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Abstract Cerebellar damage and granular and Purkinje cell
loss in sporadic Creutzfeldt–Jakob disease (sCJD) highlight a
critical involvement of the cerebellum during symptomatic
progression of the disease. In this project, global proteomic
alterations in the cerebellum of brain from the two most prev-
alent subtypes (MM1 and VV2) of sCJD were studied. Two-
dimensional gel electrophoresis (2DE) coupled mass spectro-
metric identification revealed 40 proteins in MM1 and 43
proteins in VV2 subtype to be differentially expressed. Of
those, 12 proteins showed common differential expression in
their expression between two subtypes. Differentially
expressed proteins mainly belonged to (i) cell cycle, gene
expression and cell death; (ii) cellular stress response/
oxidative stress (OS) and (iii) signal transduction and synaptic
functions, related molecular functions. We verified 10 differ-
entially expressed proteins at transcriptional and translational
level as well. Interestingly, protein deglycase DJ-1 (an antiox-
idative protein) showed an increase in its messenger RNA

(mRNA) expression in both MM1 and VV2 subtypes but
protein expression only in VV2 subtype in cerebellum of
sCJD patients. Nuclear translocalization of DJ-1 confirmed
its expressional alteration due to OS in sCJD. Downstream
experiments showed the activation of nuclear factor
erythroid-2 related factor 2 (Nrf2)/antioxidative response ele-
ment (ARE) pathway. DJ-1 protein concentration was signif-
icantly increased during the clinical phase in cerebrospinal
fluid of sCJD patients and also at presymptomatic and symp-
tomatic stages in cerebellum of humanized PrP transgenic
mice inoculated with sCJD (MM1 and VV2) brain. These
results suggest the implication of oxidative stress during the
pathophysiology of sCJD.
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Abbreviations
sCJD Sporadic Creutzfeldt–Jakob disease
PrPC Cellular prion protein
PrPSc Scrapie form of prion proteins
2DE Two-dimensional gel electrophoresis
OS Oxidative stress
CSF Cerebrospinal fluid

Introduction

Prion diseases are transmissible spongiform encephalopathies
[1] which can be sporadic, inherited or acquired in their origin
[2]. Sporadic prion diseases account for 85% of all human
prion diseases [3], and sCJD comprises of more than 85–
90% of all sporadic prion diseases [3]. Heterogeneity of
clinic-histopathological features as well as classification of
sCJD is largely dependent on genotype at codon 129 (M/M,
M/Vor V/V) of PRNP gene (encoding prion protein) and type
1 or 2 of scrapie form of prion protein (PrPSc) [2].
Homozygosity at codon of 129 of PRNP gene for methionine
with type 1 PrPSc (MM1 subtype) and valine with type 2 PrPSc

(VV2 subtype) accounts for the two most prevalent subtypes
(67 and 15% respectively) of sCJD [2, 4, 5]. Differential se-
lection of the brain regions for heterogeneous pathological
features by genotype at codon 129 of PRNP demands for
subtype and brain region-specific targeted studies. The cere-
bellum presents pathological features like synaptic degenera-
tion, loss of granular, molecular as well as Purkinje cell layers
due to PrP deposition and gliosis in sCJD patients [6]. This
can lead to dysregulation of important physiological functions
of cerebellum-like voluntary movements of the body [7, 8]
implicating its relation to clinical symptoms like myoclonus
and pyramidal/extrapyramidal signs shown by sCJD patients
[5]. Diverse pathological events occurring in the cerebellum
during the pathophysiology of sCJD are still not completely
explored. Identification and characterization of proteomic al-
terations of sCJD subtypes is important to understand the dis-
ease pathology and development of various clinicopathologi-
cal phenotypes. Proteome-wide studies using high-throughput
differential proteomic approaches can be helpful in mapping
the whole proteomic regulations by identification of
expressionally altered proteins, protein abundance, altered
folds of their expression, post translational modifications and
protein-protein interactions and identification of networks to
understand the underlying cellular processes [9].

So, this study was planned with the objectives to explore
the global proteomic alterations in the cerebellum of the two
most prevalent sCJD (MM1 and VV2) subtypes by using two-
dimensional gel electrophoresis (2DE) and mass spectrome-
try, altered cellular activities, validation of identified altered
proteins at transcriptional and translational level and alteration
of a key player/pathway during the pathophysiology of

disease. Proteomic findings in this study suggested a pro-
nounced implication of oxidative stress (OS) during the path-
ophysiology of sCJD shown by broad spectrum of proteomic
alterations associated with oxidative stress. Oxidative stress is
one of the key features in the pathophysiology of prion dis-
eases [10], but it is under privileged in sCJD. Expression of
Parkinson’s disease-associated protein DJ-1 was also identi-
fied to be altered in sCJD. Further investigations were made to
unveil the expressional alteration of protein DJ-1 during the
pathophysiology of disease and its downstream nuclear factor
erythroid-2 related factor 2 (Nrf2)/antioxidative response ele-
ment (ARE) pathway in sCJD. This study provides the first
comprehensive analysis of differential proteomic alterations in
the cerebellum sCJD (MM1 and VV2) subtypes. These results
imply the role of oxidative stress during the pathophysiology
of sCJD as shown by broad spectrum of regulations associated
with OS.

Materials and Methods

Sample Collection and Processing

Cerebellum tissue samples from postmortem brains of patho-
logically confirmed sCJD patients were received from the
Brain Bank of Institute of Neuropathology HUB-ICO-
IDIBELL and Clinic Hospital-IDIBAPS Biobank according
to the Spanish legislation on the collection and transport of
biological samples and also after the approval from local
ethics committee. Postmortem interval (PMI) was between
1 h and 45 min to 24 h and 30 min which primarily does not
affect the expression of proteins in the tissue [11]. Collection
and processing of brain samples were performed as described
previously [12, 13]. Four samples (each from MM1 and VV2
subtypes along with their age-matched non-demented controls
(NDC)) were used for proteomic study. Mean age of the sam-
ples from age-matched NDC, MM1 and VV2 subtypes along
with their standard deviations were 63 ± 12.19, 70 ± 8.83 and
72 ± 3.74 respectively. All the brain samples used for this
study were from female patients.

Antibodies, Oligonucleotides, Kits and Commercial
Buffers

All primary antibodies, secondary antibodies, oligonucleo-
tides, kits and commercial buffers used in this study are listed
in the supplementary Tables 1, 2, 3 and 4 respectively.

Sample Preparation, Proteinase K Digestion, SDS-PAGE
and Western Blotting

Tissue lysates (10% w/v) of frozen cerebellum tissue samples
were prepared by homogenization in lysis buffer (7 M urea,
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2 M thiourea, 4% CHAPS, 20 μl/ml ampholytes, 10 mg/ml
dithiothreitol (DTT), protease and phosphatase inhibitors).
The protein concentrations in tissue lysates were determined
by using Bradford assay (Bio-Rad). For proteinase K (PK)
digestion, 200 μg of proteins from cerebellum of sCJD brain
(10% w/v) lysates (both MM1 and VV2 subtypes along with
age-matched NDCs) were digested with 2.5 μg/ml of PK for
1 h at 37 °C, and the enzymatic activity was stopped by
heating the samples later at 65 °C for 15 min. Then, samples
were boiled at 95 °C for 5 min after mixing themwith 4× Roti-
Load (ROTH) as sample loading buffer. Samples were cooled
down and were used further for sodium dodecyl sulphate-
polyacrylamide gel electrophoresis (SDS-PAGE) and western
blotting as described previously [14].

Two-Dimensional Gel Electrophoresis, Visualization
and Analysis of Protein Spots

2DE is based on the separation of proteins in two dimensions:
based on isoelectric focusing (IEF) in the first dimension and
molecular weight with SDS-PAGE in the second dimension
and was performed as described previously [15]. Protein spots
on 2DE gels were visualized with silver stain [16] followed by
scanning (CanoScan Scanner) for further analysis of protein
spots. Differential expression of protein spots between differ-
ent groups was analysed in terms of the intensity of each spot
with the help of DECODONDelta2D software and calculated
by using a cut-off value of 1.5-fold change and p value <0.05
in unpaired Student’s t test.

Identification of Protein/Peptide Sequences by Mass
Spectrometry

Protein spots with altered expressionwere excised from silver-
stained 2DE gel and were further processed (destaining of
silver stain, reduction of disulphide bonds, alkylation of free
cysteines, trypsin digestion, peptide extraction and identifica-
tion of sequence of peptides) for identification of sequence of
proteins with Q Exactive hybrid quadrupole/orbitrap mass
spectrometry as described [14]. After identification of proteins
with mass spectrometry, stringent parameters of peptide count
(≥2), maximum peptide threshold (95%) and minimum false
discovery rate (FDR) (0.01%) were further employed during
the qualification of identified proteins to exclude any possibil-
ity of false positive identifiers in the proteomic data for further
analysis.

mRNA Expression of Identified Proteins for Validation

sCJD samples including MM1 (n = 15) and VV2 (n = 10)
subtype from the cerebellum part of brain tissue from patho-
logically confirmed that sCJD cases and their age-matched
NDC (n = 15) were used for analysing the messenger RNA

(mRNA) expressions of selected proteins for validation. Mean
age of the samples from age-matched NDCs, MM1 and VV2
subtypes along with their standard deviations were
62.13 ± 12.06, 65.93 ± 14.55 and 63 ± 12.09 respectively.

RNA Isolation, Purification, Reverse Transcription Reaction
and qPCR

Extraction and purification of RNA, reverse transcription
and qPCR reactions were performed as described previ-
ously [12, 13]. Briefly, extraction and purification of RNA
were performed by using mirVana microRNA (miRNA)
isolation kit (Ambion AM1560) according to the instruc-
tions of the manufacturer. The concentration of extracted
RNA was measured at 260/280 by using Nanodrop 2000
spectrophotometer (ThermoScientific, USA). The reverse
transcription reaction was performed with the High-
Capacity cDNA Archive kit (Applied Biosystems) accord-
ing to the instructions of the manufacturer by using the
C1000 Touch Thermal Cycler (Bio-Rad).

Duplicate reactions of each cDNA sample were used for
performing PCR reaction in 384-well optical plates (Roche)
by using 20× TaqMan Gene Expression Assays (Applied
Biosystems) and 2× TaqMan Universal PCR Master Mix
(Applied Biosystems). β-Glucuronidase (GUSβ) was used
as an internal control for normalization. PCR reaction was
carried out in LightCycler 480 II (Roche) with the following
settings: step 1 50 °C for 2 min, step 2 denaturation at 95 °C
for 10 min followed by 40 cycles for annealing, step 3 95 °C
for 15 s and step 4 60 °C for 1 min. TaqMan PCR data were
retrieved using the Sequence Detector Software (SDS version
2.1, Roche). Subsequently, cycle threshold (CT) data for each
sample were analysed with the double delta CT (ΔΔCT)
method.

CJD MM1 and VV2 Transgenic Mice

PrP knockout transgenic mice that expressed human cellular
prion protein (PrPC) having either methionine (129Met-
Tg340) or valine (129Val-Tg361) at codon 129 were used to
develop humanized models of CJD as previously described
[17–20]. Both 129Met-Tg340 and 129Val-Tg361 mouse lines
were homozygous for human PRNP gene and showed similar
brain expression levels of PrPC (around 4-fold the expression
level in human brain) on a mouse PrP null background. These
two mouse lines were used for developing MM and VV mice
models of sCJD separately by intracranial inoculation of 10%
(w/v) homogenate from either sCJD MM1 or sCJD VV2.
Collection of brain samples of the inoculated mice along with
their age-matched healthy controls was done post inoculation
at days 120, 160 and 183 for preclinical, clinical and late
clinical stages for MM transgenic mice and at days 120, 160
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and 180 for early clinical, clinical and late clinical to terminal
stages for VV transgenic mice respectively.

Co-Immunofluorescence

Formic acid-treated frozen tissue samples from the cerebellum
region of brain from CJD (MM1) and age-matched NDC
cases were paraffin embedded and fixed with paraformalde-
hyde. Slides with 4-μm sections were washed with PBS, and
antigenic site on tissue sections was exposed by perme-
abilization buffer (PBS + 0.2% Triton X-100) for 10 min.
Non-specific proteins were blocked by using 5% bovine se-
rum albumin in PBS for 2 h followed by overnight incubation
with anti-DJ-1 (1:100) primary antibody (pAb) diluted in 5%
serumwith PBS for overnight at 4 °C. Horseradish peroxidase
(HRP)-labelled anti-goat secondary antibody was used for 2 h,
and nuclei were stained with DAPI (0.1 μg/ml of PBS) for
10 min. Slides were visualized using a fluorescence micro-
scope. ImageJ (WCIF plugin) software was used for analysing
co-localization pattern of individual images.

Electrochemiluminescence-Based Enzyme-Linked
Immunosorbent Assay

Electrochemiluminescence (ECL)-based ELISA was per-
formed to analyse the expression of DJ-1 in cerebrospinal
fluid (CSF) samples from CJD patients essentially as de-
scribed before [21]. Briefly, ECL-ELISA was performed by
overnight coating of carbon ink electrode-embedded microti-
tre plate with capture antibody at 4 °C. All the coated wells
were blocked with 1% BSA for 1 h followed by loading of
CSF samples (already diluted with 1% BSA = 1:4) in dupli-
cates for 1 h. SULFO-TAG-labelled anti-DJ-1 antibody
(0.1 μg/ml) was used as a detection antibody for 1 h followed
by application of 2× read buffer. Light signal was detected
with the help of Meso Scale Discovery Sector 6000 Imager
at 620 nm.

Statistical Analysis

The data were analysed with GraphPad Prism 5 (San Diego,
USA). Experimental errors are shown as SEM. Statistical sig-
nificance was calculated by non-parametric unpaired
Student’s t test and non-parametric one-way ANOVA follow-
ed by Turkey’s multiple comparison test. Results were consid-
ered significant when *p < 0.05, **p < 0.01 and ***p < 0.001.

Ethics Statement

Human samples used in this study were obtained from Brain
Bank and Biobank of Hospital Clinic-IDIBAPS of the
Institute of Neuropathology, HUB-ICO-IDIBELL, Spain, af-
ter accomplishing all the rules and laws of Spanish legislation

(Ley de la Investigación Biomédica 2013 and Real
DecretoBiobancos, 2014) and also with agreement of the local
ethics committees. Mice experiments were conducted in agree-
ment with the ethical regulations of Regierungspräsidium
Tübingen (Regional Council) Experimental No. FLI 231/07
file reference number 35/9185.81-2 and also by following the
rules and laws of institutional and French national guidelines,
in conjuction with the European Community Council Directive
86/609/EEC. The experimental protocol was approved by the
ethics committee of INRAToulouse/ENVT.

Results

Identification of Differentially Expressed Protein Spots
by Delta2D Software

A total of 688 protein spots on all 2DE gels from four inde-
pendent experiments of MM1 and VV2 subtypes and age-
matched NDCs were detected and analysed for their differen-
tial expression by using 100% spot matching approach in
Delta2D DECODON software. Densitometric analysis re-
vealed 25 significantly differentially altered protein spots
(Fig. 1a) which were selected for further identification by
using mass spectrometry.

Identification of Differentially Expressed Proteins

Identification with Q Exactive hybrid quadrupole/orbitrap
mass spectrometry revealed 366 proteins in both subtypes.
Screening by matching the pI value and molecular weight of
each identified protein to its corresponding spot unveiled 83
expressionally altered proteins in both subtypes. Forty pro-
teins in MM1 and 43 proteins in VV2 subtype were identified

�Fig. 1 Identification of differentially regulated protein spots by Delta2D
software and differentially regulated proteins by mass spectrometry in
cerebellum of MM1 and VV2 subtypes of sCJD. a Map of silver-
stained 2DE gel showing 25 differentially regulated protein spots
identified with the help of Delta2D software after warping of all protein
spots on all gels from both MM1 and VV2 subtypes of sCJD from
cerebellum of brain is shown along with their pI values and molecular
weights. These spots had more than 1.5-fold change and p value <0.05
calculated by unpaired Student’s t test. bNumber of proteins identified by
Q Exactive hybrid quadrupole/orbitrap mass spectrometry in MM1 and
VV2 subtypes of sCJD. Mass spectrometry of 25 differentially regulated
protein spots revealed 366 regulated proteins in cerebellum of MM1 and
VV2 subtypes of sCJD. Only 83 proteins of total identified proteins with
minimal peptide count of 2 qualified further screening criteria of pI and
molecular weight match to that of their corresponding spots. Forty and 43
proteins were regulated inMM1 and VV2 subtype each respectively with
12 proteins common between two subtypes. c Expression of 18 proteins
was increased, and 22 were decreased in MM1 subtype, whereas
expression of 25 proteins was increased, and 18 were decreased in VV2
subtype of sCJD cases. Upregulated proteins are shown by red and
downregulated proteins by yellow bars
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to be differentially expressed with 12 of those common be-
tween the two subtypes (Fig. 1b). In MM1 subtype, 18 pro-
teins showed an increased expression and 22 showed a de-
creased expression, whereas in VV2 subtype, 25 proteins
showed an increased expression and 18 showed a decreased
expression as compared to age-matched NDCs (Fig. 1c).

Further, sCJD-related proteins in both subtypes showed al-
most similar trend of expressional alteration (either increased or
decreased) between MM1 and VV2 subtypes. Twelve proteins
were identified commonly in both (MM1 and VV2) subtypes
with seven of them showing decrease in their expression in both
subtypes and were including guanine nucleotide-binding protein
G(o) subunit alpha, protein phosphatase methylesterase 1,
dihydrolipoyllysine residue succinyltransferase component of
2-oxoglutarate dehydrogenase complex, TARDNA-binding pro-
tein 43, creatine kinaseB-type, actin, cytoplasmic 1 and succinyl-
CoA ligase [ADP-forming] subunit beta. Five proteins showed
subtype-specific expressional alteration. Expression of syntaxin-
binding protein 1 was increased in MM1 subtype but decreased
in VV2 as compared to their age-matched NDCs. Expression of
dihydrolipoyl dehydrogenase, heterogeneous nuclear ribonucleo-
proteins A2/B1, ELAV-like protein 4, heterogeneous nuclear ri-
bonucleoprotein A3 and heterogeneous nuclear ribonucleopro-
tein A1 was increased in VV2 subtype in comparison to MM1
and vice versa in MM1 subtype in comparison to VV2.

All differentially expressed identified proteins from both
sCJD subtypes were grouped on the basis of their molecular
functions into eight groups (Table 1) which include (i) cell
cycle, gene expression and cell death; (ii) cellular stress
response/oxidative stress; (iii) signal transduction and synap-
tic functions, (iv) carbohydrate metabolism; (v) energymetab-
olism; (vi) cell growth, proliferation and differentiation and
(vii) intracellular transport and cytoskeleton-related functions.
A few proteins which could not be classified into any of the
abovementioned groups were classified under other functions.

Regulation of Identified Cellular Molecular Mechanisms

The functional classification of all identified proteins in sCJD
(MM1 and VV2) subtypes revealed overall alteration of nearly
all cellular pathways during the course of the disease (Fig. 2a, b).
Cell cycle, gene expression and cell death-related cellular mo-
lecular functions were 24% in MM1 and 27% in VV2 subtype,
cellular stress response/oxidative stress-related cellular functions
22% in MM1 and 25% in VV2 subtype and signal transduction
and synaptic functions 15% in MM1 and 18% in VV2 subtype
altered based on the number of expressionally altered proteins to
the corresponding molecular function and were also the three
most altered cellular functions in both subtypes.

Most of the proteins involved in cellular stress response/
oxidative stress-related functions in both sCJD subtypes
were related to oxidative stress. Similarly, other molecular
functions including carbohydrate metabolism were 11% in

MM1 and 2% in VV2 subtype, energy metabolism 9% in
MM1 and 7% in VV2 subtype, cell growth, proliferation
and differentiation-related cellular molecular functions 6%
in MM1 and 5% in VV2 subtype and intracellular transport
and cytoskeleton-related molecular functions 9% in MM1
and 7% in VV2 subtype altered. Of proteins from MM1
and VV2 subtypes, 4 and 9% respectively were not able to
be assigned any function, so they were subclassified under
‘other’ functions.

Functions of identified regulated proteins in both subtypes
are mentioned as supporting information in file 3.

Validation of MS/MS Data

Eleven proteins from whole proteomic data set identified
by MS/MS were selected, based on low and high peptide
counts, sequence coverage and fold change, both down-
regulated as well as upregulated ones, to validate their
expressional alteration at mRNA level (Fig. 3a) and at
protein level (Fig. 3b, c) in order to minimize any per-
plexity in the proteomic data. Expressional alteration of
corresponding protein spots selected for validation of pro-
teomic findings after mass spectrometry is shown in sup-
plementary Fig. 3.

Validation at mRNA Level by RT-qPCR

During the analysis of mRNA expression profiling
(Fig. 3a), pyruvate kinase M2 showed no alteration in
its mRNA expression in MM1 but a significant increase
in VV2 subtype. The mRNA expression for septin-6 was
significantly increased in both subtypes (MM1 and VV2)
and for TAR DNA-binding protein 43 (TDBP) only in
MM1 but unaltered in VV2 subtype. A significant de-
crease in mRNA expression of creatine kinase B type
(CKB) was observed only in MM1 but no alteration in
VV2 subtype. Succinyl-CoA ligase [ADP-forming] sub-
unit beta (SUCLA-2) and L-lactate dehydrogenase B
(LDHB) showed unaltered mRNA expression in both sub-
types (MM1 and VV2). Transaldolase (TALDO-1) showed
a significant increase in its mRNA expression in both
subtypes (MM1 and VV2), and peroxiredoxin-6 (PRDX-
6) showed a significant increase in its mRNA expression
only in VV2 subtype. Whereas, heat shock protein beta-1
(HSPB-1) and protein DJ-1 (PARK-7) showed a signifi-
cant increase at mRNA level in both subtypes (MM1
and VV2). The mRNA expression of superoxide dismut-
ase [Cu–Zn] (SOD-1) was also found significantly in-
c r e a s e d i n b o t h s u b t y p e s (MM1 a n d VV2 )
(Supplementary Fig. 2C). Altogether, these results
showed that mRNA expression of mostly validated pro-
teins showed similar trend to their corresponding regulat-
ed protein spots except unchanged for LDHB, SUCLA-2
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and TDP (VV2) while increased for PKM-2 (in VV2) and
TDP (in MM1).

Validation at Protein Level by Western Blot

Already validated proteins at their mRNA level were further
validated for their expressional alteration at protein level by
using western blot (Fig. 3b, c). Densitometry analysis revealed
a significant decrease of protein expression for PKM2, TDP43
and SUCL-2 only in MM1 subtype and for CKB in both
(MM1 and VV2) subtypes. Although PKM2 and TDBP
showed the trend of a decrease in their protein expression in
VV2 subtype, yet results were not statistically significant. A
significant increase of protein expression was found for LDH-
B, HSP beta 1 and Prdx6 in both subtypes (MM1 and VV2)
and for SEPT6 and DJ-1 only in VV2 subtype. TALDO1 did
not show any detectable alteration in western blotting. SOD1
also showed a significant increase in its protein expression in
both subtypes (MM1 and VV2) (Supplementary Fig. 2C).

In summary, these results show that protein expression of
all the validated proteins except TALDO1 showed a similar
trend of alteration to their corresponding regulated protein
spots identified later by MS/MS.

Identification of DJ-1 During the Pathophysiology
of sCJD

Proteins having highest fold changes, peptide counts and se-
quence coverages in our data set belonged mainly to either
metabolic pathways or oxidative stress-related functions.
Amongst many oxidative stress-related identified proteins,
DJ-1 had the highest peptide count and the second heighest
sequence coverage indicating a very low false discovery rate
(FDR) and very high confidence of its true identifaction in
sCJD. DJ-1 is known for its protective role against oxidative
stress and as a sensor of oxidative stress. Therefore, further

experiments were performed to elucidate the implication of
DJ-1 during the pathophysiology of the disease in sCJD.

Expressional Alteration of DJ-1 in Cerebellum of sCJD

Immunofluorescent experiments were performed to highlight
if expressional alteration of DJ-1 is due to oxidative stress
specifically in cerebellum of sCJD. DJ-1 is known to
translocalize to the mitochondrial matrix [22] and nucleus
[23] during oxidative stress. Results of immunofluorescent
experiment showed a significant increase in the expression
of DJ-1 in the Purkinje cell layer as well as in granular cell
layer in cerebellum of sCJD (MM1) sections as compared to
age-matched NDCs. Further, DJ-1 expression was increased
in the nuclear region of granular cell layer of cerebellum of
sCJD (MM1) sections as compared to age-matched NDCs
showing enhanced nuclear translocalization (Fig. 4a). These
results suggested that expressional alteration of DJ-1 in sCJD
could be linked to oxidative stress.

Fig. 2 Identification of regulated molecular functions in MM1 and VV2
subtypes based on classification of identified proteins into different
functional groups: All identified proteins were further classified into
different functional groups based on their molecular functions showing

the % regulation of different molecular functions in a MM1 and b VV2
subtype. The molecular functions were assigned as in UniProt protein
database

�Fig. 3 Validation of selected proteins at transcriptional and translational
levels: a RT-PCR analysis to validate mRNA expression of PKM2,
SEPT-6, TDBP, CKB, SUCLA-2, LDHB, TALDO1, HSPB1, Prdx6
and PARK7 in control (n = 14 ± 1), sCJD MM1 (n = 14 ± 1) and sCJD
VV2 (n = 9 ± 1) samples is shown. Values are normalized using GUS-b as
internal controls. The statistical significance was calculated with one-way
ANOVA followed by Turkey post test to compare all pairs of columns.
Data are represented as the mean SEM. *p < 0.05, **p < 0.005,
***p < 0.001. b Western blot analysis to validate protein expression of
PKM2, SEPT6, TDP43, CKB, SUCL-2, LDH-B, TALDO1, HSPB1,
Prdx6 and DJ-1 in control (n = 4), sCJD MM1 (n = 4) and sCJD VV2
(n = 4) samples is shown. GAPDH is used as a loading control. c
Densitometeric analysis of PKM2, SEPT6, TDP43, CKB, SUCL-2,
LDH-B, TALDO1, HSPB1, Prdx6 and DJ-1 with control (n = 4), sCJD
MM1 (n = 4) and sCJD VV2 (n = 4) samples is shown. The statistical
significance was calculated with one-way ANOVA followed by Turkey
post test to compare all pairs of columns. Data are represented as themean
SEM. *p < 0.05, **p < 0.005, ***p < 0.001
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Regulation of Nrf2/Antioxidative Response Element Pathway
in Cerebellum of sCJD (MM1 and VV2) Subtypes

One proposed cellular mechanism of action of DJ-1 in regu-
lating the oxidative stress is by regulation of Nrf2 signalling
pathway [24]. Nrf2 is a transcription factor and involved in
regulating the expression of antioxidative proteins for protec-
tion against oxidative stress implied by ROS or inflammation
[25]. Nrf2 showed a significant increase in its mRNA expres-
sion both inMM1 and VV2 subtypes of sCJD cases indicating
high cellular demand for Nrf2. Under normal physiological
conditions, Nrf2 is continuously ubiquitinated in the cyto-
plasm for degradation by proteasomes as its regulatory mech-
anism.We observed a significant decrease in the expression of

ubiquitinated Nrf2 in MM1 and VV2 subtypes of sCJD as
compared to age-matched NDCs (Fig. 4b). After release of
Nrf2 from Keap1, it is phosphorylated. An increase in the
expression of phosphorylated Nrf2 was observed in both
MM1 and VV2 subtypes of sCJD as compared to age-
matched NDCs, but its expression was significantly increased
only in VV2 subtype (Fig. 4b. Additionally, P-Nrf2/Nrf2 ratio
was also found significantly increased in both MM1 and VV2
subtypes of sCJD as comapared to age-matched NDCs
(Fig. 4b).

After translocation into the nucleus, phosphorylated Nrf2 is
reported to induce the transcription of ARE (NADPH quinone
peroxidase, heme oxygenase 1 (HMOX-1), glutathione S-
transferase (GST), peroxiredoxins (PRDX), glutathione cyste-
ine ligases (GCLs) and glutathione peroxidase) in the nucleus
[25, 26]. We examined the expressional profile of some
selective members of ARE family including HMOX-1,
PRDX3 and GSTM2 in MM1 and VV2 cases of sCJD
(Fig. 4c). HO-1 and PRDX3 showed a significant increase
in mRNA expression only in VV2 subtype, while GSTM2
showed a significant increase in mRNA expression in
both MM1 and VV2 subtypes as compared to their
healthy NDCs, whereas at translational level, HO-1
showed a significant increase in VV2 subtype and
PRDX3 showed a significant increase in both MM1 and
VV2 subtypes of sCJD. GSTM2 was identified by MS/
MS in protein spot 742 which was found significantly
increased in VV2 subtype of sCJD samples indicating an
increase in GSTM2 protein expression also in VV2 sub-
type of sCJD samples. These results indicate the activa-
tion of ARE machinery in cerebellum of sCJD (MM1 and
VV2).

Expressional Alteration of DJ-1 During the Clinical Phase
in sCJD Patients

CSF reflects the pathophysiological events taking place inside
the brain. To explore the expressional alteration of DJ-1 dur-
ing the clinical phase in human sCJD cases, protein concen-
tration of DJ-1 was examined in clinical CSF samples of sCJD
(MM1 and VV2) patients with ECL-based ELISA. Protein
concentration of DJ-1 was found to be significantly increased
in both sCJD (MM1 and VV2) subtype cases as compared to
age-matched NDC (Fig. 5) indicating the secretion of DJ-1
from brain tissue into CSF during the clinical phase of sCJD
(MM1 and VV2) subtypes.

Expressional Alteration of DJ-1 During the Progression
of the Disease in CJD

In order to evaluate the expressional alteration of DJ-1 during
the progression of disease in CJD, transgenic mice inoculated
with sCJD (MM1 and VV2) brain tissue were used.

�Fig. 4 Expressional alteration of DJ-1 in cerebellum of sCJD (MM1)
and further implication of DJ-1 in mediating Nrf2/ARE pathway as its
downstream regulatory effects: DJ-1 is reported to translocalize to
nucleus under the effect of oxidative stress. a Immunoflourescence
experiment results showed an increase in DJ-1 expression and its
oxidative stress-mediated nuclear translocalization in granular cell layer
of cerebellum of human sCJD MM1 as compared to age-matched NDCs
using anti DJ-1 primary antibody which confirms that expressional
alteration of DJ-1 is due to oxidative stress. b Nrf2 is a transcriptional
regulator which is reported to be regulated by DJ-1 during oxidative
stress. After its activation by DJ-1, Nrf2 is phosphorylated which is
then translocalized to nucleus to activate the antioxidative response
elements (AREs). Expressional analysis of Nrf2 revealed an increased
mRNA expression of NFE2L2 in cerebellum of both MM1 (n = 15)
and VV2 (n = 10) as compared to age-matched NDC (n = 15) using
qPCR. Values are normalized using GUS-b as internal control. Western
blotting of samples fromMM1 (n = 4) and VV2 (n = 4) subtypes of sCJD
along with age-matched NDC (n = 4) from cerebellumwith anti-Nrf2 and
anti-phospho-Nrf2 antibody is also shown. GAPDH was used as a
loading control. Densitometeric analysis of western blot results showed
a significant decrease in ubiquinated Nrf2 expression in both MM1 and
VV2 subtypes and increased expression of phospho-Nrf2 in VV2 subtype
of sCJD. Additionally, P-Nrf2/Nrf2 ratio was also calculated and found
significantly increased in both MM1 and VV2 subtypes of sCJD as
compared to age-matched NDCs. The statistical significance was
calculated with one-way ANOVA followed by Turkey post test to
compare all pairs of columns. Data are represented as the mean SEM.
*p < 0.05, **p < 0.005, ***p < 0.001. Phospho-Nrf2 (the activated form
of Nrf2) activates hemeoxygenase 1 (HO-1), thioredoxin-depedent
peroxide reductase (PRDX3) and glutathione S-transferase Mu 2
(GSTM2) in the nucleus which are the members of AREs. c mRNA
expressions of HMOX-1, PRDX3 and GSTM2 in MM1 (n = 15), VV2
(n = 10) and age-matched NDC (n = 10) was detected by using qPCR.
Values are normalized using GUS-b as internal control. Further protein
expression of HO-1 and PRDX3 estimated with western blotting of
samples from MM1 (n = 4) and VV2 (n = 4) subtypes of sCJD and
age-matched NDC (n = 4) from cerebellum using anti HO-1 and anti
PRDX3 antibodies is also shown along with their densitometeric
analysis. GAPDH was used as a loading control. GSTM2 was
identified by MS/MS in protein spot 742 whose spot intensity was
found significantly increased in VV2 subtype of sCJD samples
indicating an increase in GSTM2 protein expression in VV2 subtype of
sCJD samples. The statistical significance was calculated with one-way
ANOVA followed by Turkey post test to compare all pairs of columns.
Data are represented as the mean SEM. *p < 0.05, **p < 0.005,
***p < 0.001
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Immunofluorescent experiments with cerebellum of sCJD
(MM1)-inoculated transgenic mice along with their age-
matched NDC showed a significant increase in the expression
of DJ-1 in the cells of Purkinje cell layer as well as in granular
cell layer in cerebellum sections of CJD (MM1) mice as com-
pared to controls. Furthermore, DJ-1 expressionwas increased
in the nuclear region of granular cell layer of cerebellum sec-
tions of CJD (MM1) mice showing enhanced nuclear
translocalization as compared to healthy controls (Fig. 6a).
These results suggested that expressional alteration of DJ-1
in cerebellum of sCJD (MM1)-inoculated transgenic mice
could be linked to oxidative stress like in human sCJD cases
as described previously in BExpressional Alteration of DJ-1 in
Cerebellum of sCJD^ section.

Expressional Alteration of DJ-1 at Presymptomatic
and Symptomatic Stages in CJD Mice

Western blot analysis showed a significant increase in the
expression of DJ-1 in the cerebellum of sCJD MM1 mice at
presymptomatic stage as compared to age-matched healthy
controls. DJ-1 expression was decreased during early symp-
tomatic stage but again started to rise significantly during late
symptomatic stage inMM1 subtype as compared to its expres-
sion at presymptomatic stage (Fig. 6b). But expression of DJ-
1 remained higher during the course of the disease right from
the beginning of disease progression as compared to the cor-
responding healthy controls. Similarly, DJ-1 expression in the
cerebellum of sCJD VV2 mice was also significantly in-
creased during early symptomatic stage as compared to
healthy controls, whereas DJ-1 expression was decreased dur-
ing both symptomatic and late symptomatic stages as com-
pared to its expression at presymptomatic stage (Fig. 6b). But
expression of DJ-1 remained higher throughout the progres-
sion of disease as compared to corresponding healthy controls.

Discussion

In order to explore the contributing pathophysiological fac-
tors, identification of proteome-wide alterations during the
course of disease can be helpful in adding more information
to the existing knowledge. Results in this study showed pro-
teomic differences between the two subtypes (MM1 and
VV2) highlighting that the origin of pathological features be-
tween two subtypes is PrP codon 129 genotype dependent.
Subtype and regional-dependent differential alterations of
spongiosis, neuroinflammation, gliosis, synaptic damage and
intracellular vesicular transport between MM1 and VV2 sub-
types in the brains of sCJD patients have been already report-
ed which highlight that PrP codon-129 genotype could be
involved also in the differential selection of the region of brain
for the differential pathological ailments to occur [27–32]. So,
differential PrPSc aggregates, deposition, neuronal as well as
synaptic loss in the cerebellum of VV2 subtype [2, 33] could
be responsible for severe pathological outcomes and molecu-
lar alterations in VV2 subtype than in MM1 subtype in this
study. On the contrary, when compared with the frontal cortex
region of sCJD patients, molecular functions like signal trans-
duction and neuronal activity, cell structure and motility and
protein metabolism appeared to be more altered in MM1 sub-
type as compared to VV2 subtype [4], supporting the differ-
ential pathological features in different regions of the brain
determined by PrP codon 129 genotype.

Proteomic findings in this study indicated that nearly all the
cellular molecular functions are impaired during the patho-
physiology of the disease. A diverse number of mechanisms
and proteins regulating gene expression were also identified
which could be involved in dysregulating gene expression in
the pathophysiology of sCJD. Cell cycle and gene expression-
related functions were the top most altered molecular func-
tions in both subtypes (24% in MM1 and 27% in VV2) in this
study. Protein expression could be altered due to regulation of
pre-mRNA processing involving its packing into heteroge-
neous nuclear RNA (hnRNA), half-life and transport to cyto-
plasm. Dysregulations in RNA processing and, in particular,
the aberrant regulation of RBPs have been reported to play a
basic role in the pathogenesis of neurodegenerative diseases
[27, 34–39]. Proteins including heterogeneous nuclear ribonu-
cleoproteins A2/B1, heterogeneous nuclear ribonucleoprotein
A1, heterogeneous nuclear ribonucleoprotein A3, SAP
domain-containing ribonucleoprotein, ELAV-like protein 4
and TAR DNA-binding protein 43 identified to be altered in
this study could be responsible for proteomic alterations by
regulating mRNA processing and expression [40]. hnRNP
have been implicated in several neurodegenerative diseases,
mitochondrial dynamics and impaired cognition in
Alzheimer’s disease (AD) [41–43]. ELAV proteins have been
implicated in the regulation of HO-1 expression at both
mRNA and protein levels [44]. Proteins including

Fig. 5 Expressional alteration of DJ-1 during the clinical phase of the
disease in CSF samples of sCJD (MM1 and VV2) patients: Analysis of
DJ-1 expression with the help of highly sensitive ECL-based ELISA in
clinical CSF samples of healthy control (n = 18), sCJDMM1 (n = 18) and
sCJD VV2 (n = 18) is shown. The statistical significance was calculated
with one-way ANOVA followed by Turkey post test to compare all pairs
of columns. *p < 0.05, **p < 0.005, ***p < 0.001
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phenylalanine-tRNA ligase beta subunit and elongation factor
1-alpha [45] could influence protein expression at translation-
al level of protein synthesis. MicroRNA regulations in mice
models of prion diseases [46, 47] are also well established.
Identification of Staphylococcal nuclease domain-containing
protein 1 (SND1) which regulates the activity of RISC

complex [48] could be responsible for the regulation of
miRNA expressions in sCJD hence altering the protein ex-
pression at post-translational level. Identification of alterations
of the abovementioned proteins strengthened the idea of the
activation of gene expression regulatory cellular activities at
different levels which could also be the reason for the

Fig. 6 Expressional alteration of DJ-1 during the progression of the
disease in sCJD MM1 and VV2 transgenic mice: Double transgenic
mice Tg340 knockout for PrP and expressing 4-fold expression of
humanized PrP with either methionine or valine at codon 129 of PrP
were inoculated with 10% brain homogenate from sCJD patient either
with MM1 or VV2 subtype of sCJD. Mice were sacrificed, and brain
samples were collected at 120, 160 and 183 days post inoculation (dpi)
for presymptomatic, early symptomatic and late symptomatic stages for
sCJD (MM1)-inoculated transgenic mice and at 120, 160 and 180 dpi for
early symptomatic, symptomatic and late symptomatic to terminal stages
respectively for sCJD (VV2)-inoculated transgenic mice. a
Immunoflourescence experiment results showed an increase in DJ-1
expression and its oxidative stress-mediated nuclear translocalization in

granular cell layer of cerebellum of sCJD (MM1)-inoculated transgenic
mice at 183 dpi as compared to age-matched controls using anti DJ-1
primary antibody which confirms the expressional alteration of DJ-1 due
to oxidative stress in sCJD (MM1)-inoculated transgenic mice as well. b
DJ-1 expression in cerebellum of sCJD-MM1 transgenic mice with
controls (n = 3) and MM1 (n = 3) for each time point and sCJD-VV2
transgenic mice with controls (n = 4) and VV2 (n = 4) for each time point
was observed with western blot using DJ-1 antibody and densitometry
analysis from three (for sCJD-MM1 transgenic mice) and from four (for
sCJD-VV2 transgenic mice) independent (±SD) western blotting
experiments is shown. GAPDH was used as a loading control. The
statistical significance was calculated with two-way ANOVA. Data are
represented as the mean SEM. *p < 0.05, **p < 0.005, ***p < 0.001
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unchanged mRNA expressions for LDHB, SUCLA-2 and
TDP (VV2) and increased mRNA expression for PKM-2 (in
VV2) and TDP (in MM1).

Cellular stress response/oxidative stress-related functions
were the second most regulated molecular functions in both
subtypes (22% inMM1 and 25% in VV2) and included main-
ly dihydrolipoyl dehydrogenase which has a role in ROS pro-
duction [49], AD and Parkinson’s disease (PD) [50, 51].
Moreover, variations in the DLD gene have been linked to
AD [52, 53]. Glutamine synthetase detoxifies brain ammonia
in astrocytes and is increased in the CSF of AD patients [54]
and is implicated in the pathogenesis of PD as well [55].
N(G)-dimethylarginine dimethylaminohydrolase 1 modulates
NO production and cell proliferation [56] and reported to be
increased in the CSF of sCJD as well as in AD patients
[57–59]; isocitrate dehydrogenase [NAD] subunit alpha
(IDH1) produces NADPH during OS [60]; protein NDRG4
has an implication in cognition [61] and protection against
neuronal cell death implied by ischemic stress [32], and su-
peroxide dismutase 1 protects the cells against ROS. All of
these proteins were identified to be altered in MM1 subtype.
X-ray repair cross-complementing protein 6 repairs the dam-
aged DNA caused by ROS [62], and its genetic variations
have been associated with the development of OS and PD
[63]; heat shock protein 75 kDa stabilizes the mitochondrial
function under stress conditions, and electron transfer flavo-
protein subunit alpha is responsible for mitochondrial energy
metabolism under stress and is reported to be decreased in the
brains of PINK1 (KO)mouse brains [64], were identified to be
altered in VV2 subtype. Whereas dehydrogenase/reductase
SDR family member 11 and glutathione S-transferase Mu 2
detoxify ROS are also implicated in PD [65], persulphide
dioxygenase ETHE1 which catalyses the oxidation of H2S
in mitochondria [66, 67], a reactive sulphur specie which is
toxic for the cell; dihydropteridine reductase implicates its
reducing nature to perform oxidoreductive functions; heat
shock protein beta-1 prevents the misfolding of proteins in
response to oxidative stress [68]; peroxiredoxin-6,
thioredoxin-dependent peroxide reductase and protein DJ-1
are antioxidative in their function with later having a role in
the early onset of familial form of PD [69], [70], [71] that were
also identified to be altered in VV2 subtype.

Signal transduction and synaptic functions were the
third most altered molecular functions in both subtypes
(15% in MM1 and 18% in VV2) in this study and mainly
comprised of complement C3; a member of complement
system has a role in the initial trapping of prions in
lymphoreticular organs immediately after infection [72]
as well as in the exacerbation of disease pathology of
chronic wasting disease in mouse [29]; protein kinase C
delta-binding protein is implicated in the quick progres-
sion of motor symptoms in scrapie mouse [73]; guanine
nucleotide-binding protein G(o) subunit alpha has a role

in altered exocytosis in cerebral cortex of sCJD patients
[74] [4]; phosphatase methylesterase 1 is implicated in
Aβ production and tau phosphorylation; precipitating
AD pathology [30] and syntaxin binding protein 1 which
is implicated in fusion of synaptic vesicles [75] were iden-
tified commonly in both subtypes (MM1 and VV2).
Hypoxanthine-guanine phosphoribosyl transferase and
voltage-dependent anion-selective channel protein 2 have
been implicated in PINK1 (KO) mouse brain [76], where-
as transforming protein RhoA is reported to have a role in
polymerization of actin filaments in sCJD patients [19],
and phosphatidylinositol transfer protein alpha has a role
in transportation of phosphoinositoles in different intracel-
lular compartments for both trafficking and signalling pur-
pose [77] identified to be altered in VV2 subtype.

Proteins having highest fold changes, peptide counts and
sequence coverages in proteomic data set belonged mainly to
either metabolic pathways or oxidative stress-related func-
tions. Oxidative stress-related cellular activities were one of
the major altered cellular activities based on proteomic find-
ings in both subtypes (MM1 andVV2). Oxidative stress is one
of the major contributors in various neurodegenerative dis-
eases, but it is less previledged during the pathophysiology
of the sCJD so far.

Implication of Oxidative Stress in sCJD
(as One of the Major Regulated Cellular Mechanisms)

Oxidative stress refers to an imbalance of the equilibrium
between the levels of ROS and cellular potential to detoxify
these reactive intermediates, leading to perilous condition con-
tributing to cellular and molecular damage [78]. This study
revealed the presence of reactive sulphur species along with
ROS and RNSwhich could lead to multiple toxic mechanisms
in the brain. OS in a cell can deregulate many of cellular
functions like deregulation of metabolic pathways [79], im-
pairment of energy-producing machinery of cell [80], signal
transduction [81], activation of apoptotic pathways [82] and
misfolding of proteins as well as aggregation of proteins [83,
84]. Elevated oxidation, glycoxidation, lipoxidation and
nitrative protein damage only in cerebral cortex in sporadic
CJD and prion-inoculated syrian hamster have been reported
[85, 86] as well. So, OS could be assumed as one of the
important contributors to the rapid progression of disease pa-
thology in sCJD.

Role of DJ-1 in sCJD During OS

Protein deglycase (DJ-1) was one of the proteins found
altered in this proteomic data set. DJ-1 was found signif-
icantly increased at mRNA level in both MM1 and VV2
subtypes, whereas only in VV2 subtype at protein level.
DJ-1 is known as a sensor of OS and for its role in
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protection against OS. Mutations in the DJ-1 gene have
been associated with autosomal recessive familial PD
[80]. DJ-1 protects the cells against OS by self-oxidation
to quench ROS [17, 53, 64], and excessively oxidized DJ-
1 has been reported in terminal brains of PD and AD
patients [34]. At the same time, DJ-1 is not found in
Lewy bodies [87] but shows co-localization with Tau in
neurofibrillary tangles in brains of AD patients, suggest-
ing the role of DJ-1 in AD as well [63, 74]. Baulac et al.
have reported increased levels of DJ-1 in AD brains as well
[71]. This is the first time that DJ-1 has been identified to be
altered in the brain of sCJD patients. Its conserved sequence
throughout the evolution implicates its neuroprotective func-
tion by regulating antioxidative, antiapoptotic and
antiinflammatory pathways [88]. During oxidative stress,
DJ-1 acts as an ROS quencher, resulting in translocalization
to mitochondria as well as nucleus from the cytoplasm [89,
90]. Oxidation of DJ-1 at Cys 106 residue to sulfinic acid is
critical for DJ-1 to play its neuroprotective role by interacting
with other proteins [91]. In this study, nuclear translocation
of DJ-1 strengthened the idea of its expressional alteration
due to OS in cerebellum of sCJD (MM1) human as well
as CJD (MM1) mice. Furthermore, higher expression of
DJ-1 at presymptomatic stage of CJD in mice models of
sCJD indicates OS as one of the earliest disease events in
sCJD. OS can be both a cause of neurodegeneration [83,
89] and protein misfolding [78] and also an effect during
the pathophysiology of sCJD [92]. In this study, increased
expression of DJ-1 indicated higher levels of OS at pre-
symptomatic stage of disease. But this cellular response
seemed to be collapsing during the disease progression.
This effect could be due to the lack of cellular energy [31]
or mitochondrial damage [92] leading to no further in-
crease in the expression of DJ-1 at symptomatic stage of
the disease in comparison to presymptomatic stage of CJD
in mice.

Direct Role of DJ-1 in ProtectionAgainst OS byMediating
Thioredoxin System

Thioredoxin-dependent peroxide reductase was found signif-
icantly increased in VV2 subtype based on our proteomic
findings. It is an important component in the thioredoxin sys-
tem. Thioredoxin (Trx) system is a small family of antioxidant
enzymes involved in neuroprotection by alleviating oxidative
stress [87, 93, 94]. Trx also protects the cells by regulating the
activity of apoptosis signal-regulating kinase-1 (ASK1) [33].
Wild-type DJ-1 can inhibit the apoptotic potential of AKS1 by
interacting with it and blocking its dissociation from Trx1
[95]. Collectively, DJ-1-ASK1 interaction plays a vital role
in the antioxidant response by modulating the interaction be-
tween ASK1 and Trx1.

Direct Role of DJ-1 in ProtectionAgainst OS byMediating
Glutathione Biosynthesis

Glutathione (GSH) is another antioxidant protecting the cells
from free radicals, peroxides, lipid peroxides and heavy
metals [96]. DJ-1 also regulates the glutathione activity by
increasing the expression of the enzyme GCL which is the
first enzyme of the pathway of cellular GSH biosynthesis
[97]. Glutathione S-transferase Mu 2 is a class of enzymes
which protects the cells by detoxifying electrophilic com-
pounds like carcinogens, drug residues, environmental toxins
and toxic products of oxidative stress [98]. GST Mu 2 expres-
sion was found significantly increased both at transcriptional
and translational level in MM1 and VV2 subtypes of sCJD in
present study.

Indirect Role of DJ-1 in Protection Against OS
by Mediating Nrf2/ARE Pathway

One of the proposed mechanism of action of protecting the
cell against OS by DJ-1 is through regulating the activity of

Fig. 7 Mechanism of antioxidative response activation of DJ-1 by
mediating Nrf2/ARE pathway: One of the mechanisms by which DJ-1
protects the cells against oxidative stress is by regulating the activity of
Nrf2 which leads to activation of antioxidative response elements (AREs)
in the nucleus. Under normal cellular conditions, Nrf2 activity is inhibited
by Keap1 who continuously ubiquinates Nrf2 and directs to proteasomal
degradation (1). Under the effect of oxidative stress, DJ-1 protein
expression is increased and it regulates Nrf2 activity and releases Nrf2
from Keap1 for its downstream functions (2). Nrf2 is phosphorylated
which is necessary for its downstream activity, and then, it
translocalizes to the nucleus (3). In the nucleus, phospho-Nrf2 induces
the expression of antioxidative genes NQO1, HO-1, GSLs, GSTs and Prx
(4). Expression of these antioxidative genes then performs their functions
in a variety of ways to protect the cell against OS (5)
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the transcription factor Nrf2. Nrf2 induces the expression of
ARE and is reported to be regulated by DJ-1 [99]. Increased
expression of DJ-1 in response to OS leads to inactivation of
Keap1 resulting in the release of Nrf2 from Keap1, inducing
its translocation to the nucleus and thus activating ARE which
is the main regulatory site of antioxidant expression [28, 100].
Keap1 is the main regulator of Nrf2 activity by continuously
ubiquitinating Nrf2 in cytoplasm and directing it to
proteasomal degradation. But during oxidative stress, Keap1
is inactivated and Nrf2 expression is stabilized by DJ-1 [99].
Our results showing increased mRNA expression of Nrf2,
decreased expression of ubiquinated-Nrf2 in both MM1 and
VV2 subtypes, along with high expression of its activated
form, phospho-Nrf2 predominately in VV2 subtype con-
firmed the activation of Nrf2 in sCJD (MM1 and VV2 sub-
type) cases for downstream regulation of ARE. ARE encode
detoxifying enzymes and antioxidant proteins, including
NAD(P)H:quinone oxidoreductase 1, hemeoxygenase-1, glu-
tathione S-transferase, glutathione cysteine ligase C, glutathi-
one peroxidase and thioredoxin-dependent peroxide
reductase.

Alteration in the expression of hemeoxygenase-1,
thioredoxin-dependent peroxide reductase and glutathione S-
transferase Mu 2 confirmed the activation of complete
Nrf2/ARE pathway in sCJD (MM1 and VV2 subtypes)
(Fig. 7). Target genes of Nrf2 are generally involved in gluta-
thione synthesis, elimination of ROS, xenobiotic metabolism
and drug transport [92, 101–103].

Conclusion

Based on these results, we speculate that oxidative stress
is one of the major pathological factors during the course
of the disease in MM1 and VV2 subtypes of sCJD which
can deregulate other cel lular act ivi t ies as well .
Furthermore, oxidative stress is present even during the
presymptomatic stage of the disease in sCJD as shown by
results from sCJD (MM1 and VV2)-inoculated transgenic
mice. DJ-1 is commonly playing its antioxidative role
(both directly by localizing to the nucleus and indirectly
by activating Nrf2/ARE pathway) in sCJD. Using antiox-
idative therapeutic strategies in the future may be helpful
not only in decreasing the progression rate of sCJD spe-
cifically but also at some point, it may be helpful to over-
come the pronounced levels of oxidative stress and to
recove r the ce l l f rom pa tho log i ca l cond i t i on .
Furthermore, these results provide a broader overview of
the whole regulated proteome during the course of disease
in sCJD (MM1 and VV2 subtypes) in human, thus open-
ing the new horizons for better understanding the patho-
physiology of disease and potentially redirecting the ther-
apeutic strategies.

Supporting Information

Supporting information is provided in separate files.
Supporting information file 1 contains raw files of the all the
identified proteins received after mass spectrometric identifi-
cation. Supporting information file 2 containsMS data includ-
ing MS/MS spectra for all proteins identified in MS excel
format. Supporting information file 3 contains discussion on
the functions of all the identified regulated proteins with
details.
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