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18 Abstract:

19 Over 40 years of regulations in the United States have failed to protect human and environmental 

20 health. We contend that these failures result from the flawed governance over the continued 

21 production, use, and disposal of toxic chemicals. To address this failure, we need to identify the 

22 broader social, political, and technological processes producing, knowing, and regulating toxic 

23 chemicals, collectively referred to as toxic chemical governance. To do so, we create a conceptual 

24 framework covering five key domains of governance: knowledge production, policy design, 

25 monitoring and enforcement, evaluation, and adjudication. Within each domain, social actors of 

26 varying power negotiate what constitutes acceptable risk, creating longer term path dependencies 

27 in how they are addressed (or not). Using existing literature and five case studies, we discuss four 

28 paths for improving governance; evolving paradigms of harm, addressing bias in the knowledge 

29 base, making governance more equitable, and overcoming path dependency. 
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1 Introduction:

2 Despite decades of legislation (Wagner 2007) and public interest litigation (Lind 2015), 

3 contemporary society remains saturated with environmental pollution risks of its own production 

4 (Beck 2008). Globally, these failures of environmental protection cause millions of premature 

5 deaths per annum and cost society billions of dollars in economic damages (Landrigan et al. 2017). 

6 These pervasive and increasing environmental threats often remain unknown until publicized by 

7 private citizens, scientists, NGOs, or the media. Warnings issued with increasing frequency by the 

8 scientific community (e.g., Ripple et al. 2017), are all too often met with policy gridlock and a lack 

9 of substantive government action. Despite the existence of cleaner technologies whose economic 

10 and social benefits exceed transition costs, globally, environmental pollution has become the 

11 leading cause of preventable death (Landrigan et al. 2017).

12 Globally, significant gains have been made in reducing primary emissions of some highly 

13 regulated chemicals (SC 2017), although debate continues as to the overall impacts of shifting 

14 global geographies of the production of toxic risks (Rasli et al. 2018). The US serves as an 

15 excellent case study on the multi-faceted nature of governing toxic chemical risks. It has lagged 

16 behind the EU (European Union) in adopting the precautionary principle, especially with regards 

17 to importing consumer and industrial products (Becker 2010), and in dealing with emerging 

18 contaminants (Bao et al. 2015).  And as elsewhere, partial solutions have led to unintended 

19 outcomes, such as increases in ozone exposure concomitant with declines in particulate pollution 

20 due to widespread adoption of catalytic converter technology (HEI 2019). 

21 As an interdisciplinary group of scholars crossing the domains of environmental science, 

22 public administration, and political science, we attribute failures within the United States to a more 

23 general failure of environmental governance (Mol 2016). A focus on governance highlights how 
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1 different domains of social decision-making define and manage risks and responsibilities 

2 associated with the production and distribution of toxic substances. Governance also centers the 

3 long running concerns of professional vs. lay person knowledge (Brown 1992, Brulle and Pellow 

4 2006), contestations over ‘facts’ in the ‘post truth’ era, and the degree to which administrative 

5 power can shift regimes of environmental governance (Revesz 2019).

6 Existing work documents how failures of environmental governance results in 

7 environmental injustice through the inequitable distribution of exposure to toxic chemicals based 

8 upon racial and socio-economic identities (Landrigan et al. 2017). This unevenness has resulted 

9 from racist and opportunistic practices of uneven permitting and enforcement (Morello-Frotsch 

10 and Shenassa 2006) and contributes to the framing of governance failures as ‘somebody else’s 

11 problem’ (Pastor and Morello-Frotsch 2018). Simultaneously, toxic chemical risks are ubiquitous 

12 and systemic in nature, affecting humans across the globe regardless of their socio-economic class 

13 (Schwarzenbach et al. 2010). Existing support for high environmental quality across the political 

14 spectrum (Feinberg and Willer 2013), combined with rising rates of developmental and chronic 

15 diseases (Landrigan et al. 2017), indicates that there is an urgent need to frame both risks and 

16 policy proposals in a way that mobilizes those of diverse political orientations.

17 The current political climate in the USA indicates significant resentment against the 

18 political establishment, typified by a resurgent anti-administrative state agenda reminiscent of the 

19 1980s (Hejny 2018) and significant negative consequences for public and environmental health 

20 (Cutler and Dominici 2018). On the upside, the current administrative swing has exposed the long-

21 standing pattern of elite interests disproportionately writing, lobbying, and adjudicating 

22 environmental laws in their narrowly defined self-interest, and has increased mobilization of 

23 NGOs, community based organizations, and science-based advocacy organizations (Mol 2016). 
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1 This political landscape highlights a need for scientists to engage directly with increased public 

2 scrutiny (Latour 2004) by calling for democratic governance to employ best available knowledge 

3 for protecting the quality of our environment and public health. 

4 With this goal in mind, we provide a conceptual overview of the governance structure of 

5 toxic risk management in the United States. We use our conceptual framework to analyze several 

6 high-profile case studies, and discuss a proposed set of principles, ongoing initiatives, and 

7 challenges of improving toxic chemical governance in the USA. 

8

9 Toxic Substances Policy in the USA

10 Literature in the United States has documented numerous instances of failure across diverse 

11 classes of pollutants, natural systems, and regulatory contexts (e.g., Davies and Mazurek 1998, 

12 Paavola 2006, Fletcher 2009). Common causes of attributed failure include a failure to regulate 

13 classes of toxic chemicals (Mesnage et al. 2015), standards inadequate to achieve protection 

14 (Vogel and Roberts 2011, Boone et al. 2014), and non-enforcement of existing regulations (Farber 

15 1999). We define failure as unacceptable levels of human and environmental exposure to toxic 

16 chemicals during their production, use, transport, and fate in the environment.

17 While existing regulations and policies written by legislatures and enacted by executive 

18 and administrative branches of government (e.g., federal, state, tribal, and local agencies) 

19 ostensibly act in the public interest, other social actors actively shape their design and language 

20 (e.g., lobbying from industry and citizen groups; Davies and Mazurek 1998, Cash et al. 2006) to 

21 constrain their effectiveness. Additionally, manufacturers, installers, and users of potentially toxic 

22 substances routinely evade effective regulation through legal and illegal means (Lynch and 

23 Stretesky 2014). In response to these recognized drivers of failure, remediation efforts generally 
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1 prioritize stricter regulation based upon the perceived risks of the substance in question. Tactics 

2 include limiting harmful exposure and environmental releases via command and control 

3 regulation, mitigating ongoing exposures with funds generated from regulation, and, in some 

4 cases, providing incentives for eliminating sources of risk by shifting to alternative technologies 

5 (Wilson and Schwarzman 2009). However, the technological capabilities of manufacturing often 

6 evolve faster than their regulatory apparatuses, and industries themselves have built up a 

7 technological, intellectual, and regulatory ecosystem that has effectively excluded many ‘greener’ 

8 technologies (Woodhouse 2006). 

9 In the United States, the current policy framework around toxic substances remains highly 

10 fragmented among jurisdictions of federal agencies such as the Environmental Protection Agency 

11 (EPA), U.S. Department of Agriculture (USDA), Food and Drug Administration (FDA), and 

12 Department of Health and Human Services (DHHS) (see Table 1). Some states have additional 

13 regulations, such as California’s Proposition 65, requiring the state to publish and annually update 

14 a list of known chemical carcinogens or reproductive toxicants (Nelson 2013). Mirroring 

15 jurisdictional fragmentation resulting from sector-specific regulations, variation exists for different 

16 media (e.g., soil, air, water; Caliman and Gavrilescu 2009, Rudel and Perovich 2009). 

17 In addition to poor policy design and fragmentation, the current policy framework leaves 

18 many chemicals un- or under-regulated. The primary federal toxic chemical regulation, the Toxic 

19 Substance Control Act (TSCA; implemented in 1976), has grandfathered in nearly 62,000 

20 previously unregulated chemicals without evaluation of risk (Vogel and Roberts 2001), a number 

21 not including the manufacturing by-products of those chemicals or their environmental derviatives. 

22 A hard-fought 2016 amendment to TSCA established a schedule for evaluating the estimated 

23 85,000 existing chemicals in the marketplace, shifted toxicological analyses towards a risk-based 
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1 framework, limited the ability of companies to claim commercial confidentiality, and has 

2 eliminated the consideration of cost in risk assessment (Frank R. Lautenberg Chemical Safety Act 

3 2016). With a risk-based framework, the burden of proof for evaluating potential harms to humans 

4 and the environment is placed on the regulatory agency, who will only regulate a chemical if it is 

5 shown to pose a risk to human and environmental health in a highly specified exposure pathway. 

6 TSCA remains in litigation over fundamental procedural issues, including the process of 

7 prioritizing different substances for evaluation, definitions of ‘unreasonable’ risk, and whether the 

8 EPA should consider the feasibility of replacement substances in prioritization (Bergeson and 

9 Graham 2017, CW 2019). Despite the 2016 TSCA requirements for EPA to evaluate all new 

10 chemicals before market release, EPA remains underfunded and understaffed for timely 

11 evaluation. Exacerbating the situation, TSCA does not require companies to provide toxicological 

12 data, and the annual evaluations of 20 high-risk and 20 low-risk chemicals can not keep pace with 

13 new chemical production (Botos et al. 2018). 

14 In addition to TSCA, substances that pose threats to human and environmental health are 

15 regulated by a number of other regulatory instruments including the Clean Air Act, Clean Water 

16 Act, Safe Drinking Water Act, Resource Conservation and Recovery Act, and various workplace 

17 regulations under Occupational Safety and Health Administration – all of which rely on similar 

18 processes of analyzing risk to determine the extent to which they should be regulated (Steward 

19 1995). Additionally, chemicals intended for human consumption as food stuffs, pharmaceuticals, 

20 tabacco products or derivatives, and personal care products undergo their own regulatory 

21 procedures through the Food and Drug Administration. Further fragmenting the regulatory 

22 environment, the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA), regulates the sale 

23 of agricultural chemicals not registered with the EPA. Though this process requires stringent 
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1 manufacturer testing, labeling, and periodic recertification (every 15 years) of pesticides,  it critical 

2 economic importance can outweigh human and environmental risks, especially if those substances 

3 have become widespread, or engineered into crop production systems. Perhaps because of this it 

4 is rare for a pesticide to be denied re-registration unless there is overwhelming evidence of human 

5 and ecological harm. Both FIFRA and TSCA suffer in effectiveness due to their definitions of risk, 

6 and the ease of industry influence on their decision-making processes.

7 In contrast, the European Union’s Registration, Evaluation, Authorization and Restriction 

8 of Chemicals (REACH) legislation, utilizes precautionary principles, putting the burden of proof 

9 of safety on the industries that produce them (Silbergeld et al. 2015). Under the precautionary 

10 principle, new substances and their derivatives are assumed to pose risk until proven otherwise, 

11 and the responsibility for proving the absence of risk is placed on both the producer and the 

12 regulator. REACH also requires producers to provide the European Chemicals Agency (ECHA) 

13 with toxicological information, and uses a spectrum of safety standards matched with appropriate 

14 use restrictions and mandatory labeling. 

15 All of the above policies, struggle with inadequate resources for chemical assessment and 

16 are vulnerable to lobbying and uneven adjudication.  A primary challenge with REACH, for 

17 example, is that EU member states are responsible for implementing the chemical evaluation 

18 process, leading to inconsistencies in implementation. Despite the improvements made to TSCA, 

19 it still falls short of REACH’s founding precautionary principles. This comparison indicates the 

20 importance of strong guiding principles in effective toxic chemicals governance. While the 

21 incorporation of precautionary principles will be an important step toward better regulation of 

22 toxic chemicals in the U.S., it alone is inadequate. Effective protection from toxic chemical risks 

23 will require changes in governance practices and an evolution of the technologies and practices 
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1 that generate risk to align with public and environmental health goals.

2

3 A Framework for Understanding Toxic Chemical Governance 

4 Governance includes the social practice of designating rules, standards, and norms 

5 according to which actors and institutions negotiate and make decisions (Rogers and Hall 2003), 

6 including what knowledge is considered valid and useful (Wynne 2003). A focus on governance 

7 identifies how the present conditions of our society, environment, and technological 

8 infrastructures are interdependent with the forms of expertise and political authority deemed 

9 necessary to manage harms to humans and the environment (Scott 1998, Jasanoff 2004, Latour 

10 2004). In particular, governance highlights the process of classifying potentially hazardous 

11 substances as risks; the consideration of different forms of knowledge or expertise in that 

12 process, and the path dependency – or inertia – resulting from prior decisions. We describe these 

13 concepts below and use them later to evaluate five high profile cases of toxics regulation success 

14 or failure in the United States. 

15 The construction of risk around toxic chemicals can be defined as a social process of 

16 emphasizing some dangers over others (Douglas and Wildavsky 1983). Formal risk analysis 

17 involves calculating the probability of a specified level of chemical exposure multiplied by the 

18 probable consequences of that exposure (Bocking 2004). However, in practice, such analysis 

19 relies on a set of assumptions about social behavior alongside physiological and toxicological 

20 data, and often disregards risks experienced by affected communities (Bocking 2004, Beck 

21 2008). In this sense, standard risk analysis treats risks to public health and the environment as 

22 “end of pipe” problems and unplanned releases as public relations problems. Such thinking 

23 ignores that the generation of risk results from choices about how chemicals can be produced. 
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1 These choices produce systems which have global consequences, normalize the production of 

2 toxic byproducts, and have significant sunken costs in facilities and the development of 

3 economic sectors dependent upon those kinds of inputs (Beck 2008). 

4 While different social actors perceive and calculate risks in different ways, risk 

5 management is generally seen as an activity worthy of professional expertise. Expertise in this 

6 sense refers to the social practices of designating individuals, institutions, technologies, and 

7 methods as sources of authoritative knowledge (Scott 1998, Wynne 2003, Bocking 2004, 

8 Jasanoff 2004). Expertise often has disciplinary boundaries, which prevent synthesis across and 

9 within disciplines (Cartwright 1999). As social actors vie for legitimacy within networked 

10 political, financial, environmental, social, and technical systems (Grabowski et al. 2017) 

11 institutions take on more stable forms, routing social decision-making processes into established 

12 mechanisms and fora exhibiting different forms of path dependency.

13 Path dependency refers to the way in which future possibilities are seen as constrained by 

14 present conditions and largely results from decisions about financial, institutional, intellectual, 

15 and bureaucratic investments in social ways of doing, infrastructures, and technology (Jasanoff 

16 2004, Woodhouse 2006, Beck 2008). Path dependencies may lead to the generation of systemic 

17 bias in what type of knowledge is produced and considered relevant, which is often contested by 

18 popular movements (Hess 2015). Disrupting path dependency generally requires major events, a 

19 form of punctuated equilibrium (Pierson 2000). Systemic path-dependencies result when agents 

20 within institutions prevent change despite widely recognized problems (Sydow et al. 2009). For 

21 example, toxic chemical risks have often been framed as by-products or externalities, or 

22 attributes of chemicals to be managed, when in fact they are embedded within ‘normal’ 

23 operations (Beck 2008, Perrow 1984).
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1 Drawing upon these concepts of risk, expertise, and path dependency, we present a 

2 conceptual framework of the current toxic chemical governance system in the USA. We break 

3 down the overall governance system into five interdependent domains in which toxic chemical 

4 regulations are interpreted, implemented, and evaluated: knowledge production, policy design, 

5 monitoring and enforcement, evaluation, and adjudication (Figure 1). Each domain operates 

6 simultaneously in time and space, although problems can flow from one to another (e.g., failures 

7 of enforcement often result in adjudication). 

8 Knowledge Production

9 While different forms of expertise and knowledge are embedded in all domains, the 

10 ‘knowledge base’ refers to the overall organization of information pertaining to toxic chemicals. 

11 This includes “facts” and “information,” and the accepted methods for producing them, which 

12 invokes the ways institutions, values, norms, and discourses within a social system decide what 

13 type of knowledge is legitimate or useful (Jasanoff 2004, Stehr 2015). Many stakeholders are 

14 involved in toxic chemical knowledge creation, including affected communities, the scientific 

15 community, the media, and industry representatives. Each stakeholder group constructs their 

16 knowledge differently, leading to different claims about toxic chemicals. These varied claims 

17 and perspectives on what constitutes legitimate knowledge, and how it is and should be 

18 produced, lead stakeholders to identify and categorize threats to health and the environment in 

19 radically different and often incompatible ways (Wynne 2016). 

20 Policy Design

21 Policy design includes processes for describing present conditions, framing goals, 

22 creating incentives and/or regulations to achieve those goals, and assigning rights and 
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1 responsibilities to different social actors within an overarching policy architecture. This domain 

2 heavily influences monitoring, enforcement, and evaluation activities, and sets the stage for 

3 adjudication.  It is here that the interests and values negotiated within the knowledge base 

4 become codified into legislation via regulations, incentives, and budget allocations. Top-down 

5 policy architecture is more easily implemented but less flexible for local stakeholders, whereas 

6 bottom-up approaches are adaptive and flexible, but can be difficult to create given disagreement 

7 among stakeholders and/or lead to unequal environmental regulations across the country 

8 (Bocking 2004). Canonical descriptions of the policy process divide participants into decision-

9 makers, generally referring to elected officials, and stakeholders including: affected 

10 communities, industries, and ‘special interest’ groups. It has been observed that local affected 

11 communities engaged in the policy process often demand a precautionary approach to protect 

12 their local human and environmental safety (e.g., Bullard and Johnson 2009), while industry 

13 interests push for limiting regulation and including policy language that allows them to continue 

14 current business operations (e.g., Boone et al. 2014). 

15 Monitoring and Enforcement

16 Monitoring and enforcement refers to the mechanisms of observing regulated activities 

17 and the ability to coerce compliance with standards and operating procedures as written. 

18 Enforcement can take place via three primary approaches. (1) The formal regulatory arena: local, 

19 state, and federal executive and regulatory agencies issue fines for limit exceedances and issue 

20 release permits, among other codified approaches to compliance. This requires sufficient 

21 resources for detecting and correcting violations. (2) Self-regulated monitoring and enforcement: 

22 in the absence of close regulatory oversight, private-contract auditing agencies oversee industry 

23 groups to ensure compliance, often via certification programs. (3) Complaints by affected 
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1 communities who identify misconduct, draw media attention, and place political pressure on 

2 industry groups to comply with regulations. This often happens when there are limitations in 

3 agency resources. Proper enforcement requires adequate policy design, including initial political 

4 will, coherence in writing legislation, and consistent, long-term political and financial support for 

5 monitoring and enforcement efforts (Wagner 2007).

6 Programmatic and Policy Evaluation

7 Programmatic and policy evaluation refers to evaluation of policies designed to manage 

8 chemical exposure, production, and transportation, and the creation of alternative technologies 

9 and practices. This domain is tightly linked to policy design, whereby program and policy 

10 evaluations should inform future policy designs. Major actors involved in this domain include 

11 federal, state, and local regulatory government agencies, affected communities, industries, the 

12 scientific community (including non-governmental agencies and nonprofits), and the media. 

13 Judicial agencies that perform policy evaluations in response to publicity of toxic chemical risk 

14 to human or environmental health, and/or to initiatives within industry to change their practices 

15 or use of certain chemicals may also be involved. This is the domain in which stakeholder claims 

16 about the impacts of policies are evaluated, then either utilized to evolve policy or disregarded.

17 Adjudication

18 Adjudication is the legal process by which disputes are settled, policies are interpreted 

19 (e.g., claims of harm and liability), and enforcement activities are contested (e.g., ongoing TSCA 

20 litigation pertaining to procedural rules for chemical risk evaluation). A key part of adjudication 

21 pertains to the formal determination of compliance, liability, harm, and responsibility to parties 

22 involved in litigation.
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1 More broadly, adjudication is the process by which knowledge claims, policy efficiency, 

2 and the distribution of benefits/burdens of a particular substance are vetted by the judicial branch 

3 of government. Affected and/or scientific communities, non-governmental interest groups, 

4 government agencies, and industries often initiate adjudication (Hoffman 1999) as a means of 

5 changing activities within the other governance domains. These changes may include policy 

6 design modifications, enforcement of compliance, increased monitoring and enforcement, and 

7 promoting or contesting evaluation. Common forms of adjudication include petitions to state and 

8 federal agencies, settlements with regulatory and private sector entities, or lawsuits. While the 

9 courts can settle issues of human and environmental failures, this approach is, by definition, 

10 reactionary and can only interpret legislation to nullify/clarify obligations, or set appropriate 

11 enforcement actions, through slow, costly, and often adversarial means (Silbergeld et al. 2015). 

12 Adjudication can pre-emptively impact policy as legislatures shy away from creating un-

13 enforceable policies. 

14

15 Application of Governance System Conceptual Framework 

16 We expand our conceptual framework of five governance domains (i.e., knowledge 

17 production, policy design, monitoring and enforcement, evaluation, and adjudication) to 

18 determine how patterns of flawed governance lead to unsafe exposure of select chemicals. We 

19 create a qualitative evaluative framework for governance issues related to risk definition, 

20 knowledge production, and path dependency across the five domains (Figure 2). Based on 

21 aspects of the governance literature discussed above, we consider whether risk, expertise, and 

22 path dependency are “succeeding,” “failing,” or “partially succeeding”, corresponding with a 

23 numerical ranking (see Figure 3).  Risk is qualitatively evaluated as succeeding if there is 
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1 plurality and consensus of how the risk is framed and it is considered failing if risk is understood 

2 only from one perspective and/or is highly contested. Expertise is qualitatively evaluated as 

3 succeeding if there are multiple forms of knowledge and participants in addressing the risk, 

4 including those most affected by the decision; it is considered failing when only one form of 

5 expertise or knowledge is used and the perspectives of affected parties are disregarded. Path 

6 dependency is considered succeeding if the system is evolving to address emerging risks and 

7 challenges and is considered failing if it is regressing or failing to evolve despite an 

8 acknowledged need to do so. 

9 We then apply this evaluative framework (Figure 2) to five high-profile case studies. We 

10 chose a set of toxic substances case studies based upon their representativeness within 

11 infrastructure systems (lead and SOx), manufacturing (heavy metals in light industry), 

12 agriculture (glyphosate), and consumer products (bisphenol-a (BPA)).  For each case, we 

13 assembled literature reviewing the evidence base for each case, collected popular media accounts 

14 describing the policy responses, and examined relevant legislation and enabling policies of their 

15 regulation (Supplemental Materials 1). Each co-author described the conditions of a case by each 

16 domain, and then used the subjective scoring system to rank the robustness of risk framing, 

17 representativeness of expertise, and the degree of path-dependency per the evaluative framework 

18 in Figure 3. For each case, we averaged the group’s scoring for risk, expertise, and path-

19 dependency within each governance domain to compare the perceived level of success or failure 

20 between cases, and then discussed the group’s findings to achieve consensus on a final ranking. 

21 Applying this evaluative framework draws out where failures in toxics governance are rooted in 

22 each case, and where there are similarities and differences across cases.    

23

Page 14 of 66

https://mc.manuscriptcentral.com/bioscience

BioScience Pre-Publication--Uncorrected Proof

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Draft M
anuscript

15

1 Key findings

2 Most cases ranked between “failing” (score = 1) and “partially succeeding” (score = 2) out of a 

3 total possible score of “success” (score = 3) (Figure 2). Overall, we found that although most 

4 cases had robust risk knowledge that included diverse perspectives for framing risk, ongoing 

5 issues with path dependency, and in some cases policy regression, were common throughout the 

6 cases evaluated. 

7
8 Lead in school drinking water

9 Score: 1.4/3

10 Schools serving children across socioeconomic strata nationwide have unsafe lead levels 

11 in drinking water fountains (Wines et al. 2016), because the Safe Drinking Water Act regulates 

12 water lead levels at water treatment facilities, but not at the tap. Updated ‘lead-free’ plumbing 

13 rules maintain allowable lead content, and legacy plumbing and water infrastructure management 

14 can cause significant lead leaching. Well-publicized cases include schools in Washington, DC in 

15 2000 and 2004, Seattle, WA in 2004, Flint, MI in 2014, and Newark, NJ, New York, NY and 

16 Portland, OR in 2015 and 2016. The persistence of this issue is caused by failures within the 

17 enforcement, monitoring and evaluation, and adjudication domains, along with path dependences 

18 within all domains (Figure 4a).

19

20 Heavy metals in light industry

21 Score: 1.8/3

22 Bullseye Glass in Portland, Oregon creates art and architectural glass products. Because 

23 of regulatory exemptions for small-scale industry, they lacked scrubbers and were releasing 

24 heavy metals, including known carcinogens like cadmium and arsenic (Donovan et al. 2016). 

Page 15 of 66

https://mc.manuscriptcentral.com/bioscience

BioScience Pre-Publication--Uncorrected Proof

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Draft M
anuscript

16

1 Portland residents filed eight complaints across multiple decades to the state Department of 

2 Environmental Quality, but no action was taken until the media was notified that the US Forest 

3 Service found levels of cadmium almost 50 times above Oregon's benchmark of 0.6 ng/m3 

4 during a moss air monitoring project (Donavan et al. 2016). A class action lawsuit against 

5 Bullseye Glass was subsequently filed, and a cease and desist order was issued for any 

6 uncontrolled furnaces. Regulatory gaps are now addressed by the Cleaner Air Oregon initiative, 

7 but still exist at the federal level. Based on our evaluative framework, we determined that risk 

8 evaluation for this case was moderately successful, and that the release of unsafe levels of heavy 

9 metals can mainly be attributed to failures of expertise and path dependency (Figure 4b).

10

11 Sulphur and nitric oxides

12 Score: 2/3

13 Sulfur oxides (largely SO2) result from burning sulfur or sulfur-containing materials, 

14 mostly coal, but present in all fossil fuels. Nitric oxides (NOx), which form during hydrocarbon 

15 combustion under an excess of oxygen, are both harmful to human health (affecting respiratory, 

16 cardiovascular, and neurological systems) and the built and natural environment as the leading 

17 causes of acid rain and deposition (Likens 1974, McCubbin and Delucchi 1999). Risk of unsafe 

18 exposure still exists due to industry influence on policy design and monitoring and enforcement, 

19 and due to failures of expertise and path dependency within the policy evaluation and 

20 adjudication domains (Figure 4c). 

21

22 Bisphenol-a in consumer products

23 Score: 1.3/3
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1 This endocrine disruptor (compound that interferes with proper hormone signaling) is 

2 present in many plastics to mitigate brittleness. BPA became notorious when scientists identified 

3 that it can leach into food and drinks and onto skin, and consumption or absorption of this 

4 compound, especially early in development, may increase cancer risk due to its endocrine-

5 disrupting properties (e.g. Seachrist et al. 2016). Despite these findings, the use of BPA is still 

6 allowed in most products, although market pressure has resulted in its phase-out, and the FDA 

7 has removed it from the list of allowable additives in baby and children's food and drink 

8 products. While some risk has been mitigated thanks to moderately successful knowledge 

9 production and adjudication, failures are still pervasive around proper monitoring and 

10 enforcement due to privileging of expertise and systemic path dependency and the use of 

11 replacement chemicals with uncertain toxicity (Figure 4d).

12

13 Glyphosate in agriculture  

14 Score: 1.4/3

15 Glyphosate is the active ingredient in Roundup ©, one of the most commonly applied 

16 pesticides in the United States, where laws require “reasonable certainty of no harm” as a 

17 prerequisite for pesticide certification. Industries typically determine such risk by assessing 

18 health effects at increasingly higher doses (dose-response); however, scientists have found that 

19 low, environmentally relevant concentrations of glyphosate can mimic and interfere with 

20 hormone signaling (endocrine disruption) and may also be associated with non-Hodgkin’s 

21 lymphoma (Mesnage et al. 2015).  Despite this growing body of scientific literature on the risks 

22 of glyphosate, the threshold for maximum glyphosate residues on food and animal feed - known 

23 as the tolerance level - continues to increase, and glyphosate was recertified for use in 2015 
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1 (Benbrook 2016). The persisting risk of glyphosate exposure can be attributed to pervasive 

2 failures across all governance domains, particularly with respect to policy design, monitoring and 

3 enforcement, and evaluation. Industry influence over the governance processes has continued to 

4 affect ongoing adjudication processes, although harmed individuals have achieved some post 

5 harm compensation (Figure 4e). 

6

7 Discussion: Paths forward

8 Our analysis of a diverse set of failures to protect public and ecological health from toxic 

9 risks indicates a strong need to improve the overall governance of toxic chemical production and 

10 use throughout the United States. Four major patterns emerge from our analysis of governance 

11 failures:

12 1) Governance allowing the production and release of toxic chemicals with inadequate 

13 assurance of safety leads to inevitable harm to human and environmental systems,

14 2) Certain forms of knowledge, particularly those that favor industry over public and 

15 environmental health, are privileged when assessing the extent and risk of this harm, 

16 3) Knowledge inequality is exacerbated by unequal formal mechanisms for resolving 

17 disputes over the assessment, mitigation, and redressing of harms, and 

18 4) Path dependency of technological, administrative, and knowledge-producing systems 

19 makes effective change difficult and perpetuates harm, despite regulatory action. 

20 For each of these interrelated issues, we identify prominent paths forward based on a re-

21 interpretation of the purpose of toxic chemicals governance, provide examples of developing real 

22 world initiatives addressing them, and discuss challenges to their continued development and 

23 success.
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1 Issue 1: Incomplete paradigms of mitigation and risk management: the inevitability of harm from 

2 toxic chemical production

3 It is clear from our case studies of lead, glyphosate, SOx, heavy metals, and BPA that 

4 many toxic chemical risks are persistent both in their sources and their biological consequences.  

5 These risks often only become known after enough harm has accrued to communities to elicit a 

6 social response (Mesnage et al. 2015, Silbergeld et al. 2015). Patterns of enforcement and 

7 adjudication indicate that present regulatory processes generally only mitigate or act 

8 retroactively, not preventatively. At the current rate of evaluation under TSCA, new chemicals 

9 are being manufactured faster than existing chemicals are being evaluated, especially those 

10 produced outside of the USA (Bernhard et al. 2017). Even for regulated chemicals that have 

11 reporting requirements, existing datasets fail to communicate the frequency of chemical 

12 exposures or releases that are occurring, leading to enforcement failures as evidenced by the 

13 pervasive presence of toxic chemicals in global ecosystems and human populations 

14 (Schwarzenbach et al. 2010, Bernhardt et al. 2017). Good governance should therefore 

15 incorporate a paradigm shift around toxic chemicals management from one of mitigating risk to 

16 one of eliminating risk and supporting clean production to improve the long-recognized need for 

17 coordinated global and regional governance (Vogel 1997).

18 Principle 1. The right to be free from toxic chemical risks 

19 Enshrining the right to be free from harm from toxic chemicals in policy will provide a 

20 clear articulation of our overall goals as a society with regards to what rights are sacrosanct and 

21 which can be negotiated (Hayward 2002). Ambitious policy goals of eliminating the production 

22 of toxic chemicals and supporting the right of humans and ecosystems to be free from harm 

23 caused by toxic chemicals will enable transformation of the complex systems producing toxic 
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1 chemical risks (Jasanoff 2004, Woodhouse 2006). Given the economic benefits that 

2 industrialized countries have already realized by engaging in compliance-based environmental 

3 regulation (Wallace 1995), further benefits could be realized by addressing the interdependent 

4 threats of anthropogenic climate change and global pollution, all while revitalizing US 

5 manufacturing and providing millions of jobs in the process (Bain et al. 2016).  

6 To overcome the significant political, economic, and technological inertia of addressing 

7 these interdependent threats, we can look to the precedent of using purity as a rhetorical tool for 

8 political mobilization and for overcoming industry special interests (Barkan 1985). Existing 

9 research recognizes a high degree of support for protecting environmental purity and human 

10 health across the political spectrum, despite ideological differences over the role of government 

11 in regulating businesses, requiring sustained public mobilization to enact significant legislative 

12 reform (Feinberg and Willer 2013). While such mobilization can set a legislative agenda for 

13 technological and economic evolution, a need remains for generating knowledge to enable 

14 systemic transformation (McCormick and Kautto 2013).

15 Issue 2: Biased and Incomplete Knowledge

16 Across our cases, we observed a consistent privileging of certain forms of knowledge in 

17 defining and managing risks, which generally favors biophysical laboratory science over field 

18 observation, including epidemiological, anthropological, and social science accounts of 

19 experienced risk and harm. Even after harm becomes known, industry and responsible parties 

20 will consistently challenge accounts of harm while hiding behind the same scientific uncertainty 

21 that would cast doubt on their initial risk assessments. This tactic is present at the forefront of 

22 litigation over glyphosate and lead in school drinking water. Our case studies mirror larger 

23 systemic problems in risk assessment, including affiliation bias in the risk assessment arena 
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1 (Slovic 2016), targeted attacks on independent researchers (Reeves 2015), and the large volume 

2 of industry-sponsored toxicological risk assessments (Hartung 2009). 

3 Knowledge production around toxic substances in the USA remains fragmented by the 

4 physiochemical and toxicological properties of regulated materials. As chemical classes affect 

5 different exposure pathways, placement of chemicals within the overall economic system (e.g., 

6 during their production, release in the environment, or use in consumer products) is an important 

7 consideration in proper regulation. However, there is little systematic coordination in the 

8 production of knowledge of contaminant classes based upon their chemical structure and mode 

9 of action, or how these classes are used and released. Current toxic chemical governance uses a 

10 narrow approach to knowledge production instead of, for example, evaluating substances based 

11 on classes with shared chemical structure – such as organochlorines or brominated flame-

12 retardants – or even based on shared mode of actions – such as level or type of carcinogenicity.  

13 A class-based approach may lead to more effective and efficient regulation and protection from 

14 chemical risks (e.g., Sanderson et al. 2004), and has been partially adopted by the current TSCA. 

15  The failure to include broad expertise in the governance process has cascading effects: 

16 policy design does not adequately prevent failures, and often does not provide architecture for 

17 effective monitoring and enforcement. As path dependency is rigid, effective policy evaluation is 

18 often nearly impossible. This means that adjudication is necessary to attempt to address 

19 grievances, while effective change is made difficult by poor policy design, lack of monitoring 

20 and enforcement, and the institutional challenges to quality policy evaluation, including major 

21 limitations on building a knowledge base for alternative chemical production. 

22 Principle 2: Support diverse knowledge systems 
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1 Evolving the knowledge base entails supporting the generation and synthesis of diverse 

2 forms of knowledge for a more robust understanding of the complex nature of toxic chemical 

3 risks and the resulting socio-technical transformations needed. At present, advances have been 

4 made in funding independent evaluations of chemical toxicity and in improving both laboratory 

5 and field-based methods for assessing toxic chemical risks.  However, some promising 

6 technologies, such as the use of cell cultures and metabolic micro-arrays instead of animal 

7 testing, could dramatically cut the costs of risk assessment but require sustained investment in 

8 order to penetrate a field dominated by animal testing (Hartung 2009). These advances in 

9 laboratory science should also be interdependent with field-based, public health, and experiential 

10 knowledge of toxicity. Increases in knowledge generation and synthesis about the impacts of 

11 toxic chemicals also need to inform and integrate research on alternative modes of clean 

12 production for substances of similar function, all which could be funded by implementing fees 

13 on the production of certain chemical classes (Thornton 2000). Building such a diverse 

14 knowledge system is not without its challenges, many of which can be overcome by providing an 

15 inclusive, representative, outcome focused, and independently evaluated research process for 

16 different classes of toxic chemicals (Reed et al. 2014). However, as our case studies indicate, 

17 integrating diverse knowledges requires substantive changes throughout the rest of the 

18 governance system. 

19 Issue 3: Uneven and Unequal Governance

20 In cases where laboratory science presents significant evidence of risk of widely used 

21 chemicals, such as BPA, glyphosate, and lead in plumbing, unequal policy and enforcement 

22 mechanisms privilege the material interests of powerful actors over the health and well-being of 

23 communities and ecosystems. A lack of resources for adequate regulatory enforcement and  
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1 policy and program implementation is symptomatic of the skewed priorities of the existing 

2 governance system. Some of our case studies exhibited partial success in one or more domains. 

3 For example, adjudication in glyphosate under the logic of compensation, allows for continued 

4 operations, serving as a “bandage” to mitigate core weaknesses in policy design and 

5 enforcement. This model of governance disproportionately affects vulnerable populations, 

6 including children, elderly, low-income individuals, and future generations in favor of industry 

7 (Elliott et al. 2004, Landrigan et al. 2017).

8 Part of the reason for this uneven and unequal governance is the influence industry has on 

9 shaping the present policy sphere. These types of failures result from targeting public opinion 

10 (Robbins 2007), and the lobbying and influencing of legislators (Hall and Deardorff 2006, 

11 Fredriksson et al. 2003) to the point where legislation drafted by industry associations can 

12 become law (Potter 2011). This legislative capture is often reinforced by regulatory capture, 

13 occurring when an executive agency meant to protect public interest instead protects the industry 

14 it regulates (Shapiro 2012). Arguments for this close relationship between regulators and 

15 industries hinge on the idea that the two entities are supposed to collaborate to provide economic 

16 growth while protecting public values and interests (Lind 2015). By extension, the relatively 

17 limited influence on the policy process exerted by environmental and public health interest 

18 lobbyists, and their shift towards legal expertise, has resulted in a system of ‘regulation by 

19 litigation’ (EPA 2017) by the ‘public interest law complex’ (Lind 2015). Overall, these tensions 

20 highlight that while some adjudication can lead to substantive enforcement actions, without 

21 significant policy change and associated governance evolution, seeking financial redress from 

22 toxic industries may perversely promote increased or dirtier production as companies must 

23 finance compensatory penalties from their operating budgets.

Page 23 of 66

https://mc.manuscriptcentral.com/bioscience

BioScience Pre-Publication--Uncorrected Proof

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Draft M
anuscript

24

1 Principle 3: Inclusive, transparent, and accountable institutions 

2 Overall, effective governance comes from increasing the representativeness and 

3 transparency of democratic processes, and allowing for the direct involvement of affected 

4 communities in policy design and implementation. Such a principle supports two primary 

5 initiatives: building a collaborative governance body and identifying cross-scale institutional 

6 linkages needed to address the complexity of contemporary global industrialization. 

7 The creation of a collaborative governance body may help alleviate some of the patterns 

8 we have highlighted. Successfully building a collaborative governance body involves bolstering 

9 participatory science approaches (e.g., citizen science programs) to narrow the science-policy 

10 gap. Specifically, a collaborative governance body would (1) consider and evaluate traditional 

11 ecological knowledge, scientific knowledge, and the experiential knowledge of affected 

12 communities (e.g., Bäckstrand 2003); (2) include diverse stakeholders in knowledge exchange 

13 (Reed et al. 2014); and (3) engage procedural elements, such as independent moderation, to 

14 ensure a balance of power within the group (Purdy 2012). Collaborative governance is also 

15 mutualistic with collaborative knowledge production, and it decreases monitoring costs and 

16 increases industry accountability while empowering communities (Johnson et al. 2014). 

17 Examples of such bodies presently exist, although not without their own challenges. As 

18 with toxic chemicals, our oceans are governed by a diversity of laws, regulations, and agencies. 

19 To address this fractured governance, the National Ocean Policy Act (NOPA) was passed in 

20 2010, establishing the National Ocean Council, a collaborative body that includes representatives 

21 of the federal departments and agencies with major jurisdiction over the oceans to share 

22 resources and collaborate to implement policy. The NOPA marks the first national effort to 

23 implement a holistic, multi-agency approach to managing our coasts and oceans, although 
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1 contrasting priorities between executive administrations have limited its effectiveness (Malakoff 

2 2018). The implementation and challenges of the NOPA indicate that governance of complex 

3 social-environmental and technological systems requires operating horizontally across sectors 

4 (industries, media, academic scientists) and vertically across levels (communities, agencies, 

5 legislatures) (Cash et al. 2006). 

6 Issue 4: Path Dependency and Inertia 

7 The path dependency exhibited in each case results from the costs sunken into certain 

8 means of production (i.e., technologies producing toxic risks), the persistence of many toxic 

9 materials, privileging of knowledge (Brown 1992), and the general absence of self-corrective 

10 behavior by industries, barring significant social influence. Current market logics enabled by 

11 state regulation have proven inadequate for internalizing the costs of production and have 

12 violated the economic principles of functioning markets (Haldane et al. 2017). More troublingly, 

13 industry priorities have continued to shape research and development towards minimizing costs 

14 and maximizing profits as opposed to alternative means of production (Woodhouse 2006). 

15 Additionally, many emergent risks are systemic, in that they emerge from complex 

16 interactions between society, the environment and technologies, such as SOx and NOx resulting 

17 from automotive pollution. While small technological fixes like improved catalytic converter 

18 technology and conversion to electric vehicles are possible, the aggregate influence of car-

19 dependent suburban development has outstripped gains from cleaner combustion technology. At 

20 the same time, innovation in some sectors has been shown to reduce risks from long-entrenched 

21 interests, evidenced by the grid purchasing power parity of wind farms over coal, facilitated by 

22 direct investments in research and development, and significant policy support for fledgling 

23 industries (Jenkins et al. 2010). A proper innovation-oriented approach can facilitate long-term 
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1 system evolution, as opposed to the reactionary method of bureaucratizing risk that have led to 

2 systemic path dependencies that undermine sufficient toxic chemical governance. 

3 Principle 4: Invest in innovation and real-world deployment

4 Policies need to identify and incentivize ways of producing substances that meet the 

5 goals and needs of contemporary society without exposing people to toxic chemicals. Existing 

6 command and control, and other ‘end of pipe’ regulations, while insufficient to protect human 

7 and environmental health, have stimulated extensive innovations in industry, creating jobs while 

8 improving human and environmental health (Wallace 1995, Pearce and Stillwell 2008). These 

9 models can be significantly improved using initiatives such as cradle–to-cradle manufacturing 

10 (Braungart et al. 2007), the bio-economy (McCormick and Kautto 2013), and the increasingly 

11 loud call for a “Green New Deal” (Jones 2009). Embracing such transitions will support our 

12 rights to a pure and high-quality environment. Economically, it will reduce and eventually 

13 eliminate compliance costs, increase labor productivity, provide greater long-run certainty over 

14 operational costs, reduce the economic burden of healthcare costs on society, and increase the 

15 economic advantage of US industries (Braungart et al. 2007, Jones 2009). While some polluting 

16 industries may oppose such initiatives, the above arguments invalidate their rhetorical claims 

17 about the need to reduce regulations to protect jobs and economic advantage. In the face of such 

18 path dependency, it has become incumbent upon the scientific community to evolve industries to 

19 eliminate harms from toxic chemicals, especially given their role in accelerating the existential 

20 threat of rapid anthropogenic climate change.

21

22 Concluding Remarks
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1 After over 40 years of modern environmental regulations, toxic chemical risks remain 

2 pervasive and largely unacknowledged in the USA, despite their significant negative impacts on 

3 public health, the economy, and life-sustaining ecosystems. Crisis response and risk mitigation 

4 have pervaded environmental regulations around toxic chemicals. Effective toxic chemical 

5 governance will require sustained effort to produce better knowledge in the service of large-scale 

6 industrial and social transformations and the creation of inclusive governance bodies. A 

7 transition to a regenerative economy that eliminates the concept of waste and permissible harm is 

8 urgently needed. To do so, researchers, industries, communities, policy makers, and the media 

9 must continue to craft collaborative visions and produce knowledge that enable public and 

10 private investments in clean and ecologically sound technologies and land management 

11 practices. Evaluation of existing systems highlights research priorities for those seeking to 

12 transform governance to improve human and environmental health. By lifting the veil around the 

13 science and technology of producing and managing toxic chemical exposure risks, we can 

14 improve democratic governance and insure a healthier, economically robust, and equitable future 

15 for all. 
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Figure 1. Conceptual framework of U.S. toxics governance domains, and the actors who contribute to each domain. At the base of 

each box, a summary of common ways these domains contribute toward governance failures are listed. Affected communities bear the 

costs and risks of contaminants, or benefit from current practices. The scientific community can include academic, government, and 
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industry scientists, who identify and define risk, but also develop the technologies that create risks. Industry refers to private 

companies creating and owning the technologies producing and/or using chemicals. News/media outlets procure and disseminate 

information to the public about risks. 
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Figure 2:  Evaluative framework for examining governance issues of risk, expertise, and path 

dependency in each governance domain. Green highlighting indicates success (agreement), grey 

indicates partial success (partial agreement), and red indicates failure (disagreement).
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Figure 3: Each indicator was evaluated by level of failure and success (y-axis) and 

criteria based on attributes of each indicator (x-axis).  
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Figure 4. Application of indicators to five case studies across multiple chemical classes, including (A) Lead in school 

drinking water, (B) Heavy metal emissions from light industry, (C) Sulphur and nitric oxide emissions, (D) Bisphenol-a, 

and (E) Glyphosate use in agriculture. For references, see Supplemental Information 1.  
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