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Highlights 
 

 PrPC can bind to different amyloid (-sheet-rich) proteins. 

 Amyloid-interacting PrPC domains comprise two charged cluster domains 

(CC1 and 2). 

 PrPC participates in the expansion of amyloid (at least -synuclein) deposits 

in wild-type mice. 
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Abstract 
 
 
Several studies have indicated that certain misfolded amyloids composed of 

tau, -amyloid or -synuclein can be transferred from cell to cell, suggesting the 

contribution of mechanisms reminiscent of those by which infective prions 

spread through the brain. This process of a ‘prion-like’ spreading between cells 

is also relevant as a novel putative therapeutic target that could block the 

spreading of proteinaceous aggregates throughout the brain which may 

underlie the progressive nature of neurodegenerative diseases. The relevance 

of -amyloid oligomers and cellular prion protein (PrPC) binding has been a 

focus of interest in Alzheimer’s disease (AD). At the molecular level, -

amyloid/PrPC interaction takes place in two differently charged clusters of PrPC. 

In addition to -amyloid, participation of PrPC in -synuclein binding and brain 

spreading also appears to be relevant in α-synucleopathies. This review 

summarizes current knowledge about PrPC as a putative receptor for amyloid 

proteins and the physiological consequences of these interactions. 

Abbreviations 
 
AA = Amino acid 

Ao = Oligomeric -amyloid  

A = -amyloid 
AD = Alzheimer’s disease  
α7nAChR = α7 Nicotinic acetylcholine receptor  
ALS = Amyotrophic lateral sclerosis 
APLP1 = Amyloid beta precursor-like protein 1 
APP = Amyloid precursor protein 

β-ARs =-Adrenergic receptors  
BSE = Bovine spongiform encephalopathy 
CamKII = Calmodulin-dependent protein kinase II 
CC1 = Charged cluster 1 (23-28 aa) of the PrPC molecule 
CC2 = Charged cluster 2 (95-110 aa) of the PrPC molecule 
CD = Central domain (94-133 aa) of the PrPC molecule 
CJD = Creutzfeldt-Jakob disease  
CNS = Central nervous system 
CNO = Clozapine-N-oxide  
CREB = cAMP response binding protein  
CWD = Chronic wasting disease  
DLB = Dementia with Lewy bodies 
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DREADD = Designer receptors exclusively activated by designer drugs  
EGCG = (-)-Epigallocatechin-3-gallate 
EF2 = Elongation factor 2 
ERK1/2 = Extracellular-regulated kinase 1 and 2  
FFI = Fatal familial insomnia 

FcRIIb = Fc receptor II-b  
Fyn = Proto-oncogene tyrosine-protein kinase 
GPI = Glycosylphosphatidylinositol  
GRP78 = Glucose regulated protein 78 
GSK3 = Glycogen synthase kinase 3 
GSS = Gerstmann-Straüssler-Scheinker syndrome  
HE = Hematoxylin and eosin  
HEK293 = Human embryonic kidney cell line  
HD / HR = Hydrophobic region (110 / 113 -133 aa) of the PrPC molecule 
HSPGs = Heparan sulfate proteoglycans 
IPs = Induced pluripotent stem  
LB = Lewy bodies 
LN = Lewy neurites 
LAG3 = Lymphocyte-activation gene 3  
MAPK = Mitogen-activated protein kinase 
Mdm2 = Mouse double minute 2 or E3 ubiquitin-protein ligase  
mGluR5 = Metabotropic glutamate receptor 5 
MPTP = 1-Methyl-4-phenylpyridinium ion (MPP+)/1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine  
MSA = Multiple system atrophy 
NADPH = Nicotinamide adenine dinucleotide phosphate  
NFT = Neurofibrillary tangles 
N2a = Neuroblastoma cell line 
NMDA = N-methyl-D-aspartate receptor subunit 
NR2B = N-methyl-D-aspartate receptor subunit NR2B  
OR = Octarepeat region (51-90 aa) of the PrPC molecule  
p75NTR = p75 Neurotrophin receptor  
PirB = Paired immunoglobulin-like receptor B  
LilrB2 = PirB’s human orthologue receptor  
PADK = Z-Phe-Ala-diazomethylketone  
PD = Parkinson’s disease 
PHF = Paired helical filaments 
PKA = Protein kinase A  
PrPC = Cellular prion protein  
PS = Proteinaceous species  
PrPres = Proteinase K-resistant misfolded form of cellular prion protein 
PrPSc = Scrapie prion protein 
Pyk2 = Non-receptor tyrosine kinase of the focal adhesion kinase family 
ROS = Reactive oxygen species  
sCJD = Sporadic Creutzfeldt-Jakob disease  
SOD1 = Superoxide dismutase 1 
STI1 = Stress-inducible phosphoprotein 1 
TNT = Tunnelling nanotubes 
vCJD = Variant CJD  
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1. Introduction 

 

Neurodegenerative diseases are characterised by the progressive degeneration 

of subsets of neurons accompanied by complex glial reactions in specific brain 

regions (Ferrer, 2017). Most neurodegenerative diseases develop and progress 

in parallel with a characteristic intra- or extra-cellular accumulation of misfolded 

PS including i) tau-containing neurofibrillary tangles (NFT) and -amyloid 

plaques in Alzheimer’s disease (AD) (Fig. 1) (Braak and Del Trecidi, 2015), ii) 

Lewy bodies (LB) and Lewy neurites (LN) containing -synuclein in Parkinson’s 

disease (PD) (Braak and Del Tredici, 2009) and dementia with Lewy bodies 

(DLB) (Goedert et al., 2013), and -synuclein oligodendroglial and neuronal 

deposits in multiple system atrophy (MSA) (Goedert et al., 2013) (Fig. 2), and iii) 

TDP-43-positive skein-like and other inclusions in amyotrophic lateral sclerosis 

(ALS) (Guerrero et al., 2016).  

 

Clinical, molecular, cellular and biochemical studies have shown that these 

diseases are progressive disorders, and PS-associated pathologies spread 

from diseased to healthy cells, thus contributing to disease worsening 

(Costanzo and Zurzolo, 2013; Goedert et al., 2017; Holmes and Diamond, 

2017)for recent reviews). The spatiotemporal progression seems to correlate 

with brain propagation of PS-associated neuropathology through predictable 

anatomical pathways determined for each disorder, thereby suggesting a 

synaptic spreading of the disease (Bertrand et al., 2004; Braak and Del Tredici, 

2009; Costanzo and Zurzolo, 2013; Goedert et al., 2017; Saper et al., 1987) 

(Fig. 2). However, putative participation of astrocytes and mediators of PS 
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spreading in the neurodegenerative brain is also considered (Cavaliere et al., 

2017). The combined involvement of neurons and glia displaying PS inclusions 

in most neurodegenerative diseases (Ferrer et al., 2015; Kovacs et al., 2016) in 

PS spreading is currently undergoing in-depth study  (Kuan et al., 2016; Lee et 

al., 2010). At the cellular level, involvement of cell-surface receptors in PS 

expansion has been described (see below), but other routes of cellular 

spreading have also been proposed such as extracellular vesicles, including 

exosomes and tunnelling nanotubes (TNTs) (Abounit et al., 2016; Campana et 

al., 2005; Costanzo and Zurzolo, 2013; Dieriks et al., 2017; Okuda et al., 2017; 

Tardivel et al., 2016; Zeinabad et al., 2016). In parallel, according to evidence 

demonstrating the ability of these misfolded proteins to propagate protein 

misfolding from diseased cells to recipient (healthy) cells, a ‘prion-like’ 

hypothesis has been postulated (Aguzzi and Lakkaraju, 2016; Ashe and Aguzzi, 

2013; Collinge, 2016). Indeed, cell-spread of PS can act as self-propagating 

templates disrupting cellular homeostasis and eventually leading both to the 

death of recipient cells and to the advance of the neurodegenerative disorder 

(Aguzzi and Lakkaraju, 2016; Ashe and Aguzzi, 2013; Collinge, 2016; Holmes 

and Diamond, 2017). 

 

Cellular prion protein (PrPC) is a cell surface protein expressed in a variety of 

different tissues with high levels in the central and peripheral nervous system 

(Aguzzi and Miele, 2004; del Rio and Gavin, 2016; Linden et al., 2008; Prusiner 

et al., 1998). PrPC is best known for its crucial role as a molecular substrate in 

the pathogenesis of prion diseases such as Creutzfeldt-Jakob disease (CJD), 

Gerstmann–Straüssler–Scheinker (GSS) syndrome, and familial fatal insomnia 
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(FFI) in humans, scrapie in sheep and  goats,  bovine spongiform 

encephalopathy (BSE) in cattle, and chronic wasting disease (CWD) in deer 

(Prusiner and DeArmond, 1994). In these diseases, PrPC is converted into an 

aberrantly folded, -sheet-rich isoform, designated scrapie prion protein (PrPSc) 

(Collinge, 2016; Prusiner, 1989; Prusiner and DeArmond, 1994).  PrPSc is found 

in extracellular deposits in diseased brains, and it is the essential constituent of 

infectious prions (Collinge, 2016; Prusiner, 1989; Prusiner and DeArmond, 

1994; Prusiner et al., 1998)(Fig. 3). Increasing knowledge about the 

participation of PrPC in prion infection contrasts with the elusive, and to some 

extent controversial, data regarding its physiological role, probably related to its 

molecular pleiotropy or specific interactions. Their interacting partners remain 

uncertain. However, what in our opinion is more relevant in the present context 

is the absence, until a few years ago, of appropriate knockout mouse models to 

dissect its physiology and biological relevance in specific processes of the 

central nervous system (CNS) (del Rio and Gavin, 2016; Nuvolone et al., 2016; 

Onodera et al., 2014; Steele et al., 2007; Wulf et al., 2017).  

 

PrPC is considered, in some studies, to be a neuroprotective molecule (Carulla 

et al., 2015; Resenberger et al., 2011b; Roucou et al., 2004). On the other 

hand, PrPC overexpression increases susceptibility to neurotoxicity and cell 

death (Paitel et al., 2003; Paitel et al., 2004; Rangel et al., 2009). Changes in 

PrPC and PRNP mRNA have been reported during disease progression in AD, 

DLB and certain tauopathies (Llorens et al., 2013a; Vergara et al., 2015).  

Moreover, PrPC interacts with oligomeric -amyloid (Ao) neurotoxic species.  

Along this line, the discovery that PrPC was a high-affinity binding partner of 
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Ao is relevant to identify early triggering agents of disease (Dohler et al., 2014; 

Fluharty et al., 2013; Freir et al., 2011; Ganzinger et al., 2014; Lauren et al., 

2009; Zou et al., 2011). Resenberger et al. showed that the N-terminal domain 

of PrPC can bind to -rich peptides including A (Resenberger et al., 2011a; 

Resenberger et al., 2012). Amino acid (aa) residues 95-110 of PrPC are indeed 

the major residues responsible for binding of Ao (Chen et al., 2010; Lauren et 

al., 2009). Yet although interaction between PrPC and Ao has been 

demonstrated (Dohler et al., 2014; Fluharty et al., 2013; Freir et al., 2011; 

Ganzinger et al., 2014; Lauren et al., 2009; Zou et al., 2011), it is still unclear 

whether PrPC is a mediator of the neurotoxic effects of Ao (Calella et al., 2010; 

Haas et al., 2016; Kessels et al., 2010; Kostylev et al., 2015; Wulf et al., 2017). 

From these results, several laboratories started to analyse whether PrPC might 

also be a cellular partner of other PS (Resenberger et al., 2011a), and whether 

PrPC may participate in or regulate the spreading of particular misfolded 

aggregates and associated neuropathologies. Recent results suggest that 

membrane-anchored PrPC may also bind to -synuclein (Aulic et al., 2017; 

Ferreira et al., 2017; Urrea et al., 2017) and may participate in its neuronal 

spreading (Aulic et al., 2017; Urrea et al., 2017). In this review, we discuss 

neuronal cell surface molecules with high affinity for disease-associated PS, 

particularly -amyloid and -synuclein, with a focus on the role of PrPC in this 

process. The interaction of PrPC with tau is also discussed. 

 

2. Cellular prion protein: protein structure, cellular processing and 

functions  
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PrPC is a glycosylphosphatidylinositol (GPI)-anchored protein of 231 aa 

encoded by the PRNP gene located on chromosome 20 in humans and on 

chromosome 2 in mice (Aguzzi and Miele, 2004; del Rio and Gavin, 2016; 

Linden et al., 2008; Prusiner et al., 1998). As a GPI-anchored protein, PrPC is 

rich in cholesterol-enriched lipid-raft domains of plasma membrane. In addition, 

PrPC undergoes clathrin-dependent and/or -independent endocytosis with 

further degradation or recycling (Aguzzi and Miele, 2004; Linden et al., 2008; 

Prusiner et al., 1998). PrPC is highly conserved in mammals. The sequence of 

PrPC can be divided into 2 structurally well-defined regions: a long, N-terminal 

flexible tail (approximately the first 100 residues), present in most of the species 

assessed, except deer and elk, containing series of four or five repeats of eight 

amino acids (PHGGGWGQ), and a globular C-terminal domain containing 3 -

helices and 2 -strands flanking the first -helix. The flexible tail also has 

distinctive features: a small charged cluster (CC1), an octarepeat (OR) region 

and a central domain (CD), which in turn comprises a second charge cluster 

(CC2) and a hydrophobic region (HR). Additionally, two N-glycosylation sites 

are located at 180 and 196 aa, and there is one disulphide bond between 178 

and 213 aa. PrPc presents at least three distinct topological orientations: the 

fully extracellular form (Holscher et al., 2001) and two transmembrane isoforms 

(called Ntm-PrP and Ctm-PrP) with opposite sequence orientations with respect 

to the lumen of the endoplasmic reticulum (Hegde et al., 1998). 

 

PrPC is widely expressed in the CNS during early development, and in adult 

neurons and glial cells. In the adult brain, maximal PRNP mRNA expression is 

observed in the neocortex and cerebellum. In addition to the nervous system, 
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mammalian expression of PrPC has been reported in several tissues including 

lymphoid organs and the heart (Ford et al., 2002; Linden et al., 2008; Miele et 

al., 2003), and lower levels in the kidney and liver (Miele et al., 2003; Tichopad 

et al., 2003). 

 

PrPC is actively recycled in the plasma membrane. In addition, the protein can 

be proteolysed in a similar way to amyloid precursor protein (APP) by several 

proteases (, , and probably -cleavage). After protease activity, different 

fragments of PrPC are generated: N1 + C1 after -cleavage, N2 + C2 after -

cleavage and C3 fragments after -cleavage (Vincent et al., 2000; Vincent et al., 

2001). Among other roles, -cleavage plays a part in preventing PrPsc 

generation; its failure induces cell death in affected cells (Vincent et al., 2000; 

Vincent et al., 2001).  PrPC function is far from fully understood. Here, some 

selected functions are addressed for practical purposes; more complete 

information is available in other reviews (Legname, 2017; Linden, 2017; Linden 

et al., 2008; Nicolas et al., 2009; Steele et al., 2007; Wulf et al., 2017). 

 

2.1. An overview of the neural functions of PrPC 

 

The functions described for PrPC cover a wide spectrum including ion balance 

homeostasis, control of cell proliferation and neural differentiation. However, it 

must be stressed that most of these functions have been reported using Zurich I 

(B6129 Prnp0/0, outbred) mice carrying 129Sv-associated ‘flanking genes’ 

(Nuvolone et al., 2016; Steele et al., 2007). Thus, analyses of the published 

roles using cell cultures or living mice with this background should be 
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interpreted with caution. One of these flanking genes, SIRPis responsible for 

a function previously associated with PrPC in macrophages (Nuvolone et al., 

2013). The presence of these ‘flanking genes’ promotes intrinsic susceptibility of 

B6.129 Prnp0/0 mice to excitotoxic insults (Carulla et al., 2015). 

 

The octarepeat region of PrPc binds Cu2+ and Cu+, thus modulating their 

intraneuronal levels (Hornshaw et al., 1995a; Hornshaw et al., 1995b). Along 

this line, lower levels of copper are found in the brain parenchyma of Prnp0/0 

compared to wild-type mice (Herms et al., 1999), although this observation was 

not reproduced in other studies (Waggoner et al., 2000). Importantly, Cu2+ level 

regulation by binding to PrPc has been associated with: i) superoxide 

dismutase-1 (SOD-1) activity (Brown et al., 1997b; Sorenson, 2001), ii) neural 

transmission (Brown et al., 1997a; Herms et al., 1999), and iii) clathrin-mediated 

endocytosis (Cheng et al., 2006; Haigh et al., 2005; Pauly and Harris, 1998). In 

short, control of intracellular copper points to a homeostatic function of PrPC 

(Sakudo et al., 2004). Several studies have addressed the putative stress-

protective properties of this protein. Pioneering studies reported PrPC protection 

of cultured neurons from serum deprivation (Kim et al., 2004; Nishimura et al., 

2007). Later on, several studies showed that PrPC protects cells against 

oxidative stress in several cell types (Watt et al., 2007; Zanetti et al., 2014), a 

function that requires the integrity of the octapeptide repeats of the protein 

(Watt et al., 2005; Zeng et al., 2003). PrPC also protects primary hippocampal 

neurons and neuroblastoma cell lines from staurosporine-mediated cell death, 

possibly through an interaction with stress-inducible phosphoprotein 1 (STI1) by 

activating protein kinase A (PKA) (Zhang et al., 2006). In contrast, 
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overexpression or PrPC sensitizes the HEK293 and Rov9 cell lines to cell death 

in the presence of staurosporine (Paitel et al., 2002). Subsequent studies have 

shown that this sensitization occurs through a p53-dependent caspase 3-

mediated activation controlled by mouse double minute 2 (Mdm2) and p38 

mitogen-activated protein kinase (MAPK) (Paitel et al., 2003; Paitel et al., 2004). 

Increased caspase 3 activation after PrPC overexpression has also been 

reported in other studies (Nicolas et al., 2007; Vilches et al., 2016).  Thus, it is 

reasonable to consider that PrPC may be maintained at a physiological level, 

since increase or reduction may strongly interfere with other cellular processes 

that might induce cell death (Llorens et al., 2013b; Vergara et al., 2015).  

 

Other studies have shown that aggregation of PrPC in cell membrane in vitro 

(Mouillet-Richard et al., 2000) and in vivo (Solforosi et al., 2004) triggers cell 

death which is associated with increased production of reactive oxygen species 

(ROS), and activation of the proto-oncogene tyrosine-protein (Fyn) kinase and 

nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. However, 

overexpression of PrPC alone does not increase ROS production (Vilches et al., 

2016), thus reinforcing the opinion that PrPC-mediated p53 activation is not 

associated with Fyn activation (Paitel et al., 2003; Paitel et al., 2004).To sum 

up, PrPC-mediated sensitization and aggregation may regulate cell death by 

different mechanisms.  

 

Finally, mice expressing truncated forms of PrPC present an exacerbated lethal 

ataxic syndrome which is counteracted by the introduction of the complete PrPC 

sequence (Baumann et al., 2007; Li et al., 2007; Shmerling et al., 1998). These 
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studies suggest that the central region of PrPC has neuroprotective properties, 

and that its absence triggers neurotoxic pathways that promote cell death, 

cerebellar atrophy and white-matter degeneration (Li et al., 2007). Another 

study suggests that the C-terminal domain of the protein plays a role in 

modulating the neurotoxic properties of the N-terminal domain (Wu et al., 2017) 

by the blockage of this domain with specific antibodies or by introducing 

deletions which induce the generation of spontaneous ion currents in cultured 

neurons (Wu et al., 2017). This last study is in line with our proposed model of 

PrPC-mediated neurotoxicity (del Rio and Gavin, 2016). Following this rationale, 

it is postulated that putative binding of PrPC with PS interferes with 

neuroprotective functions, leading, in turn, to cell death (Pietri et al., 2006). 

 

3. Axonal transport and cell-to-cell PS transmission 

 

Most in vivo studies aimed at determining cell-to-cell transmission and 

propagative properties along axonal tracts of A, tau and -synuclein (among 

others) have been developed in mice using stereotaxic injections of: i) viral 

particles encoding recombinant proteins, ii) recombinant proteins in several 

assembly stages, and iii) brain extracts from mutant mouse models or from 

human brain samples. The term ‘prion-like’ is widely used to name the type of 

seeding and propagation of PS in different settings. However, only a few of 

these PS strictly display all the molecular features of infective prions described 

in transmissible spongiform encephalopathies (TSEs) (Erana et al., 2017). 

Infective prions in TSEs show three key features: i) two distinct conformational 

states of the protein are present in the same neuron/cell and one shows a 
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tendency to generate insoluble aggregates; ii) the formed aggregate is self-

propagating, meaning that it can influence the conversion of the natural 

conformation into a misfolded aberrant conformation; and iii) this propagation 

occurs at the cellular level and, more importantly, between different individuals. 

In addition, the neurotoxic potential progressively increases during the 

propagation process. It has recently been stressed (Harbi and Harrison, 2014) 

that ‘prion-like activity’ or ‘prion-like propagation’ also refers to self-propagating 

protein aggregates not meeting a strict ‘prion’ definition in certain circumstances 

in which the transmission between organisms is not clearly demonstrated. The 

term ‘prion-like’ describing the propagation activities of misfolded proteins will 

be used in the present review. Misfolded Ao, tau and -synuclein are hereafter 

considered putative ‘prion-like’ proteins.  

 

3.1. In vitro studies 

 

Direct observation of axonal transport and cell-to-cell transmission of PS is 

obtained in primary neurons growing in microfluidic devices which physically 

isolate the perikaryon and the axonal compartments into two neuronal 

populations growing in different reservoirs interconnected with numerous 

microgrooves (Neto et al., 2016; Taylor et al., 2005) (Fig. 4). Using these (or 

similar) devices, axonal transport and cell-to-cell propagation of -synuclein 

(Brahic et al., 2016; Danzer et al., 2011; Freundt et al., 2012), A(Song et al., 

2014) and tau (Wu et al., 2016) have been demonstrated. Aggregates (fibrils of 

extracts) are typically added to the cell media at concentrations (within the 

range of a microgram) higher than those occurring in real diseased human cells. 
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With respect to -synuclein, misfolded -synuclein fibrils (or isolated LB) can be 

captured by neurons and transported between donor and recipient neurons in 

both retrograde and anterograde manners (Brahic et al., 2016; Freundt et al., 

2012). After transport, misfolded -synuclein spreads between synaptically 

connected neurons growing in the second (Fig. 4) or additional reservoirs, 

leading to increased p--synuclein content (Freundt et al., 2012). Although both 

retrograde and anterograde transports have been described, there is a 

tendency toward retrograde transport of -synuclein in microfluidic devices as 

also observed in vivo. This seems to be somewhat different from what is 

reported for A since A is absorbed by axonal processes and transported in a 

retrograde manner towards the neuronal soma. It should be mentioned that the 

transport cannot be blocked by DynasoreTM suggesting propagation 

mechanisms other than endocytosis (Song et al., 2014).  Misfolded fibrillar tau 

can be transported in an anterograde manner between post-mitotic neurons 

(Ki67-negative) via its extracellular release and further neuronal update by 

micropinocytosis linked to heparan sulfate proteoglycans (HSPGs) in second 

level neurons (Wu et al., 2016).  

 

In summary, better understanding of the mechanisms of uptake and axonal 

transport, either linked to kinesin or dynein, vesicle coating, and selective 

retrograde vs. anterograde transport is needed to overcome the present 

limitation in delineating effective therapeutic approaches targeting PS transport 

and disease spreading.  

 

3.2. In vivo studies 
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Several studies using mouse models have shown that assembled normal and 

mutated P301L tau behave like ‘prion-like’ molecules (Clavaguera et al., 2013; 

Clavaguera et al., 2009; Iba et al., 2015; Soto, 2012). Moreover, tau extracted 

from AD patients is able to transmit tau pathology in non-transgenic mice (Guo 

et al., 2016).  Injection of Aaggregates derived from AD patients or from aged 

transgenic mice into young TgAPP23 animals initiates the deposition of 

endogenous Aβ (Meyer-Luehmann et al., 2006). Additional studies have shown 

the self-propagating properties of recombinant A in vivo (Stohr et al., 2012). 

Regarding -synuclein, pioneer studies described the presence of -synuclein 

inclusions in foetal grafted neurons in PD patients (Kordower et al., 2008). 

Indeed, recombinant -synuclein fibrils spread among neurons in wild-type mice 

(Luk et al., 2012; Masuda-Suzukake et al., 2014; Urrea et al., 2017). Intranigral 

or intrastriatal inoculation of PD-derived LB extracts in monkeys results in 

progressive nigrostriatal neurodegeneration (Recasens et al., 2014). Recent 

studies have shown the spreading of mouse -synuclein in marmoset 

(Shimozawa et al., 2017). In most cases, -synuclein is transported in a 

retrograde manner after injection from the striatum into the neocortex and 

amygdala.   

 

3.3. Some aspects to be considered in analysing PS transport in vivo and 

in vitro 

 

New methods and platforms aimed at modulating or monitoring neural 

physiology in vitro and in vivo have improved our knowledge of intercellular PS 
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transport and regulatory factors. However, the results obtained in in vivo 

experiments using patient-derived extracts largely depend on the protocol used 

to isolate PS extracts (McCormack et al., 2016). Moreover, the molecular 

composition of these proteinaceous extracts has not been fully determined (i.e., 

(Shults, 2006) for LB). Specific conformations (also termed ‘strains’) of PS 

oligomers may occur in different brain regions as observed for -synuclein in 

A53T mice (Tsika et al., 2010). Patient-derived PS extracts show different 

seeding properties compared to recombinant proteins (Guo et al., 2016) which 

argue against the use of recombinant proteins as the best PS model. The 

isolation process is also relevant since, for example, the presence of traces of 

endotoxin during the production of aggregates in bacteria may influence not 

only the process of spreading but also the formation of different species of 

aggregates with divergent biochemical properties (Kim et al., 2016).  

 

Since neural activity facilitates axonal transport of proteins and other molecules, 

recent studies have used cell-directed optogenetic activation (Wu et al., 2016; 

Yamamoto et al., 2015). Alternatively, designer receptors exclusively activated 

by designer drugs (DREADD) and clozapine-N-oxide (CNO)-dependent 

activation are also used in mouse models (Wu et al., 2016). Although described 

for tau (Wu et al., 2016) and A (Yamamoto et al., 2015) but not for -

synuclein, the specific stimulation of projecting neurons by optogenetics or CNO 

increases PS formation, transport and deposition in appropriate mouse models 

after PS inoculation. Nonetheless, neuronal activation mediated by optogenetic 

stimulation with blue light (2 seconds’ stimulation per minute for 240 minutes) 

(Yamamoto et al., 2015) or 2 seconds on/off for 30 minutes (Wu et al., 2016) is 
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far from being a ‘physiological’ activation. Thus, more adequate ‘physiological’ 

stimulation is needed to rule out seizure-mediated effects on interneuronal PS 

transport. In addition, although DREADD expression in neurons is driven by 

neuron-specific promoters (Wu et al., 2016), the particular roles of different 

neuronal types in PS formation and spreading needs to be addressed using 

neuron-subtype specific promoters (i.e., interneuron vs. projecting neuron). This 

is mandatory considering that global neuronal activity (i.e., gamma frequency 

waves) controlled by cortical fast-spiking interneurons (Cardin et al., 2009) also 

modulates microglial activation and amyloid plaque formation (at least in AD 

mouse models) (Iaccarino et al., 2016). 

 

Regarding microfluidic design devices, three aspects must be addressed in 

future studies: i) clear definition of anterograde and retrograde PS transport; 

Newly developed ‘diode’ microfluidic devices displaying only unidirectional 

neuronal connections should be used (Peyrin et al., 2011); ii) the real absence 

of fluid (media) transport between reservoirs using at least three reservoir 

devices (i.e., (Cirrito et al., 2005)); and iii) determination of whether the 

spreading of the PS might also affect synaptic activity in recipient cells. Most 

studies analyse the effects of PS incubation on neuronal activity using Ca2+ 

wave analysis and spike generation experiments in treated neurons but not in 

recipient neurons (i.e., (Volpicelli-Daley et al., 2011)).  

 

4. Interactions between -synuclein, tau and Ao  
 
 

Strong interplay among -synuclein, tau and Aβ may synergistically promote 

shared seeding (Kotzbauer et al., 2004; Tsigelny et al., 2008). As a matter of 
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fact, neurofibrillary tangles enriched in hyperphosphorylated tau and 

Adeposits surrounding -synuclein deposits in LB or LBN are frequent in -

synucleinopathies (Fig. 5) (Fujishiro et al., 2008; Ishizawa et al., 2003; Nagaishi 

et al., 2011; Piao et al., 2001). Fig. 6 illustrates a particular MSA case displaying 

both -synuclein and AD-associated pathology (Fig. 6 A, B). -synuclein and p-

tau deposits co-localise in a subgroup of neurons (Fig. 6 C, D), thus suggesting 

cross-seeding interactions between the two proteins. Likewise, an exogenous 

supply of -synuclein by viral delivery or by inoculating aggregated forms to 

cultured cells can induce tau phosphorylation (Badiola et al., 2011). AD-like 

mouse models (APP/PS1) also expressing human P301L tau in entorhinal 

cortex-projecting neurons have shown that increased A deposits are 

associated with increased spreading of p-tau in the hippocampus (Pooler et al., 

2015). Similar results have been observed using 3D in vitro culture models of 

AD (Choi et al., 2014). Conversely, elevated levels of tau increase -synuclein 

aggregation (Badiola et al., 2011).  

 

4.1. Cross-seeding activity between amyloids 

 

It is well known that tau promotes microtubule assembly and stabilization at low 

concentrations, inhibiting microtubule polymerization at high concentrations and 

under aggregating conditions. The presence of -synuclein fibrils potentiates 

tau aggregation in some in vitro assays (Giasson et al., 2003; Riedel et al., 

2009) but not in others (Nonaka et al., 2010). This aggregation inhibits tau-

dependent microtubule assembly in vitro (Oikawa et al., 2016). Moreover, -

synuclein aggregates a decrease in length but an increase in number in the 
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presence of tau (Badiola et al., 2011; Giasson et al., 2003). The same study 

reported a reduction in the more insoluble forms of -synuclein and increased 

toxicity of these -synuclein aggregates in the presence of tau (Badiola et al., 

2011). Further studies are needed to improve understanding of the molecular 

mechanisms involved in this binding. 

 

4.2. Interplay in controlling protein phosphorylation  

 

In addition to aggregation, several studies have focused on the potentiating 

properties of -synuclein in tau phosphorylation (at Ser396/404 identified with 

the PHF1 antibody or at Ser199/202 recognized with the AT8 antibody). This 

likely occurs by the modulation of tyrosine phosphorylation of glycogen 

synthase kinase 3 (GSK3) which leads to increased kinase activity 

(Khandelwal et al., 2010; Waxman and Giasson, 2011). Inoculation of -

synuclein fibrils increases tau phosphorylation in vivo (Masuda-Suzukake et al., 

2014). However, hyperphosphorylated tau recognized as puncta-like deposits 

rarely co-localises with p--synuclein after fibril injections (Masuda-Suzukake et 

al., 2014). -Synuclein-mediated tau hyperphosphorylation may occur in an -

synuclein concentration-dependent manner. Variable amounts of intracellular -

synuclein can be modulated under cellular stress conditions such as in the 

presence of ROS (Kawakami and Ichikawa, 2015). Modified -synuclein plays 

an active pro-aggregation role for tau in vivo, and it is considered by several 

authors to be a regulator of tau protein phosphorylation. Similar alterations can 

be observed following unrelated insults such as treatment with rotenone 

(Chaves et al., 2010) or 1-methyl-4-phenylpyridinium ion (MPP+)/1-methyl-4-
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phenyl-1,2,3,6-tetrahydropyridine (MPTP). MPTP treatment also increases -

synuclein and tau hyperphosphorylation in wild-type mice (Qureshi and Paudel, 

2011) but not in -synuclein-deficient mice (Duka et al., 2009). This observation 

points to an active role for tau in the pathogenesis of synucleopathies.  

 

A common feature of these models is the elevated activation of GSK3 kinase 

as a sensor of ROS production (Kozikowski et al., 2006). -sheet-enriched 

proteins, such as A increase intracellular ROS (Hureau and Faller, 2009). 

Moreover, treatment with ROS-promoting factors increases Aβ, -synuclein and 

tau hyperphosphorylation (Chaves et al., 2010) preceding neurodegeneration in 

particular settings (Ghosh et al., 2012). ROS scavengers reduce cell death in 

experimental models of PD (Lee et al., 2011; Wang et al., 2015), and A-

mediated cell death in vitro (Kontogiorgis et al., 2007) and in vivo (Ghosh et al., 

2012), and -sheet forming peptides of specific prion protein sequence 

treatments in vitro (Gavin et al., 2005). In addition, the increase in oxidative 

stress and ROS generation can trigger the generation of TNT leading to 

intensification of the spreading of intercellular -synuclein (Abounit et al., 2016). 

In conclusion, increased ROS seems to potentiate both seeding of neurotoxic 

PS and, in some cases, its intercellular transport, which in turn increases ROS 

in recipient neurons, potentially leading to a ‘vicious’ cycle of neurotoxicity. 

However, although cell death in this co-morbid scenario exemplifies the impact 

of two or more misbalanced processes, it is unclear whether there is a common 

process underlying terminal pathology leading to neurodegeneration. 

 

5. PrPC and tau as partners during neurodegeneration 
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Although tau fibrils (4RN1) are able to induce tau aggregation in cell cultures  

(Nonaka et al., 2010), a demonstration of i) the interaction of tau as 

transmissible PS and PrPC and ii) the involvement of PrPC in tau spreading 

remains elusive. To date, two forms of neuronal interplay between tau and PrPC 

have been described: i) direct interaction between PrPC and tau proteins, and ii) 

inverse correlation of protein expression in cell lines and during 

neurodegeneration.  

 

5.1. Direct interaction between PrPC and tau 

 

Using recombinant proteins, full length tau can bind to recombinant PrPC in vitro 

(Wang et al., 2008). In fact, the interaction of PrPC and cytoskeletal proteins 

such as tubulin was described three years earlier in another study (Nieznanski 

et al., 2005). The effects of PrPC on tubulin dynamics include the rapid induction 

of tubulin oligomerization and aggregation thereby inhibiting microtubule 

formation (Nieznanski et al., 2006; Osiecka et al., 2009). In addition, increased 

tau levels reduce the effect of PrPC on tubulin oligomerization; this reduction is 

abolished when tau is phosphorylated by both PKA and GSK3 but not after PKA 

phosphorylation alone (Osiecka et al., 2011).  Lastly, activation of the PKA-

cAMP response element binding (CREB) protein reduces tau transcription (Liu 

et al., 2015). Together, these studies point to PKA as a key intracellular kinase 

regulating tau (levels and phosphorylation), PrPC and tubulin oligomerization. 
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The presence of mutated forms of PRNP correlates with increased p-tau and 

neurofibrillary neurodegeneration in specific familial prionopathies, particularly 

GSS linked to certain PRNP mutations. Hyperphosphorylated tau deposition is 

frequently observed in the brains of GSS patients carrying PRNP mutations 

P102L (Ishizawa et al., 2002), P105L (Yamazaki et al., 1999), A117V 

(Tranchant et al., 1997), V176G (Simpson et al., 2013), F198S (Ghetti et al., 

1994; Hsiao et al., 1992), Q217R (Hsiao et al., 1992; Woulfe et al., 2005) and 

Y218N (Alzualde et al., 2010) (Fig. 7). Although PrPC with the P102L mutation 

shows increased tau binding (Wang et al., 2008), the mechanisms of these 

point mutations resulting in the increase of hyperphosphorylated tau are not 

known. Nevertheless, the interplay between certain PRNP mutations and tau 

phosphorylation can be reproduced in differentiating neurons from induced 

pluripotent stem (IPs) cells reprogrammed from dermal fibroblasts carrying the 

Y218N mutation. Differentiated neurons display elevated p-tau, deficits in 

mitochondria transport along microtubules and increased cell death 

(Matamoros-Angles et al., 2017). 

 

5.2. Opposite correlation between PrPC and p-tau/tau levels during 

neurodegeneration  

 

Changes in 14-3-3, tau and other biomarkers have been reported in several 

neurodegenerative diseases including human prionopathies (CJD). For 

example, increased levels of tau, p-tau and -synuclein are present in the CSF 

and brain parenchyma of CJD patients (Foutz et al., 2017; Karch et al., 2015; 

Lattanzio et al., 2017; Llorens et al., 2016a; Llorens et al., 2016b; Llorens et al., 
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2017). With respect to PrPC, it has been shown that PRNP levels are reduced in 

CJD brains compared to controls (Llorens et al., 2013a), and this decrease 

might be involved in the frequent seizures observed in patients (Ng et al., 2014) 

similar to what has been reported in mice lacking the protein (Carulla et al., 

2011; Carulla et al., 2015; Rangel et al., 2009).  

 

Decreased PrPC-mediated signalling may also generate increased levels of tau, 

hyperphosphorylated tau and -synuclein. Experiments carried out to develop 

models of gain and loss of PrPC function using neuroblastoma (N2a) or human 

embryonic kidney (HEK293) cells have shown that cellular levels of tau and p-

tau inversely correlate with PRNP and PrPc expression levels in vitro (Schmitz 

et al., 2014; Vergara et al., 2015). The molecular mechanism responsible for 

the decrease in tau and p-tau levels and their associated toxicity in cell lines 

remains to be elucidated. Regulation of the activity of the MAPT promoter by 

PrPC-mediated effectors such as specific miRNAs, including miR-34c-5p 

(Wu et al., 2013), or histone deacetylases such as HDAC2 (Liu et al., 2017), 

has tentatively been considered. However, an interesting hypothesis 

suggests that these changes may be associated with oxidative damage, as 

PrPC-dependent actions on tau and p-tau reduction are only relevant under 

oxidative conditions (Schmitz et al., 2014). On the other hand, the effects of a 

decrease in PrPC are not exclusive to the MAPT promoter since other 

promoters also increase particular mRNA transcription in the absence of 

PRNP expression (Vergara et al., 2015). Finally, PrPC overexpression also 

reduces huntingtin aggregation and toxicity in neuronal cells (Lee et al., 2007). 

Therefore, it can be suggested that PrPC and its associated signalling 
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participate in regulating common intracellular signalling mechanisms, 

decreasing the expression of tau, p-tau, huntingtin and other molecules 

involved in neurodegeneration. Whether this intracellular signalling involves 

ROS generation and Ca2+ imbalance as main actors regulating the MAPT 

promoter warrants further study. 

 

6. PrPC as a binding receptor for PS  

 

6.1. PrPC and Ao 

 

Increasing evidence suggests that several membrane receptors can bind to 

Ao. Among others, these receptors include PrPC (Dohler et al., 2014; Fluharty 

et al., 2013; Freir et al., 2011; Ganzinger et al., 2014; Lauren et al., 2009; Zou 

et al., 2011), the 7 nicotinic acetylcholine receptor (7nAChR) (Kar et al., 

1998), Fc receptor II-b (FcRIIb) (Kam et al., 2013), the p75 neurotrophin 

receptor (p75NTR) (Yaar et al., 1997), the paired immunoglobulin-like receptor 

B (PirB) (Wang et al., 2012), the PirB human orthologue receptor (LilrB2) (Kim 

et al., 2013), the -adrenergic receptors (-ARs) (Wang et al., 2011) and the 

Eph receptors (Cisse et al., 2011).  

 

PrPC is one of the binding partners for Ao (Dohler et al., 2014; Fluharty et al., 

2013; Freir et al., 2011; Ganzinger et al., 2014; Lauren et al., 2009; Zou et al., 

2011). Indeed, some studies have demonstrated that the N-terminal residues 

23-27 as well as the  94–110 region (CC2) of the PrPC molecule are relevant 

for PrPC interactions with Aβo, as the deletion of any of these regions results in 
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a major loss of PrPC-Ao interaction. In addition to these residues, a recent 

study pointed to the involvement of the C-terminal domain (120-144) in A fibril 

formation, modulating the interaction of the N-terminal regions of PrPC with A  

(Bove-Fenderson et al., 2017). With respect to the two N-terminal PrPC 

interacting domains, they also act in a coordinated manner to provide high 

affinity binding sites for Aβo. After binding, the Aβo-PrPC complex activates Fyn 

kinase through metabotropic glutamate receptor 5 (mGluR5) (Larson et al., 

2012; Um and Strittmatter, 2013). mGluR5 does not interact directly with Ao 

(Beraldo et al., 2016; Um et al., 2013); however, the ternary complex (Aβo-

PrPC-mGluR5) may act upstream of N-methyl-D-aspartate receptor subunit 

NR2B (NR2B) phosphorylation (Larson et al., 2012). In addition, PrPC is linked 

by mGluR5 to the cellular protein mediators Homer 1b/c, non-receptor tyrosine 

kinase of the focal adhesion kinase family (Pyk2) and calmodulin-dependent 

protein kinase II (CamKII) (Haas et al., 2016; Haas and Strittmatter, 2016).   

 

Binding Ao with PrPC can be blocked with antibodies (Freir et al., 2011) and 

with STI1 (Caetano et al., 2008; Ostapchenko et al., 2013). Blockage with 

antibodies prevents the binding of Ao (Freir et al., 2011) but can also trigger 

neurotoxicity in a PrPC-dependent way (Solforosi et al., 2004; Sonati et al., 

2013). In contrast, blockage with STl1 prevents the toxicity mediated by Ao in 

cultured neurons and brain slices (Ostapchenko et al., 2013). Recently, a 

peptide mimicking the binding site of laminin onto PrPC (Ln-1) was shown to 

promote the internalization of PrPC-mGluR5 and to transiently decrease Ao 

binding to neurons without affecting their neurotoxicity (Beraldo et al., 2016). 
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Decreased Ao binding seems to be the result of the increased internalization 

of the PrPC-mGluR5 complex (Beraldo et al., 2016).  

 

In parallel, binding Ao to PrPC also triggers an increase in tau phosphorylation 

(Larson et al., 2012). Furthermore, tau hyperphosphorylation and increased 

oxidative stress have been described as direct cellular effects of Ao in primary 

cultures and organotypic slice cultures (Johansson et al., 2006; Lloret et al., 

2011; Zempel et al., 2010), 3D neuronal cultures (Choi et al., 2014) and in vivo 

(Chabrier et al., 2012). In fact, Ao treatment induces activation of caspase-3 

and elongator factor 2 (EF2) (a mediator of several stress responses) (Harding 

et al., 2003) together with abnormal phosphorylation and cleavage of tau 

(Tanokashira et al., 2017). The increase in EF2phosphorylation in cortical 

neurons after Ao treatment is mediated by Fyn (Um et al., 2013). Although not 

described, it is reasonable to consider that PrPC may mediate Ao-dependent 

EF2 phosphorylation. 

 

6.2. PrPC and -synuclein 

 

As observed for Ao, several membrane-associated proteins have been 

described as binding receptors for -synuclein. This protein binds directly to 

Na+/K+-ATPase subunit 3  (Shrivastava et al., 2015), glucose-regulated protein 

78 (GRP78) (Bellani et al., 2014),  lymphocyte-activation gene 3 (LAG3) (Mao 

et al., 2016), neurexin (Mao et al., 2016; Shrivastava et al., 2015) and amyloid  

precursor-like protein 1 (APLP1) (Mao et al., 2016). -synuclein may bind to 

HSPGs, as happens with other PS (Holmes et al., 2013; Shrivastava et al., 
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2015). Recently, PrPC has been discovered to be a binding partner of -

synuclein (Aulic et al., 2017; Ferreira et al., 2017; Urrea et al., 2017). Although 

the majority of these proteins are implicated in the binding and/or uptake of -

synuclein protofibrils, details of the process are lacking and, for most of them, 

further participation in the spreading of -synuclein and interneuronal transport 

has not been investigated. Nonetheless, the binding and participation of LAG3 

and PrPC in -synuclein spreading has been analysed in vivo: the absence of 

LAG3 or PrPC decreases but does not fully impair -synuclein spreading after 

PS injection in vivo (Aulic et al., 2017; Mao et al., 2016; Urrea et al., 2017). In 

addition, PrPC overexpression enhances -synuclein spreading and pathogenic 

p--synuclein generation (Aulic et al., 2017; Urrea et al., 2017). At the cellular 

level, GPI-linked PrPC overexpression enhances -synuclein binding in primary 

cultured neurons and in cell lines (HEK293). However, recombinant -synuclein 

binding to PrPC decreases in the absence of the second charged cluster domain 

(CC2). -synuclein shares this binding motif of PrPC with Ao (Ferreira et al., 

2017; Urrea et al., 2017)  but not with other -rich misfolded peptides or 

infectious scrapie prions (Rambold et al., 2008). Detailed observation of 

HEK293 Prnp-transfected cells after treatment with recombinant -synuclein 

demonstrates that fibres bind to plasma membrane of transfected cells in PrPC-

rich domains as well as in apparent PrPC-free membrane regions (Fig. 8). This 

result supports a novel line of biophysical studies reporting the direct interaction 

of -synuclein with membrane lipids (Chaudhary et al., 2017).  
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Considering PrPC as a receptor for -synuclein, it should be noted that A and 

-synuclein share the CC2 domain of PrPC as a ‘binding’ domain. Thus, the 

search for molecules that block this interaction represents a strategy parallel to 

the current strategies aimed at targeting the seeding or aggregation process of 

several PS using (-)-epigallocatechin-3-gallate (EGCG) or Z-Phe-Ala-

diazomethylketone (PADK) (Andrich and Bieschke, 2015; Guay et al., 2010).  

 

7. Physiological relevance of PrPC-PS interaction: a ‘twister’ puzzle to 

decipher 

 
 
The PrPC central region contains a central hydrophobic domain (HD or HR, aa 

110/113-133) and a second charged cluster domain (aa 94-110), both involved 

in binding with different oligomeric species (i.e., scrapie prions and Ao/-

synuclein, respectively). Nevertheless, the physiological consequence of these 

interactions is not yet clear. The pioneering description of the Ao/PrPC 

interaction has led researchers to explore the physiological relevance of the 

interaction, and some descriptions (albeit controversial) have emerged in recent 

years. In addition, the latest report of the PrPC/-synuclein interaction (Ferreira 

et al., 2017) also points to common intracellular signalling pathways between 

Ao/PrPC and -synuclein/PrPC. 

 

Two groups of results have been published focusing on PS/PrPC interaction: i) 

studies describing the role of PrPC in amyloid-mediated neurotoxicity, and ii) 

reports analysing the functions of PrPC in amyloid-mediated 

neurotransmission/synapse plasticity changes. With respect to cell death, the 
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participation of PrPC in the neurotoxic effects triggered by aggregated Ao and 

-synuclein seems to be mandatory; PrPC is mainly located in lipid rafts, and 

the integrity of lipid rafts is required to trigger Ao-mediated cell death 

(Malchiodi-Albedi et al., 2010). However, the data available do not fully explain 

other observations when considering only amyloid/PrPC interaction. For 

example, the absence of PrPC does not overcome cell death mediated by Ao 

(Balducci et al., 2010; Forloni and Balducci, 2011) or by other -rich peptides 

(Brown et al., 1998; Fioriti et al., 2005; Gavin et al., 2005; Vilches et al., 2013). 

Indeed, Brown et al. suggested that prion mimicking peptides are nontoxic to 

Prnp0/0 cells not because of an inability to interact with these cells but because 

of the loss of some aspect of a PrPC expression-dependent phenotype (Brown 

et al., 1998). Thus, the direct action of amyloids, for example by modification of 

membrane dynamics or the generation of ion channels (Arispe et al., 1993), 

cannot be overlooked in the analysis of the PrPC-mediated effects by misfolded 

aggregates.  

 

Furthermore, the interaction of Ao/PrPC (mainly at 94-110 residues) and -

synuclein/PrPC (93-109) leads to Fyn activation (Ferreira et al., 2017; Larson et 

al., 2012; Um et al., 2012) through mGluR5 (Ferreira et al., 2017; Haas et al., 

2016). PrPC-dependent Fyn activation has also been reported after clustering 

PrPC with specific antibodies (e.g., SAF61, recognizing residues 142-160 of 

PrPC) (Gavin et al., 2005; Mouillet-Richard et al., 2000; Schneider et al., 2003). 

This is in contrast with other antibodies recognizing PrPC epitopes 93-105 (≈ 

CC2 domain), 143-153 aa, 95-105 aa (6D11 antibody) or 4H11 antibody (≈ HD / 

HR domain) (Klohn et al., 2012; Um et al., 2012). In fact, SAF61-mediated 
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dimerization activates Ser/Thr kinase extracellular-regulated kinase 1 and 2 

(ERK1/2), and NADPH oxidase leads to cell death in vitro and in vivo (Solforosi 

et al., 2004). In this respect, the 113-133 aa of PrPC (HD/HR domain) is 

required for its dimerization (Rambold et al., 2008).  

 

As indicated by Um et al., binding PrPC with 6D11 (inside CC2) does not induce 

Fyn activation but rather blocks Ao binding and neurotoxicity (Um et al., 2012). 

This is contrast to Ferreira et al., who indicated that 6D11 is able to block Fyn 

activation and NMDAR2B phosphorylation after -synuclein oligomer incubation 

(Ferreira et al., 2017). These are two conflicting results using different amyloids 

and the same receptor. Although additional studies are needed, it may be 

speculated that the interaction of Ao or -synuclein with PrPC does not 

compromise the HD/HR domain, thereby leaving PrPC free for putative 

dimerization triggering Fyn activation. An additional unsolved issue is whether 

Ao or -synuclein/PrPC /Fyn activation leads to cell death or not, and, more 

relevantly, whether it can be assumed that this antibody-mediated PrPC 

dimerization is a physiological signalling mechanism of PrPC or rather is merely 

an ‘aberrant’ effect.  

  

Concerning neurotransmission and synapse plasticity, several studies, mainly 

from the Strittmatter lab, have reported that Aβo/PrPC/mGluR5 complexes are 

responsible for facilitating long-term depression (LTD) and dendritic spine 

plasticity in cultured neurons. These effects are mediated by the 

phosphorylation of N-methyl-D-aspartate (NMDA) receptor subunits (Salazar 

and Strittmatter, 2017). Similar effects have recently been shown for -
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synuclein and PrPC (Ferreira et al., 2017). In addition, Haas et al. recently 

described additional effectors of Aβ-PrPC binding including Homer, EF2, CamKII 

and Pyk2 (Haas et al., 2016), some of which have relevant roles in synapse 

plasticity and neurodegeneration. Thus, although their participation in the 

neurodegenerative effects of Ao is still controversial (Wulf et al., 2017), it 

seems that the implication of PrPC in synaptic plasticity after Ao or -synuclein 

binding is well established.  

 

With respect to Ao, two separate signalling cascades, one dependent on 

extracellular Ca2+ and Fyn kinase activation and the other on the release of 

Ca2+ from intracellular stores, have been proposed after Ao/PrPC/mGluR5 

interactions (Haas et al., 2016). With respect to -synuclein/PrPC/mGluR5, a 

Ca2+-dependent mechanism has been postulated (Ferreira et al., 2017). 

mGluR5 expression is increased in PD (Price et al., 2010) and it enhances the 

neurotoxic effects in PD models (Battaglia et al., 2004). mGluR5 blockers 

protect against cell death in these models (Flor et al., 2002). Taking these 

coincidences into account, the current interventions in AD (Salazar et al., 2017) 

may also be relevant in PD and related synucleopathies. 

 

 
8. Concluding remarks 

 

Emerging evidence points to interneuronal transport of insoluble misfolded 

proteins in vitro and in vivo. A full description of the cellular mechanisms playing 

roles in this spreading is missing for most PS. Indeed, our knowledge of the 

process is only partial, and several questions remain unsolved. Most studies 
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have used recombinant proteins to construct misfolded aggregates that do not 

fully mimic the biochemical properties of PS-derived from affected human 

brains. In addition, the relative concentration of the PS in these experiments is 

very high when compared to diseased human brains. Moreover, most spreading 

experiments are performed by inoculating the PS (recombinant or brain-derived) 

(for example tau) in mice overexpressing the native (MAPT) or mutated form 

(P301S-MAPT) to potentiate the aggregation or the seeding properties of the 

PS. Whether all the mechanisms of spreading described are physiologically 

relevant or not must be critically reviewed. Differential seeding properties and 

specific strains must be considered and the components accompanying PS 

derived from humans should be fully dissected to learn about the primary 

microenvironment of the human PS used for seeding. Furthermore, the putative 

role of glial cells, mainly astrocytes, in these processes is largely unknown.  

 

Researchers are interested in determining specific receptors for particular PS, 

and several interactions with particular proteins have been reported. However, 

evidence of the physiological implications of this binding/interaction is only just 

being obtained. For example, a common region of PrPC has been described for 

PrPC, A and -synuclein interactions, thus opening new avenues for drug 

discovery. Eventually, these observations will help to better delineate the 

functions of PrPC in both healthy subjects and brain disease. 
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Figure legends 
 
 
Figure 1: AD. Neurofibrillary tangles (long arrows) and senile plaques (short 

arrows) as seen with silver staining (A). Senile plaques composed of Aβ 

(m0872 antibody) (B) are surrounded by neuronal processes and dystrophic 

neurites containing hyper-phosphorylated tau (C, D). Neuropil threads and 

neurofibrillary tangles immunostained with anti-phosphorylated tau antibodies 

(clone AT8) (E, F). Neurofibrillary tangles are composed of PHF (G) which are 

gold-immunolabelled with anti-p-tau antibodies (H). Dystrophic neurites (arrows) 

surrounding Aβ cores (asterisk) contain, in addition to PHFs, abnormal 

mitochondria and cellular debris in lysosomes (I). Western blotting of sarkosyl-

insoluble fractions in two AD cases shows the typical pattern of tau with upper 

bands of 68, 64 and 60kD, and several truncated forms at the carboxy terminal 

(phosphorylation) site at amino acid Ser422. A-F, paraffin sections. Scale bars: 

A = 40µm; B = 60µm; C and D = 50µm; E and F = 25µm; G-I: electron 

microscopy; G = 1µm; H = 0.2µm; I = 2µm. 

 

Figure 2: DLB. LB and LN staining. Typical LB in a pigmented neuron of the 

substantia nigra pars compacta stained with hematoxylin and eosin (HE) (A). LB 

(B-H) and LN (I-L) containing abnormal -synuclein in nucleus basalis of 

Meynert (B), spinal cord (C), reticular formation (D), hypothalamus (E), dorsal 

thalamus (F), amygdala (G), cerebral cortex (H), reticular formation (I), 

substantia nigra (J), CA3 region of the hippocampus (K) and amygdala (L). 

Paraffin sections. Scale bars: A = 20µm; B-K, bar in K = 6µm; L = 60µm. 
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Figure 3: PrPres (M7216 antibody) deposits in CJD: synaptic pattern in sCJD 

(MM1 type) (A); perivacuolar deposits delineating confluent spongiform change 

in sCJD (MM2 type) cortical (B); perineuronal deposits in sCJD (VV2 type); kuru 

plaques (arrows) as seen with HE (D) and PrP immunohistochemistry (E) in 

sCJD (MV2 type); and globular PrP deposits in atypical sCJD (F). Variant CJD 

(vCJD) having typical florid plaques stained with HE (G) containing a core of 

PrPres (H); cluster plaques and granular deposits in the cerebellum in vCJD (I). 

Paraffin sections. Scale bar = 20µm.  

 

Figure 4: In vitro studies of PS propagation in microfluidic devices. A: 

Schematic representation of the basic microfluidic device used in numerous 

studies. In this model, two reservoirs, green (left) and red (right), are separated 

by a large number of microgrooves (grey) ( 100 of 5-10µm (square section) x 

450-1000µm length). B: Neurons cultured in the microfluidically isolated 

compartment (left) project axons toward the right compartment where different 

cell types (neurons, glial cells and others) can be cultured. CalceinTM staining. 

C-D: Examples of α-synuclein intercellular transport in microfluidic devices. p-α-

synuclein staining (AB5336P antibody; green) in LN-like (arrow in C) and LB-

like (arrows in D) aggregates in neurons growing in the right reservoir (asterisks 

in A) after treatment with α-synuclein fibrils in the left reservoir (# in A). In order 

to avoid passive fluidic transport between reservoirs (left  right), the recipient 

reservoir (right) is cultured with a higher volume of medium than the donor 

reservoir (left). DAPI nuclear staining. E: High power photomicrographs of layer 

V neocortical neurons with relevant p-α-synuclein (Ser129 antibody) 
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accumulation (arrows) after α-synuclein inoculation in postcommissural striatum 

of wild-type mice. Scale bars: B = 250μm; C = 50μm pertains to D; E = 50μm. 

 

Figure 5: DLB showing LB/LN stained with anti-α-synuclein antibody (ab5038) 

(A) and Aβ-containing plaques (m0872 antibody) (B, C). Paraffin sections. 

Scale bars: A = 15μm; B = 40μm; C = 20μm; B and C immunofluorescence and 

confocal microscopy. 

 

Figure 6: Atypical MSA with cortical involvement showing intraneuronal α-

synuclein (ab5038 antibody) deposits (A) together with neurofibrillary tangles 

(AT8-positive) and rare senile plaques (m0872–positive) (B). Double-labelling 

immunofluorescence and confocal microscopy show occasional co-localisation 

of α-synuclein (green) and hyper-phosphorylated tau (AT8) (red) in the same 

neuron (C, D). Paraffin sections. Scale bars: A = 40μm; B = 20μm; C = 40μm; D 

= 80μm. 

 

Figure 7: GSS (P120L) 129V/V mutation in the PRNP gene. Neocortex: 

abnormal granular and globular focal deposits stained with HE (A, arrows) are 

composed of multicentric PrPres (M7216-positive) plaques (B, C). Hyper-

phosphorylated tau (clone AT8) is seen in clusters of abnormal neurites (D, E) 

and in neurofibrillary tangles (F). Double-labelling immunofluorescence and 

confocal microscopy shows clusters of neurites containing hyper-

phosphorylated tau (red) in contact with multicentric PrPres plaques (green) (G). 

Western blotting shows the typical GSS pattern of PrPres (3F4 antibody) 
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including bands of very low molecular weight (< 20 kD) (H). Paraffin sections. 

Scale bars, A and B, bar in B = 60μm; C-F, bar in F = 50μm; G = 50μm.       

 

Figure 8: Double immunofluorescence photomicrographs illustrating HEK293 

cells overexpressing PrPC (green, SAF61 antibody) after incubation with α-

synuclein recombinant protofibrils (red, AB5336P antibody). Arrows in A point to 

relevant co-localisation of the two proteins in particular membrane regions. B-C: 

High magnification of the central region of the cell (dashed box in A) showing 

regions of clear co-localisation (asterisks) intermingled with areas without co-

localisation. This suggests the presence of different interactions between α-

synuclein fibrils and components of plasma membrane. Scale bars; A = 25μm; 

B = 10μm pertains to C. 
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