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Three different precursors of boron-aqua and glycerol solutions of boric acid and ethanol solution of
trimethyl borate were used for the preparation of organic–inorganic advanced materials. The films and
bulk materials samples were heat treated at 100, 400, 800 °C for 2 h. The hybrid samples were stable
and transparent until 100 °C. The further increase of temperature to 400 °C led to destruction of samples,
and at 800 °C they were molten. The structural changes during the pyrolysis were studied by Fourier trans-
form infrared spectroscopy, differential thermal analysis, and X-ray diffraction. Details of surfacemorphology
were observed by scanning electron microscopy. The obtained BO3 and BO4 groups were identified in
the molten materials after pyrolysis. The quantities and order of borate structural units as well as re-
sidual carbon in the networks depended on boron precursor type. PVA/PEG/B2O3 hybrid materials were
proved to be appropriate precursors for synthesizing borate and carboborate glass and carbon/borate glass
nanocomposites. To access the impact of the experimental conditions on the structural changes of the
nanocomposites, cluster analysis of the IR-spectral data was used as a classification method.

Copyright © 2016, The editorial office of Journal of Materials Science & Technology. Published by
Elsevier Limited.

1. Introduction

Pure borate glass is made up of a random network including
boroxol rings (B3O6) and threefold coordinate boron (BO3). The ad-
dition of modifiers, such as alkaline, supports the formation of BO4

groups in the glass structure. The structuring role of the network
modifier is determined by its size, charge and network forming agent
of the glass. Through sol-gel processing, homogeneous, high-
purity inorganic oxide glasses can bemade at ambient temperatures
rather than at very high temperatures as required in conventional
approaches. The sol-gel process is a useful technique for process-
ing a large number of technologically important glasses, glass-
ceramics and crystalline ceramics, mainly because of its ability to
generate stoichiometric materials with good control over final
amount of compositions.

Significantly, less number of borate compositions is modified by
low-temperature sol-gel technology. Special attention has been given
to the effect of the ionic conductivity of alkali-borate glasses, es-
pecially of lithium-borate, and possibility of applications for solid
state batteries and energy storage devices[1–3]. The hybrid borate

hydrogel materials obtained by sol-gel technology with a combi-
nation of aqua soluble polymers, like polyvinyl alcohol (PVA) and
polyethylene glycol (PEG), may have potential applications. Such
materials are hybrids of borate esters applied as an electrolyte in
lithium-ion batteries[4–8] and materials for medical and biotechno-
logical applications[9–11]. Incorporations of boron in the polymer
backbone are used for reinforcing carbon/carbon composite mate-
rials. As a result, carbon active sites are blocked because boron
generates an oxygen diffusion barrier on the surface of the mate-
rials, preventing oxygen from reaching the carbon surface[12–15].
Ceramic fiber[16], boron carbide[17–20] and boron nitride ceramics[21]

are produced using only PVA-B2O3 hybrid precursors. For borate
glasses, data exist only for the cases of metal counterions for anions
borate units’ compensation. In this work, PVA/PEG/B2O3 precur-
sors for boron doped carbon, materials are provided. The polymer
pyrolysis is a simple processing route to produce multicomponent
nanostructured materials. According to this method, organic–
inorganic materials are converted to the borate and carboborate glass
and carbon/borate glass nanocomposites.

The objective of the present study is to probe the structure of
the hybrid borate hydrogel materials. The crosslinking is achieved
by a combination of PVA and PEG in different solutions of borate
species. The study is relevant because the new findings will provide
information about the basic units forming this multicomponent glass
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structure. Additionally, multivariate statistical interpretation of in-
frared spectral data (hierarchical cluster analysis) was used to
determine specific experimental conditions impacting the proce-
dure of synthesis.

2. Experimental

By the sol-gel process at ambient temperature, homogeneous and
transparent organic–inorganic gel materials were obtained with
PVA/PEG/B2O3 mass ratio of 10/7/1 by the method referred to in the
literature[22–24]. All chemicals were used without any further puri-
fication: polyvinyl alcohol 72000 (PVA) 98% hydrolyzed, polyethylene
glycol 400 (PEG), trimethyl borate (CH3O)3B, boric acid (H3BO3) from
Sigma-Aldrich Chemie, Germany. A stock solution of 4 wt% PVA was
prepared by dissolving PVA in distilled water by heating. Three pre-
cursor solutions of boron are used: 4 wt% H3BO3 in distilled water,
4 wt% H3BO3 prepared in glycerol and 4 wt% (CH3O)3B in ethanol.

The hybrid gels were made by initially mixing and homogeniz-
ing PEG and different stock boron solutions. After that, the blended
solution was added to the PVA under constant stirring. To obtain
self-standing films, and bulk material samples, the hybrid gels were
cast onto a glass plate or in a beaker for producing two types of
samples for the next steps. The obtained films with 40 μm in thick-
ness and bulk material samples were dried at ambient temperature
for one week. The next phase in the experimental procedure was
heat treatment at 100, 400, 800 °C for 2 h. Structural changes during
the pyrolysis were studied by Fourier transform infrared spectros-
copy (FTIR, Perkin Elmer SPECTRUM 1000), differential thermal
analysis (TG/DTA, SETRAM LABYS TG/DTA), X-ray diffraction (XRD,
DRON-UN CuKα). The surface morphology was observed by scan-
ning electron microscopy (SEM, JEOL JSM 5300).

Cluster analysis (CA) a is well-known and widely used data
mining approach for various purposes with its hierarchical and non-
hierarchical algorithms[25,26]. Experimental samples (objects) could
be characterized by a set of variables and cluster analysis allows to
determine their similarity and to define cluster objects both for
objects and variables. A preliminary step of data scaling is neces-
sary (auto scaling or z-transform) for normalized dimensionless
numbers replacing the real data values. Thus, important differ-
ences in absolute values could be reduced to close numbers. Then,
the similarity (or more strictly, the distance) between the objects
in the variable space has to be determined. Very often the Euclid-
ean distance was used for clustering purposes. Another approach
of measuring similarity is the calculation of the correlation coef-
ficient between the objects. Thus, from the input matrix (raw data)
a similarity matrix could be constructed. There is a wide variety of
hierarchical algorithms of object linkages, but the typical ones include
the single linkage, the complete linkage, and the average linkage
methods. The Ward’s linkage method was used. The representa-
tion of the results of the cluster analysis was performed by a tree-
like scheme called dendrogram comprising a hierarchical structure
(large groups are divided into small ones).

3. Results and Discussion

3.1. FTIR spectra

All obtained hybrid materials were transparent and thermally
stable up to 100 °C, and over 400 °C they were converted into black
powder. The final pyrolyzed products were obtained at 800 °C as
transparent borate glasses, or black melt carbon/borate glass
nanocomposites. Structural changes, which are visually observed,
were gained as a function of the borate solutions type. Figs. 1–4 show
the FTIR spectra for hybrid precursors during pyrolysis for
PVA/PEG/B2O3.

The absorption bands presented at 100 °C are assigned to: 3700-
3100 cm−1 (νsH—OH, νsC—OH, νsB—OH, hydrogen bonds), 2940-
2870 cm−1 (νsC—H of CH2, CH3), 2300-1900 cm−1 (δ hydrogen bonds),
1720-1710 cm−1 (νsC=O), 1650-1640 cm−1 (O—H of H2O, C—C), 1460-
1425 cm−1 (νasO—H, δC—H of CH2 and C—C), 1370-1350 cm−1 (δasCH3

and C—C), 1370-1220 cm−1 (δC—OH, νO—C—C), 1120-1080 cm−1

(νC—OH of secondary alcohol PVA, Glycerol), 1065-1020 cm−1

(νC—OH of primary alcohol PEG, Glycerol), 1100-1000 cm−1 (δC—O—C
of esters), 1200-970 cm−1 (δC—O), 940-920 cm−1 (γC—OH and δC—C),
700-670 cm−1 (δC—H and C—C)[16–21,27,28]. The bands in region 1500-
1200 cm−1 are allied to (νB—O of BO3), 1200-850 cm−1 to (νB—O of
BO4) and 800-600 cm−1 (bending vibrations for various borate
segments)[29,30]. The characteristic frequency for B—O—C bond
occurred at 1030 cm−1[16–19].

The major changes of vibration frequencies for O—H and C–OH
(3700-3100 cm−1) and C—H (2940-2870 cm−1) bonds are observed
in FTIR spectra at 400 °C. The effects of water evaporation and
burning of polymers lead to decrease of widths and intensities of
these bands[31]. The spectral changes depicted in Figs. 1 and 2 are
connected to the simultaneous disappearance of the absorptions
bands in the regions of 2940-2870 cm−1 and 1720 cm−1. The pres-
ence of new bands at 700 cm−1, 460 cm−1, 550 cm−1 indicates the
presence of BO3 groups[16,19,29,30]. The network of the PVA-H3BO3 hybrid
precursor at 400 °C is destroyed, and typical bands of BO3 group
in boric acid are observed in Fig. 1(b). FTIR spectrum of PVA/B2O3

Fig. 1. Fourier transform infrared (FTIR) spectra (spectra are vertically shifted) of
pyrolyzed hybrid precursor PVA/B2O3: (a) 100 °C, (b) 400 °C, (c) 800 °C, (d) H3BO3

molten of 800 °C.
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pyrolyzed to 400 °C hybrid precursor produced by a glycerol solution
of boric acid is presented in Fig. 2(b). The bands intensities are
increased in regions of 1425-1345 cm−1 (BO3) and 1060-900 cm−1

(BO4). These can be linked to the rearrangement of initially cross-
linked borate groups. Figs. 3 and 4 show the IR spectra of PVA/PEG/
B2O3 pyrolyzed to 400 °C hybrid precursor prepared by an aqueous
solution of boric acid and ethanol solution of boron methoxide.
The observed changes resulted from the increase in frequency in-
tensities at wavenumber ranges of 1400-1200 cm−1 (BO3) and 1100-
900 cm−1 (BO4). The IR spectra revealed a diminishing trend of the
BO4/BO3 ratio. The occurrence of new bands 1030 cm−1 and 800 cm−1

can be assigned to B—O—C bonds and BO4 groups, respectively, while
the absorptions bands at 1200 cm−1, 700 cm−1, 645 cm−1, 550 cm−1

are typical of boric acid in Fig. 4(b). The changes of absorption bands
at wavenumber regions of 3200-2900 cm−1, 1700-1400 cm−1, 1000-
600 cm−1 can be assigned according to the vibrations frequencies
of unsaturated hydrocarbons[32,33] to 3100–3000 cm−1 (νsC—H), 1730–
1700 cm−1 (νC=O of aldehydes and ketones), 1680–1600 cm−1

(νsC=C), 1400 cm−1 (δ = C—H), 1000–600 cm−1 (δ = C—H). The ob-
served structural changes for all samples at 400–800 °C show two
opposite tendencies: the simultaneous decomposition of hybrid
networks and polymerization of BO3 and BO4 in borate glass net-
works. From IR analysis, it can be concluded that thermal stability
of PVA-B2O3 hybrid precursor is the lowest one. The IR spectrum
at 800 °C corresponds to molten H3BO3 shown in Fig. 1(c,d), and

no structural changes occur compared to that at 400 °C. The final
product is transparent borate glass, containing only BO3 groups.
Regarding the three component systems, the hybrid PVA/PEG/
B2O3 precursor prepared by glycerol solution of boric acid shows
the lowest thermal stability. Structural decomposition at 400 °C
occurred without formation of secondary boric acid. The absorp-
tion peaks at wavenumber 1390 cm−1, 1080-990 cm−1, 770 cm−1

(Fig. 2(c)) were observed after pyrolysis at 800 °C. These absorp-
tion bands occurred due to the polymerization of BO3 and BO4 groups
to diborate and triborate glass structures[29,30]. IR studies of PVA/
PEG/B2O3 pyrolyzed to 800 °C organic–inorganic precursors prepared
by H3BO3 and (CH3O3)B reveal broad and sharp spectral bands in
the different region as shown in Figs. 3(c) and 4(c). Pyrolysis of
hybrid PVA/PEG/B2O3 precursors obtained by aqua solution of boric
acid and ethanol solution of boron trimethoxide is accompanied
with secondary H3BO3 crystallization. The IR spectra show absorp-
tions bands of hydrocarbon residue and BO3 and BO4 groups involved
in tetraborate glass network (1390 cm−1, 1240 cm−1, 1100-950 cm−1,
695 cm−1). The final product is an amorphous carbon/borate glass
nanocomposite. Structural changes after pyrolysis investigated by
FTIR show that BO4 structural units are produced only by precur-
sors containing PEG. The presence of BO4 tetrahedra in the structure
withoutmetal counterion can be attendant on electron deficit nature
of boron, which takes part in redistributions of π electrons of car-
bohydrate residues[13,14].

Fig. 2. Fourier transform infrared (FTIR) spectra (spectra are vertically shifted) of
pyrolyzed PVA/PEG/B2O3 hybrid precursor, prepared from glycerol solution of H3BO3:
(a) 100 °C, (b) 400 °C, (c) 800 °C.

Fig. 3. Fourier transform infrared (FTIR) spectra (spectra are vertically shifted) of
pyrolyzed PVA/PEG/B2O3 hybrid precursor, prepared from aqueous solution of H3BO3:
(a) 100 °C, (b) 400 °C, (c) 800 °C.
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3.2. Differential thermal analysis

Differential thermal analysis (DTA) technique was used for
thermal characterization of the PVA/PEG/B2O3 precursor obtained
by ethanol solutions of (CH3O3)B. The extent of the degradation
process is usually estimated from measurements of mass losses
(TGA). Thus, the evaluation of the effect of crosslinking on the
degradation behavior of the hybridmaterials was performed bymea-
suring the mass loss of samples. The TG/DTA curves are given in
Fig. 5(a,b).

In interval of 70–350 °C, the hybrid precursor has lost 55% of its
weight. The particular weight loss is between 220 and 350 °C, fol-
lowed by a further weight loss from 350 to 480 °C. The thermal
degradation after 500 °C would not influence the weight losses ob-
viously. Other authors have observed a similar tendency[20,34,35]. The
most profound endothermic effect at 123 °C can be assigned to the
dehydratation of adsorbed water molecules and hydrogen bonded
cross-linked groups. The next endothermic peak, which appears at
320 °C seems to indicate decomposition of the hybrid structure. The
pyrolysis processes can be associated with elimination and scis-
sion type reactions of polymer terminal groups, obtaining volatile
byproducts, such as water, acetic acid, saturated and unsaturated
aldehydes as well as ketones. The appearance of exothermic effects
at 387 °C and 670 °C can be explained by steppe mechanism start-
ing with dehydration of H3BO3 and transformations to the metaboric

(HBO2), followed by the tetraboric acid (H2B4O7). The endothermic
effect can be observed at 820 °C for the melted boron oxide
(B2O3)[20,34]. The XRD results, presented in Fig. 6(a–c), confirm that
PVA/PEG/B2O3 precursor is amorphous at 100 °C. Then, the crys-
tallization of boric acid can be observed at 400–700 °C. After that,
at 800 °C, the sample is converted to the amorphousmoltenmaterial.

The presence of carbon nanoparticles may explain the visible
changes of the sample in black glass composite[36]. The results by
SEM are given in Fig. 7. The surface of hybrid films at 100 °C is ho-
mogeneous, amorphous without microcracks. The sample at 400 °C
consists of particles with a size of 0.1–0.7 μm and their micro-
aggregates are about 1.5 μm. The decrease of particles size and
agglomeration can be observed at 800 °C.

3.3. Cluster analyses

The data set subjecting to hierarchical cluster analysis had di-
mension of 12 × 14, where the objects of the study were twelve IR
frequencies, which describe 14 different experimental composites.
TheWard’smethodwas used for linkage after applying squared Eu-
clidean distance as similaritymeasure. The cluster significancewas
determined by the Sneath’s index (1/3 and 2/3Dmax). The hierar-
chical dendrogram is presented, showing the clustering of the
composites in Fig. 8. Fourteen different experimental composites

Fig. 4. Fourier transform infrared (FTIR) spectra (spectra are vertically shifted) of
pyrolyzed PVA/PEG/B2O3 hybrid precursor, prepared from ethanol solution of (CH3O)3B:
(a) 100 °C, (b) 400 °C, (c) 800 °C.

Fig. 5. Thermal analyses of PVA/PEG/B2O3 hybrid precursor, prepared from ethanol
solution of (CH3O)3B: (a) TG curve, (b) DTA curve.
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are labeled in the dendrogram and also in the text with the abbre-
viations. Here is the list of abbreviations in the same order as that
in the dendrogram: PB400 and PB800 (binary system PVA/B2O3 py-
rolyzed at 400 and 800 °C); PPB(aq.)800, PPB(aq.)25, PPB(aq.)100,
PPB(aq.)400 (aqua solutionofH3BO3pyrolyzedat 800 °C, 25 °C, 100 °C,
400 °C); PPB(et.)400, PPB(et.)25, PPB(et.)100, PPB(et.)800 (ethanol
solution of trimethyl borate (CH3O)3B) pyrolyzed at 400 °C, 25 °C,
100 °C, 800 °C); PPB(gl.)25, PPB(gl.)100, PPB(gl.)400, PPB(gl.)800 (glyc-
erol solutions of H3BO3 pyrolyzed at 25 °C, 100 °C, 400 °C, and800 °C).

Four major clusters could be identified. The first one includes
composites synthesized at temperature interval 25–100 °C for three
types of hybrids for the system PVA/PEG/B2O3. This clustering con-
firms the conclusions that the thermal stability of the composites
up to 100 °C does not depend on the initial hybrid structure or the
type of the precursor solutions used. The other three groups refer
to products pyrolyzed at 400 and 800 °C.

Among the rest of the groups, the linkage including PPB-gl objects
(PPB(gl) 25 and PPB(gl) 100) is well defined. Here the similarity is
related to the system composition and specificity—the lowest thermal
stability is found exactly for this composite structure. At 400 °C it
is completely degraded, and the inorganic components are repre-
sented by groups BO3 and BO4, which is kept even at 800 °C in a
structure of transparent diborate glass.

The linkage for compositions PPB-aq and PPB-et (at 400 and
800 °C) is assumed to be due to the similarity in the thermal aspect,
which does not follow the composition similarity. The thermal sta-
bility is a function of the hybrid structure type. Due to its lower
thermal stability, the hybrid structure of PPB-et at 400 °C reveals
much stronger degradation. The reason seems to be the stuructural
dependence on the type of borate solutions; the cross-linkingmech-
anism has to be different. In the same way, the respective B—O
structural groups included in the glass nanocomposite (PPB-aq at
800 °C) are present in the powder composition obtained from PPB-
et at 400 °C. The last group of linkage for PB-aq (at 400 and 800 °C)
concerns proposed hybrid structures obtained by cross-linking of
water solutions of PVA and H3BO3. The thermal behavior is related
to the system composition. After pyrolysis at 400 °C, only BO3

structural groups are present to be the only structural units of the
transparency at 800 °C glass. The different location of this linkage
(an outlier) is due to the different composition of the system.

4. Conclusions

The focus of this work is preparation of PVA/PEG/B2O3 precur-
sors for boron doped carbon materials. The quantities and order of
borate structural units, residual carbon in networks depend on boron
precursor type. After pyrolysis, BO3 and BO4 structural groups were
obtained in the molten materials like glass or nanocomposite, based
on the kind of implementation of boron precursor solution. Glass
structures involving polymerized BO3 and BO4 groups can be formed
in the simultaneous presence of PVA and PEG only. To access the
impact of the experimental conditions on the structural changes after
pyrolysis of the nanocomposites, cluster analysis of the IR-spectral
data was used successfully as the proper classification method.

The clustering reveals new aspects of interpretation of results
for boron containing hybrid nanocomposite systems by creating
groups of similarity between the organic–inorganic materials
independent on specific experimental conditions, which could serve
as “fingerprints” for a particular type or nanocomposite.

Fig. 6. XRD of PVA/PEG/B2O3 hybrid precursor, prepared from ethanol solution of
(CH3O)3B: (a) 100 °C, (b) 600 °C, (c) 800 °C.

Fig. 7. SEM images of PVA/PEG/B2O3 hybrid precursor, prepared from ethanol so-
lution of (CH3O)3B: (a) 100 °C, (b) 400 °C, (c) 800 °C.
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Fig. 8. Hierarchical dendrogram for 14 different experimental composites.

ARTICLE IN PRESS

Please cite this article in press as: Hristo Hristov, Miroslava Nedialkova, Sergio Madurga, Vasil Simeonov, Boron Oxide Glasses and Nanocomposites: Synthetic, Structural and Sta-
tistical Approach, Journal of Materials Science & Technology (2016), doi: 10.1016/j.jmst.2016.07.016

6 H. Hristov et al. / Journal of Materials Science & Technology ■■ (2016) ■■–■■

Q13

Q11

Q12

374

375

376

377

378
379
380
381
382

383

384
385
386

387

388

389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408

409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446

http://dx.doi.org/10.1016/j.jmst.2016.07.016
Original Text
Toppan Best-set
 
This section comprises references that occur in the reference list but not in the body of the text. Please position this reference in the text or, alternatively, delete it. Any reference not dealt with will be retained in this section. Thank you.

Original Text
Toppan Best-set
 
The references should be sequentially cited in the text, hence refs have been renumbered both in the text and in the reference list from Ref. 27 onwards. Please check, and correct if necessary.

Original Text
Toppan Best-set
 
Please provide abbreviated journal titles for Reference Fathi et al., 2012.


	 Boron Oxide Glasses and Nanocomposites: Synthetic, Structural and Statistical Approach
	 Introduction
	 Experimental
	 Results and Discussion
	 FTIR spectra
	 Differential thermal analysis
	 Cluster analyses

	 Conclusions
	 Acknowledgments
	 Uncited references
	 References




