Xmin, Ymax, and Ymin. 

 

 

 

 

 

 

 

 

 

 

Figure D2. Dimensions of L and W for example layouts with N = 3 

Using the above procedure, we can compute the floor space for any combination of 

θ and α. Figure D3 presents the floor space (right side only) for 133 combinations of θ and 

α with values of θ ranging from 0° to 180° in steps of 10° and values of α ranging from 0° 

to 180° in steps of 30°. Design parameters are identical to those in Table 5. For this specific 

configuration, the maximum floor space occurs at θ=40° and θ=140°, while minimum 

values occur at θ=0° and θ=180°. Further, among values of α, α=0° results in the minimum 

floor space across all values of θ. The value of α that results in the maximum floor space 

however varies across values of θ. For this specific configuration, at (θ=90°, θ=0°) and 

(θ=180°, α=150°) results in the maximum space value, while at θ=40° and θ=140°, α=90° 

results in the maximum space value. While it would seem intuitive that space would always 

increase as α increases from 0° to 180°, because our layouts maintain a fixed shelf-area for 
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any value of α, the chord length (i.e., aisle length) rapidly decreases as α approaches 180°. 

This reduced W, thereby, lowering the total floor space.   

 

Figure D3. Change in floor space (ft2) for various rack orientations and curvatures 

Aspect ratio is illustrated in Figure D4. While the combination of θ = 0° = 180° and 

α =0° resulted in in the lowest space, it provides for the highest aspect ratio (29.77); i.e., 

‘long and skinny’. The rack layout of θ = 90° and α =0° provides the lowest (0.7); i.e., 

‘short and wide’. Notice here for θ values 0° and 10° (alternately, 180° and 170°) the aspect 

ratio decreases as α increases to 180°. This trend, however, steadily shifts to the aspect 

ratio increasing for an increasing α as θ approaches 90°. This phenomenon occurs due the 

nature of curved racks to increase either W or L values relative to α=0°. For θ values closer 

to 0° or 180°, the curved racks increase W, thereby lowering the aspect ratio as L is much 

higher. For θ values closer to 90°, the curved racks increase L, thereby increasing the aspect 

ratio as W is much higher in this case.  
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Figure D4. Change in Aspect Ratio with varying values of θ and α 
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Appendix E. Validation Study Conference Paper 

Comparing and Enhancing the Analytical Model for Exposure of a Retail Facility 

Layout with Human Performance  

 

Abstract ID: 1266 

Bradley Guthrie, Pratik J. Parikh, Tyler Whitlock, Madison Glines, Thomas 

Wischgoll, John Flach, and Scott Watamaniuk  

Wright State University 

Dayton, OH 45435 USA 

Abstract 

Recent research in retail facility layout has focused on developing analytical models 

to estimate visibility measures of novel rack layouts based on assumptions about a 

shopper’s field of view. However, because of the human element involved in the shopping 

experience, it is vital to compare these models relative to actual human performance. In 

this study, we evaluate the predictions of our previously developed analytical model (that 

estimates exposure of every location on a given rack layout assuming expected head 

movement) in a 3D Virtual Environment (VE). We conducted trials with 18 participants 

who were asked to find targets strategically placed on the racks for 9 unique layouts. A 

comparison of their performance with the analytical model suggested that our model 

performed well, but the performance varied across layouts. To enhance these exposure 

estimates from the analytical model, we combined it with parameters corresponding to 

human head movement collected from the VE study, along with layout and target location 

parameters, in a decision tree framework. Results indicate that combining analytical and 

empirical observations enhances the quality of estimates (test AUC = 0.9).  
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Keywords 

Retail layout; exposure; human subjects; virtual environment 

1. Retail Facility Layout 

The facility layout in a retail setting plays an important role in the presentation of 

products to customers [1]. In fact, sales are a function of the number of people who are 

exposed (visually connected) to products [2]. As such, researchers have widely alluded to 

product exposure as a measure of importance for retail layout design [3]. Designing retail 

layouts catered to human visibility would potentially result in reduced search time for 

already planned purchases, as well as influence shoppers to make more unplanned 

purchases. Retail managers meanwhile would benefit by strategically placing their 

products in ‘hot spots' potentially increasing impulse purchases. 

Our motivation for evaluating layouts based on exposure primarily stems from our 

personal visits to local retail stores, as well as discovery of up-and-coming retail layouts 

online (Figures 1-3). Racks placed at a more acute orientation could provide better 

alignment with human vision. Curved racks potentially allow shoppers to have a better 

view of products deep in the aisle, and can be visually more appealing. Many studies in the 

retail domain address or allude to human visibility, from both analytical [4,5] and empirical 

perspectives [6]. However, these studies do not consider the effect of layout (e.g., rack 

Figure 1. Racks oriented at 45° Figure 2. Curved racks  Figure 3. Curved endcaps  
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orientation and curvature) on shopper visibility. The existing analytical approaches also 

lack comparisons of their models to human behavioral data.  

The objective of this research is to compare our previously proposed analytical 

models with human performance through a study in a virtual store. That is, if our models 

suggested that orienting racks differently from a standard 90° would aid shoppers visually 

connect with more products, do actual shoppers experience that? What if the racks were 

curved as in Figure 2? Further, how would varying orientation and curvature affect the 

scanning pattern of shoppers? Would different layouts influence shoppers to make larger 

head rotations, or even increase the speed of their scanning? Using this information, we 

not only compare the performance of our analytical models with human performance, but 

also enhance the model’s predictions with key human performance factors to increase the 

quality of prediction. The main goal is to use such a combined analytical-empirical model 

in optimizing the rack orientation and curvature to meet specific objectives; e.g., 

maximizing impulse purchases due to increased product exposure (for the retailer) and/or 

minimizing search time (for the shopper). 

2. Existing Analytical Exposure Models with Human Vision 

Mowrey et al. [7] recently proposed an analytical model and an algorithm to capture the 

dynamic interaction between a walking shopper’s 2D field of regard (FoR) – the angular 

size of possible viewing angles for a fixation point – and a static layout of racks. They 

evaluated both exposure and intensity (time of exposure) of racks for varying orientations 

(θ).  
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Guthrie and 

Parikh [8] expand 

their work to model 

this interaction in 3D, 

while also considering 

both the curvature (α) 

and height of racks. 

Figure 4 illustrates 

how they model a 

shopper 3D FoR. They 

consider angular limits 

of vision in both horizontal and vertical dimensions (Figures 4(a) and (d)), along with the 

depth of vision (DOV). The combination of both horizontal and vertical limits is modeled 

as an elliptical sector of a sphere; see Figure 4(c), where they further break down these 

limits by head (𝛺) and eye (𝛷)  rotations. To illustrate how this shopper FoR interacts with 

a layout of racks, Figure 5 contains two layouts (θ =orientation and α=curvature) with 

overlaid profiles of the intensity of exposure (red = longest exposed, yellow = shortest 

exposed, white = not exposed). Notice the different intensity levels starting from rack 2 

(c) Front view.  

(a) Top View.  (b) Parameters for angular limits 

of vision. 

(d) Side view.  

Figure 4. Modeling a 3D FoR. 

(a) Intensity of exposure for θ=90° and α=90° (b) Intensity of exposure for θ=30° and 

α=0° 
Figure 5. Rack layout with overlaid intensity 
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between these figures, which occur due to the dynamic interaction of the shopper FoR with 

the curvature and orientation of the racks, and the resulting obstruction of the shopper FoR.  

3. Virtual Environment for Comparing the Analytical Model with Human 

Performance 

For this comparison, we evaluated human performance in a virtual environment (VE). 

This study was approved by Wright State University’s Institutional Review Board (IRB). 

3.1 VE Setup 

 The VE utilizes 27 LCD screens with LED 

backlight (each 55” in size) to create a three-walled 

CAVE-type immersive display to a height of 87 

inches surrounding a 12x12 sq. ft. walkable area 

(see Figure 6). The optical tracking system 

composed of 11 cameras provided maximum 

redundancy and accuracy to track the user’s head position. Based on that head position, the 

system recreates the user’s perspective view on all 27 displays in such a way that the user 

feels completely immersed in the scenario. A head tracker captures both horizontal (x-axis) 

and vertical (z-axis) head movements made by the human participant. Additional details 

about the VE setup can be found in Wischgoll et al. [9]. 

3.2 Study Design  

We recruited 18 participants (of which 9 were female) between the ages of 19-26 years 

(avg=21.4) who had several years of prior shopping experience, and all were right-handed. 

Eleven participants had corrected vision and wore their glasses; all passed a visual acuity 

test. Each participant was informed through an IRB consent process before participating. 

Figure 6. The VE set up; our co-author 

pictured 
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We limited our study to evaluating 9 rack layouts comprising all combinations of 3 values 

each of theta and alpha (θ = 45°, 90°, 135° and α = 0°, 30°, 90°). All racks were above the 

participant’s eye height. Participants evaluated all 9 layouts over a 1-hour study period 

(including training). For each layout (containing 10 racks on either side), a participant was 

asked to search for targets (12 red colored squares, 1″x1″ in size) strategically placed on the 

front and back faces of the racks at distinct rows (i.e., heights) and columns (i.e., distance 

from walking aisle). The shopper’s walking along the aisle was simulated by configuring 

the VE to move at a speed of 3.33 fps (similar to 3.41 fps in Daamen [10]) while the 

participant remained stationary. We simulated bidirectional travel by first letting the racks 

pass by the shopper in one direction and then reversing the environment to let the racks 

pass by in the reverse direction for the same layout. Participants were asked to push a button 

on a wireless device and call out the aisle number and side (left or right) when they saw a 

target. We conducted a total of 324 trials (18 trials x 18 participants) while recording their 

head movements. 

4. Observed Human Behavior and Performance in the VE 

Since we were able to record the actual head movements for each participant, we derived 

several measures to broadly analyze their scanning patterns. For this study, we focus on 

horizontal scanning patterns; vertical scans were relatively consistent with minimal 

variance and thus are not discussed. First, we calculated both the ‘average head rotation’ 

and the ‘maximum head rotation’ specific to each layout (in both forward and reverse 

directions). Figure 7 shows the time history for angular position (horizontal) for one 

participant in a layout with θ=135º and α=0º.  
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Figure 7. Head Rotation (horizontal) for single participant run 

Each time the participant’s head rotated across the center line of their pathway (0°), we 

recorded the maximum angle of the head turn. To derive an ‘average head rotation’ for 

each participant (p), we subsequently averaged these values (left and right, separately) 

across all orientations (θ), curvatures (α), and directions (d); these are notated as 

𝛺𝜃𝛼𝑑𝑝
𝐻𝐿−𝐴𝑣𝑔

and 𝛺𝜃𝛼𝑑𝑝
𝐻𝑅−𝐴𝑣𝑔

, respectively. Averaging across both directions and across all 

participants helps estimate the overall ‘average head rotation,’ 𝛺𝜃𝛼𝑑
𝐻−𝐴𝑣𝑔

. Similarly, we 

derive the average ‘maximum head rotation’ across the two sides and all participants as 

𝛺𝜃𝛼𝑑
𝐻−𝑀𝑎𝑥.  

Further, we derived the average angular speed (degrees/second or deg/s), average 

crossing speed (deg/s), number of center crosses, bias, and extreme head activity. Average 

angular speed was calculated by taking the average change in head position (over an 

increment of 0.001 sec) divided by the total run time. The number of center crosses was 

calculated as the number of times participants’ heads rotated across the center point of the 

display (i.e., 0° line in Figure 7). Crossing speed is the average instantaneous velocity of a 

participant’s head rotation for all crosses in a run. Bias was defined as the proportion of 

time a participant’s head position was left of the center line, whereas ‘absolute bias’ 

represents the magnitude to which a participant favored either the right or left side. This is 

estimated as |0.5 – bias|. We define extreme head activity as the proportion of time where 
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speed of head position was above 100 deg/s or acceleration above 500 deg/s2. This can be 

a factor in a participant not seeing a target due to such fast head movement.   

 Figure 8 depicts the normalized averages across 18 participants for each measure 

visualized as a star plot, for all 9 layouts. Values are normalized linearly on a 0-1 scale for 

each measure; 1 corresponds to the outer gridline, 0 is the center. Observing in Figure 8(a) 

the relatively high values of average angular speed, average head rotation, maximum head 

rotation, and extreme head activity for θ values of 135°, followed closely by 90°; these 

measures are close to 0 for θ = 45°. This is because rack orientations of 90° or greater 

required the shopper to use faster and larger head rotations to closely align their head 

rotation angle to the orientation of the racks given the constant forward translation. For 

racks oriented at 45°, however, much less head movement was required to see both rack 

faces.  

Further, racks oriented at 90° resulted in participants being more biased toward one 

side verses the other, in addition to making a minimal number of crosses at relatively high 

speeds. These movements may be due to the relatively condensed space for these layouts 

(i.e., deviations of θ and α from 90° and 0° result in increased floor space and travel path 

– space models not included due to space limitations), exposing participants to view a 

relatively large quantity of rack area per unit of time along their path. For reverse travel in 

each of these layouts, similar, but opposite patterns were observed likely because the angles 

in the reverse direction are complementary to the forward travel. So for the same 

participant, the behavior for θ = 135° in the forward direction would closely resemble that 

for θ = 45°in the reverse direction (Figure 8(b)). 
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5. Comparison of the Exposure Models with Human Performance 

We compare predictions from our analytical model (where estimated intensity≥1s meant 

shopper is exposed to the target) with human performance data. Based on whether a 

participant sees a target (i.e., a ‘hit’) or does not see it (i.e., a ‘miss’), targets are classified 

as either true positive (TP or predicted hits; i.e., model predicts participant will see and 

participant actually sees), false positive (FP or unpredicted hits; i.e., model predicts 

participant will see, but participant does not see), true negative (TN or predicted misses; 

i.e., model predicts participant will not see and participant does not see) and false negative 

(FN or unpredicted misses; i.e.,  model predicts participant will not see, but participant 

sees). To then access the performance of our model, we calculated the positive prediction 

value (PPV), negative prediction value (NPV) and accuracy (ACC), where PPV=
𝑇𝑃

𝑇𝑃+𝐹𝑃
, 

NPV=
𝑇𝑁

𝑇𝑁+𝐹𝑁
, and ACC=

𝑇𝑁+𝑇𝑃

𝑇𝑁+𝐹𝑁+𝑇𝑃+𝐹𝑃
. The PPV measure fundamentally tells us, ‘for 

targets our model predicted to be seen, what proportion were actually seen?’ NPV 

contrarily answers ‘for targets our model did not predict to been seen, what proportion were 
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actually not seen?’ The ACC measure however represents (1 – total error rate), where the 

error rate accounts for both overestimates (FN) and underestimates (FP). Figure 9 contains 

average values (across all participants for each layout); global averages were PPV=0.82, 

NPV=0.72, and ACC=0.77. Layouts with NPV=0 contained no targets not predicted to be 

seen.  

These results indicate that our analytical exposure models performed fairly well on 

certain layouts. For instance, for layouts with θ=135°, (forward travel) and θ=45° (reverse 

travel), the PPV was 1.0 and 0.98, respectively; ACC was acceptable too, 0.85 and 0.80, 

respectively. On the contrary, our models performed relatively weaker for layouts with 

θ=45°, (forward travel) and θ=90° (reverse travel); PPV=0.71 and 0.81 (ACC=0.70 and 

0.71), respectively. One possible explanation for these differences may be the distribution 

α = 

θ = 

Figure 9. PPV, NPV, and ACC averaged across 18 participants 
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of intensity values for specific layouts. For instance, the average intensity value of targets 

predicted to be seen for layouts with θ=135°, (forward travel) and θ=45° (reverse travel) 

were 6.7 and 6.8 seconds respectively, whereas those for layouts with θ=45°, (forward 

travel) and θ=90° (reverse travel) were 3.9 and 4.2 seconds respectively.  Participants were 

more likely to see targets with higher intensity values in the former instances, leading to a 

higher match with the predictions from the analytical model; recall, if the intensity is >1 

second, the analytical model would mark it as likely seen.  

6. Enhancing the Analytical Exposure Models with Human Behavior 

Considering that the participants altered their scanning pattern based on the layout 

(whereas our analytical model assumed a single, fixed, FoR for all layouts), we sought to 

utilize these unique scanning patterns to enhance the quality of exposure predictions from 

the analytical models. As a first step, we combined both the analytical estimates and human 

behavior measures into a prediction model using decision trees. We chose this non-

parametric approach for 

two reasons; first, the 

normality and relevant 

assumptions for use of 

ANOVA could not be 

verified, and second, the decision tree model aids in intuitive analysis via if-then rules. We 

built four decision tree models, each with an incremental addition of factors. Model 1 uses 

only the analytical model (AM) estimates (i.e., estimated intensity of exposure of a target 

in seconds). Model 2 included layout and target parameters (e.g., θ, α, direction, target 

location quantified as the row and column on a rack). Models 3 and 4 included human 

behavior factors (from Section 5); Model 3 was allowed limited number of splits, while 

Table 1. The four enhanced exposure models based on decision trees 

# 
Factors included in the 

Decision Trees 

# of 

Splits 

AUC ACC 

Train 

(60%) 

Validation 

(20%) 

Test 

(20%) 

Test 

(20%) 

1 Analytical Model (AM) 21 0.861 0.857 0.860 0.795 

2 AM + layout + target 29 0.923 0.905 0.890 0.818 

3 
AM + layout + target + 

human (limited splits) 
27 0.922 0.881 0.889 0.828 

4 
AM + layout + target + 

human 
63 0.938 0.908 0.912 0.835 
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Model 4 was allowed to have unlimited splits. We used a train-validation-test approach 

(60:20:20 split of 324 data elements), where the validation data was used to stop model 

training to avoid overfitting.  

Table 1 summarizes the performance of these models on AUC (area under the ROC 

curve) and test ACC. Notice that the Test AUC (measure of the model’s performance on 

unseen data), is 

reasonably high just with 

the predictions from the 

AM (Model 1). The 

other models show the 

incremental benefits to 

the Test AUC.  

Individual 

contributions of 

parameters for each 

model are shown in Table 2. The number of splits refers to the number of times a node is 

divided. G2 is the likelihood ratio chi-square statistic (i.e., higher values indicate higher 

variation within a parameter with respect to the response). A deeper analysis of these 

decisions trees revealed that the root node (first split) in all the 4 models was always based 

on the intensity estimate from the AM. This is intuitive as the quality of prediction of the 

AM is already fairly high. After this, the next few splits were largely dependent on the 

location of the target (rack face, and target column) and the layout (orientation and 

curvature). Further, with the exception of average head rotation, the splits for human 

Table 2: Parameter contributions  
Parameter Splits G2 Parameter Splits G2 

Model 1: Intensity Model 4: All parameters 

AM-Intensity 21 1167.5 AM-Intensity 10 1139.2 

Model 2: Intensity + layout + target  Face (front/back) 6 168.9 

AM-Intensity 7 977.5 Target column 6 147.3 

Face (front/back) 4 222.7 Orientation 9 134.3 

Target column 7 201.8 Avg. head rotation 5 109.7 

Curvature 5 88.0 Curvature 6 90.2 

Orientation 4 76.3 Avg. angular speed 4 63.2 

Direction 1 25.2 Abs. bias 3 34.9 

Target row 1 23.1 Direction 4 30.3 

Model 3: Intensity + layout + target 

+ some human parameters 

Avg. crossing 

speed 
3 29.9 

AM-Intensity 5 968.6 Center crosses 2 26.1 

Face (front/back) 4 186.0 Saccade time 2 25.9 

Target column 7 163.4 Max head rotation 2 25.0 

Curvature 5 92.9 Target row 1 7.7 

Orientation 3 66.7    

Avg. head rotation 1 51.4    

Avg. angular speed 1 51.1    

Direction 1 18.1    
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parameters in Models 3 and 4 were generally located towards the bottom of the decision 

trees (farthest from the root node). In both models, average head rotation occurred as the 

2nd split for lower intensity values. In other words, if intensity values were low, the odds 

of a participant seeing the target were highly dependent on the average extent to which they 

rotated their head. Overall, Models 2 and 3 appear to strike a good trade-off between the 

quality of exposure predictions for a layout and the model’s complexity. 

7. Conclusion and Next Steps 

The objective of this study was to compare the findings from a recently proposed analytical 

model (for estimating exposure of racks in a 3D retail store) to human performance. To do 

this, we designed a virtual environment of a retail rack layout, where curved racks were 

placed at various orientations. We asked 18 participants to search for targets in 9 unique 

layouts. Our trials revealed substantial variation in the head movement of these 

participants. The analytical model, that assumed an expected horizontal head movement 

with a single scan at each shopper step, appeared to perform reasonably well. However, 

further enhancements to the exposure estimates are possible with the inclusion of target 

and layout parameters in a decision tree framework. The inclusion of human behavior 

parameters further increased the prediction quality, but only marginally. Essentially, both 

Models 2 and 3 seem to provide good tradeoff in terms of quality of estimates and 

complexity.  

As next steps, we plan to use either Model 2 or 3 as exposure estimates in an 

optimization model to determine the optimal rack orientation and curvature that maximizes 

total exposure under space constraints. If possible, we will derive expected impulse 
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purchase (retailer) and improved experience (shopper) as functions of total exposure of a 

layout in subsequent optimization models. 
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Appendix F. Product Category Assortment Data 

Table F1. Data from U.S grocery store 

Category Product Category 
Monthly 
Demand 

Profit 
Category 

Impulse 
Category 

Impulse 
Rate 

Allocated 
Area 

1*1 
Facings 

Aisle  Side 

1 Gravy Mix 6449 M M 0.33 23.86 21 1 Right 

2 Kraft Spreads 3644 M M 0.29 20.08 14 1 Right 

3 Italian Supplies 404 M M 0.22 7.02 7 1 Right 

4 Chili 8393 L H 0.41 29.46 14 1 Right 

5 Tuna 12379 L M 0.30 37.94 35 1 Right 

6 Pickles 5967 M M 0.21 75.63 56 1 Right 

7 Japanese Food 2698 L M 0.24 41.82 42 1 Right 

8 Croutons 2778 M L 0.09 35.65 28 1 Right 

9 Dressing 1823 L M 0.17 23.70 7 1 Right 

10 Condiments 10425 L M 0.32 76.94 63 1 Right 

11 Macaroni 11237 L L 0.03 70.43 56 1 Right 

12 Gatorade 5248 M M 0.23 86.02 42 2 Right 

13 Pizza Supplies 936 L M 0.32 10.59 14 2 Right 

14 Baking/Chocolate 4480 M M 0.28 52.25 98 2 Right 

15 Pasta Sauce 8821 L M 0.30 73.26 84 2 Right 

16 Jell-O 2775 L M 0.27 25.42 14 2 Right 

17 Canned Fruit 4607 L H 0.47 27.66 21 2 Right 

18 Tonic Water 7944 M L 0.15 113.66 112 2 Right 

19 Baking Supplies 946 L M 0.32 10.76 7 2 Right 

20 Rice 7519 M L 0.07 58.67 56 2 Right 

21 Oil 2158 L L 0.08 24.56 7 2 Right 

22 Seasonings 5267 M L 0.04 25.67 21 2 Right 

23 Seasonings/Spices 2145 L L 0.07 5.22 7 2 Right 

24 Brita Water 3291 M L 0.03 25.34 14 2 Right 

25 Beans 8456 L M 0.31 40.83 35 2 Right 

26 Canned Vegetables 14262 L M 0.32 52.51 84 2 Right 

27 Tomato Sauce 12676 L L 0.08 18.87 14 2 Right 

28 Sugar 3430 L L 0.02 121.09 56 2 Right 

29 Chocolate Syrup 1555 M H 0.49 25.75 56 3 Right 

30 Dried Fruit 2069 M H 0.42 25.04 28 3 Right 

31 Coffee 10344 L M 0.25 104.36 126 3 Right 

32 Peanut Butter 8931 M L 0.15 54.21 56 3 Right 

33 Health Bars 313 L M 0.30 3.63 7 3 Right 

34 Cereal 19257 L M 0.30 260.00 252 3 Right 

35 Cereal Bars 10049 L M 0.29 51.03 84 3 Right 

36 Oatmeal 3627 L L 0.14 48.72 56 3 Right 

37 Filter 628 L L 0.02 10.19 7 3 Right 

38 Tea Leaves 1739 L L 0.01 27.95 14 3 Right 

39 Nuts 7631 M H 0.47 79.71 133 4 Right 

40 Air fresheners 2834 M H 0.46 32.48 21 4 Right 

41 Pretzels/Chips 6426 L H 0.49 41.24 133 4 Right 

42 Popcorn 3757 L H 0.50 132.76 56 4 Right 

43 Cleaning Wipes 5555 M M 0.28 80.66 56 1 Left 

44 Seeds 74 H L 0.10 1.39 14 1 Left 

45 Dish Soap 4012 M L 0.11 41.46 28 1 Left 

46 Vinegar 1119 L L 0.11 21.21 7 1 Left 

47 Toilet Paper 5614 L L 0.07 110.49 168 1 Left 

48 Juice 12328 L M 0.23 74.16 56 1 Left 

49 Rice Snacks 1188 L L 0.06 36.37 14 1 Left 

50 Lotion 2187 H M 0.32 45.63 56 2 Left 

51 Bug Stuff 47 M M 0.27 7.89 7 2 Left 

52 Hardware  262 M M 0.23 195.93 224 2 Left 

53 Cat Supplies 1224 M L 0.06 97.62 126 2 Left 

54 Stain Remover 1423 M L 0.05 35.74 21 2 Left 

55 Laundry Soap 4793 M L 0.05 109.79 126 2 Left 

56 Plastic Utensils 687 L L 0.12 2.03 7 2 Left 

57 Napkins 1956 L L 0.08 50.62 56 2 Left 

58 Cups 291 M L 0.01 14.59 7 2 Left 

59 Dyer Sheet 1723 L L 0.01 38.68 56 2 Left 

60 Pet Food 3641 M M 0.34 22.95 56 3 Left 
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61 Meal Replacement 713 H L 0.14 21.91 7 3 Left 

62 Dog Supplies 541 L M 0.30 25.39 21 3 Left 

63 Deodorant 3009 L M 0.26 34.44 56 3 Left 

64 Cat Food 9615 M L 0.12 66.22 77 3 Left 

65 Shaving Gel 1626 M L 0.06 25.85 14 3 Left 

66 Diapers 1153 L L 0.10 176.13 196 3 Left 

67 Baby Supplies 571 L L 0.10 8.52 7 3 Left 

68 Shampoo 320 M L 0.05 10.23 21 3 Left 

69 Dog Food 1426 M L 0.04 113.06 168 3 Left 

70 Hair Supplies 283 L L 0.03 7.11 7 3 Left 

71 Soap 6404 L L 0.07 72.27 56 3 Left 

72 Nutrition Bars 1204 H M 0.28 21.45 14 4 Left 

73 Vitamins 1938 H M 0.26 17.06 14 4 Left 

74 Toothpaste 7025 H L 0.07 68.18 63 4 Left 

75 Drugs 1192 H L 0.07 15.58 14 4 Left 

76 Eye Stuff 604 H L 0.07 11.31 7 4 Left 

77 Ointments 1462 M L 0.09 25.38 21 4 Left 

78 Personal Products 163 H L 0.04 4.40 7 4 Left 

79 Medicine 135 M L 0.04 0.89 7 4 Left 

80 Cough Drops 4162 H L 0.02 27.60 21 4 Left 

81 Antacid 1286 H L 0.02 16.67 14 4 Left 

82 Feminine Products 2865 L L 0.04 131.48 105 4 Left 

83 Pain Medication 2158 H L 0.01 19.30 14 4 Left 

84 Boost Drinks 639 H L 0.01 40.60 42 4 Left 
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