
Dynamics of a contact line at the nanoscale

Author: Erik López Alonso
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Abstract: In this TFG we analyze two features of the contact line: the fluctuations around a
stationary position and the Contact Angle Hysteresis(CAH). We give an expression for the power
spectrum of the fluctuations, and we discuss a model for the CAH. These phenomena have been
addressed experimentally, which we will use to show the validity of our model.

I. INTRODUCTION

The dynamics around a contact line(the geometrical
place where a solid surface, a liquid and air join) is
fundamental in fluid physics, and is also crucial in many
industrial processes such as spreading of droplets or
entrainment of fluids.

This area of study has a lot of phenomena. Here
we are going to focus in two of them: the fluctuations
of the contact line around a stationary position and the
Contact Angle Hysteresis(CAH) . Using AFM (Atomic
Force Microscopy) with a cantilever glued onto a glass
fibre (Fig 1)), you can easily see these features, and
analyze them experimentally. Some experiments[1], [2],
[3] have been done about it, but we still are not having
a complete theoretical comprehension of it. In this
report we will give a theoretical explanation of the hys-
teresis loop and the power spectrum of those fluctuations.

We can see the fluctuations of the contact line around
a stationary position when the tip of the glass fibre
touches the fluid-air interface of a fluid at rest. When
this happens, the contact line will form, and the contact
line, which will be pinned to the glass fibre, will begin
to oscillate, because of the random thermal impulses.
It is used in [1] to measure the friction coefficient of
the contact line. We will analyse those fluctuations,
giving an expression for the spectral distribution of those
random oscillations.

Discussing about the Contact Angle Hysteresis implies
discussing about the contact angle. The contact angle is
intrinsically related to the contact line, because its the
angle under which the liquid wets the solid surface(inset
of Fig.1 a)). Keeping this in mind, if you pull a circular
contact line downward a certain distance, then you stop,
and you pull it upward again within the glass fibre of a
cantilever at a constant speed u, and you measure the
contact angle θ in function of time t or traveling distance
s = ut, you will find a hysteresis loop. In [2] is presented
an experiment which shows the existence of this hystere-
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FIG. 1: (a) Sketch of the AFM experimental setup and the
capillary rise around the glass fibre. Inset shows the contact
angle and the coordinate system we will use. (b) Glass fibre
used in the experiments, of d = 2.2µm. The arrow points to
the contact line. Photo courtesy of P.Tong in [1]

sis loop at the nanoscales, using this experimental setup.
The existence of the CAH is due to the fact that the con-
tact angle is different in the advancing(downward) and in
the receding(upward) movement. In fact, the cantilever
is measuring the capillary force acting on the contact line

f = −πdγ cos θ (1)

, where d is the diameter of the glass fibre and γ the
surface tension of the liquid. The minus sign is defined
as f ≤ 0 for θ ≤ 90o

In the report we present an example of such a hysteresis
loop, from an experiment[2], for a certain fluid at a
certain speed u, and we will give a model consistent
with the experiment of the loop. In this experiment,
they measure the hysteresis loop for different fluids
and travel speeds in order to show the dependence
of the loop with these parameters. Understanding
these two effects is useful for a lot of applications. For
example, if we understand the spectrum amplitude of
the fluctuations around a stationary position, we will
correct the measures involving AFM, because we will
have this error source controlled.
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II. FLUCTUATIONS OF THE CONTACT LINE

We need some previous definitions:
Let z(t) be a function of time. We define its Fourier
Transform (FT) as

Z(ω) :=

∫ ∞
−∞

e−iωtz(t) dt

We will use capital letters (or FT) to define the Fourier
Transform of a function. Let now z(t) be a stochastic
function of time. We define 〈z(t)〉 as the arithmetical
mean of z for all the noise realizations at a time t, and
we note it is a function of time
We also define

〈Z(w)〉 := FT 〈z(t)〉

This definition only makes sense for strictly stochastic
functions. Finally we define the power spectrum of z(t)
as 〈

|Z(ω)|2
〉

We also need to introduce the Wiener-Kinchin Theorem,
whichs says that〈

|Z(ω)|2
〉

= FT 〈z(t)z(0)〉

The right part of the equality is called the correlation
function.
Our system can be modelled by the following stochastic
differential equation:

d2z

dt2
+

ξ

m

dz

dt
+ ω2

0z =
1

m
fTh(t) (2)

Here z is the position of the contact line (or the cantilever
position, because there is pinning), m is the mass of the
cantilever, ξ is the friction coefficient of the contact line
, and κ0 = ω2

0m, where κ0 is the elastic constant of the
system. As we have said, our ODE (Ordinary Differential
Equation) is stochastic, because fTh(t) is a white noise
function due to the thermal fluctuations of the fluid in
contact with the cantilever, which is continuous. So, at
every time instant t we will have some noise realizations,
with

〈fTh(t)〉 = 0 (3)

〈f(t)ThfTh(t′)〉 = 2ξκBTδ(t− t′) (4)

In these expressions κB is Boltzmann constant, T is the
temperature of the fluid and δ is Dirac Delta Function.
We will apply FT to this ODE, using its linearity:

−ω2Z(ω) +
ξ

m
iωZ(ω) + ω2

0Z(ω) =
1

m
F (ω)

This is a standard lineal algebraic equation that we can
easily solve,

Z(ω) =

1

m
F (ω)

(ω2
0 − ω2) + i

ξ

m
ω

and taking the square of the modulus (using the math-
ematical complex variable property which says that the
product of modulus is the modulus of the product) we
get:

|Z(ω)|2 =

1

m2
|F (ω)2|

(ω2
0 − ω2)2 +

ξ2

m2
ω2

Finally, and as our objective is to find the power spec-
trum of z(t), we can do the next step:

〈
|Z(ω)|2

〉
=

〈 1

m2
|F (ω)2|

(ω2
0 − ω2)2 +

ξ2

m2
ω2

〉
=

=

1

m2

〈
|F (ω)2|

〉
(ω2

0 − ω2)2 +
ξ2

m2
ω2

The second equality is justified because, as we com-
mented at the beginning, 〈〉 only makes sense for stochas-
tic variables. On the other hand, thanks to Wiener-
Kinchin Theorem, we know〈

|F (ω)|2
〉

= FT 〈f(t)f(0)〉 = 2ξκBT (5)

Here, we are using that FTδ(t) = 1 In order to end this
discussion, introducing the last result in the expression
for 〈|Z(ω)|2〉 we get our final result:

〈
|Z(ω)|2

〉
=

2κBTξ

m2

[
(ω2

0 − ω2)2 +
ξ2

m2
ω2

] (6)

We can see that the fluctuations of the contact line
around a stationary position have a dependence with ξ,
so it can be used to get a measure of the friction coef-
ficient, as we commented in the Introduction. We also
see that there is a predominant frequency which is ω0,
because maximizes (6). This means that if you represent
z(t), the plot will have noise peaks repeated with that
frequency.
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III. THE HYSTERESIS LOOP

First of all, we present the experimental loop we have
talked about in the Introduction, in order to work in the
parts we are going to focus on.

FIG. 2: Hysteresis loop for water, with speed u = 10µm/s.
The magnitudes measured are s (the travelling distance of
the cantilever) and f (the capillary force).→means downward
and ← means upward. Photo courtesy of P.Tong in [2]

In this loop we see 3 different parts of the hysteresis
cycle. The first one is a linear part, from an initial static
angle θ0 to a final angle θi where i = u(upward) or
i = d(downward). The second one is pinning-depinning
fluctuations part, with the contact angle fluctuating
around θi and the third one is a relaxation part in
which the cantilever is not moving and the contact angle
relaxes. This is the essence of what there is behind this
particular phenomenon.

There are other interesting effects, such as the asymme-
try of the loop, or the dependence of it with u. We will
give a complete model for the linear part and we will
give an equation to determine the depinning point; this
is, the point where we change from the linear part to the
horizontal part. Also, we will make a proposal for the
pinning-depinning fluctuations

In order to relate this picture with the Introduc-
tion, A-B and D-E are the linear parts, B-C and E-F are
the horizontal parts and C-D and F-A are the relaxation
parts

A. Linear part. A to B(advancing) or D to
E(receeding)

Here we are interested to show the linear part of the
CAH, where the contact line is pinned and pulling up-
ward or downward the cantilever produces a linear vari-
ation of contact line with the distance travelled. First of

all, we will find an expression for the meniscus shape in
this situation. De Gennes[4] provides for us an equation
for this. We will work in cylindrical coordinates due to
the geometry of our problem(See inset of Fig.1). If r is
the radial coordinate and z is the height coordinate(its
zero is at the height in which the fluid is plain(θ = 0)),
the equation is

r√
1 +

(
dr

dz

)2
= b (7)

where b =
d

2
cos θ0, being θ0 the equilibrium contact

angle(this is, the angle under which the fluid wets the
solid surface in equilibrium, in point A or D, without
pulling upward or downward. The physical meaning of
the equation is imposing that the forces acting on a por-
tion of the fluid( capillary force and the force exerted
by the glass fibre) must add up to 0. If you solve this
equation, you get

r(z) = b cosh

(
z − h
b

)
(8)

In order to find the integration constant h, we need to
impose a physical boundary condition: r cannot tend to
infinite, so we assume that r(z = 0) = l, where l =√

γ

ρg
is the capillary length. For distances less than l,

gravity can be neglected(assumption which is implicit in
the differential equation), making our model consistent
with the assumptions. So, we get

h = b ln
2l

b

Now we are about to find a relation between the menis-
cus height H and the dynamical angle θ. This can be

obtained from the r(h) profile, because
d

2
= r(z = H).

With this, we obtain

H =
d cos θ0

2
ln

(
4l

d(1 + sin θ0)

)
We are now close to our final result (the spring constant

of the capillary force). In order to do this, we need to

compute
dH

dθ0
:

dH

dθ0
= −d

2

[
1− sin θ0

[
1 + ln

(
d

4l
(1 + sin θ0)

)]]
With this, it is easy to see that

d(cos θ0)

dH
= − sin θ0

1

dH

dθ0

=
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=
2 sin θ0

d

[
1− sin θ0

[
1 + ln

(
d

4l
(1 + sin θ0)

)]]
In point A of the CAH, we have f = −πγd cos θ0, and
we are at equilibrium. If we pull upward the cantilever
a small distance δH, at the new equilibrium, the contact
angle will have changed from θ0 to θ0+δθ0 because the CL
will be stretched. This phenomena produces a change in
capillary force, which is translated into a restoring force,
and its spring constant can be computed as the derivative
of f respect H. This is:

κ = πγ
d(cos θ0)

dH
=

=
2πγ sin θ0

1− sin θ0

[
1 + ln

(
d

4l
(1 + sin θ0)

)] (9)

As we can see, we have made this computation for small
changes in θ0, and supposing that when these changes
are made at low u, to have equilibrium states in all the
way. So, we expect that when the change in θ0 is big
enough, the corresponding profile in CAH is not linear
anymore.
This fact can be seen in Fig.2. In the receding direction,
there is a big change in the angle before the depinning,
and for the lower angles (lower f) there is no lineal pro-
file. We also notice that this expression does not depends
on the advancing or receding direction, only if the angle
change is big or small, so it can explain both A-B and
D-E parts of the hysteresis loop in Fig.2, if the angle has
a small change.
We present now a graphic with the experimental mea-
surements of κ [3],[2] and their fit to (9):
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FIG. 3: Plot of the model(Eq.9) and three experimental re-
sults for κ[3]. These are for water, decane and octanol. The
model is computed assuming d = 2.2µm

B. Depinning point. B or E

As we have said before, in the linear part, the contact
line is pinned to the cantilever. At a certain point (B or
E in Fig.2) there is a depinning of the contact line. At
this point, the restoring force of κ coefficient gets equal
to the capillary force difference

∆f = πdγ| cos θ0 − cos θd| (10)

We work with the module. Thanks to this, the equation
gets independent of whether the cantilever goes upward
or downward. If we equalise this force difference to the
restoring force, we get an expression which allows us to
find the depinning point:

κs = πdγ| cos θ0 − cos θd| (11)

Remember that s is the traveling distance of the can-
tilever, this is, the depth at which the glass fibre is.
To prove the validity of this equation, we present a
table where we calculate the relative difference (Relat.
Diff.) between the two terms of (11) for the experimen-
tal data(from reasonable values of Fig.6 in [2]) of the
same liquids in Fig.3. It must be close to 0. The relative
difference have been computed with

|κs− πdγ| cos θ0 − cos θd||
κs

(12)

Fluid θd(o) θ0(o) s(µm) Relat. Diff

Water 120 107 1.9 0.04

Decane 69 59 1.3 0.01

Octanol 65 50 2 0.05

TABLE I: Table which shows the validity of Eq.11.We have
done the calculations with the κ coefficients computed in the
previous section.

As we can see, we can conclude that our simple equa-
tion is valid, because the relative difference between its
two terms is very close to 0.

C. Pinning-depinning fluctuations. B-C(advancing)
and E-F(Receeding)

We are going to propose a model for this part, using
Section II. At point B(or E), the contact line will de-
pin, and it will begin a stick-and-slip motion. This is
because the contact line will randomly pin to the glass
fibre, and depin because of the motion of the fibre. The
contact line will be pinned to the glass fibre and because
of that we will have the harmonic oscillator equation. In
addition, we will have a random force fg caused by the
defects of the glass fibre, which will randomly depin the
contact line. We see that we can modelize this part with
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an equation similar to (2). Our equation will be (same
notation than in Sec. II):

d2z

dt2
+

ξ

m

dz

dt
+ ω2

0z =
1

m
fg(t) (13)

With fg accomplishing:

〈fg(t)〉 = 0

〈f(s)gfg(s′)〉 = 2Dδ(s− s′) =
2D

u
δ(t− t′)

D is a parameter related to the random force. Here we
see that thanks to the constant speed motion of the can-
tilever, i.e, the relation s = ut, we have transformed a
random spacial depending force, which has a very dif-
ficult treatment, to a brownian-like force depending on
time, so we can recycle our expression of the fluctuations
of Section II, and we obtain:

〈
|Z(ω)|2

〉
=

2D

um2

[
(ω2

0 − ω2)2 +
ξ2

m2
ω2

] (14)

As we commented in the Introduction, we have the fluc-
tuations depending on the velocity of the cantilever. This
is very important, because in [2], the hysteresis is speed-
depending in these pinning-depinning fluctuations, with
lower peaks as u increases, so this could be a reasonable
model to explain this part of the hysteresis loop. We also
see that there is again a predominant frequency, and we
can relate this with the repetition of those peaks in Fig.2.

IV. CONCLUSIONS

The study of a contact line is full of phenomena, such
as the two we have studied in this report. By one hand,
we have analysed the fluctuations around a stationary
value. We conclude that this problem can be modelled
like a harmonic oscillator with a brownian random force
acting on it. This produces a random oscillation with a
predominant frequency, due to the thermal fluctuations.

This model can be used to measure the friction coefficient
and it can be recycled to explain the fluctuations of the
second phenomenon (the hysteresis loop).
On the other hand, we have studied the hysteresis of the
contact angle. We have explained completely the first
part (the linear one) of the hysteresis loop, modeling it
with the existence of a restoring force, which is the cap-
illary force, when the contact line is pinned. We have
given an expression of the corresponding elastic constant
κ, and we conclude it depends on the contact angle, the
geometry and γ. We have a plot in which the experimen-
tal data fit our model.
We have given an equation for the depinning point, mod-
eling it as the point where the difference of the capillary
force between the equilibrium position and the actual po-
sition equals to the elastic force, and we present a table
which shows the validity of this equation.
We have proposed a model which explains the pinning-
depinning fluctuations of the hysteresis loop, using the
results of Section II and modeling the random force which
causes the fluctuations like a static random force because
of the defects of the glass fibre. With this, we have ob-
tained an expression for the power spectrum of the fluc-
tuations, which is reasonable because shows dependence
on u, being consistent with Fig.2. This introduces a ques-
tion, and it is the value of the dissipation constant D of
the static noise. In order to determine its value, we would
need to make a numerical simulation of a stochastic dif-
ferential equation, which it is away of the purposes of this
bachelor thesis.
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Capillarity and Wetting Phenomena, (Springer-Verlag,
New York 2004, 1st. ed.).

[5] A. L. Barabási, and H. E. Stanley, Fractal concepts in
surface growth, (Cambridge University Press, Cambridge
1995, 1st. ed.).

[6] D. Bonn, J. Eggers, J. Indekeu, J. Meunier, E. Rolley.
”Wetting and spreading”. Reviews of modern physics 81
(2009).

Treball de Fi de Grau 5 Barcelona, June 2019


