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Machine-learning based three-qubit gate for realization of a Toffoli gate 

with cQED-based transmon systems 

 

Sahar Daraeizadeh1, 2, Shavindra P. Premaratne 2, Xiaoyu Song1, Marek Perkowski1, Anne Y. Matsuura2 
1 Department of Electrical and Computer Engineering, Portland State University, Portland, Oregon 97201, USA 
2 Intel Labs, Intel Corporation, Hillsboro, Oregon 97124, USA 

 

We use machine learning techniques to design a 50 ns three-qubit flux-tunable controlled-controlled-phase 
gate with fidelity of >99.99% for nearest-neighbor coupled transmons in circuit quantum electrodynamics 
architectures. We explain our gate design procedure where we enforce realistic constraints, and analyze the 
new gate’s robustness under decoherence, distortion, and random noise. Our controlled-controlled phase gate 
in combination with two single-qubit gates realizes a Toffoli gate which is widely used in quantum circuits, 
logic synthesis, quantum error correction, and quantum games. 

 

I. Introduction 

Circuit quantum electrodynamics (cQED) 
systems [1-3] utilizing transmons [4-5] are one of 
the potential candidates for realizing quantum 
computers [6], with qubit coherence times of 
hundreds of microseconds [7] and the potential to 
scale up facilitated by quantum error correction 
schemes [8-9] . Here, we theoretically design a 
three-qubit controlled-controlled phase (CCPhase) 
gate with fidelity of >99.99% for nearest-neighbor 
transmons with resonator couplings [10]. 

Multiple-qubit-controlled-phase gates in 
transmons are typically designed by detuning the 
qubit transition frequencies to approach the 
avoided-level-crossing regions. In this regime, 
state mixing or level shifting due to non-
computational quantum levels allows non-uniform 
phase collection within the computational 
subspace. This gives rise to entangling operations 
between qubits [11-16]. Finding the optimal 
frequency detuning for transmons to achieve the 
desired avoided level crossings between the system 
energy levels is a complex task which can benefit 
from machine learning (ML) approaches [17-19]. 
Designing quantum gates and optimized control 
pulses using ML techniques and optimization 
theory has been demonstrated for various quantum 
systems [20-23]. We model the quantum gate 
design problem as a supervised ML exercise, by 
adjusting the system control parameters to 
converge on the target gate unitary [18]. In this 
model, the system parameters can be learned from 
the training set which is the desired unitary matrix, 
and the cost function is the gate fidelity. 

II. Toffoli gate realization 

The Toffoli gate has broad applications in many 
quantum circuits. The best-known decomposition 
of the Toffoli (controlled-controlled-NOT) gate 
using standard single- and two-qubit gates [24] 
requires multiple single-qubit gates (𝐻, 𝑇, and 𝑇ற) 
and 6 CNOT gates as shown in Fig. 1(a). In this 
decomposition, at least two of the CNOT gates are 
applied to non-neighbor qubits which results in 
addition of four SWAP gates in a nearest-neighbor 
architecture. There is another decomposition of the 
Toffoli gate based on five two-qubit gates [25] as 
depicted in Fig. 1(b) where non-standard two-qubit 
gates such as  controlled-V and controlled-𝑉ற gates 
are required where 𝑉ଶ = 𝑋, and 𝑉𝑉ற = 𝐼. In other 
words, controlled-V and controlled-𝑉ற gates can be 

represented by c√NOT, and c√NOT
ற
, respectively.  

The c√NOT, and c√NOT
ற
 gates can be realized 

using controlled-rotation flux-tunable gates in 
transmons in cQED systems, however, the circuit 
shown in Fig. 1b, requires two extra SWAP gates 
to perform a controlled-rotation gate between non-
neighbor qubits in a nearest-neighbor architecture. 

The decomposition of the Toffoli gate based on 
single- and two-qubit gates is costly. Another 
proposed decomposition of the Toffoli gate is 
based on a three-qubit CCPhase gate and two 
single-qubit gates (Hadamard or single-qubit 
rotation gates) as shown in Fig. 1(c).  Here, we 
show that a Toffoli gate can be realized in only 90 
ns for a resonator-coupled nearest-neighbor 
transmon system utilizing the single-qubit gates 
(20 ns) [10], and our high fidelity CCPhase gate (50 
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ns) with realistic frequency detuning sequences and 
system parameters.  

 

                               (a) 

                        

     (b)                               (c) 

FIG. 1. Toffoli gate decomposition circuits. (a) Toffoli 
circuit based on standard single-qubit and two-qubit gates. (b) 
Toffoli gate circuit based on two-qubit gates. (c) Toffoli 
circuit based on single-qubits gates and three-qubit 
controlled-controlled-phase gate 

The CCPhase gate is designed to collect a 𝜋 
phase only on the |111〉 computational state (i.e. 
when all three qubits are in |1〉 state). For the 
CCPhase gate simulation, we consider the lowest 
four energy levels (labeled |0〉 to |3〉) to ensure 
system evolution within the full three-excitation 
manifold [15]. However, the cost function 
evaluation for the ML approach is performed only 
within the qubit subspace. The unitary operation of 
the ideal CCPhase gate in matrix form is: 

𝑈୧ୢୣୟ୪ =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1 0 0 0 0 0 0 0
 0 1 0 0 0 0 0 0
 0 0 1 0 0 0 0 0
 0 0 0 1 0 0 0 0
 0 0 0 0 1 0 0 0
 0 0 0 0 0 1 0 0
 0 0 0 0 0 0 1 0
 0 0 0 0 0 0 0 −1⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

    (1) 

where the ordering of the states is |000〉 to |111〉 
in binary increments.  

III. Simulation of the system dynamics 

The effective Hamiltonian for our model with 𝑛 
transmons, when the coupling resonators are not 
populated, can be described as follows [26]: 

ℋ =  ෍ ℋ෩௖
(௞,௞ାଵ)

௡ିଵ

௞ୀଵ
+ ෍ ℋ෩௧

(௞)
௡

௞ୀଵ
            (2) 

Here, the Hamiltonian of each transmon 𝑘 is: 

ℋ෩௧
(௞)

≡ ∑ 𝜔෥௝
(௞)

|𝑗〉(௞)〈𝑗|௝                                  (3) 

where 𝜔෥(௝)
(௞) is the dressed transition frequency 

associated with the 𝑘୲୦ transmon at energy level 𝑗 
and is given by 

𝜔෥௝
(௞)

≡ 𝑗𝜔୯
(௞)

+
ఋౡ

ଶ
(𝑗 − 1)𝑗 +  

௝௚ౡ
మ

ఠ౧
(ೖ)

ିఠ౨ା(௝ିଵ)ఋౡ

 (4) 

where 𝜔୯
(௞) is the bare transition frequency 

associated with qubit 𝑘, 𝑔௞ is the coupling strength 
between transmon 𝑘 and the connected resonator, 
and 𝜔୰ represents the frequency of the coupled 
resonator. The last term in Eq. 4 is repeated for 
each transmon with appropriate modifications 
depending on the number of coupled resonators.  

For any pair of coupled transmons via a 
resonator, we estimate the direct coupling between 
two transmons (𝑘, 𝑘 + 1) as: 

ℋ෩௖
(௞,௞ାଵ)

=

∑ ඥ𝑗୩ + 1ඥ𝑗୩ାଵ + 1𝐽௝ౡ,௝ౡశభ
(|𝑗୩, 𝑗୩ାଵ +௝ౡ ,௝ౡశభ

1⟩〈𝑗୩ + 1, 𝑗୩ାଵ| + |𝑗୩ + 1, 𝑗୩ାଵ⟩〈𝑗୩, 𝑗୩ାଵ + 1|)   (5) 

where 𝐽௝ౡ ,௝ౡశభ
is the direct coupling between level 𝑗୩ 

from the 𝑘୲୦ transmon and level 𝑗୩ାଵ from the 
(𝑘 + 1)୲୦ transmon. 

𝐽௝ౡ ,௝ౡశభ
= 

௚ౡ௚ೖశభቀఠ౧
(ೖ)

ା ఋౡ௝ౡିఠ౨ାఠ౧
(ೖశభ)

ା ఋౡశభ௝ౡశభିఠ౨ቁ

ଶቀఠ౧
(ೖ)

ା ఋౡ௝ౡିఠ౨ቁቀఠ౧
(ೖశభ)

ା ఋౡశభ௝ౡశభିఠ౨ቁ
             (6) 

where 𝛿୩ and 𝛿୩ାଵ are the anharmonicity values 
associated with transmons 𝑘 and 𝑘 + 1, 
respectively. 

Using the time-dependent Hamiltonian of the 
system, the time evolution equation of the system 
is solved to achieve the unitary transformation 𝑈:  

𝑈(𝑡) = exp ቄ−
௜

ℏ
∫ ℋ(𝜏) 𝑑𝜏

௧

଴
ቅ                            (7) 

Here 𝑡 is the time, ℋ is the Hamiltonian of the 
system, and ℏ is the reduced Planck’s constant. To 
solve Eq. 7, we employ Trotterization [27]. Hence, 
the final unitary transformation is estimated as 
follows [28]: 

  𝑈(𝑡௞) = 𝑈௞𝑈௞ିଵ𝑈௞ିଶ … 𝑈ଶ𝑈ଵ𝑈଴                   (8) 

Here 𝑈௜ for 𝑖 = {0, 1, … , 𝑘} is calculated using Eq. 
7 for the newly time-independent Hamiltonian at 
each timestep 𝑖, where 𝑈଴ = 𝐼, and 𝑘 is the total 
number of steps. The Trotter step size is 𝑇/𝑘, 
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where 𝑇 is the gate evolution time. In our 
simulations, the Trotter step size was 100 ps.  

When solving the time evolution equation, we 
considered a smaller subspace to reduce the 
computational expenses. The Hamiltonian for 𝑛 
transmons with four energy levels spans a 4௡-
dimensional Hilbert space. For a system composed 
of three transmons (𝑛 = 3) the Hamiltonian is a 
64 × 64 matrix operator. Solving the Schrödinger 
equation for this large operator is computationally 
expensive, and there are numerous energy levels 
that have a minimal impact on the evolution for the 
gate of interest. Thus, we project this larger 
Hamiltonian to a smaller subspace where at most 
three excitations are allowed, resulting in a 
20 × 20 matrix [18]. The 20 states considered are 
{|000〉, |001〉, |002〉, |003〉, |010〉, |011〉, |012〉, 
|020〉, |021〉, |030〉, |100〉, |101〉, |102〉, |110〉, 
|111〉, |120〉, |200〉, |201〉, |210〉, |300〉}.  

The reduced Hamiltonian is evolved based on 
the qubit transition frequencies. The resulting 
unitary is projected [18] to the 8 × 8 computational 
subspace that includes the states {|000〉, |001〉, 
|010〉, |011〉, |100〉, |101〉, |110〉, |111〉}. Single-
qubit phase compensation [14], [17-18] is 
performed on this resultant unitary using the 
diagonal compensation matrix  

 𝑀 =
𝑒ି௜ఏబ  diag(1, 𝑒ି௜ఏభ , 𝑒ି௜ఏమ , 𝑒ି௜(ఏభାఏమ), 𝑒ି௜ఏర , 

 𝑒ି௜(ఏభାఏర), 𝑒ି௜(ఏమାఏర), 𝑒ି௜(ఏభାఏమାఏర))   (9)  

where 𝜃଴ represents the global phase, and  𝜃ଵ, 𝜃ଶ, 
and 𝜃ସ represent the relative single qubit phases of 
states |001〉, |010〉, and |100〉, respectively.  

The single qubit phases are cancelled out by 
multiplying matrix 𝑀 with the projected unitary in 
the computational subspace: 

𝑈୤୧୬ୟ୪ = 𝑈୮୰୭୨ × 𝑀                                                   (10) 

Finally, we calculate the gate fidelity 
considering unitarity 𝑈୤୧୬ୟ୪ and its closeness to the 
target ideal operation from Eq. 1 as follows [29]: 

ℱ =
୘୰൫௎಩௎൯ାቚ୘୰ቀ௎౟ౚ౛౗ౢ

಩
௎ቁቚ

మ

ௗ(ௗାଵ)
                            (11) 

where 𝑑 = 2ଷ is the dimensionality of the 
computational subspace. 

 

IV. CCPhase gate design using machine 
learning methods 

There are many machine learning and 
optimization algorithms one can choose to solve 
the optimal control problem. We design the system 
parameters to realize the CCPhase gate by 
combining two learning methods: (1) A machine 
learning method based on differential evolution 
[30] named Subspace-Selective Self-Adaptive 
Differential Evolution (SUSSADE) [17-18], (2) 
our new local search algorithm. In both learning 
procedures, the gate fidelity as shown in Eq. 11 is 
considered as the fitness function to achieve the 
optimal control parameters for the given ideal 
unitary. During the learning procedure all 
parameters are assumed to be fixed, except the 
frequency detuning sequences of transmons.  

In our simulations, the resonator-transmon 
couplings are set to 𝑔 = 0.2 GHz, and 
anharmonicity of each transmon was 𝛿 =
−0.3 GHz. The three transmons (labeled Left, 
Middle, Right) with reference transition 
frequencies set to 5, 6, and 7 GHz, realize an 
identity operation with fidelity 99.9%. Transmons 
L and M are coupled with a 8.05 GHz resonator, 
and transmons M and R are coupled with a 8.2 GHz 
resonator.  

To reduce the search space during the learning 
procedure, the reference transition frequencies of 
the qubits are set closer during the ML algorithms 
search; 𝑓୐ = 5.61 GHz, 𝑓୑ = 6 GHz, and 𝑓 =
6.39 GHz, repectively. The maximum frequency 
detuning ranges permitted from the reference 
frequency of each qubit are set to [0, 0.5), (-0.5, 
0.5), and (-0.5, 0], for qubits L, M, and R, 
respectively. These constraints help further reduce 
the search space and increase efficiency of the 
learning process by removing trial of detuning 
values far away from the interaction region.  

Note, we further impose the following 
constraints during learning to ensure that the 
optimal frequency detuning sequences are 
experimentally realistic and achievable, and that 
the target gate is robust. We enforce these 
constraints by: 

1. Limiting the maximum point-to-
point variation of the frequency detuning 
sequence of each qubit to 220 MHz to 
prevent undesired excitations in the 
quantum system. To take into account the 
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limitations of physical signal 
instrumentation [31], the initial and the 
final points are limited to maximum point-
to-point variation of 500 MHz from the 
initial reference transition frequencies of 5, 
6, and 7 GHz.  

2. Limiting the minimum difference 
between transition frequencies of two 
adjacent qubits to 0.21 GHz; primarily to 
prevent interactions within the single-
excitation manifold.   

Here we briefly describe how the SUSSADE 
algorithm [17-18] was used to generate the qubit 
transition detuning sequences. First a random 
population of 200 random frequency detuning 
sequences (chromosomes) is generated in which 
each sequence contains 150 frequencies (50 per 
qubit). For a gate timing of 𝑇 = 50 ns, the detuning 
sequence of each qubit is discretized to 50 
amplitudes.  

After generating the initial population, we 
perform SUSSADE by randomly modifying the 
values of detuning sequences using the differential 
evolution operations such as mutation, crossover, 
and selection [18], [30]. Finally, the fidelity of the 
resulting final unitary is calculated using Eq. 11. 
For any modified detuning sequence, if the new 
fidelity value is larger than the initial one, the new 
detuning sequence survives to the next generation. 
This procedure repeats until we reach our choice of 
fidelity threshold value (99.99%) or maximum 
number of iterations (one million cycles). We use 
the Message Passing Interface to distribute the 
simulation to 200 nodes on a computer cluster [32] 
such that each node is performing a full cycle of 
solving the time evolution and fidelity calculation 
for each member of the population. 

SUSSADE was successfully used to obtain the 
frequency detuning sequences for a 50 ns CCPhase 
gate with fidelity of 98.8%, but any further 
progress was slow. Thus, a local search algorithm 
was implemented to refine the detuning sequences 
and achieve a gate fidelity of 99.99%. Note that the 
local search algorithm is efficient once the search 
space has been reduced by other learning 
algorithms. 

The local search algorithm consists of the 
following steps:  

1- In the beginning of the learning 
process, we define the largest (100 MHz) and 

the smallest (1 KHz) change in frequency 
detuning allowed per data point. This is 
referred to as the optimization step size 𝜖. We 
also set the maximum number of iterations 
(1000), the desired fidelity (99.99%), and all 
constraints enforced during SUSSADE. 

2- While the constraints are met and 
the desired fidelity or maximum number of 
iterations have not been reached, the following 
procedure is repeated: 

a) A local search window is moved 
from the first data point toward the last data 
point.  

b) At each window, we recursively 
vary the frequency detuning value up or 
down by the optimization step size 𝜖 as long 
as it keeps improving the gate fidelity. 

c) Once the local search window has 
covered all data points of the detuning 
sequence of all qubits, we reduce 𝜖 for a 
finer grain optimization (𝜖୬ୣ୵ = 0.1𝜖୭୪ୢ).  

d) If the optimization is already 
completed for the smallest predefined 𝜖 
during the iteration, we increase the 
iteration number by one, reset 𝜖 to the 
largest predefined value, and repeat from 
step a.  

The CCPhase gate duration is set to 50 ns for 
evaluation, and the learning algorithms operate on 
1 ns step size. However, time evolution is in Trotter 
steps of size 100 ps (k=500 in Eq. 8). The learned 
frequency detuning sequences are kept constant 
during each 1 ns step to obtain piecewise-constant 
pulse forms as shown in Fig. 2.  

V. Gate verification and impact of 
decoherence 

Simulated quantum process tomography (QPT) 
was used to independently evaluate gate 
performance by using master equation simulations. 
QPT is an excellent tool to evaluate the dynamics 
of a quantum system due to any process [33], in this 
case the CCPhase gate. Given that this is QPT 
within simulation, state preparation and 
measurement errors do not affect the methodology. 
Hence the results from QPT enable us to fully 
characterize the introduced gate. 
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FIG. 2. (Color online) The learned transition frequency 
detuning sequences of the right, middle, and left qubits are 
shown from top to bottom respectively. The piecewise 
constant forms are generated from the learned frequency 
detuning sequences (50 learned data points per each 
transmon).  

Initial verification was performed assuming no 
decoherence in the system by using the Von 
Neumann equation for time evolution: 

𝑖ℏ
డఘ

డ௧
= ℋ𝜌 − 𝜌ℋ,        (12) 

where the Hamiltonian ℋ is the same as that given 
in Eq. 2 with the number of levels in each transmon 
set to 𝑗୫ୟ୶ = 4, and 𝜌 is the density matrix for the 
three transmon system. 

The three transmon system was evolved using 
the generated resonance frequency detuning 
sequences from learning algorithms. The evolution 
was performed on all the initial states given by 

൛𝐼, 𝑅௫
଴.ହగ , 𝑅௬

଴.ହగ, 𝑅௫
గൟ

⊗ଷ
|000〉 resulting in 64 density 

matrices. Unlike experimental QPT, it was not 
necessary to perform quantum state tomography to 
reconstruct these density matrices for the final 
states. These results were used to perform QPT by 
imposing constraints that the process matrix 𝜒 must 
satisfy [34-35]. The 𝜒 matrix completely 
characterizes the underlying process and is 
positive-Hermitian by definition [33]. 

We use the following metrics as defined in Ref. 
[34] to evaluate the performance of the CCPhase 
gate: 

     Process fidelity: ℱ୮ = Tr൫𝜒(୧ୢୣୟ୪)𝜒൯               (13) 

Average gate fidelity: ℱ୥ =
ௗℱ౦ାଵ

ௗାଵ
     (14) 

Average purity: Tr(𝜌ଶ)തതതതതതതതത =
ௗ ୘୰൫ఞమ൯ାଵ

ௗାଵ
      (15) 

where 𝜒 is the experimentally determined process 
matrix, 𝜒(୧ୢୣୟ୪) is the ideal process matrix for the 
CCPhase gate, and 𝑑 = 2ଷ is the dimensionality of 

the computational subspace of the system. The 
results from evaluation are given in TABLE I.  

TABLE I. Table of QPT metrices for simulations 
under different conditions  

Conditions 𝓕𝐩 𝓕𝐠 𝐓𝐫(𝝆𝟐)തതതതതതതതത 
𝑘୫ୟ୶ = 4, 𝑇ଵ = 𝑇ଶ =∞ 0.999 0.999 0.999 
𝑘୫ୟ୶ = 3, 𝑇ଵ = 𝑇ଶ =∞ 0.998 0.998 0.999 
𝑘୫ୟ୶ = 4, 𝑇ଵ = 𝑇ଶ = 20 μs 0.995 0.995    0.991 
𝑘୫ୟ୶ = 3, 𝑇ଵ = 𝑇ଶ = 20 μs 0.993 0.994    0.991 

 

The simulations incorporating decoherence 
were performed using the Lindblad-Kossakowski 
form of the master equation [36-37]. The 
appropriate operators for the dephasing portion of 
the master equation were obtained as in Refs. [38-
39]. For convenience in simulation, 𝑇ଵ and 𝑇ଶ were 
both set to 20 μs, assuming coherence times 
independent of the flux-tuning of the transmons 
[40]. Please refer to supplementary material for the 
full process matrices resulting from QPT. 
Comparison of results for 𝑘୫ୟ୶ = 3 ({|0〉, |1〉, |2〉} 
levels) and 𝑘୫ୟ୶ = 4 ({|0〉, |1〉, |2〉, |3〉} levels) 
from Table I indicates that the fourth level (|3〉) 
also plays a limited role in the system evolution.  

VI. Robustness evaluation 

The frequency detuning sequences derived from 
the learning algorithms have a piecewise-constant 
form. To investigate the effect of first-order 
distortion due to control electronics, we use the 
following pulse reshaping method [14], [18] to 
smooth the frequency detuning sequences: 

𝜔௞(𝑡) =  
ఠೖ೔

 ା ఠೖ೔శభ

ଶ
 +   

ఠೖ೔శభ
 ି  ఠೖ೔

ଶ
ቈErf ቆ

௧ିቀ
೟౨౗ౣ౦

మ
ቁ

√ଶఙ
ቇ቉,                            (16) 

where 𝜔௞(𝑡) represents the distorted frequency 
detuning of qubit 𝑘 during 𝑡௜ ≤ 𝑡 ≤  𝑡௜ାଵ, and 𝑡௜ 
represents the 𝑖th time step. Here  Erf(𝑡) ≡
ଶ

√𝜋
 ∫ 𝑒−𝑥2

𝑑𝑥
𝑡

0
  is the error function value of 𝑡, 

𝑡୰ୟ୫୮ = 1 ns, and 𝜎 =
௧౨౗ౣ౦

ସ√ଶ
  [14]. The distorted 

sequences are shown in Fig. 3 (a), and we observed 
a fidelity reduction of 1.21%, which resulted in 
average fidelity of 98.79%.  
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(a) 

 
(b) 

FIG. 3.  (Color online) The effect of distortion and 
random noise on the learned transition frequency detuning 
sequences. (a) The smoothed transition frequency detuning 
sequences of the right, middle, and left qubits are shown from 
top to bottom respectively. (b) The CCPhase gate average 
fidelity over 10000 samples under the effect of random noise 
with amplitudes ranging in 0 to 10 MHz. 

To investigate the effect of random noise on the 
CCPhase gate, we plot the average fidelity while 
increasing the random noise with amplitudes 
varying from 0 to 10 MHz. For each amplitude 
value, random noise is generated from a uniform 
distribution (−1, 1), multiplied by the noise 
amplitude and added to the optimized detuning 
sequence. The latter step is repeated 10000 times 
and at each iteration the system Hamiltonian is 
evolved, and the gate fidelity is calculated. The 
averaged fidelity of the 10000 results is reported as 
the average fidelity at each noise amplitude. Fig. 3 
(b) illustrates the gate robustness against random 
noise and demonstrates fidelity >99% with random 
noise amplitudes of up to 6.7 MHz. 

 
VII. Conclusion 

We designed a robust CCPhase entangling gate 
with fidelity >99.99% and duration of 50 ns for 
quantum systems of nearest neighbor transmons 
coupled via resonators. We describe the gate design 
procedure using simulation and machine learning 
techniques and present a new local search 
algorithm for optimal quantum control applicable 
to small search spaces. The operation of the 
CCPhase gate is confirmed by a simulator in C++ 
that solves the Schrödinger equation for the time-

dependent Hamiltonian of the system. Moreover, 
the gate operation is verified independently via 
quantum process tomography in both the presence 
and absence of decoherence. Gate robustness is 
examined using random noise injection and 
frequency detuning distortion. The presented 
theoretical gate design procedure, verification, and 
robustness investigation can be applied to design 
new gates for other quantum systems as well.  
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