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Random Walks on Digraphs

J. J. P. Veerman∗

October 23, 2017

1 Introduction

Let V = {1, · · ·n} be a vertex set and S a non-negative row-stochastic matrix (i.e. rows sum to
1). V and S define a digraph G = G(V, S) and a directed graph Laplacian L as follows. If (S)ij > 0
(in what follows we will leave out the parentheses) there is a directed edge j → i. Thus the ith row
of S identifies the edges coming into vertex i and their weights. This set of vertices are collectively
the neighbors of i, and is denoted by Ni. The diagonal elements Sii are chosen such that each row
sum equals 1. In particular, if a vertex i has no incoming edges, we choose Sii = 1. For the purposes
of this work, we define the Laplacian by

L ≡ I − S ,

where I is the identity matrix.

It turns out, perhaps somewhat confusingly, that depending on the application one is interested
in, sometimes S and L are the natural objects of study, and at other times it may be better to look at
their transpose ST and LT . As an example of the first, consider a very simple consensus model, where
the components x ∈ Rn are individual approvals (or lack thereof) of some item or idea. Suppose
that one’s opinion changes with a rate given by some linear function of the perceived differences of
opinion with one’s neighbors. This naturally leads to the model

ẋ = gLx , (1.1)

where g is some arbitrary real parameter. What is important here, is that every opinion depends on
incoming opinions:

ẋk = g
∑
j∈Nk

wkj(xk − xj) ,

where the wkj are non-negative weights with row-sum one. One sees that in effect, the rate of change
depends on the difference of one’s opinion with a weighted average of incoming opinions. Thus L
has row-sum zero and S = I −L is row-stochastic. The same things holds in the study of flocks and
more details for that model can be found in [2].
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On the other hand, consider next a random walk on the same graph with n vertices. Given the
probabilities p(i) that a walker is at vertex i, the probabilities p′(j) that the walker is at vertex j in
the next time step. Since the probabilities must always be non-negative and sum to 1, the random
walker is a map from the (n−1)-dimensional simplex to itself. Let us suppose, as before, that map is
linear and represented by a n×n matrix A. So suppose p = (1, 0, · · · 0)T , then p′, the first column of
A, is a column of non-negative probabilities summing to one. In essence, at very vertex, the outgoing
probabilities must sum to one, and A is column-stochastic. Thus, in this case, it is natural to consider
A ≡ ST as the linear map determining the random walk. It is crucial to realize that according to
this definition the random walker moves in the direction opposite to the edge arrows defined above.

The aim of this note is to characterize the null spaces of both L and LT , and to describe their
relation to the dynamical processes just outlined. We build on work done in [1] and [2] where the
role of the null space in the study of flocking was described. In section 2 we summarize the results
of these papers. The main results of this work concern the random walk and its relation to the
null space of LT . These follow in Section 3. In Section 4 we illustrate our results with two simple
examples.

2 Prior Results

In [1] matrices M of the form
M = D −DS

were considered, where D is a non-negative diagonal matrix and S is row stochastic. The special
case L arises by choosing D = I. We will assume that from here on. The following definitions (with
the exception of Definition 2.3) and results are taken from [1] and [2].

Definition 2.1 Given any real N×N matrix M = D−DS, we denote by G(V, S) the directed graph
with vertices 1, · · ·n and an edge j → i whenever Sij ̸= 0. For each vertex i, set Ni := {j|j → i}.
We write j  i if there exists a directed path in GS from vertex j to vertex i. Furthermore, for any
vertex j, we define R(j) to be the set containing j and all vertices i such that j  i. We refer to
R(j) as the reachable set of vertex j.

Definition 2.2 A set R of vertices in a graph will be called a reach if it is a maximal reachable
set; in other words, R is a reach if R = R(i) for some i and there is no j such that R(i) ⊂ R(j)
(properly). Since our graphs all have finite vertex sets, such maximal sets exist and are uniquely
determined by the graph. For each reach Ri of a graph, we define the exclusive part of Ri to be the
set Hi = Ri\ ∪j ̸=i Ri . Likewise, we define the common part of Ri to be the set Ci = Ri\Hi.

Note that, by definition, the pairwise empty intersection of two exclusive sets is empty: Hi ∩Hj = ∅
if i ̸= j. The common sets can, however, intersect. Note further that each reach R contains at least
one vertex r such that its reachable set R(r) equals the entire reach. Such a vertex is called a root
of R. By definition, any root must be contained in the exclusive part of its reach.

Definition 2.3 Given a digraph G. Then each reach Ri contains a set of roots Pi. The set Pi is
called the root set and is contained in Hi.
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Theorem 2.4 Suppose M = D −DS, where D is a nonnegative N × N diagonal matrix and S is
stochastic. Suppose GS has k reaches, denoted R1 through Rk, where we denote the exclusive and
common parts of each Ri by Hi, Ci respectively. Then the null space of M has a basis γ1, γ2, ... γk
in Rn whose elements satisfy:
(i) γi(v) = 1 for v ∈ Hi;
(ii) γi(v) ∈ (0, 1) for v ∈ Ci;
(iii) γi(v) = 0 for v ̸∈ Ri;
(iv)

∑
i γi = 1n.

Notice that Theorem 2.5 does not completely determine the basis of the null space. The
values of the basis vectors on the common depend on the weights of the relevant edges. This will be
illustrated with an example in Section 4.

Theorem 2.5 The eigenvalue 0 of a Laplacian matrix of the form D − DS with k reaches has
algebraic and geometric multiplicity k.

Theorem 2.6 Any nonzero eigenvalue of a Laplacian matrix of the form D − DS, where D is
nonnegative diagonal and S is stochastic, has (strictly) positive real part.

The consequences of this for the simple consensus model mentioned earlier are easy to describe.
Let ∆ be the subspace of Rn spanned by all the (generalized) eigenspaces of L other than its null
space and denote by {γi}ni=k+1 a basis of ∆. Then the vectors {γi}ni=1 form a basis for Rn. The initial
condition x(0) can be written in terms of this basis as

x(0) =
n∑

i=1

αiγi .

Set g < 0. By Theorem 2.6, the non-zero eigenvalues of gL all have negative real part. Thus the
solution of the differential equation (1.1) is:

x(t) =
k∑

i=1

αiγi +R(t) ,

where R(t) is as function that decreases to 0 exponentially fast as time t tends to infinity (though it
may have large transients). This means that, for large t, the opinion vector x is entirely determined
by the null space of L. The conclusion for the more complicated flocking models is very similar. We
refer the interested reader to [2].

3 Random Walks on Directed Graphs

Denote the transpose of S by A: A = ST . Everything else is as defined in Section 2. In
particular, edges i → j and directed paths i j have directions determined by S.

Definition 3.1 Let G be the digraph with (weighted) adjacency row stochastic matrix S. TS is the
random walk on the digraph G given by the transition probabilities: prob(j → i) = Aij = Sji.
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Recall that the edges have the opposite direction, i.e. i → j is an edge if Aij =prob(j → i) > 0. We
will abbreviate TS with T since no confusion is likely.

Definition 3.2 A probability vector or a (discrete) measure is a vector in Rn such that for all i,
p(i) ≥ 0 and

∑
i p(i) = 1. The support, supp(p), of the measure p, is the set of vertices on which p

takes a positive value.

To conform to the formal definition of probability measure, we note that p(∅) = 0, and for any vertex
set W ⊆ V (G), p(W ) =

∑
i∈W p(i).

Definition 3.3 Let T be a random walk. The push forward T∗p of the measure p is given by

(T∗p)(i) =
∑
j

prob(j → i)p(j) =
∑
j

Aijp(j) ,

The pull back T ∗p of the measure p is given by

(T ∗p)(i) =
∑
j

prob(i → j)p(j) =
∑
i

Ajip(j) ,

Therefore if the probabilities at time step 0 are given by the vector p, then at time step 1 they
are given by the vector T∗p = Ap. Note that this corresponds to left multiplication of S by p. It is
easy to directly verify that Ap is a probability vector if p is a probability vector. First of all, if p is
a probability vector, then

(Ap) (i) =
∑
j

Aijp(j) ≥ 0 ,

and then, of course,

∑
i

(Ap) (i) =
∑
i

∑
j

Aijp(j) =
∑
j

(∑
i

Aij

)
p(j) = 1 .

So that Ap satisfies Definition 3.2.

Definition 3.4 T has a forward invariant probability measure p if Ap = p. K ⊆ V (G) is a forward
invariant set under T , if p|Kc = 0 implies Ap|Kc = 0, where Kc is the complement of K in V (G).

We now use the notation of the previous section.

Lemma 3.5 Given a random walk random walk T , every exclusive set Hi and its root set Pi are
forward invariant sets under T .

Proof: Suppose Ci is the common part of the reach corresponding to Hi. A walker landing in Hi

can only leave the exclusive part if the graph G has an edge in the opposite direction (Definition
3.1). This contradicts Definitions 2.2 and 2.3.

Similarly, a walker can only leave Pi if the graph G has edge from j ∈ V (G)\Pi into Pi. But
this would mean that j is a root of Ri, which is a contradiction.
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Theorem 3.6 Let G be a graph with Laplacian L = I −S with k reaches as in Theorem 2.4. Given
j ∈ V (G) and m ∈ {1, · · · k}. The probability that a random walker under T starting at j ∈ V ends
up in Pm equals γm(j).

Proof: Let q(j) be the probability that a random walker starting at j ∈ V reaches Pm for some fixed
m. Then q : V → [0, 1] is well-defined and is constant in time. Since, by Lemma 3.5, Pm is forward
invariant, q(j) is also equal to the probability that the walker starting at j ends up and stays in Pm.

The probability q(j) concerns the future (under T ) of the walker on j. Therefore it is equal to the
appropriately weighted average of q(i) of j’s successors under T . Thus

q(j) =
∑
i

prob(j → i)q(i) =
∑
j

Aijq(i) .

From this we conclude:

q = AT q ⇐⇒ q = Sq ⇐⇒ Lq = (I − S)q = 0

This proves that q is in the null space of M :

q(j) =
∑
i

αiγi(j)

However, again by Lemma 3.5, if j is a vertex in Pm, then q(j) = 1, and if j is in any Pj with j ̸= m,
then q(j) = 0. Thus αm = 1 and αℓ = 0 if ℓ ̸= m.

Lemma 3.7 Let G be a digraph with reach R consisting of an exclusive part H, containing the root
set P , and a common part C. Under the random walk T on G, there is a unique invariant measure
p whose support equals P .

Proof: Consider a reach R with its root set P and denote the vertex set R\P by Y and the vertex
set V \R by Z. Since directed paths in G cannot leave the reach R, we have APZ = AY Z = 0.
Similarly, directed paths in G cannot go from Z to P , nor from Y to P (see Lemma 3.5). Therefore,
upon permuting vertices, the matrix A equals

A =

APP APY 0
0 AY Y 0
0 AZY AZZ

 .

The matrix APP is the transpose of the matrix SPP . Clearly P has at least one root v. Lemma 3.1
in [1] shows that the eigenvalue 1 in SPP has algebraic and geometric multiplicity one. Its transpose
APP has the same characteristic polynomial, its eigenvalue 1 also has algebraic multiplicity 1 (and
therefore geometric multiplicity 1). Similarly, the proof of Theorem 2.7 in [1] establishes that the
spectral radius of SY Y is strictly less than 1, and the same holds for AY Y .

We solve for p in Ap = p, where p = (aP , bY , cZ)
T . This gives

APPaP + APY bY = aP , AY Y bY = bY and AY ZbY + AZZcZ = cZ .

The middle equation can only be satisfied if bY = 0. This shows that the support of p is in P .
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Now we assume that there is a vertex k ∈ P such that p(k) = 0. Then

0 = p(k) =
∑
j

Akjp(j) .

Since k is a root, it has outgoing edges. So there must be j such that Akj > 0. Since p is a probability
measure, its components are non-negative. Therefore p(j) must be zero. By induction, one proves
that for all vertices i such that k  i, p(i) = 0. Since k is a root, that implies that p = 0 on the
entire reach R, which is absurd. Therefore p(k) > 0.

Theorem 3.8 Let G be a graph with Laplacian L = I − S with k reaches as in Theorem 2.4. Then
the eigenvalue 0 of LT has algebraic and geometric multiplicity k. Furthermore, the null space of LT

has a basis γ̄1, γ̄2, ... γ̄k in Rn whose elements satisfy:
(i) For all i ∈ {1, · · · k} and all v ∈ {1, · · ·n}: γ̄i(v) ≥ 0;
(ii)

∑
v∈Pi

γ̄i(v) = 1;
(iii) γ̄i(v) = 0 for v ̸∈ Pi.

Proof: Denote the union ∪k
i=1Ri\Pi by Z. Permuting rows and columns, we can write the matrix

A in block diagonal form:

A =


AP1P1 0 · · · 0 AP1Z

0 AP2P2 · · · 0 AP2Z

· · · ... · · · ... · · ·
0 · · · 0 APkPk

APkZ

0 · · · · · · 0 AZZ

 .

Each of the diagonal blocks, except AZZ , is rooted and so has eigenvalue 1 with algebraic and geo-
metric multiplicity 1. As before, AZZ has spectral radius less than 1. The characteristic polynomial
of A is the product of the characteristic polynomials of the diagonal blocks, and the result follows.

Notice that, just like Theorem 2.5, Theorem 3.8 does not completely determine the null space.
The examples in the next section will show that indeed random walks on a given digraph but with
different weights on the edges can have non-trivially different invariant measures.

4 The Kernel of L Versus the Kernel of LT

We saw that the components γi(j) of the vectors γi equal the probability that a random walker
starting at j reaches Hi. In contrast, the null space Ē0 of LT = I − A is spanned by vectors {γ̄i}ki=1

which give the different invariant measures with support in Ri associated with the random walk T .

We will now show that the role of these invariant measures γ̄i in the random walk is similar to
that of the vectors γi in the consensus model discussed at the end of Section 2. Let ∆̄ be the subspace
of Rn spanned by all the (generalized) eigenspaces of LT other than its null space and denote by
{γ̄i}ni=k+1 a basis of ∆̄. Then the vectors {γ̄i}ni=1 form a basis for Rn. Clearly, any probability vector
p(0) can be written uniquely as

p(0) =
n∑

i=1

αiγ̄i .
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Lemma 4.1 Each of the basis vectors of {γ̄i}ni=k+1 of ∆̄ has the property that the sum of its compo-
nents equals zero.

Proof: First, assume that v is an eigenvector of LT with eigenvalue λ ̸= 1. We obtain∑
i,j

Aijv(j) = λ
∑
i

v(i) =⇒ (1− λ)
∑
i

v(i) = 0 ,

because A is column stochastic. Thus
∑

i v(i) = 0. Next, suppose the lemma is false for some
generalized eigenvector w of LT . Then, by Theorem 3.8, the associated eigenvalue must be different
from 1. Thus we have a situation where there is a vector v with

∑
i v(i) = 0 and

(A− λI)w = v .

Taking the sum of the components on both sides yields the result.

Theorem 4.2 Let G be a graph with Laplacian L = I − S with k reaches as in Theorem 2.4. Let
p(0) =

∑n
i=1 αiγ̄i be the initial probability distribution. Assume S no eigenvalues with modulus 1,

except λ = 1. Then the probability measure at time step ℓ, p(ℓ), is given by:

p(ℓ) = Aℓp(0) =
k∑

i=1

αiγ̄i + Aℓδ ,

for some δ ∈ ∆̄, and
∣∣Aℓδ

∣∣ tends to zero exponentially fast as ℓ tends to zero.

Proof: Lemma 4.1 says that
∑

j γ̄i(j) = 0 for i > k. Therefore
∑n

j=1

∑k
i=1 αiγ̄i(j) = 1. Furthermore,

all components are non-negative. This shows that
∑k

i=1 αiγ̄i is a probability measure.

By Gershgorin’s theorem, eigenvalues of A = ST have modulus at most 1. The eigenvalue 1 has
algebraic multiplicity k and the corresponding eigenspace is spanned by {γ̄i}ki=1. All other eigenvalues
must have modulus strictly less than 1. Thus, setting δ =

∑n
i=k+1 αiγ̄i, we have |Aℓδ| < Kλℓ, for

some K > 0 and some λ ∈ (0, 1).

Remark: Even though the convergence is exponentially fast, very large transients may occur for
intermediate values of ℓ, especially for graphs that have many vertices and are highly asymmetric.

We give two simple examples of the contrast between the null spaces of L and LT . As the first
example suppose that V = {1, 2} and

S =

(
x 1− x
1 0

)
or L =

(
1− x x− 1
−1 1

)
,

and A is again the transpose of S.

We take x ∈ [0, 1]. The eigenvalues of S (and A) are 1 and x − 1. Thus when x = 0, there is an
eigenvalue -1, violating the condition on the eigenvalues of Theorem4.2. The kernel of L = I − S

is the vector

(
1
1

)
. Indeed graph G(V, S) has one reach and both vertices are (of course) in it.
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There is an invariant measure and it is given by (2− x)−1

(
1

1− x

)
which spans the null space of

LT = I − ST . Note that this also works for x = 0 when the “random” walker hops back and forth
from 1 to 2 to 1, etcetera. In that case the probability is simply 1/2 that the walker is at vertex 1
and 1/2 that he is at vertex 2.

The next example is modified from [2]. Its vertex set is V = {1, 2, 3, 4, 5} and its (directed)
Laplacian is given by

L =


0 0 0 0 0
−1 1 0 0 0

x− 1 0 1 −x 0
0 0 −1/2 1 −1/2
0 0 0 0 0

 ,

where x ∈ [0, 1]. The reaches are given by R1 = {1, 2, 3, 4} and R2 = {3, 4, 5} with exclusive parts
H1 = {1, 2} and H2 = {5}. Its root sets are P1 = {1} and P2 = {5}. Since this graph has two
reaches, the eigenspace corresponding to the zero eigenvalue is two-dimensional. It is easy to verify
that it is spanned by

γ1 = (2− x)−1


2− x
2− x

2(1− x)
1− x
0

 and γ2 = (2− x)−1


0
0
x
1

2− x


To find the invariant measures we look for the kernel of the transpose of the Laplacian. This time
the kernel is spanned by the measures

γ̄1 =


1
0
0
0
0

 and γ̄2 =


0
0
0
0
1


Since each of the two reaches has a unique root, the invariant measures are uniquely determined. As
an example, a walker starting at vertex 3 has probability 2(1−x)

2−x
to end up at vertex 1 and probability

x
2−x

to end up at vertex 3. The associated invariant measure is 2(1−x)
2−x

γ̄1 +
x

2−x
γ̄2.
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