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Relativistic Brueckner-Hartree-Fock theory for neutron drops
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Neutron drops confined in an external field are studied in the framework of relativistic Brueckner-Hartree-Fock
theory using the bare nucleon-nucleon interaction. The ground-state energies and radii of neutron drops with even
numbers from N = 4 to N = 50 are calculated and compared with results obtained from other nonrelativistic ab
initio calculations and from relativistic density functional theory. Special attention has been paid to the magic
numbers and to the subshell closures. The single-particle energies are investigated and the monopole effect of the
tensor force on the evolutions of the spin-orbit and the pseudospin-orbit splittings is discussed. The results provide
interesting insights into neutron-rich systems and can form an important guide for future density functionals.
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I. INTRODUCTION

The shell structure in atomic nuclei is one of the most
astonishing facts. It was discovered in the late 1940s [1,2]
and forms the foundation of nuclear physics since then.
With the advance of radioactive-ion-beam facilities around
the world, more and more neutron-rich exotic nuclei have
been reached, where many interesting new phenomena emerge
such as the disappearance of traditional and the appearance of
new magic numbers [3–5], and the halo phenomena [6–8].
These new findings present challenges for current nuclear
structure theory, in particular for nuclear density functional
theory which should provide a uniform description over the
entire nuclear chart [9–13]. In this framework there is no
possibility to adjust the effective interaction or the resulting
single-particle energies separately for each area of the chart,
as it is done in many shell-model configuration-interaction
(CI) calculations. Nuclear density functionals, even though
they are phenomenological, are usually obtained by fitting
to the properties of stable nuclei and, therefore, they are
not well constrained in exotic regions far from the line of
β stability. Microscopic calculations started from nucleon-
nucleon (NN ) interactions, or the so-called ab initio calcula-
tions [14–23], can provide valuable information to understand
nuclear structure but are still difficult to apply to exotic
nuclei.

The neutron drop provides an ideal simple model to in-
vestigate the neutron-rich environment. It is composed of a
finite number of pure neutrons which are constrained in an
external field to keep the neutrons bound. Because only the
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neutron-neutron interaction exists, equations for neutron drops
are much easier to solve. Therefore they can be calculated by
many ab initio methods [24–28]. In this way, different methods
and different interactions can be compared, and valuable
information can be obtained for constraining nuclear density
functionals in neutron-rich system.

The neutron drops were first studied by quantum Monte
Carlo methods [24] for N = 7 and 8 using the two-nucleon
(2N ) interaction Argonne v18 [29] and the three-nucleon (3N )
interaction Urbana IX [30]. It was found that commonly
used Skyrme functionals overestimate the central density of
these drops and the spin-orbit splitting of drops with seven
neutrons [24]. In Ref. [31] the ground-state energy was studied
for N = 6 neutron drops and the neutron pairing energy
was discussed by comparison with Ref. [24]. Later, more
systematic studies were performed for larger N values with
different external fields and different interactions by using
quantum Monte Carlo methods [26,32–34]. Studies with the
modern high-precision chiral 2N interaction N3LO [35] and
the 3N interaction N2LO [36] have been benchmarked with
different ab initio methods, including the no-core shell model
[18] and the coupled-cluster theory [19], and it was found that
the results are consistent with each other [27]. However, by
comparing these ab initio calculations, one found a significant
dependence on the selected interactions, especially on the 3N
interactions [26,27,34].

On the other hand, various nonrelativistic and relativistic
density functionals have been used to study neutron drops, and
a strong linear correlation between the rms radii of neutron
drops and the neutron skin thickness of 208Pb and 48Ca has
been pointed out in Ref. [37]. Because of the uncertainty in the
isovector part, there exists a large uncertainty in the results of
neutron drops for the different functionals.
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Recently, the self-consistent relativistic Brueckner-Hartree-
Fock (RBHF) theory for finite nuclei has been established, and
the results are in much better agreement with experimental data
than the nonrelativistic calculations with the 2N interaction
only [22,23]. Indeed, it has been known for over than 30 years
that relativistic Brueckner-Hartree-Fock theory gives a much
better description of the nuclear matter saturation properties
than nonrelativistic BHF theories [38–40]. In nonrelativistic
many-body investigations on the influence of various types
of 3N interactions, it was found that a relativistic effect, the
so-called Z diagram, plays a major role [41].

With progresses in mind, it is important to study the neutron
drops in more detail in the framework of RBHF theory and
compare the results with those of other nonrelativistic ab initio
calculations using various 2N or 2N + 3N interactions, as well
as calculations using various density functionals. This can also
provide valuable insight to improve current relativistic density
functionals. In Ref. [28], a systematic and specific pattern due
to the tensor forces in the evolution of spin-orbit splittings
based on RBHF theory is reported.

In this work, we investigate neutron drops confined in
an external harmonic-oscillator potential using relativistic
Brueckner-Hartree-Fock theory and present the numerical
details and calculated results in detail. In Sec. II, we give
a brief outline of the RBHF framework for neutron drops.
The numerical details are discussed in Sec. III. Results and
discussion for neutron drops with an even number of neutrons
from N = 4 to 50 are presented in Sec. IV. Finally, a summary
and perspectives for future investigations is given in Sec. V.

II. THEORETICAL FRAMEWORK

In this section, we outline the theoretical framework of
relativistic Brueckner-Hartree-Fock theory for neutron drops.
For a detailed description of RBHF theory for finite nuclei, we
refer the reader to Refs. [22,23].

We start with a relativistic one-boson-exchange NN inter-
action which describes the NN scattering data [42]:

LNNpv = − fps

mps

ψ̄γ 5γ μψ∂μϕ(ps),

LNNs = gsψ̄ψϕ(s),

LNNv = −gvψ̄γ μψϕ(v)
μ − fv

4M
ψ̄σμνψ

(
∂μϕ(v)

ν − ∂νϕ
(v)
μ

)
,

(1)

where ψ denotes the nucleon field. The bosons to be exchanged
are characterized by the index α and include the pseudoscalar
mesons η, π with a pseudovector pv coupling, the scalar (s)
mesons σ, δ, and the vector (v) mesons ω, ρ. For each pair,
e.g., η, π , the first (second) meson has isoscalar (isovector)
character. For the isovector mesons, the field operator ϕα is
replaced by �ϕα · �τ , with �τ being the usual Pauli matrices in
isospace.

The Hamiltonian is obtained through the Legendre transfor-
mation. Considering the stationary case, the Hamiltonian can

be expressed in the second-quantized form as

H =
∑
kk′

〈k|T |k′〉b†kbk′ + 1

2

∑
klk′l′

〈kl|V |k′l′〉b†kb†l bl′bk′ , (2)

where the relativistic matrix elements are given by

〈k|T |k′〉 =
∫

d3rψ̄k(r)(−iγ · ∇ + M)ψk′(r), (3)

〈kl|Vα|k′l′〉 =
∫

d3r1d
3r2ψ̄k(r1)�(1)

α ψk′(r1)

×Dα(r1,r2)ψ̄l(r2)�(2)
α ψl′ (r2). (4)

The indices k, l run over an arbitrary complete basis of
Dirac spinors with positive and negative energies, such as, for
instance, over the eigensolutions of a Dirac equation with po-
tentials of Woods-Saxon shape discussed in Refs. [23,43,44].
The two-body interaction V contains contributions from the
different mesons α. The interaction vertices for particles 1 and
2 are �(1)

α and �(2)
α :

�s = gs, (5a)

�pv = fps

mps

γ 5γ i∂i, (5b)

�μ
v = gvγ

μ + fv

2M
σiμ∂i . (5c)

In the Bonn interaction, there is a form factor of monopole type
attached to each vertex. It has the following form in momentum
space:

�2
α − m2

α

�2
α + q2

, (6)

where �α is the cutoff parameter for meson α and q is the
momentum transfer following Ref. [42].

The meson propagators Dα(r1,r2) are the retarded solutions
of the Klein-Gordon equations in Minkowski space. For the
Bonn interaction, this retardation effect was deemed to be small
and was ignored from the beginning [42]. In this way, the q0

integration can be carried out and we are left with the meson
propagators in r space:

Dα(r1,r2) = ±
∫

d3q

(2π )3

1

m2
α + q2

eiq·(r1−r2). (7)

The negative sign holds for scalar (and pseudoscalar) mesons
and the positive sign for the vector fields. Note that, with the
form factor in Eq. (6), the meson propagators are no longer
simple Yukawa functions, but they can be evaluated in analytic
form [45].

The matrix elements of the bare nucleon-nucleon inter-
action are very large and difficult to be used directly in
nuclear many-body theory. Within Brueckner theory, the bare
interaction is replaced by an effective interaction in the nuclear
medium: the G matrix. It takes into account short-range
correlations by summing up all the ladder diagrams of the bare
interaction [46,47] and is deduced from the Bethe-Goldstone
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(BG) equation [48],

〈ab|Ḡ(W )|a′b′〉 = 〈ab|V̄ |a′b′〉 + 1

2

∑
cd

〈ab|V̄ |cd〉

× Q(c,d)

W − εc − εd

〈cd|Ḡ(W )|a′b′〉, (8)

where |a〉, |b〉 are solutions of the relativistic Hartree-Fock
equations, 〈ab|V̄ |a′b′〉 = 〈ab|V |a′b′ − b′a′〉 are the antisym-
metrized two-body matrix elements, W is the starting energy,
and εc, εd are the single-particle energies of the two particles
in the intermediate states. The Pauli operator Q(c,d) allows
scattering only to states c and d above the Fermi surface. We
also do not allow scattering to states in the Dirac sea. Therefore,
Q(c,d) is defined as

Q(c,d) =
{

1, for εc > εF and εd > εF

0, otherwise. (9)

The single-particle motion fulfills the relativistic Hartree-
Fock (RHF) equation, which in an external field reads

(T + U + Uex)|a〉 = ea|a〉, (10)

where ea = εa + M is the single-particle energy with the rest
mass of the nucleon M , and Uex is the external field to confine
the neutron drop. The self-consistent single-particle potential
U is defined with the G matrix by [49,50]:

Uab = 1

2

N∑
c=1

〈ac|Ḡ(εa + εc) + Ḡ(εb + εc)|bc〉, (11)

if |a〉 and |b〉 are both hole (i.e., occupied) states, and

Uab =
N∑

c=1

〈ac|Ḡ(εa + εc)|bc〉, (12)

if |a〉 is a hole state and |b〉 is a particle (i.e., unoccupied) state,
and

Uab = 1

2

N∑
c=1

〈ac|Ḡ(ε′
a + εc) + Ḡ(ε′

b + εc)|bc〉, (13)

if |a〉 and |b〉 are both particle states. In the above expressions,
the summation index c goes through N neutron-occupied
states.

In the above expressions, ε labels the self-consistent single-
particle energies, while ε′ is somewhat uncertain [50]. The
matrix elements of the self-consistent potential Uab with both
states |a〉 and |b〉 above the Fermi level are not well defined
in the Brueckner-Hartree-Fock theory. Different choices have
been proposed in the literature [50,51]. Following the discus-
sions in Ref. [23,50], we choose ε′

a = ε′
b = ε1s1/2 fixed as the

lowest energy of the occupied states in the Fermi sea.

III. NUMERICAL DETAILS

We use the Bonn interaction adjusted to the NN scattering
data in Ref. [42]. The neutron drops will be confined in a
spherical harmonic oscillator (HO) trap, i.e., the external field
in Eq. (10) is

Uex = 1
2Mω2r2, (14)

where the strength is chosen as h̄ω = 10 MeV if without
specification. In contrast to the relativistic Brueckner-Hartree-
Fock calculations for self-bound nuclei in Refs. [22,23], where
we had to introduce a center-of-mass correction, this is not
necessary here because, in the external field, translational
symmetry is lost. The initial basis is the Dirac Woods-Saxon
(DWS) basis [43], and during the RBHF iteration it will be
transformed to the self-consistent RHF basis as explained in
Ref. [23]. The DWS basis is obtained by solving the spherical
Dirac equation in a box with the box size Rbox = 8 fm and a
mesh size dr = 0.05 fm. The way to solve the BG equation
(8) is the same as in Refs. [22,23], except that now only the
isospin channel Tz = 1 is included.

It is well known that the bare NN interaction contains a
repulsive core and a strong tensor part connecting the nucleons
below the Fermi surface to the states with high momentum in
the continuum. To take this coupling fully into account, one
needs a relatively large basis space. The convergence in finite
nuclei has been confirmed in Refs. [22,23], in which reasonable
convergence is achieved near an energy cutoff εcut = 1.1 GeV.
For the neutron drops, we carry out the same check.

Figure 1 shows the total energy divided by h̄ωN4/3 of
neutron drops with N = 8, 20, 28, and 50 in a HO trap (h̄ω =
10 MeV) as a function of the energy cutoff εcut calculated
by RBHF theory using the Bonn A interaction. The factor
h̄ωN4/3 is based on the consideration that in Thomas-Fermi
approximation [52] the total energy for a noninteracting N -
fermion system in a HO trap is given by

E = 34/3

4
h̄ωN4/3 ≈ 1.082h̄ωN4/3. (15)

In other words, all the energy below the line E/h̄ωN4/3 ≈
1.082 corresponds to binding induced through the nuclear
force. This intrinsic binding energy grows linearly with h̄ω.
With increasing neutron number of the drops we observe a
saturation but, in contrast to the nuclear case where the binding
energy grows roughly with mass number A, here it grows for
large N � 20 with N4/3.

It can be seen from Fig. 1 that, first, the convergence with
the energy cutoff does not depend on particle number. Second,

FIG. 1. Total energy (in units of h̄ωN4/3) of neutron drops with
N = 8, 20, 28, and 50 in a HO trap (h̄ω = 10 MeV) as a function of
the energy cutoff εcut calculated by RBHF theory using the interaction
Bonn A.
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FIG. 2. Convergence rate μ for neutron drops with N = 8, 20,
28, and 50 in a HO trap (h̄ω = 10 MeV) and for the nucleus 16O as
a function of the energy cutoff εcut calculated by RBHF theory using
the Bonn A interaction.

the convergence is achieved already at εcut = 900 MeV, which
is faster than εcut = 1100 MeV in finite nuclei [22,23]. This is
because the tensor term plays a role in connecting the nucleons
below the Fermi surface to the states with high momentum, and
only the T = 1 term shows in neutron drops.

To compare the speed of convergence between neutron
drops and finite nuclei, from the total energy of the system
we define the following convergence rate:

μ(εcut) = E(εcut − 200 MeV) − E(εcut)

E(εcut) − E(εcut + 200 MeV)
. (16)

The larger the quantity μ is, the faster the convergence is.
In Fig. 2, we show the convergence rate μ calculated with

RBHF theory using the interaction Bonn A for neutron drops
with N = 8, 20, 28, and 50 in a HO trap with h̄ω = 10 MeV,
and for the nucleus 16O (from Refs. [22,23]). It can be seen that,
at εcut = 500 MeV, the convergence rates between different
neutron drops and 16O are similar. As εcut increases, the
convergence rates of neutron drops increase linearly, and they
are similar for neutron drops with different neutron numbers.
On the other hand, the convergence rate of 16O does not change
too much as εcut increases and it is much slower than that of
neutron drops.

IV. RESULTS AND DISCUSSION

A. Total energy

In Table I we list the total energies and root-mean-square
(rms) radii of N -neutron drops in a HO trap (h̄ω = 10 MeV)
calculated by RBHF theory using the interactions Bonn A, B,
and C [42]. The results given for the interactions Bonn A, B,
and C are very similar. This can be understood by the fact that
the main difference between the three Bonn interactions is the
strength of the T = 0 tensor force [42], which has no influence
on the neutron-neutron states with T = 1. This result is also in
consistent with the finding in pure neutron matter, where the
equation of state calculated by RBHF with Bonn A, B, and C
interactions are very close [53].

TABLE I. Total energy E and rms radius RN of N -neutron drops
in a HO trap (h̄ω = 10 MeV) calculated by RBHF theory using the
interactions Bonn A, B, and C.

Bonn A Bonn B Bonn C

N E (MeV) RN (fm) E (MeV) RN (fm) E (MeV) RN (fm)

4 62.6 2.51 62.6 2.51 62.7 2.51
6 94.2 2.51 94.3 2.51 94.4 2.51
8 130.0 2.61 130.2 2.61 130.3 2.61
10 183.5 2.73 183.8 2.74 183.9 2.74
12 231.2 2.80 231.6 2.81 231.8 2.81
14 275.4 2.84 275.9 2.85 276.2 2.85
16 320.2 2.89 321.0 2.90 321.4 2.90
18 373.2 2.97 374.3 2.98 374.7 2.98
20 418.1 3.02 419.3 3.03 419.7 3.03
22 485.5 3.08 487.0 3.08 487.4 3.08
24 546.9 3.12 548.7 3.13 549.2 3.13
26 606.4 3.16 608.5 3.17 609.1 3.17
28 663.9 3.19 666.3 3.20 666.9 3.20

In Fig. 3, we show the total energy in units of h̄ωN4/3 for
N -neutron drops (with N from 4 to 50) in a HO trap (h̄ω = 10
MeV) calculated by RBHF theory using the Bonn interactions.
For the cases of open shells, the filling approximation is used.
The results are compared with quantum Monte Carlo (QMC)

FIG. 3. Total energy in units of h̄ωN4/3 for N -neutron drops in
a HO trap (h̄ω = 10 MeV) calculated by RBHF theory using the
interaction Bonn A (a) in comparison with QMC calculations [26,33]
using the interactions AV8’ + UIX, AV8’, and AV8’ + IL7, with NCSM
calculations [26,27] using chiral 2N + 3N forces, chiral 2N forces,
and the interaction JISP16; and (b) in comparison with results based
on relativistic density functionals [37,54]. The shaded area indicates
the QMC results.
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calculations [26,33] based on the interactions AV8’ + UIX,
AV8’, and AV8’ + IL7, with no-core shell-model (NCSM)
calculations [26,27] based on chiral 2N + 3N forces, on chiral
2N force, and on JISP16, with calculations that use relativistic
density functionals [37,54].

As has already been discussed above, the results of Bonn
A, B, and C are very similar. Therefore, in later discussions
we use Bonn A only. By comparing with QMC and NCSM
calculations, the results of RBHF with the interaction Bonn A
are similar to the results of the JISP16 interaction, and AV8’ +
IL7 (for N � 14), and getting closer to AV8’ for N � 20. This
similarity is favorable because JISP16 is a phenomenological
nonlocal NN interaction which can reproduce scattering data
and gives a good description for light nuclei [55,56]. On the
other hand, AV8’ + IL7 gives a better description for light
nuclei up to A = 12 than AV8’ or AV8’ + UIX, but gives too
much over-binding for pure neutron matter at higher densities
[26,57].

In comparison with relativistic density functional calcu-
lations, we take four types of functionals, which cover a
wide range of relativistic density functionals presently on the
market:

(1) nonlinear meson couplings NL3 [58], PK1 [59];
(2) density-dependent meson couplings DD-ME2 [60],

PKDD [59];
(3) point-coupling PC-PK1 [61];
(4) functional for RHF-calculations, PKO1 [54] (which

includes tensor force).

Because there is no pairing in the RBHF calculation, we
do not include pairing in the relativistic density functional
calculations. We would like to mention that, generally, by
including pairing effects, the binding energies of open-shell
neutron drops would get larger, while for closed-shell drops
they are unchanged. The overall energy as a function of neutron
number N will be smoother, as demonstrated in Ref. [37].
However, the effect is too small to be significant in the figure,
so we do not plot it out and, more importantly, for the purpose of
consistency with RBHF calculation, we use the results without
pairing in the rest of our discussion.

From Fig. 3(b) it can be seen that the binding energies
given by RBHF are generally bigger than those given by
DD-ME2 and PKDD. For N = 8, RBHF is close to PKDD,
but getting closer to PK1 from N = 14 to 26, and closer to
PC-PK1, NL3, and PKO1 from N = 28 to 36. From N = 20
on, the results of RBHF and DD-ME2 are close to a horizontal
line, while the others have a small increasing tendency. The
microscopic results obtained by RBHF can be a guidance for
future density functionals. For example, the neutron-neutron
interaction might be too repulsive in DD-ME2, whereas it
might be too attractive in NL3 when the neutron number N
is small and then become too repulsive as N becomes large.

Since in these calculations the h̄ω = 10 MeV HO external
field is chosen, they all show the HO magic numbers 8, 20, and
40. Beside these magic numbers, the results of RBHF indicate
a subshell closure at N = 32, similar to the results of AV8’ +
IL7. The subshell closure at N = 32 is not significant for AV8’
and does not exist for AV8’ + UIX. For the N = 28 subshell

FIG. 4. Two-neutron energy difference of N -neutron drops in a
HO trap (h̄ω = 10 MeV) calculated by RBHF theory using Bonn A
interaction (a) in comparison with QMC calculations [26,33] using
the interactions AV8’ + UIX, AV8’, and AV8’ + IL7, with NCSM
calculations using the interactions chiral 2N + 3N force, chiral 2N

force [27], and JISP16 [26]; and (b) in comparison with relativistic
density functionals [37].

closure, the results of Bonn A and AV8’ + UIX show a small
hint, while AV8’ and AV8’ + IL7 do not show it. On the other
hand, all the relativistic density functionals only show the HO
magic number 8, 20, 40, and no clear subshells closures for
N = 28 or 32.

To see the shell structure more clearly, we present in Fig. 4
the negative two-neutron separation energies E(N ) − E(N −
2) for the above calculations. The HO magic number 8, 20,
40 are clearly shown in all calculations. But the traditional
subshell at N = 28 in a finite system does not show up clearly
in neutron drops. On the other hand, the results of AV8’ + IL7
show a prominent subshell closure at N = 32, while RBHF
with Bonn A shows a modest but also clear closure at that
neutron number.

By looking into Fig. 4(b), it can be seen that the results of
relativistic density functionals are much smoother than those
of the ab initio calculations. In particular, it is interesting to
see that these density functionals do not show clear subshell
structure at N = 32 and only a small closure at N = 28. The
subshell closure is related to the underlying single-particle
spectra. Taking the N = 32 subshell as an example, the 2p3/2

state is just fully occupied and from N = 34 on the 1f5/2 state
(for certain cases 2p1/2) will begin to be occupied. Therefore,
the gap between single-particle states 1f5/2 (or 2p1/2) and
2p3/2 is a reflection of how strong the N = 32 subshell is; see
also the discussions on the single-particle energies in Sec. IV E.
For RBHF with Bonn A, this gap is 3.047 MeV in the N = 34
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FIG. 5. Radii of N -neutron drops in a HO trap (h̄ω = 10 MeV)
calculated by RBHF theory using the interaction Bonn A (a) in
comparison with QMC calculations using the interaction AV8’ + UIX
[33], with NCSM calculations [26,27] using the chiral 2N + 3N force
and the interaction JISP16; and (b) in comparison with relativistic
density functionals [37]. Further details are given in the text.

drop, while other relativistic density functionals give values
ranging from 0.401 MeV (NL3) to 2.127 MeV (DD-ME2),
which are much smaller than that of RBHF. Therefore the
N = 32 subshell closure given by RBHF is stronger than
those of relativistic density functionals. This might be a hint
that some parts of the effective Lagrangian are missing in
these models. However, to understand the underlying detail, a
decomposition of the G matrix into different channels (scalar,
vector, tensor, and so on) and a careful comparison with
various density functionals are indispensable. Work along this
direction is in progress.

B. Radii

Figure 5 shows the rms radii ofN -neutron drops in a HO trap
(h̄ω = 10 MeV) calculated in the framework of RBHF theory
using the interaction Bonn A. In the upper panel the results are
compared with QMC calculations based on the interactions
AV8’ + UIX [33], with NCSM calculations [26,27] based on
the chiral 2N + 3N force and based on the JISP16 force. In the
lower panel these results are compared with calculations using
relativistic density functionals. The black line in the upper and
the lower panels RN = 2.118N1/6 fm is obtained by solving for
free fermions in a h̄ω = 10 MeV HO trap using the Thomas-
Fermi approximation, which can be derived as

RN =
(

34/3

4

h̄

Mω

)1/2

N1/6. (17)

TABLE II. Root mean square radius RN of N = 50 neutron drop
in a HO trap (h̄ω = 10 MeV) calculated by RBHF theory using the
interaction Bonn A. The asymmetry energy asym and slope parameter
L calculated in nuclear matter [63–65] are also listed. They are
compared with results of relativistic density functionals NL3 [58],
PK1 [59], DD-ME2 [60], PKDD [59], PC-PK1 [61], and PKO1 [54].

RN=50 (fm) asym (MeV) L (MeV)

Bonn A 3.61 34.8 [63–65] 71 [65]
NL3 4.04 36.6 119
PK1 4.04 37.6 116
DD-ME2 3.72 32.3 51
PKDD 3.99 36.8 90
PC-PK1 4.08 35.6 113
PKO1 3.90 34.4 98

For M = 938.926 MeV and h̄ω = 10 MeV, one finds a factor
2.118 fm in front of N1/6. The black line RN = 1.862N1/6 fm
is obtained by fitting to the results of Bonn A from N = 6
to 50.

Generally, all the calculated radii fulfill the relationship
N1/6 as a function of N . In all selected calculations, RBHF
with Bonn A gives the smallest radii. By comparing with other
calculations in Figs. 5(a) and 3(a), we find that while AV8’ +
UIX gives the smallest binding energies, it also gives the largest
radii. Even though the energies given by JISP16 are similar to
those of Bonn A, the radii given by JISP16 are larger than
those of Bonn A. The radii of relativistic density functionals
in Fig. 5(b) are much larger than those of RBHF, even though
some of their binding energies are larger than RBHF before
N = 20 in Fig. 3(b).

It is known (Ref. [62]) that the relativistic density func-
tionals without density-dependence in the isovector channel
show too-large neutron radii in realistic nuclei and we observe
this for the neutron drops, too. The relation between the slope
parameter L and the neutron skin is well known. For neutron
drops this is also discussed in Ref. [37].

For a better comparison, we list the radius of the N = 50
neutron drop calculated by RBHF theory using the interaction
Bonn A in Table II. The asymmetry energy asym and slope
parameter L calculated in nuclear matter [63–65] have also
been listed. They are compared with results of the relativistic
density functionals. It can be seen that, in general, the radius
of a neutron drop is large if asym or L is large, although in
detail small discrepancies exist. For example, DD-ME2 gives
the smallest asym and L, and its radius is indeed the smallest
among those of relativistic density functionals, but still larger
than that of Bonn A. The radius of PC-PK1 is the largest, and its
asym or L is large, but not the largest, which is slightly smaller
than those of NL3 and PK1.

In Ref. [37], a strong linear correlation has been found
between the neutron skin thickness �rnp and the rms radius RN

of N -neutron drops in an external HO field. Figure 6 shows the
linear correlation between the neutron skin thickness of 48Ca
and the radius of N = 20 neutron drops in a h̄ω = 10 MeV
HO external field as given in Ref. [37]. The black circle and
square symbols are calculated with different nonrelativistic and
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FIG. 6. Neutron skin thickness �rnp of 48Ca and the rms radius R

of N = 20 neutron drop in a HO trap (h̄ω = 10 MeV) calculated by
RBHF theory using the interaction Bonn A (red star), in comparison
with results obtained by various density functionals [37]. The datum
of �rnp is obtained by measuring the electric-dipole polarizability
of 48Ca [66]. The blue line is the linear fit to the results of density
functionals, and the inner (outer) colored regions depict the 95%
confidence (prediction) intervals of the linear regression [37].

relativistic density functionals, and the blue line is obtained by
fitting to these results [37]. The inner (outer) colored regions
depict the 95% confidence (prediction) intervals of the linear
regression.

The red star in Fig. 6 is calculated by RBHF theory using the
interaction Bonn A. The datum of the neutron skin thickness of
48Ca is obtained by measuring the electric-dipole polarizability
in Ref. [66]. It can be seen that the neutron skin thickness of
48Ca given by RBHF �rnp = 0.14 fm is located within the
error bar of experimental data, which is also consistent with the
0.12 � �rnp � 0.15 fm given by coupled-cluster calculations
using the interaction NNLOsat [67].

Apart from the linear correlation between �rnp of 48Ca and
radius of N = 20 neutron drops in Fig. 6, similar correlations
can be found in other cases; for example, for �rnp of 208Pb
or other numbers of N . Using these linear correlations, the
experimental data of neutron skins of 48Ca and 208Pb can be
mapped to the data of radii of neutron drops with different
numbers of N [37], and the results are shown by the green
symbols in Fig. 7. In this way, the study of the neutron skin of
heavy nuclei can be linked to the study of the radius of neutron
drops, while the latter is much easier to be accessed by different
ab initio calculations.

In Fig. 7, we show the radii for N = 20, 14, and 8
neutron drops calculated by RBHF theory using the interaction
Bonn A (red dashed lines), in comparison with data (green
symbols) determined from the linear correlations with the
neutron skin thicknesses of 208Pb and 48Ca [37], and other
ab initio calculations (blue dotted lines) [26,33,34]. For �rnp

of 208Pb, the data come from different measurements with
antiprotonic atoms [68] (circles), pion photoproduction [69]
(squares), and electric-dipole polarizability [70] (diamonds);
for �rnp of 48Ca, the datum comes from the measurement of
the electric dipole polarizability [66] (triangles). For the local
chiral forces N2LO from Refs. [71,72], we present the results

FIG. 7. Radii for N = 20, 14, and 8 neutron drops calculated
by RBHF theory using the interaction Bonn A (red dashed line), in
comparison with data (green symbols) determined from the linear
correlations with the neutron skin thicknesses of 208Pb and 48Ca
[37], and other ab initio calculations (blue dots) [26,33,34]. The
blue-colored regions denote theoretical uncertainties.

of a two-body force with a cutoff R0 = 1.0 and 1.2 fm, and
a two-body plus three-body force (2N + 3N ) with a cutoff
R0 = 1.2 fm [34]. Theoretical uncertainties are denoted by the
blue-colored regions. There is no particular reason to choose
N = 20, 14, and 8 neutron drops, as long as the central density
of the neutron drop does not differ too much from the saturation
density (≈0.16 fm−3) [37].

It can be seen that the radii obtained in RBHF calculations
with the interaction Bonn A are in good agreement with the data
determined from the linear correlations with the neutron skin
thicknesses. In comparison with other ab initio calculations,
AV8’ + UIX shows more repulsion and gives larger radii, as
expected from the energies shown in Fig. 3. For the 2N local
chiral forces N2LO, the softer interaction with a cutoff radius
R0 = 1.2 fm gives a smaller radius and the harder one with
R0 = 1.0 fm gives a larger radius. When including the 3N
force for N2LO, the radius gets larger by 0.05 fm and is in the
same position as AV8’ + UIX in Fig. 7.

C. Density distribution

Figure 8 shows the density distributions of N -neutron drops
in a HO trap (h̄ω = 10 MeV) calculated by RBHF theory using
the interaction Bonn A. With given HO strength, the neutron
density gets saturated around 0.14–0.17 fm−3. For neutron
drops with N = 40 or N = 50 there is a bubble structure in
the center. This can be understood from the occupation of
single-particle states. Near N = 20, the 2s1/2 state has just been
occupied and it has a large contribution to the central density.
From N = 20 to N = 50, the 1f , 2p, and 1g9/2 states start to
be occupied and, because their angular momentum l �= 0, the
density begins to shift outward. Similar to the proton bubble
structure in 34Si, where the proton 2s1/2 state is empty, and just
to be occupied in the next nucleus 36S [73].

D. Single-particle potential

The single-particle potential in the RHF equation (10) is a
nonlocal potential. However, for a given single-particle wave
function, one can construct an equivalent local potential for
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FIG. 8. Density distributions of N -neutron drops in a HO trap
(h̄ω = 10 MeV) calculated by RBHF theory using the interaction
Bonn A.

this state by using the Dirac equation. For spherical symmetry,
one has the radial equation(

M + �(r) − d
dr

+ κ
r

d
dr

+ κ
r

−M + �(r)

)(
Fa(r)
Ga(r)

)
= ea

(
Fa(r)
Ga(r)

)
, (18)

where � = V + S and � = V − S are the sum and the
difference of vector and scalar potentials, the quantum number
κ is defined as κ = ±(j + 1/2) for j = l ∓ 1/2. Then one
finds

�a(r) = ea − M +
(

dGa(r)

dr
− κ

r
Ga(r)

)
F−1

a (r), (19)

�a(r) = ea + M −
(

dFa(r)

dr
+ κ

r
Fa(r)

)
G−1

a (r). (20)

Figure 9 shows this localized single-particle potential
�1s1/2(r) for the 1s1/2 state of N -neutron drops in a HO trap
(h̄ω = 10 MeV) calculated by RBHF theory using the inter-
action Bonn A. As r increases, the single-particle potentials
approach the external HO potential. The central potential is
negative and decreases as N increases. This is a consequence

FIG. 9. Localized 1s1/2 single-particle potential of N -neutron
drops in a HO trap (h̄ω = 10 MeV) calculated by RBHF theory using
the interaction Bonn A. The black line is the external HO potential.

FIG. 10. Single-particle energies of N -neutron drops in a HO trap
(h̄ω = 10 MeV) as a function of N calculated by RBHF theory using
the interaction Bonn A. The blue line represents the Fermi surface.

of the attractive interaction between the neutrons. Similar to
the density distribution shown in Fig. 8, the single-particle
potential saturates as N increases to 20 and the potential depth
with respect to the potential of the HO trap is about −40 MeV.

E. Single-particle energies

In Fig. 10, we show the single-particle energies of N -
neutron drops in a HO trap (h̄ω = 10 MeV) as a function
of N calculated by RBHF theory using the interaction Bonn
A. The blue line represents the Fermi surface. The filling
approximation is used for open-shell neutron drops.

Generally, the single-particle energies decrease as the num-
ber of neutron increases, because the potential becomes wider
with increasing neutron number N . The inset in Fig. 10 shows
the details of 1f and 2p orbits in the region between N = 28
and N = 34. We observe how the traditional subshell closure
at N = 28 disappears and a new closure at N = 32 appears in
neutron drops.

Another interesting phenomenon can be seen in the upper
panel of Fig. 11. It shows the evolution of spin-orbit (SO)

FIG. 11. Neutron spin-orbit and pseudospin-orbit splittings of
N -neutron drops in a HO trap (h̄ω = 10 MeV) as a function of N

calculated by RBHF theory using the interaction Bonn A.
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FIG. 12. Neutron spin-orbit for the 1d orbit as a function of the
neutron number N . Full RBHF calculations with the interaction Bonn
A are compared with the two conventional density functionals PKDD
and DD-ME2 without tensor contributions (upper panel) and with the
RHF-functional PKO1, which contains a tensor contribution in the
Fock term of the pion-exchange force (lower panel). Its strength fπ is
slightly varied (by a factor λ) as compared with the strength in PKO1.

splitting as the neutron number increases. The SO splitting
decreases as the next-higher j = j> = l + 1/2 orbit is filled
and reaches a minimum when this orbit is fully occupied. As the
number of neutron continues to increase, the j = j< = l − 1/2
orbit begins to be occupied and the SO splitting increases.

A similar effect has been found by Otsuka et al. [74]. They
explained it in terms of the monopole effect of the tensor
force, which produces an attraction between a proton in a
SO aligned orbit with j = j> = l + 1/2 and a neutron in a
SO anti-aligned orbit with j ′ = j ′

< = l′ − 1/2 and a repulsion
between the same proton and a neutron in a SO aligned orbit
with j ′ = j ′

> = l′ + 1/2.
As discussed in the same paper [74], a similar mechanism

with smaller amplitude exists also for the tensor interaction
between neutrons with T = 1. The behavior of the SO splitting
in Fig. 11 has been explained qualitatively in a similar way in
Ref. [28]. Consider, for instance, the decreasing of the 1d SO
splitting from N = 20 to N = 28. Above N = 20 the neutrons
fill into the SO aligned orbit 1f7/2. They show repulsion with
the SO aligned 1d5/2 neutrons and attraction with the SO anti-
aligned 1d3/2 neutrons. This means that, by filling neutrons into
the 1f7/2 shell, the 1d5/2 orbit is shifted upward and the 1d3/2

is shifted downward, reducing the 1d SO splitting more and
more. Above N = 28 the neutrons fill into the SO anti-aligned
states 2p1/2 and 1f5/2. They interact with the 1d neutrons in
the opposite way and increase the 1d SO splitting.

To study whether the characteristic variation of the SO split-
ting shown in the upper panel of Fig. 11 is indeed connected
with the properties of the tensor force, the results of RBHF
with Bonn A interaction have been compared with various
relativistic density functionals, with and without tensor force
[28]. It has been found that the tensor force is the major reason
for this pattern of the evolution of SO splittings. In Fig. 12
our RBHF results for the 1d spin-obit splitting with results
obtained with phenomenological density functionals from the
literature. Most of them, such as, for instance, the functionals

DD-ME2 [60] or PKDD [59], are based on relativistic Hartree
calculations and do not include a tensor term and, indeed, as
shown in the upper panel of Fig. 12, these functionals are not
able to reproduce the specific pattern for the 1d splitting.

On the other hand, the Hartree-Fock functionals PKO1 [54]
and PKA1 [75] include in the Fock term of the pion- and of the
ρ-meson exchange-force tensor terms, PKO1 only for the pion,
and PKA1 for both the pion and for the ρ. In the lower panel
of Fig. 12 it is clearly seen that the SO splitting produced by
the density functional PKO1 closely follows the pattern of our
ab initio RBHF calculations. By changing the strength of the
pion-exchange, i.e., by changing the size of the corresponding
tensor term, it is clearly seen that the size of the tensor effect
significantly depends on the value of λ, where the cases of
λ = 0.7, 1.0, and 1.3 are shown in the figure. For λ = 1 we
have the results of the density functional PKO1. With λ = 1.3,
the specific evolution pattern of the SO splitting generated by
the ab initio RBHF calculations can be nicely reproduced. As
in the case of the shell-model calculations of the Otsuka et al.
[74], it is the tensor which causes the peculiar behavior of the
SO splitting of the drops with increasing neutron number. The
pattern for the functional PKA1 is similar, therefore we did not
present it here.

The pseudospin-orbit (PSO) splitting [76–81] in the lower
panel of Fig. 11 shows a similar pattern, but in the direction
opposite that of the SO splitting. This can also be understood by
the effect of the tensor force. Taking the PSO splitting of 1p̃ as
an example, it is defined as Ej̃< − Ej̃> = E2s1/2 − E1d3/2 =
Ej ′> − Ej ′′<, with l′ the s orbit and l′′ the d orbit [81]. As the
j> orbit, for example 1f7/2, is being occupied, there will be
a repulsion for j ′

> = 2s1/2 and an attraction for j ′′
< = 1d3/2.

Thus, the PSO splitting of 1p̃ will increase and even become
positive at N = 28, when j> = 1f7/2 is fully occupied. The
situation becomes more complicated when the 2p orbit is
being filled and the monopole effect of the tensor force is less
prominent.

V. SUMMARY

We have studied neutron drops confined in an external field
of oscillator shape using relativistic Brueckner-Hartree-Fock
theory with the relativistic NN interactions Bonn A, B, and
C [42]. The results are compared with other nonrelativistic ab
initio and with relativistic density functional calculations.

First, we checked the convergence of RBHF calculations for
neutron drops with N = 8, 20, 28, and 50 with respect to the
single-particle energy cutoff εcut and found good convergence
at 900 MeV. This energy cutoff is smaller than the cutoff in
finite nuclei at 1100 MeV. This can be understood by the lack
of the T = 0 tensor force in neutron drops. We also showed that
this energy cutoff does not depend on the number of particles.

We calculated N = 4 to 28 neutron drops with the in-
teractions Bonn A, B, and C and found similar results for
these three interactions. We compared for Bonn A our RBHF
results for N = 4 to N = 50 neutrons with other ab initio
calculations and with various relativistic density functionals.
The harmonic-oscillator magic numbers 8, 20, and 40 show up
in all the selected results, but the subshell closures at N = 28
and N = 32 strongly depend on the interactions. There is a
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slight sign of a subshell closure at N = 28 for AV8’ + UIX,
but no sign for the other interactions. For N = 32, AV8’ + IL7
shows a clear subshell closure, while the subshell closure for
RBHF with Bonn A and for AV8’ is smaller but still significant.
On the other hand, relativistic density functionals show only
the HO magic numbers.

We also studied the radii of neutron drops in a HO trap.
With increasing N they follow closely the N1/6 rule, which can
be derived for noninteracting neutrons in the Thomas-Fermi
approximation. While the energies of RBHF with Bonn A
are similar to those of the JISP16 interaction, the radii of
RBHF are smaller. On the other hand, the radii calculated by
various relativistic density functionals are all larger than RBHF
with Bonn A, even though the energies found in RBHF are
among these obtained with the density functionals. However,
the smaller radii given by RBHF are in good agreement
with pseudodata derived from the experimental neutron skin
thickness of 48Ca and 208Pb. These pseudodata are derived
from the strong linear correlation found in Ref. [37] between
the radius of a fixed neutron drop and the neutron skin thickness
of a specific nucleus for various nuclear density functionals.
In particular we have calculated the neutron skin thickness
of 48Ca by RBHF with Bonn A and the value is consistent
with recent experimental datum [66] and coupled-cluster
calculations [67].

We show the density distribution of neutron drops with
N = 8, 20, 32, 40, and 50 and find that the density gets
saturated around 0.14–0.17 fm−3. Similarly, we calculated the
local equivalent single-particle potentials for the 1s1/2 states
and find also saturation for N � 20 at a potential depth of
around −40 MeV. These results depend on the strength of the
external HO field. We used h̄ω = 10 MeV, and changing the
strength will change the saturation properties.

Finally, we studied the evolution of the single-particle
energies as a function of N . The disappearance of a subshell
closures at N = 28 and appearance at N = 32 can be seen
clearly. We also find that the evolution of the spin-orbit and the
pseudospin-orbit splittings show a interesting pattern, which
can be explained in a similar way by the tensor force as has
been done in nuclei in Ref. [74].

The results of RBHF show many interesting features and can
provide important information for future density functionals,
especially in the area of neutron-rich exotic nuclei. We name
below a few future guidelines:

(1) It is evident from the results on the spin-orbit splitting
that we have to introduce a tensor term. We need a
further study on several tensor terms (zero range, pion
like, rho like) to find out which is the most appropriate.

(2) One could adjust the parameters of future relativistic
density functionals not only to the conventional data on
nuclear matter and finite nuclei, but also to the matrix
elements of the G matrix in specific nuclei.

(3) In a more systematic way, one could decompose the
G matrix into the different relativistic channels and to
study which of them are important for specific types of
nuclei.

(4) Applying external fields of various types and studying
their influence on the RBHF-results will allow us to
model the corresponding relativistic density function-
als. An example would be the application of an external
magnetic field in order to study the time-odd parts of the
functionals. Another example would be the solution of
half-infinite nuclear matter in the RBHF framework for
the study of the surface properties of the functionals.

Of course, these are only examples and details have to
be investigated in the future. However, it is evident that the
knowledge of the G matrix in finite systems opens a completely
new field of investigation to improve the functionals.

So far, there is only one relativistic nucleon-nucleon force:
the Bonn potential. With the recent progress in covariant
chiral interactions [82,83] it will be also interesting to study
the neutron drops using RBHF theory with covariant chiral
interactions.
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