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ABSTRACT

The study presents the result of the application of chemometric tools for 
selection of physicochemical parameters of solvents for predicting missing 
variables – bioconcentration factors, water-octanol and octanol-air partitioning
constants. EPI Suite software was successfully applied to predict missing values
for solvents commonly con- sidered as “green”. Values for logBCF, logKOW and 
logKOA were modelled for 43 rather nonpolar solvents and 69 polar ones. 
Application of multivariate statistics was also proved to be useful in the 
assessment of the obtained modelling results. The presented approach can be one 
of the first steps and support tools in the assessment of chemicals in terms of 
their greenness.

1. Introduction Green

Green chemistry is the concept introduce by Anastas and Warner
(1998) with the publication of the twelve principles that are specific guidance 
on the introduction of sustainability to chemical science. Since then this 
concept has developed much and efforts were made to develop zero-waste 
technologies, design benign products that maintain their properties, find 
renewable and bio-based feedstock for chemicals or apply energy-efficient 
technologies. Also, solvents gained a lot of attention, the fifth principle of 
green chemistry states that solvents should not be applied if possible (Jessop, 
2016) otherwise they should be as inert to the environment as possible. As the 
application of solvents cannot be avoided in many technological processes, it is
highly desired to use green solvents. The green solvent is characterised by 
preferential environmental, health and safety (EHS) parameters (Capello et al., 
2007). The first, very basic information about solvent greenness can be obtained
from its physi-cochemical parameters and phase distribution constants. For 
example, solvents with low boiling points are very volatile; therefore the 
exposure by inhalation is very likely. High values of octanol – water 
partitioning coefficients give initial information indicating that the compound 
can be accumulated in the animal tissues. More specific information on solvents 
greenness can be obtained from toxicological and ecotoxicological data, such as 
oral (Sathish et al., 2016) or inhalation toxicities, toxicity towards aquatic 
organisms or carcinogenicity (Tobiszewski and Namieśnik, 2015). Similarly, 
environmental persistence data such as biodegradability or hydrolysis potential 
give information about environmental related hazards. Remarkably, the European 
REACH Regulation (EC No 1907/2006) (“Regulation (EC) No 1907/2006 – REACH – 
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Safety and Health at Work – EU-OSHA”, 2017) has set as a priority the assessment
of chemicals’ bioaccumulative potential, which is the potential of a substance 
to accumulate in biota and, eventually, to pass through the food chain. A 
parameter that is widely used to measure a chemical substance's bioaccumulative 
potential is the bioconcentration factor (BCF). BCF is commonly defined as the 
ratio between the concentration of a chemical substance present in an aquatic 
organism and in the surrounding environment at thermodynamic equilibrium under 
controlled laboratory conditions (Arnot and Gobas, 2006). One of the problems 
related to the assessment of solvents in terms of
their greenness is the non-availability of data that are required (Alder et al.,
2016). The missing data can be approximated with the average value for a given 
class of chemicals. However, usually, the obtained assessment estimation is 
characterised by high uncertainty. Therefore, it is desired to find reliable 
methods for the predictions of missing data values. It is especially important 
in the case of solvents that are relatively novel and still poorly 
characterised, like esters or ethers derived from renewable feedstocks (Pena-
Pereira et al., 2015). There are several methodologies for modelling the 
bioconcentration values of various chemicals (Pavan et al., 2008). Quantitative 
structure-activity relationship (QSAR) applied to a dataset of chemicals allowed
to predict logBCF with the model with an r2 = 0.491 (Petoumenou et al., 2015). 
QSAR supported by partial least square modelling allowed to obtain fit the model
with an r2 = 0.868 (Qin et al., 2009). Also, an extensive investigation was made
of the physicо-chemical properties of 152 solvents in a search for quantitative 
structure–property relationships (QSPR) (Gramatica et al., 1999). The artificial
neural network followed by relatively simple generic model also allowed to 
establish the values of logBCF with acceptable accuracy (Fatemi et al., 2003). 
Application of linear and nonlinear models allowed to model logBCFs of 107 
pesticides successfully (Yuan et al., 2016). Although different logBCF 
prediction methods have been mainly
applied to organic pollutants, efforts to create models for predictions of these
values for solvents, according to authors' knowledge were not made.
The aim of this study is to interpret two sets of solvents described by
several physicochemical and biological features by multivariate statistics. 
Also, we present the assessments of physicochemical properties such as 
logarithms of partitioning constants between octanol and air (logKOA), octanol 
and water (logKOW) and logBCF by using the Estimation Programs Interface (EPI) 
Suite. Results of the EPI Suite predictions of the physical properties of the 
solvents sets and comparisons with the available literature values are 
validated. The abovementioned software is a valuable tool to be applied to 
experimental data for such kind of solvents properties when there is lack of 
sufficient data. In this way, it is possible to find the relationships that are 
the basis for modelling of solvents parameters that define their greenness. Easy
but reliable prediction of hazards related to greener solvents introduction is 
highly desired. The paper presents the application of multivariate statistics 
tools in the prediction of unknown properties and assessment of their modelling 
results.

2. Materials and methods 

2.1. Dataset 

The dataset consists of 43 solvents – non-polar and sparingly volatile
solvents and 69 solvents a priori categorised as polar solvents. In this study, 
the datasets are treated separately. This a priori classification is based on 
previous research (Tobiszewski et al., 2015), where large dataset of 151 
solvents was analysed with cluster analysis using Melting and boiling point, 
density, water solubility, vapour pressure, Henry's law constant, LogKow, LogKoa
and surface tension as physicochemical parameters for solvent classification. 
The identified third cluster – (conditionally determined as “non-polar and 
volatile” solvents) in Fatemi et al. (2003), is not investigated in the present 
study, as solvents grouped there (mainly chlorinated solvents or other causing 
EHS problems) are out of interest in the light of green chemistry. Not every 
process can be carried out with water miscible solvents. In fact, immiscible 
solvents are required in a wide number of processes (e.g., extraction and 



separation processes, synthesis, etc.), so their greenness evaluation is also of
high relevance. Each solvent in the present study was characterised by 10 
parameters, namely melting point, boiling point, density, surface tension, water
solubility, vapour pressure and Henry's law constant, as well as logarithms of 
partitioning constants between octanol and air (logKOA) and octanol and water 
(logKOW) and logarithm of bioconcentration factor (logBCF). The physicochemical 
parameters were extracted from material safety data sheets of chemicals and from
Handbook On Physical-Chemical Properties And Environmental Fate For Organic 
Chemicals (Mackay et al., 2006). Three additional parameters were included for 
the chemometric analysis, namely, logKOAcalc., logKOWcalc., and logBCFcalc. 
These parameters were calculated with models described in Section 2.3.

2.2. Multivariate statistics

Hierarchical clustering (HC) is a well-documented approach to the unsupervised 
pattern recognition (Massart et al., 1983; Massart and Kaufman, 1998). It aims 
to select groups of similar objects (clusters) within different data sets and to
interpret the meaning of the clustering either between the objects of interest 
or between the parameters used for the description of the objects. Usually, the 
hierarchical cluster analysis requires several steps in performing the algorithm
of clustering: standardisation of the raw data (in order to avoid the effect of 
the different dimensionality of parameters); determination of the distance 
between the objects for clustering (in order to introduce a similarity measure);
procedure for linkage. The results are normally presented on a tree-like plot 
called dendrogram and in the final stage, a criterion for determination of the 
cluster significance is needed in order to improve the interpretation. The use 
of chemometrics for the treatment of different data sets provides a valuable 
tool for objective decision-making (Hristov et al., 2016; Nedyalkova et al., 
2017). Principal component analysis (PCA) is one of the several multivariate 
methods that allows us to explore patterns in complex data sets allowing to 
classify the information and detect structure in a diffuse data set. In general,
PCA is a mathematical treatment of the input data matrix (objects described by 
many features or variables) where the goal is to represent the variation present
in many variables by a small number of factors or latent variables. A new space 
of the features is formed which it makes possible to visualise and project the 
multivariate nature of the data set. The 
The central task in PCA is to reduce the original dimension of the
input matrix X to two parts – factor loadings (part A matrix) and factor scores 
(part F matrix). The first one includes the weights of each feature (variable) 
in each identified factor (new latent variable). The higher the weights the 
higher is the contribution of the original variable. Thus, this procedure allows
us to identify which variables influence the objects. If the objects have to be 
presented in the space of the new latent
variables, then the factor scores matrix must be used. The specific rules for 
performing and interpreting PCA are presented, for instance (Einax et al., 
1997).

2.3. Modelling – EPI Suite™ 

In the current work the following subprograms of EPI Suite™ version 4.10 were 
used: KOAWIN™, KOWWIN™ and BCFBAF™. EPI Suite™ is available from the US 
Environmental Protection Agency – (US EPA et al., n.d.) (Computer Program 
Estimation Programs Interface Suite™ for Microsoft® Windows Version 4.10, 
available on http://www.epa. gov/oppt/exposure/pubs/episuite.htm) This KOAWIN™ 
program estimates the logarithm of the octanol-air
partition coefficient (KOA) of an organic compound using the compound's octanol-
water partition coefficient (Kow) and Henry's Law constant (HLC). KOAWIN 
requires only a chemical structure to estimate KOA. Structures are entered into 
KOAWIN through SMILES (Simplified Molecular Input Line Entry System) notations, 
which are also used by other estimation programs in EPA's EPI Suite. It is 
possible to estimate KOA from the octanol-water partition coefficient (KOW) and 
Henry's law constant (H) by the following equation: KOA =KOW (RT)/H, where R is 
the ideal gas constant and T is the absolute temperature. KOA and KOW are 
unitless values. H/RT is the unitless Henry's law constant, also known as the 



air-water partition coefficient (KAW)(Meylan and Howard, 1995). Therefore, the 
equation to estimate KOA is: KOA = KOW/KAW. The KOWWIN™ program predicts the 
logarithm of the octanol-water
partition coefficient. KOWWIN uses a "fragment constant" methodology to predict 
logP. In a "fragment constant" method, a structure is divide into fragments 
(atom or larger functional groups) and coefficient values of each fragment or 
group are summed together to yield the logP estimate. KOWWIN's methodology is 
known as an Atom/Fragment Contribution (AFC) method. Coefficients for individual
fragments and groups were derived by multiple regression of 2447 reliably 
measured logP values. KOWWIN's "reductionist" fragment constant methodology 
(i.e. derivation via multiple regressions) differs from the "constructionist" 
fragment constant methodology of Hansch and Leo (1979). The original estimation 
methodology used by the original BCFWIN program is described in Meylan and 
Howard (1995). The logBCF was regressed against log(Kow), and chemicals with 
significant deviations from the line of best fit were analysed according to 
chemical structure. The BCFBAF method classifies a compound as either ionic or 
non-ionic.
The ionic substances were further divided into carboxylic acids, sulfonic acids 
and their salts, and quaternary N compounds. LogBCF for nonionic is estimated 
from log(Kow) and a series of correction factors specific to each chemical 
(Meylan et al., 1996).

3. Results and discussion

3.1. Polar solvents

The first step was the calculation of the values for logBCF, logKOW
and logKOA, as described in the previous section. To reveal the internal 
patterns existing in the group of polar solvents HC and PCA were applied. These 
techniques were used for clustering of the chemical variables and of the 
solvents themselves. From Fig. 1a it can be easily read that three clusters have
been
formed – K1, consisting of logBCFcalc., logBCF, logKOWcalc. and logKOW; K2, 
formed by Henry law constant, vapour pressure, water solubility parameters and 
K3 that includes logKOAcalc., logKOA, surface tension, density, boiling point 
and melting point. Grouping of calculated and their measured correspondents in 
one cluster indicates that the predictions could be accurate. The other 
important information is from which physicochemical factors, parameters of 
interest can be modelled. For example, Henry low constant, vapour pressure and 
water solubility are highly correlated. PCA allowed to obtained similar 
clustering results to those obtained
with HC, what can be read from the Table 1. The three latent factors explain 
over 70% of the total variance of the initial dataset. In the PCA 
interpretation, one could find that the variable logBCF (both experimentally 
found and calculated) is forming a separate latent factor not directly 
correlated with other variables. It indicates the specific
importance of logBCF as a discriminant for the dataset. In fact, it is also
indicated by HC where K1 could be conditionally subdivided into “logBCF” 
subcluster and logKow” subcluster. Fig. 1b shows the grouping of polar solvents 
with HC. The objects
(polar solvents) are clustered into three major groups. The mean values of 
physicochemical parameters for each group are presented in Table 2. The first 
group consists of alcohols with ether functional groups, aromatic alcohols and 
short-chain organic acids (apart from formic and acetic). Solvents in this group
are less volatile, are characterised by slight water solubility and the highest 
values (but still low) of logKOW and logBCF. Solvents present in this group are 
mainly novel, bio-based solvents. In the second group lactate esters, formic and
acetic acids, glycerol and some alcohols with other functional groups are 
contained. These solvents are characterised by low volatility and very high 
water solubility. The third group consists mainly of “traditional” polar sol- 
vents, like short chain alcohols, ketones, aldehydes and esters. Its main 
discriminator is high volatility of solvents, reflected by low boiling points, 
high vapour pressures and Henry's law constants. These solvents rather do not 
undergo bioconcentration because of the low values of logBCF. The differences 



between clusters in terms of logKOW, logKAO and logBCF are not significant and 
are all low. This is an indication that solvents defined as polar ones do not 
undergo bioaccumulation, what is one of the parameters that define their 
greenness.

3.2. Non-polar solvents 

Similarly, as in the case of polar solvents, the calculation of the
values for logBCF, logKOW and logKOW was performed with Estimation Programs 
Interface (EPI). Then the clustering of variables and objects were performed. 
Here, we present the estimations of physicochemical properties such as octanol-
air partition coefficients (logKOA), octanol-water partition coefficient (KOW), 
bioconcentration factor (BCF), using the Estimation Programs Interface (EPI) 
Suite. Predictions at room temperature were carried out for the all listed non-
polar solvents. The EPI Suite requires only the chemical structure or the 
Chemical Abstracts Service (CAS) number to estimate the inquire properties. The 
BCF is estimated by the program by retrieving the BCF data in a file that 
contains information on measured BCF and other key experimental details. The 
logBCF was regressed against logKow and chemicals with significant deviations 
from the line of best fit were analysed according to chemical structure. Results
of the EPI Suite predictions of the physical properties of the above non-polar 
solvents and comparisons with the available literature values are presented. It 
was interesting to compare the correlation between experimentally obtained and 
theoretically calculated indicators. The clustering of the variables for non-
polar solvents (Fig. 2a) shows a similar pattern as in the case of polar 
solvents (Fig. 1a). In Fig. 2a the hierarchical dendrogram of clustering of 
variables is shown (z-transformed input data, squared Euclidean distances as a 
similarity measure, Ward's method of linkage and Sneath's criterion for cluster 
significance). The clustering of the theoretically calculated and experimentally
existing values for logBCF, logKOW and logKOA match very well (they are joint 
together in the clusters) and it leads to the practically important conclusion 
that the calculating approach used could be used when there are missing data in 
the data set for the indicators in consideration. However, to know the obtained 
precision of each individual indicator requires to analyze individually. The 
obtained clusters confirm the relationship between parameters like logBCF and 
logKOW with the Henry law constant. The variable logKOA is correlated with a 
whole group of physicochemical parameters like surface tension, density, boiling
and melting point. In Table 3 the factor loadings values (Varimax rotation mode 
of
PCA) are presented. The clustering of variables results is generally confirmed 
by PCA results. Three latent factors explain over 78% of the total variance. The
first
latent factor PC1 (contribution of 33.7% of the total variance) indicates the 
strong correlation between a big group of physicochemical indicators (melting 
point, boiling point, density, surface tension) with the experimental and 
calculated values of logKOA. Thus, it coincides entirely with cluster K3 and 
could be conditionally named “physicochemical factor”. PC2 also explains a 
significant part of the total variance (30.2%) and
resembles cluster K1 showing a strong relationship between the theoretical and 
experimental values of logKOW and logBCF. It is readily seen that the water 
solubility is negatively correlated to the abovementioned parameters and this is
a difference to the clustering in K1. But this relationship does not seem 
unusual and this latent factor could be conditionally named “solubility or 
polarity factor”.
In PC3 (contribution of 14.8% of the total variance) one finds a
negative correlation between vapour pressure indicator and Henry law constant. 
Having in mind the big differences in the values of Henry law constant and 
vapour pressure for the non-polar solvents found in the literature there is no 
surprise for such a connection. In the hierarchical dendrogram (Fig. 1b) the 
vapour pressure and water solubility are linked together for the level of 
significance 66.67% of Dmax but at level 33.33% of Dmax, such a linkage does not
exist. The Henry law constant appears to be linked to logBCF and logKOW but at 
quite a high level of linkage. The more significant aspect of the cluster 
analysis was to reveal relationships between the different non-polar solvents 



and possible markers making the difference within the seemingly homogeneous 
factor of non-polarity. In Fig. 2b the hierarchical dendrogram of clustering of 
43 nonpolar
solvents is shown. Three major clusters are very clearly indicated with the 
level of significance 66.67% of Dmax. The first one contains 19 out of 43 
solvents, the second one – 10 out of 43 and the third one – the rest of 14 
solvents. It is obvious that the formation of three different patterns of non-
polar solvents requires identification of specific markers for each one of the 
groups of similarity. In Table 2 the average values for each one of the 13 
variables used for solvents clustering and for each one of the clusters found 
are presented. The clustering is based on the specific discriminators being 
present
in the initial dataset. In K1 are included nonpolar solvents (like pentane, 
cyclohexane, heptane, decane, etc.) with the lowest melting point, lowest 
boiling point, lowest density, highest vapour pressure, lowest surface tension, 
and lowest logKOA (both experimental and theoretically calculated). This group 
is formed by volatile and rather nonpolar solvents. The second cluster K2 
consists of solvents having on average lowest water solubility and vapour 
pressure, the highest Henry law constant and logKOW, logBCF and logKOA. Cluster 
K2 consists of a group of non-polar solvents, which are not water soluble. The 
third cluster K3 is characterised by highest density, water solubility solvents.
All 43 solvents defined as non-polar ones are characterised by the much higher 
potential for bioaccumulation than solvents defined as polar ones. However, from
a practical point of view, it is important to develop and assess green less 
polar solvents, as many processes require solvent that is not miscible with 
water.

The defined as a non-polar solvent group could be divided into three 
subcategories like volatile, water nonsoluble and slightly water soluble 
solvents. Grouping can be helpful in the studies searching theoretical 
relationship between solvent chemical structure and bioconcentration. The close 
resemblance between experimentally found and theoretically calculated parameters
makes it possible to use the approach of filling missing data in data set 
comprising physicochemical and bioconcentration variables. EPI Suite predicts 
physicochemical properties and is a relatively convenient means of studying 
organic materials. When experimental data are not available to assess 
environmental risk, a possible way to estimate the necessary values is the use 
of estimation models. The EPI Suite was developed to help environmental 
scientists to prepare profiles for a wide array of chemical profiles. The fact 
that the program simply requires the chemical structure or Chemical Abstract
Service (CAS) number to generate all the predicted and experimental values has 
simplified its use. In Fig. 3aaneffort is made to indicate the internal 
relationship
between clusters of non-polar solvents 1–3, based on the correlation 
coefficients found (predicted vs. experimental values for logBCF). In Table 4, 
the gradual increase of the correlation coefficient is observed with the highest
value for cluster 3. This cluster includes the solvents whose logBCF values were
predicted also by EPI suit. For the second group of solvents (polar solvents), 
only cluster 1 shows a reasonable correlation coefficient (predicted vs. 
experimental logBCF values). Probably, the correlation coefficient could be used
as another discriminant factor for the solvents studied: when the variability 
between experimental and predicted values of logBCF is significant the 
correlation coefficients are with higher values (e.g. non-polar solvents). The 
lesser variability in logBCF leads to a lower correlation which is the case with
polar solvents.

4. Conclusions 

The simple classification with well-known chemometric tools is an
important preliminary step in the selection of an optimal set of parameters for 
proper theoretical predictions. Here, cluster analysis and PCA were used to 
group solvents according to their similarity. Variables were grouped with 
principal component analysis and cluster analysis to assess and identify from 
which properties missing values can be predicted. The results show that values 



of logBCF for organic solvents can be modelled with EPI Suite software. Thus, 
these estimations will allow identifying novel green solvents for which 
experimental logBCF values are not yet available.
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FIGURES

Fig. 1. a Hierarchical dendrogram for clustering of the variables for polar 
solvents (including those theoretically calculated). b Hierarchical dendrogram 
showing grouping of 69 polar solvents.

Fig. 2. a Hierarchical dendrogram for clustering of variables for non-polar 
solvents. b Hierarchical dendrogram presenting clusters of 43 non-polar 
solvents.

Fig. 3. a – The plot of experimental vs. predicted logBCF values for clusters 1–
3 – non-polar solvents group and b – plot of experimental vs. predicted logBCF 
values for cluster 1 – polar solvents group.
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