Portland State University PDXScholar

TREC Friday Seminar Series

Transportation Research and Education Center (TREC)

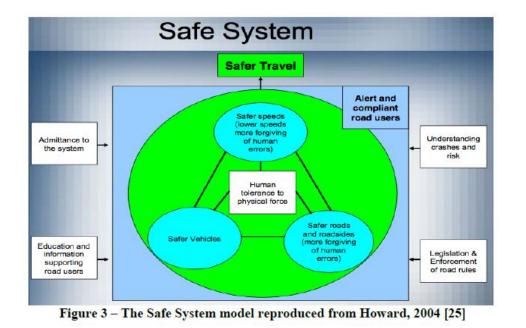
10-11-2019

The Safe System Approach: Considerations for Developing a Multi-Layered System

Offer Grembek Safe Transportation Research and Education Center (SafeTREC)

Follow this and additional works at: https://pdxscholar.library.pdx.edu/trec_seminar

Part of the Transportation Commons, Urban Studies Commons, and the Urban Studies and Planning Commons

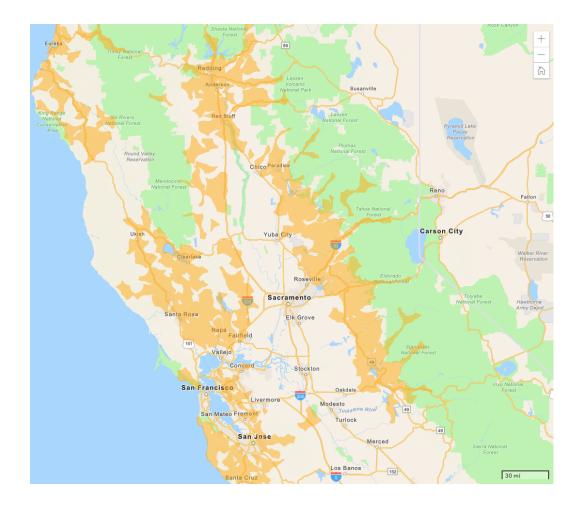

Let us know how access to this document benefits you.

Recommended Citation

Grembek, Offer, "The Safe System Approach: Considerations for Developing a Multi-Layered System" (2019). *TREC Friday Seminar Series*. 177. https://pdxscholar.library.pdx.edu/trec_seminar/177

This Book is brought to you for free and open access. It has been accepted for inclusion in TREC Friday Seminar Series by an authorized administrator of PDXScholar. For more information, please contact pdxscholar@pdx.edu.

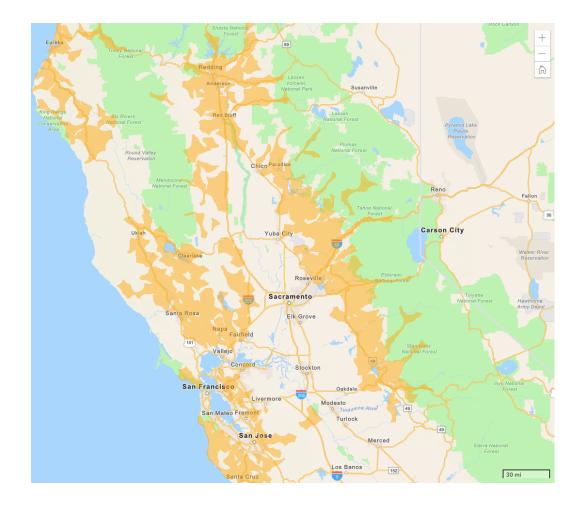
The Safe System Approach: Considerations for Developing a Multi-Layered System



Presented by: Dr. Offer Grembek Berkeley SafeTREC Collaborative Sciences Center for ROAD SAFETY

Presented at:

TREC Friday Seminar @ PSU October 11, 2019


PG&E's Public Safety Power Shutoff

- Low humidity levels (20% and below)
- Sustained winds generally (above 25mph with 45mph gusts)
- Dry fuel on the ground

PG&E's Public Safety Power Shutoff

- October 10/08-10/XX
- ~730,000 PG&E accounts
- Across 34 counties

Provide <u>electricity</u>.

Outline

Safe System

- Safer Vehicles
- Safer Roads
- Safer Speeds

Safety Buffers

• Design and Ops

- Behavior
- Protection

Policy Implications

- Measure Outcome
- Measure System
- Proactive

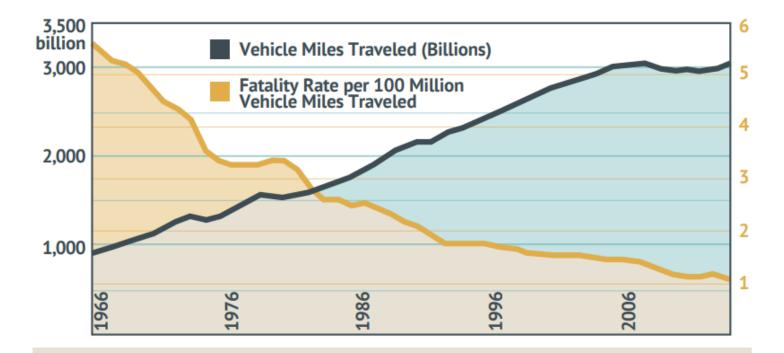
Goal of the transportation system?

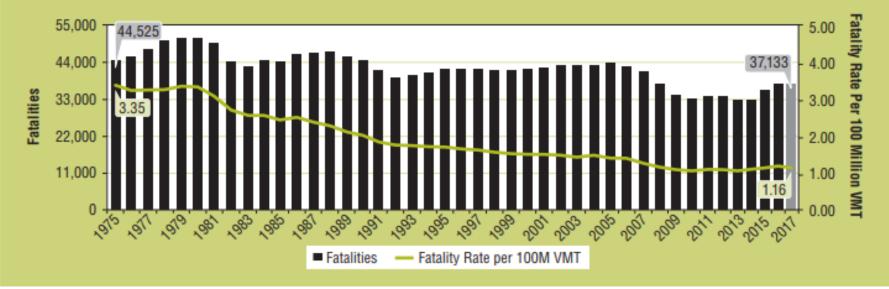
Provide <u>mobility</u>.

Goal of the transportation system?

Provide <u>mobility</u>.

Provide efficient, cost-effective, equitable, ..., sustainable, and safe mobility.




FIGURE 1-3: Fatality Rate and Vehicle Miles Traveled, 1966-2013 (Source: NHTSA FARS)

The fatality rate has demonstrated a downward trend for decades.

We're on the right track towards safety.

No. It is <u>not</u> safe.

Fatalities and Fatality Rate per 100 Million VMT, by Year, 1975-2017

2017 Fatalities:

California:

3,602

USA:

37,133

Globally: Over 1,300,000

Sources: FARS 1975-2016 Final File, 2017 ARF; Vehicle Miles Traveled (VMT): FHWA.

No. It is <u>not</u> safe.

10 Leading Causes of Injury Deaths by Age Group Highlighting Unintentional Injury Deaths, United States – 2017

			53		Age G	iroups	77				
Rank	<1	1-4	5-9	10-14	15-24	25-34	35-44	45-54	55-64	65+	Total
1	Unintentional	Unintentional	Unintentional	Unintentional	Unintentional	Unintentional	Unintentional	Unintentional	Unintentional	Unintentional	Unintentional
	Suffocation	Drowning	MV Traffic	MV Traffic	MV Traffic	Poisoning	Poisoning	Poisoning	Poisoning	Fall	Poisoning
	1,106	424	327	428	6,697	16,478	15,032	14,707	10,581	31,190	64,795
2	Homicide	Unintentional	Unintentional	Suicide	Unintentional	Unintentional	Unintentional	Unintentional	Unintentional	Unintentional	Unintentional
	Unspecified	MV Traffic	Drowning	Suffocation	Poisoning	MV Traffic	MV Traffic	MV Traffic	MV Traffic	MV Traffic	MV Traffic
	139	362	125	280	5,030	6,871	5,162	5,471	5,584	7,667	38,659
3	Unintentional MV	Homicide	Unintentional	Suicide	Homicide	Homicide	Suicide	Suicide	Suicide	Suicide	Unintentional
	Traffic	Unspecified	Fire/Bum	Firearm	Firearm	Firearm	Firearm	Firearm	Firearm	Firearm	Fall
	90	129	94	185	4,391	4,594	3,098	3,937	4,219	5,996	36,338
4	Homicide Other Spec., Classifiable 76	Unintentional Suffocation 110	Homicide Firearm 78	Homicide Firearm 126	Suicide Firearm 2,959	Suicide Firearm 3,458	Suicide Suffocation 2,562	Suicide Suffocation 2,294	Unintentional Fall 2,760	Unintentional Unspecified 5,125	Suicide Firearm 23,854
5	Undetermined	Unintentional	Unintentional	Unintentional	Suicide	Suicide	Homicide	Suicide	Suicide	Unintentional	Homicide
	Suffocation	Fire/Bum	Suffocation	Drowning	Suffocation	Suffocation	Firearm	Poisoning	Suffocation	Suffocation	Firearm
	56	95	36	110	2,321	3,063	2,561	1,604	1,631	3,920	14,542

Data Source: National Center for Health Statistics (NCHS), National Vital Statistics System. Produced by: National Center for Injury Prevention and Control, CDC using WISQARS™.

No. It is <u>not</u> safe.

10 Leading Causes of Injury Deaths by Age Group Highlighting Unintentional Injury Deaths, United States – 2017

					Age G	iroups			7.c	od:		
Rank	<1	1-4	5-9	10-14	15-24	25-34	35-44	45-54	55-64	65+	Total	
1	Unintentional Suffocation 1,106	Unintentional Drowning 424	Unintentional MV Traffic 327	Unintentional MV Traffic 428	Unintentional MV Traffic 6,697	Unintentional Poisoning 16,478	Unintentional Poisoning 15,032	Unintentional Poisoning 14,707	Uninteritional Poisoning 10,581	Unintentional Fall 31,190	Unintentional Poisoning 64,795	First, or
2	Homicide Unspecified 139	Unintentional MV Traffic 362	Unintentional Drowning 125	Suicide Suffocation 280	Unintentional Poisoning 5,030	Unintentional MV Traffic 6,871	Unintentional MV Traffic 5,162	Unintentional MV Traffic 5,471	Unintentional MV Traffic 5,584	Unintentional MV Traffic 7,667	Unintentional MV Traffic 38,659	Second;
3	Unintentional MV Traffic 90	Homicide Unspecified 129	Unintentional Fire/Bum 94	Suicide Firearm 185	Homicide Firearm 4,391	Homicide Firearm 4,594	Suicide Firearm 3,098	Suicide Firearm 3,937	Suicide Firearm 4,219	Suicide Firearm 5,996	Unintentional Fall 36,338	Age > 1yr
4	Homicide Other Spec., Classifiable 76		Homicide Firearm 78	Homicide Firearm 126	Suicide Firearm 2,959	Suicide Firearm 3,458	Suicide Suffocation 2,562	Suicide Suffocation 2,294			Suicide Firearm 23,854	
5	Undetermined Suffocation 56	Unintentional Fire/Bum 95	Unintentional Suffocation 36	Unintentional Drowning 110	Suicide Suffocation 2,321	Suicide Suffocation 3,063	Homicide Firearm 2,561	Suicide Poisoning 1,604	Suicide Suffocation 1,631	Unintentional Suffocation 3,920	Homicide Firearm 14,542	

Berkeley SafeTREC

Data Source: National Center for Health Statistics (NCHS), National Vital Statistics System. Produced by: National Center for Injury Prevention and Control, CDC using WISQARS™.

a system in which people cannot die despite human error. Job, and Sakashita. 2016a safe system

So, is our transportation system dangerous?

So, is our transportation system dangerous?

dangerous system

a system in which people can die with no human error (e.g., mine field, avalanche area).

Job, and Sakashita. 2016a

Our system is not safe and also not dangerous

Our system is not safe and also not dangerous

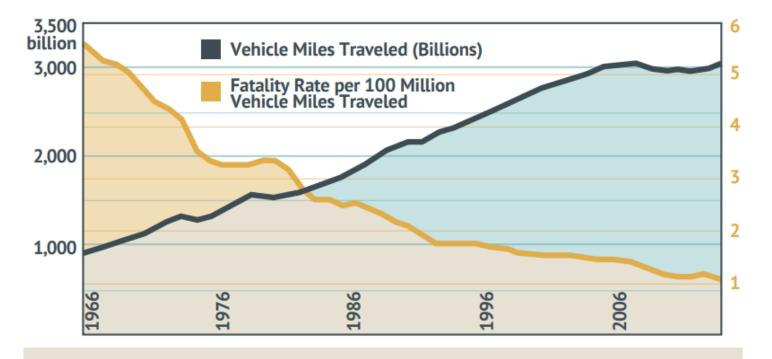


FIGURE 1-3: Fatality Rate and Vehicle Miles Traveled, 1966-2013 (Source: NHTSA FARS)

unsafe system

a system in which people can die through human error Job, and Sakashita. 2016a Berkeley SafeTREC

Our transportation system is unsafe

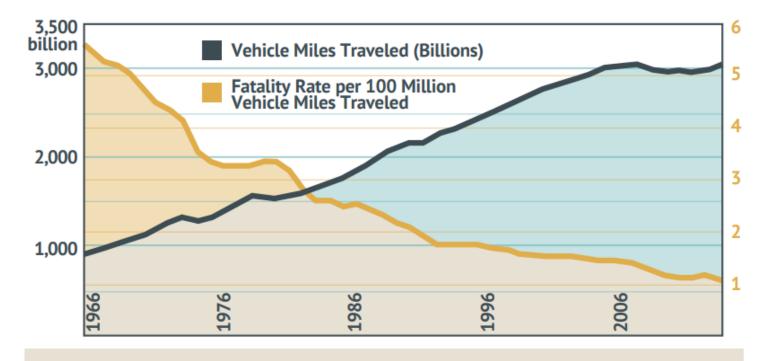


FIGURE 1-3: Fatality Rate and Vehicle Miles Traveled, 1966-2013 (Source: NHTSA FARS)

unsafe system

a system in which people can die through human error Job, and Sakashita. 2016a Berkeley SafeTREC

Kinetic Energy Transfer

$$E_k = \frac{1}{2}mv^2$$

$$E_{k} = kinetic energy of object$$

 $m = mass of object$
 $v = speed of object$

Kinetic energy is the energy associated with the movement of an object and is determined by a combination of velocity and mass.

Traffic is multimodal

Inherently different modes share the same network

Features\Mode	Foot	Bicycle	PTW	Car	SUV	Bus	Truck
Mass (lb)	178	200	620	3,178	5,178	33,560	~60,000
AverageSpeed (mph)	3.5	12	25	20	20	15	15
Kinetic energy (KJ)	0.1	1.3	17.6	57.6	93.9	342.2	611.9

Traffic Safety is multimodal

Inherently different modes share the same network

Features\Mode	Foot	Bicycle	PTW	Car	SUV	Bus	Truck
Mass (lb)	178	200	620	3,178	5,178	33,560	~60,000
AverageSpeed (mph)	3.5	12	25	20	20	15	15
Kinetic energy (KJ)	0.1	1.3	17.6	57.6	93.9	342.2	611.9
Commonly studied:							
Injuries in CA (05-09)	40,202	37,821	39,976	432,822	90,195	4,877	6,267

Multimodal Injury Matrix

	Injuries in California		Mode <i>j</i> Inflicted an injury									
(20	05-2009)	Foot	Bicycle	PTW	Car	Transit	SUV	Truck	Object			
Mode <i>i</i> Suffered an injury	Foot Bicycle PTW Car Transit SUV Truck Object		Squar	e mat	rix <i>, X</i>	, of dir	nensi	on <i>n</i>				

Multimodal Injury Matrix

Injuries in California (2005-2009)						ode <i>j</i> I an injury			
		Foot	Bicycle	РТЖ	Car	Transit	SUV	Truck	Object
Mode <i>i</i> Suffered an injury	Foot Bicycle PTW Car Transit SUV Truck Object				<i>x</i> ₁₄				

Element **x**_{ij} represents the number of injuries that were suffered by mode **i** and inflicted by mode **j**.

Multimodal Injury Matrix: California

	Injuries in California		Mode <i>j</i> Inflicted an injury										
(2005-2009)		Foot	Bicycle	PTW	Car	Transit	SUV	Truck	Object				
	Foot	31	488	327	32,455	631	5,736	531	3				
<i>i</i> injury	Bicycle	195	1,551	213	28,657	320	4,833	397	1,655				
i, ji	PTW	159	106	4,847	21,036	118	4,199	647	8,864				
ale	Car	607	331	2,814	221,444	2,655	76,543	18,323	110,105				
Mode red an	Transit	28	15	10	2,829	578	596	347	474				
e e	SUV	66	46	332	43,543	330	23,403	3,262	19,213				
Suffe	Truck	2	5	18	2,305	58	578	1,638	1,663				
ം	Object	0	0	0	0	0	0	0	0				

Injury crashes of two parties or less.

Multimodal Injury Matrix: California

	Injuries in California		Mode <i>j</i> Inflicted an injury									
(2005-2009)		Foot	Bicycle	PTW	Car	Transit	SUV	Truck	Object	Total		
	Foot	31	488	327	32,455	631	5,736	531	3	40,202		
<i>i</i> injury	Bicycle	195	1,551	213	28,657	320	4,833	397	1,655	37,821		
i, ji	PTW	159	106	4,847	21,036	118	4,199	647	8,864	39,976		
an	Car	607	331	2,814	221,444	2,655	76,543	18,323	110,105	432,822		
-	Transit	28	15	10	2,829	578	596	347	474	4,877		
Mo Suffered	SUV	66	46	332	43,543	330	23,403	3,262	19,213	90,195		
E F	Truck	2	5	18	2,305	58	578	1,638	1,663	6,267		
S	Object	0	0	0	0	0	0	0	0	0		
	Total	1,088	2,542	8,561	352,269	4,690	115,888	25,145	141,977	652,160		

Relative Vulnerability Matrix

	juries in alifornia	Mode <i>j</i> Inflicted an injury									
(20	05-2009)	Foot	Bicycle	PTW	Car	Transit	SUV	Truck	Object	Total	
	Foot	31	488	327	32,455	631	5,736	531	3	40,202	
<i>i</i> injury	Bicycle	195	1,551	213	28,657	320	4,833	397	1,655	37,821	
inj '	PTW	159	106	4,847	21,036	118	4,199	647	8,864	39,976	
	Car	607	331	2,814	221,444	2,655	76,543	18,323	110,105	432,822	
-	Transit	28	15	10	2,829	578	596	347	474	4,877	
Mo Suffered	SUV	66	46	332	43,543	330	23,403	3,262	19,213	90,195	
III	Truck	2	5	18	2,305	58	578	1,638	1,663	6,267	
S	Object	0	0	0	0	0	0	0	0	0	
	Total	1,088	2,542	8,561	352,269	4,690	115,888	25,145	141,977	652,160	
	- In all dated	Foot	Bicycle	PTW	Car	Transit	SUV	Truck	Object		
	RV for Individual modes		14.88	4.67	1.23	1.04	0.78	0.25	0.00		

Relative Vulnerability Matrix

	juries in alifornia	Mode <i>j</i> Inflicted an injury									
(20	05-2009)	Foot	Bicycle	PTW	Car	Transit	SUV	Truck	Object	Total	
~	Foot	31	488	327	32,455	631	5,736	531	3	40,202	
L S	Bicycle	195	1,551	213	28,657	320	4,833	397	1,655	37,821	
<i>i</i> injury	PTW	159	106	4,847	21,036	118	4,199	647	8,864	39,976	
	Car	607	331	2,814	221,444	2,655	76,543	18,323	110,105	432,822	
Mode red an	Transit	28	15	10	2,829	578	596	347	474	4,877	
P P	SUV	66	46	332	43,543	330	23,403	3,262	19,213	90,195	
Suffe	Truck	2	5	18	2,305	58	578	1,638	1,663	6,267	
S	Object	0	0	0	0	0	0	0	0	0	
	Total	1,088	2,542	8,561	352,269	4,690	115,888	25,145	141,977	652,160	
	RV for Individual modes		Bicycle	PTW	Car	Transit	SUV	Truck	Object		
			14.88	4.67	1.23	1.04	0.78	0.25	0.00		

Pedestrians suffer 36.95 times more injuries than they inflict.

Policy innovation to move the needle

Policy innovation to move the needle

Vision Zero & Safe System challenge our ability to reach zero without a major change

dangerous system unsafe **V1.0** system safe **V2.0** system

Multi-layered systems approach

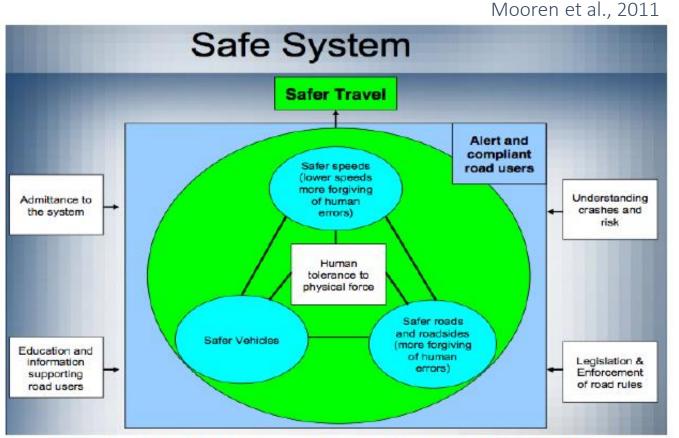


Figure 3 - The Safe System model reproduced from Howard, 2004 [25]

dangerous system safe system

System core: human tolerance to force

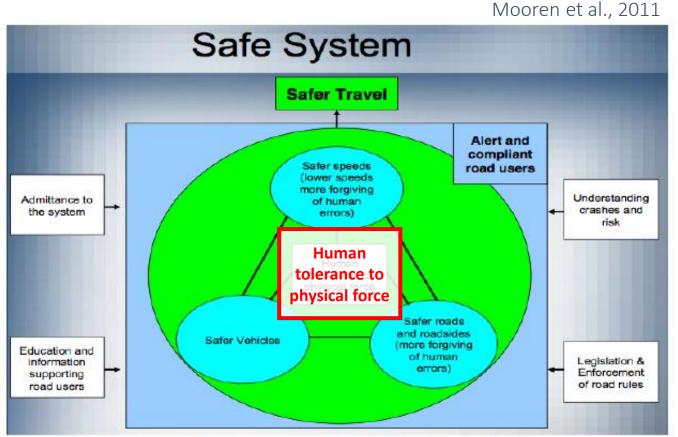


Figure 3 - The Safe System model reproduced from Howard, 2004 [25]

dangerous system safe system

Safe System: safer roads, vehicles, speeds

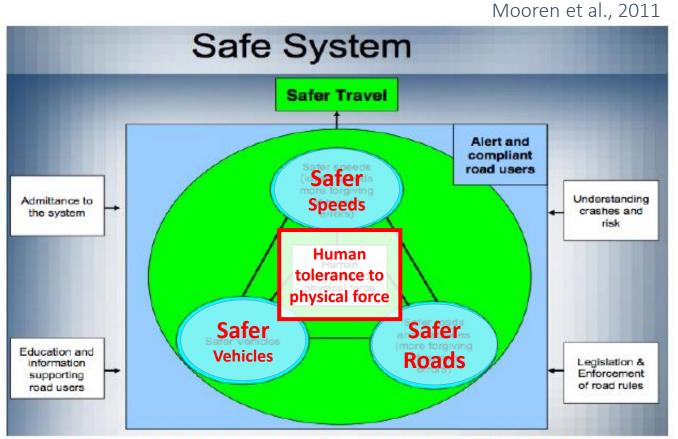


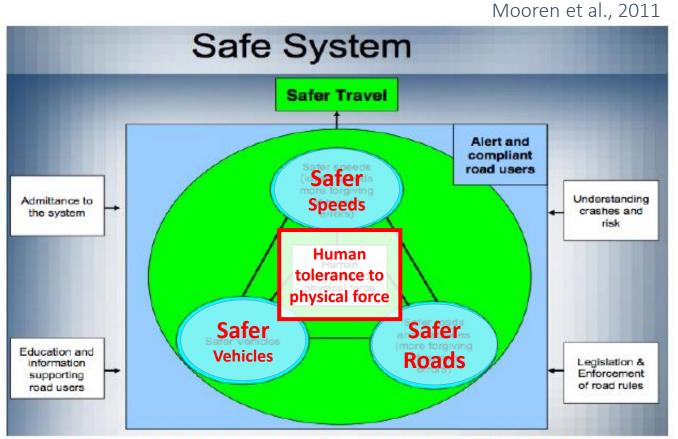
Figure 3 - The Safe System model reproduced from Howard, 2004 [25]

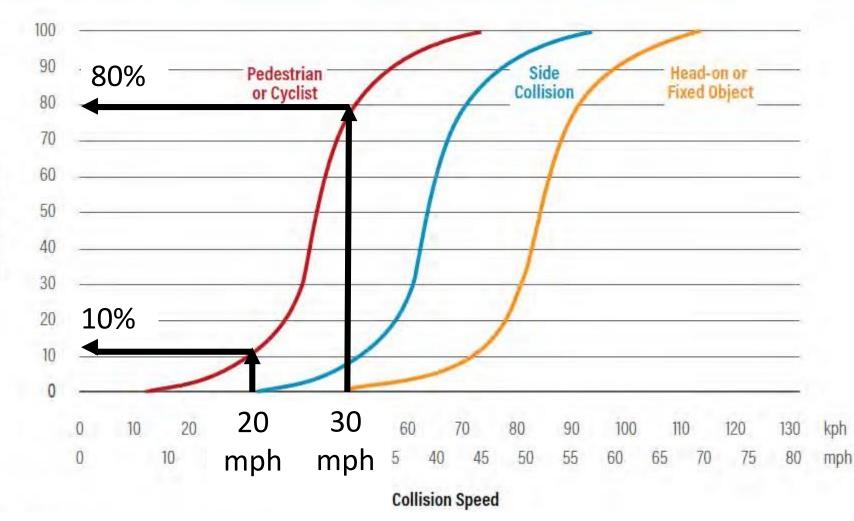
dangerous system safe system

Safer Roads, Safer Vehicles, Safer Speeds

Danny Bagwell Flips Violently At Daytona 1999 https://www.youtube.com/watch?v=llotGXqBH0Y

Safe System: safer roads, vehicles, speeds



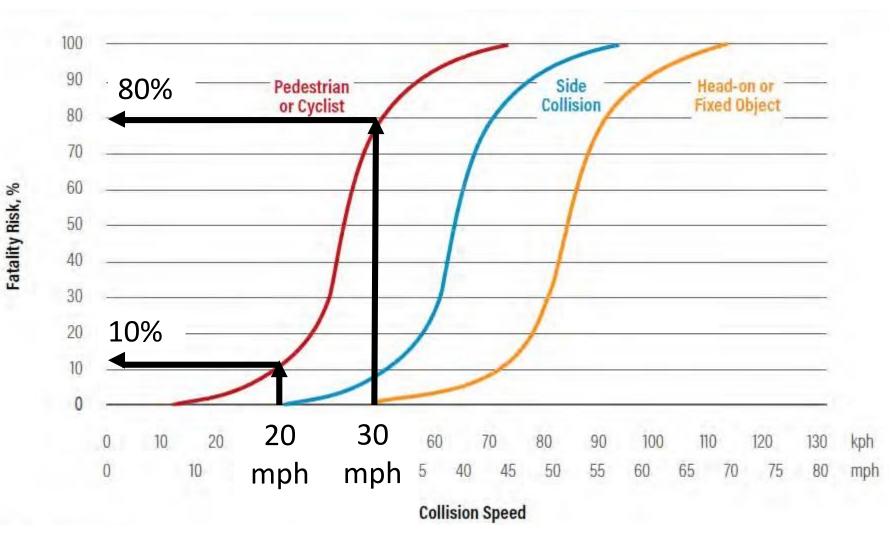

Figure 3 - The Safe System model reproduced from Howard, 2004 [25]

dangerous system safe system

Speed management as a regulator

- Vehicle speed is the most important regulating factor for safe road traffic since it is subject to road-user behavior
- The kinetic energy that the human body can tolerate, forms the basic parameter in the design of a safe transport system

Fatality risk for collision speed, by crash type

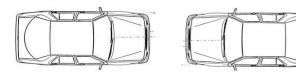


Source: Wramborg, P. 2005." A New Approach to a Safe and Sustainable Road Structure and Street Design for Urban Areas." Paper presented at 13th International Conference on Road Safety on Four Continents, Warsaw, Poland, October 5–7.

Berkeley SafeTREC

Fatality Risk, %

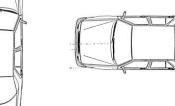
Fatality risk for collision speed, by crash type



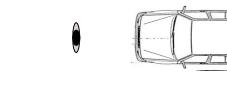
Human tolerance to physical force

Source: Wramborg, P. 2005." A New Approach to a Safe and Sustainable Road Structure and Street Design for Urban Areas." Paper presented at 13th International Conference on Road Safety on Four Continents, Warsaw, Poland, October 5–7.

Speed limits for a safe system in Sweden



A safe car can protect occupants up to **45 mph** in a head-on collision

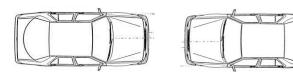


20

mph

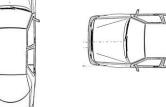
A safe car can protect occupants up to **30 mph** in a side collision

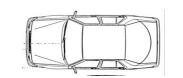
Most unprotected road users survive if a car travelling **20 mph** hits them


Berkeley SafeTREC

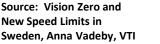
Source: Vision Zero and New Speed Limits in Sweden, Anna Vadeby, VTI

Speed limits for a safe system in Sweden




A safe car can protect occupants up to **45 mph** in a head-on collision

A safe car can protect occupants up to **30 mph** in a side collision


Most unprotected road users survive if a car travelling **20 mph** hits them

Source: Vision Zero and New Speed Limits in Sweden, Anna Vadeby, VTI

Rural speed limits for safe system, Sweden

- **45 mph** (70 km/h): default limit on rural roads
- **50 mph** (80-90 km/h): 2-lane roads (milled rumble strips in middle of road)
- **65 mph** (100 km/h): 2+1 roads with median barrier
- **70 mph** (110 km/h): motorways
- **75 mph** (120 km/h): motorways with high standard and low traffic flow

Year	Increased speed limit (km)	Decreased speed limit (km)
2008	1 000	2 500
2009	1 600	15 000

Berkeley SafeTREC

65

45

mph

75

mph

Rural speed limits for safe system, Sweden

Safer Roads

45

mph

75

mph

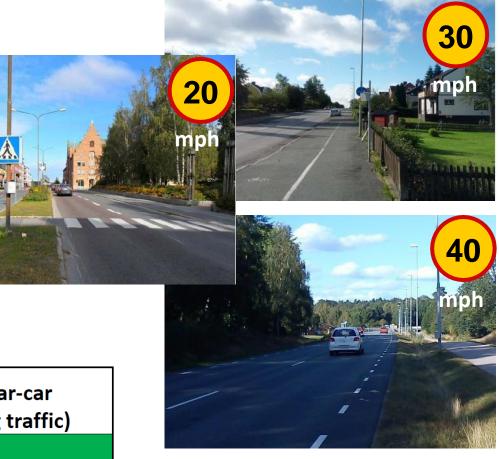
- 45 mph (70 km/h): default limit on rural roads
- **50 mph** (80-90 km/h): 2-lane roads (milled rumble strips in middle of road)
- **65 mph** (100 km/h): 2+1 roads with median barrier
- **70 mph** (110 km/h): motorways
- **75 mph** (120 km/h): motorways with high standard and low traffic flow

Year	Increased speed limit (km)	Decreased speed limit (km)
2008	1 000	2 500
2009	1 600	15 000

Source: Vision Zero and New Speed Limits in Sweden, Anna Vadeby, VTI

Berkeley SafeTREC

65


Urban speed limits for a safe system, Sweden

Guidelines consider:

- City's character
- Accessibility
- Security
- Traffic Safety
- Health and Environment

Safety		Conflicts car-car	Conflicts car-	Conflicts car-car	
Level		(intersections)	obstacle	(oncoming traffic)	
High	≤ 20 mph	≤ 30 mph	≤ 40 mph	45 mph	

Based on: Vision Zero and New Speed Limits in Sweden, Anna Vadeby, VTI. Original Values have been converted from kph to mph and rounded.

Safer Roads

Urban speed limits for a safe system, Sweden

Guidelines consider:

- City's character
- Accessibility
- Security
- Traffic Safety
- Health and Environment

Safety	Conflicts	Conflicts car-car	Conflicts car-	Conflicts car-car	
Level	VRU-car	(intersections)	obstacle	(oncoming traffic)	
High	≤ 20 mph	≤ 30 mph	≤ 40 mph	45 mph	

mb

Berkeley SafeTREC

Based on: Vision Zero and New Speed Limits in Sweden, Anna Vadeby, VTI. Original Values have been converted from kph to mph and rounded.

Safe System: alert and compliant users

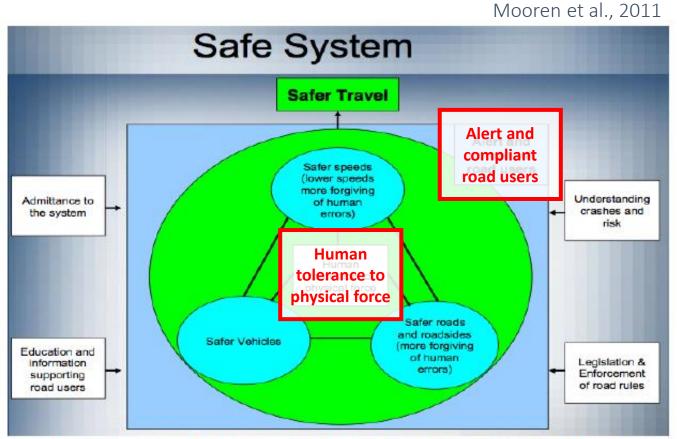


Figure 3 - The Safe System model reproduced from Howard, 2004 [25]

dangerous system safe system

Who is this safe/r road user we design for?

Goody two shoes minion

Error-prone minion

Carl

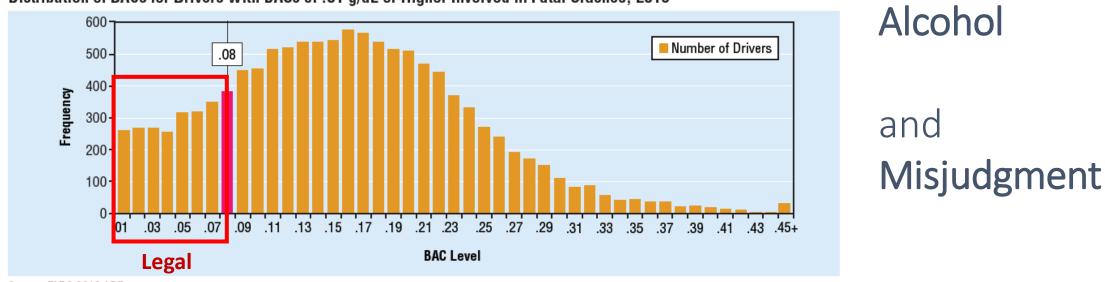
Who is this safe/r road user we design for?

Goody two shoes minion

Carl

Safe system

Safe/r road users and speed



Speed limits

and Misjudgment

Safe/r road users and alcohol

Distribution of BACs for Drivers With BACs of .01 g/dL or Higher Involved in Fatal Crashes, 2016

Source: FARS 2016 ARF

Diminished performance below 0.08 BAC may not be accounted for in perception reaction time assumptions for current design standards

Itani, I., Grembek, O., In preparation

Safe System: safer roads, vehicles, speeds

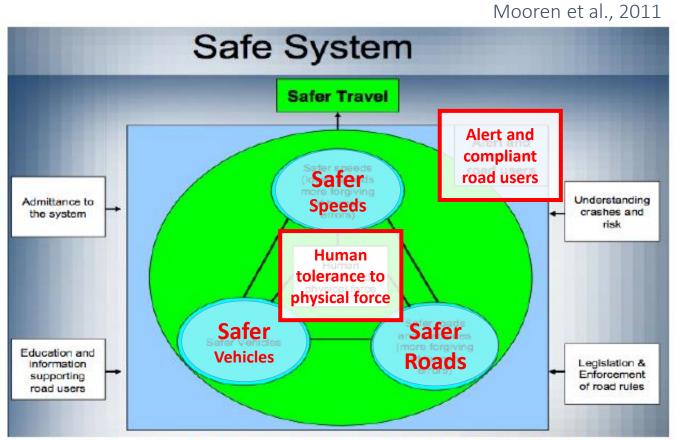


Figure 3 - The Safe System model reproduced from Howard, 2004 [25]

dangerous system safe system

Where do we go from here?

RESEARCH Mission, Research Objectives

Researchers

Projects

Final Reports

Resources for PIs

2019 Research Project

Developing a Framework to Combine the Different Protective Features of a Safe System

Principal Investigator

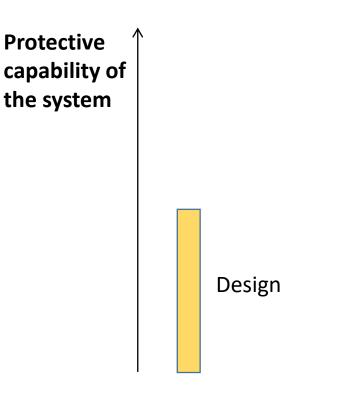
Offer Grembek

University of California, Berkeley View Bio

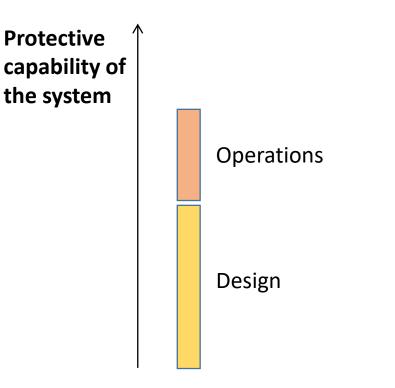
Cyclist Safety Considerations

We would want alert and compliant riders, to make trips using safe bicycles, on safe street design with adequate separation from safe motorized traffic driven by alert and compliant drivers, all of which are governed by safe speeds, and supported by effective cyclist protection, and the medical emergency system, when needed.

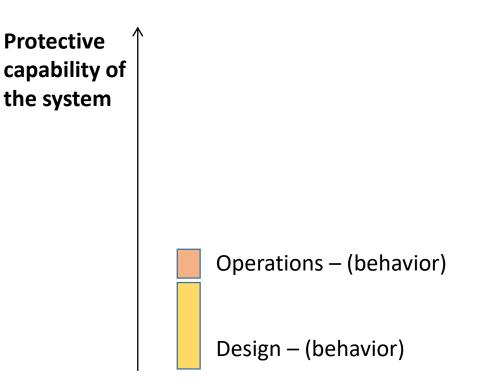
- 1. street design
- 2. street operations
- 3. street-user behavior
- 4. street-user warning
- 5. street-user protection
- 6. emergency medical services

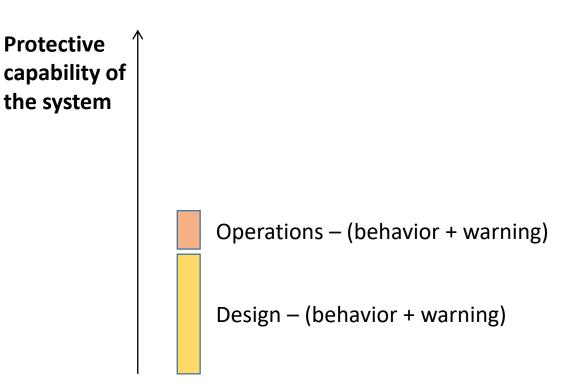


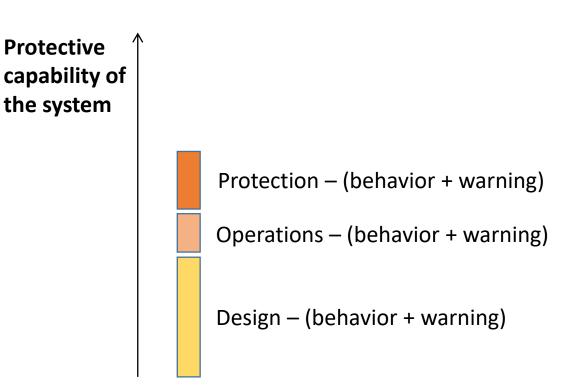
- 1. street design
- 2. street operations
- 3. street-user behavior
- 4. street-user warning
- 5. street-user protection
- 6. emergency medical services

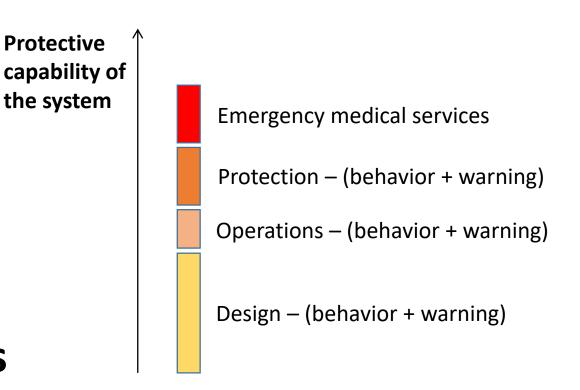

Protective capability of the system

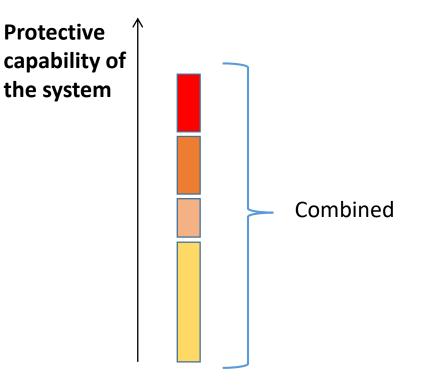
1. street design


- 2. street operations
- 3. street-user behavior
- 4. street-user warning
- 5. street-user protection
- 6. emergency medical services


- 1. street design
- 2. street operations
- 3. street-user behavior
- 4. street-user warning
- 5. street-user protection
- 6. emergency medical services


- 1. street design
- 2. street operations
- 3. street-user behavior
- 4. street-user warning
- 5. street-user protection
- 6. emergency medical services


- 1. street design
- 2. street operations
- 3. street-user behavior
- 4. street-user warning
- 5. street-user protection
- 6. emergency medical services

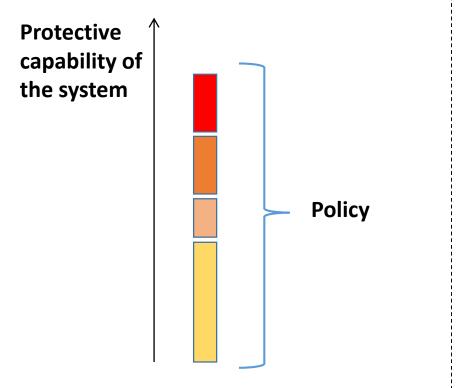

- 1. street design
- 2. street operations
- 3. street-user behavior
- 4. street-user warning
- 5. street-user protection
- 6. emergency medical services

- 1. street design
- 2. street operations
- 3. street-user behavior
- 4. street-user warning
- 5. street-user protection
- 6. emergency medical services

- 1. street design
- 2. street operations
- 3. street-user behavior
- 4. street-user warning
- 5. street-user protection
- 6. emergency medical services

Integrated buffers of a safe system

• Analyze levels of kinetic energy that road users are exposed to across different parts of the network. This will be done by mode and will be used to establish the desired capability of the system.


Injuries in California (2005-2009)		Mode <i>j</i> Inflicted an injury							
		Foot	Bicycle	PTW	Car	Transit	SUV	Truck	Object
Mode <i>i</i> Suffered an injury	Foot Bicycle PTW Car Transit SUV Truck Object		el of K each p		ener	ΞV			

Policy Implications

Level of Kinetic energy carried by the users

Policy Implications

Level of Kinetic energy carried by the users

Summary

- Understand what is a safe system approach to road safety
- Recognize the different roles of the core protective opportunities provided by a safe system
- Appreciate the policy opportunities created by adding non-crash safety considerations

Thank you!

Offer Grembek, grembek@berkeley.edu

Research presented is based on various efforts funded by:

