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a b s t r a c t

This paper proposes an original decision-support approach to address over-constrained geometric config-
urations in Computer-Aided Design. It focuses particularly on the detection and resolution of redundant
and conflicting constraints when deforming free-form surfaces made of NURBS patches. Based on a series
of structural decompositions coupledwith numerical analyses, the proposed approachhandles both linear
and non-linear constraints. The structural decompositions are particularly efficient because of the local
support property of NURBS. Since the result of this detection process is not unique, several criteria are
introduced to drive the designer in identifying which constraints should be removed to minimize the
impact on his/her original design intent. Thus, even if the kernel of the algorithmworks on equations and
variables, the decision is taken by considering the user-specified geometric constraints. The method is
illustrated on academic and industrial examples realized with our prototype software.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Nowadays, designers rely on 3DCAD software tomodel sophis-
ticated shapes based on free-form curves and surfaces. In industrial
design, this geometric modeling step is often encapsulated in a
larger Product Development Process (PDP) which may incorporate
preliminary design, reverse engineering, simulation as well as
manufacturing steps wherein several actors interact [1]. Actually,
the final shape of a product often results from a long and tedious
optimization process which tries to satisfy the requirements as-
sociated to the different steps and actors of the PDP. Require-
ments can be seen as constraints. They are generally expressed
either with equations, a function to be minimized, and/or us-
ing procedures [2]. The latter refers to the notion of black box
constraints, not addressed in this paper, which focuses only on
geometric constraints that can be expressed by linear or non-linear
equations.

To satisfy the requirements, designers can act on variables as-
sociated to the different steps of the PDP. More specifically, in this
paper, variables are supposed to be the parameters of the NURBS
surfaces involved in the shape optimization process. To shape a
free-form object defined by such surfaces, designers then have
to specify the geometric constraints the object has to satisfy. For
example, a patch has to go through a set of 3D points and satisfy
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to position constraints, the distance between two points located
on a patch is fixed, two patches have to meet tangency constraints
or higher-order continuity conditions, etc. Those geometric con-
straints give rise to a set of linear and non-linear equations linking
the variables whose values have to be found. Due to the local
support property of NURBS [3], the equations do not involve all
the variables and some decompositions can be foreseen. Addition-
ally, designers may express involuntarily several times the same
requirements using different constraints thus leading to redun-
dant equations. But, the designers may also involuntarily generate
conflicting equations and may have to face over-constrained and
unsatisfiable configurations.

Sometimes, over-constrained configurations can be solved by
inserting extra degrees of freedom (DoFs) with the Boehm’s knot
insertion algorithm. As a consequence, many control points are
added in areas where not so many DoFs are necessary [4]. This
uncontrolled increase of the DoFs impacts the overall quality of the
final surfaces which become more difficult to manipulate than the
initial ones. Furthermore, some structural over-constraints cannot
disappear following this strategy and dedicated decision-support
approaches have to be developed to identify and manage over-
constrained configurations.

Unlike advanced 2D sketchers available in most commercial
CAD software, and which can interactively identify the over-
constraints during the sketching process, it is not yet completely
possible to pre-analyze the status of 3D NURBS-based equa-
tion systems before submitting them to a solver. Thus, there is
a need for developing a new approach for the detection and
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resolution of redundant and conflicting constraints in NURBS-
based equation systems. This corresponds to the identification
and treatment of over-constrained, well-constrained and under-
constrained parts. In this paper, the treatment corresponds to
the removal of constraints before solving. Once the constraints
removed, the equation system often becomes under-constrained
and the designer also has to add a requirement by mean of a
function to be minimized so as to solve and find the values of
the unknowns. This aspect is not part of the proposed approach
but it will be discussed when introducing the results in which a
particular functional is minimized.

Removing user-specified constraints is a perious step as the
result do not fully satisfieswhat the designers have specified. Thus,
it is not only important to develop an approach that is able to
remove over-constraints, but also desirable to develop decision-
support mechanisms which can help the designers identifying and
removing the right constraints, i.e. the ones which preserve as
much as possible the initial design intent.

This work contribution is to address these two difficult issues
by proposing an original decision-support approach to manage
over-constrained geometric configurations when deforming free-
form surfaces. The algorithm handles linear as well as non-linear
equations and exploits the local support property of NURBS. Based
on a series of structural decompositions coupled with numerical
analyses, the method detects and treats redundant as well as
conflicting constraints. Since the result of this detection process is
not unique, several criteria are introduced to drive the designer in
identifying which constraints should be removed to minimize the
impact on his/her original design intent. Thus, even if the kernel
of the algorithm works on equations and variables, the decision
is taken by considering the geometric constraints specified by the
user at a high level.

The paper is organized as follows. Section 2 introduces the
background and reviews the related works. Section 3 introduces
the framework of our algorithm, details the principles and charac-
teristics of its different steps and proposes criteria for evaluating its
results. The proposed approach is then validated on both academic
and industrial examples which are described in Section 4. Finally,
Section 5 concludes this paper by discussing the main contribu-
tions as well as future work.

2. Background and related work

This section introduces howdesigners can specify their require-
mentswithin an optimization problem. It also analyses the existing
methods used to detect structural or numerical over-constraints.

2.1. Modeling multiple requirements in an optimization problem

During the last decades, many deformation techniques have
been proposed and it is not the purpose of this paper to detail all of
them. Most of the time, when speaking of deformation techniques
working on NURBS curves and surfaces, the goal is to find the
position X of some control points so as to satisfy user-specified
constraints which can be translated in a set of linear and/or non-
linear equations F (X) = 0. Since the problem is often globally
under-constrained, i.e. there are less equations than unknown
variables, an objective function G(X) also has to be minimized. As
a consequence, the deformation of free-form shapes often results
from the resolution of an optimization problem:
{
F (X) = 0
minG(X)

(1)

For some particular applications, the optimization problem can
also consider that the degrees, the knot sequences or theweights of
the NURBS are unknown. However, in this paper, only the position

of the control points are considered unknown. Depending on the
approach, different objective functions can be adopted but they
often look like an energy function which may rely on mechanical
or physical models. The constraints toolbox can also contain more
or less sophisticated constraints with more or less intuitive mech-
anisms to specify them.

Thinking to the PDP aswell as to theneeds for generating shapes
which satisfymultiple requirements, one can notice that designers
have access to threemain parameters to specify their requirements
and associated design intentwithin an optimization problem. They
can effectively act on the unknowns X to decide which control
points are fixed andwhich ones canmove. In this way, they specify
the parts of the initial shape which should not be affected by the
deformation. Of course, designers can make use of the constraints
toolbox to specify the equations F (X) = 0 to be satisfied. Finally,
designers can also specify some of their requirements through the
function G(X) to be minimized. For example, they can decide to
preserve or not the original shape while minimizing an energy
function characterizing the shape deformation.

However, most of the existing free-form shape deformation
techniques do consider that the problem resulting from the set of
equations F (X) = 0 is under-constrained [5,6] and few attention
has been paid to the analysis and processing of possible over-
constraints. This paper proposes an approach to detect conflicting
and redundant equations, and to help the designer in solving those
issues by simply removing some constraints. However, Sections 3.4
and 4 discuss the possibility to fix more or less control points and
thus modify the unknown vector X , as well as the possibility to
modify the overall deformation behavior through the customiza-
tion of the objective function G(X) to be minimized.

2.2. Geometric over-constraints

Geometric over-constraints are classified into structural and
numerical over-constraints [7]. Structural over-constraints can be
detected from an analysis of the DoFs, at the level of either the
geometry or the equations. Numerical over-constraints are usually
determined from an analysis of the solvability of the equations
system. Since our approach is based on equations, both aspects are
to be defined.

2.2.1. Structural over-constraints
Jermann et al. give a general definition of structurally over-

constrained, well-constrained and under-constrained equation
systems at a rather macro level and considering the dimension of
the space [8]. This definition has been here adapted to system of
equations where the system is expected to be fixed with respect to
a global coordinate system.

Definition 1. The degree of freedomDoF (v) of a geometric entity v

is the number of independent parameters that must be set to
determine its position and orientation. For example, in 2D space,
it is equal to 2 for points and lines. For a geometric constraints
system G with a set V of geometries, the degree of freedom of all
the geometries is DoFs =

∑
v∈VDoF (v).

Definition 2. The degree of freedom DoC(e) of a geometric con-
straint e is the number of independent equations needed to repre-
sent it. For instance, distance constraints have one DoC in 2D and
3D. For a geometric constraints systemGwith a set E of constraints,
the degree of freedom of all the constraints is DoCs =

∑
e∈EDoC(e).

Definition 3. A geometric constraints system G is structurally well-
constrained ifG satisfiesDoCs = DoFs and if all the subsystems after
decomposition satisfy DoCs ≤ DoFs.
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Definition 4. A geometric constraints system G is structurally
over-constrained if there exists a subsystem satisfying DoCs >

DoFs. Structural over-constraints are constraints that transform
a structurally over-constrained system into a structurally well-
constrained system when they are removed.

Finally, the above DoF-based counting definitions compare the
number of equations to the number of variables of a system. How-
ever, they do not cover cases such as geometric redundancies
induced by geometric theorems. In order to cover those situations,
algebraic definitions are introduced.

2.2.2. Numerical over-constraints
The previous structural definitions cannot distinguish redun-

dant and conflicting constraints. However, from the algebraic point
of view, it is ascertain that this could be handled properly by
Grobner basis or Wu-Ritt methods [9]. These methods are com-
monly used in abstract algebra and requires strong mathematical
fundamentals to understand.

Definition 5. Let G = (E, V , P) be a geometric constraints system,
where E is a set of equations, V is a set of variables and P is a set of
parameters. The set of solutions to G is denoted Sol(G). A geometric
constraints system is inconsistent iff Sol(G) = ∅ and is consistent iff
Sol(G)̸= ∅.

Definition 6. Let G = (E, V , P) be a consistent geometric con-
straints system. Let G′ = (E ∪ Ec, V , P ′) be an inconsistent geo-
metric constraints system, where Ec is a set of equations forming
a constraint C = {Ec | Ec ∩ E = ∅} and P ⊂ P ′. As a result, C is a
conflicting constraint with respect to G.

Definition 7. Let G = (E, V , P) be a consistent geometric con-
straints system. Let G′ = (E ∪ Er , V , P ′) be a consistent geometric
constraints system, where Er is a set of equations forming a con-
straint R = {Er | Er ∩ E = ∅} and P ⊂ P ′, and Sol(G) is the same as
Sol(G’). As a result, R is a redundant constraint with respect to G.

Definition 8. Let G = (E, V , P) be a weakly connected ge-
ometric constraints system (its components are weakly con-
nected [10]) which can be decomposed into the following two
subsystems: Gb = (Eb, V , P) and Go = (Eo, V , P) with {E =
Eb∪Eo, Eb∩Eo = ∅}. If any constraint Eoi in Eo is either redundant or
conflicting with respect to Gb, and if card(Eb) ≥ card(Eo), then Eb is
a set of basis constraints and Eo is a set of numerical over-constraints.

It should be noted that the set of basis constraints and numerical
over-constraints of a given system is not unique. Thus, decision-
support mechanisms and criteria have to be defined to help de-
signers identifying the right redundant and conflicting constraints
to be removed.

2.3. Modeling geometric constraints system

As previously discussed, a geometric constraints system can be
described either at the level of the equations or at the level of
the geometry. On the one hand, for a system of equations, there
exists algebraicmethods able either to directly address consistency
problems [11] or to analyze the structure indirectly based on a
bipartite graphwhere two classes of nodes represent variables and
equations independently [12]. On the other hand, for modeling at
the level of the geometry, two types of graph are mostly used:
either bipartite graphs with two classes of nodes representing
geometric entities and constraints separately [13], or constraint
graphs with nodes representing the geometric entities and edges
representing constraints [14,15].

However, considering NURBS-based constraint systems is not
straightforward since there exists several types of variables con-
tributing to the shape deformation. On one hand, system of equa-
tions enable a sound way of modeling where parameters like
knots and weights can be set as variables. On the other hand,
graph modeling at the level of the geometry is currently limited
to variables like the coordinates of the control points and their
associated weights. Representing variables such as degrees, knots,
values of u and v parameters using constraint graphs at the level of
the geometry is not convincingly demonstrated in the literature. In
thework of Lesage [16], vectors between control points are used to
represent NURBS objects as well as the geometric constraints such
as incidence or tangency. Nevertheless, his method is restricted to
cases where control points are only unknowns and is not general
enough comparing to equation-based modeling.

According to the previous definitions, detection methods can
be classified in two categories [7]: structural over-constraints and
numerical over-constraints detection.

2.4. Structural over-constraints detection

Many structural over-constraints can be identifiedwhile count-
ing DoFs during the system decomposition process. Among the
decomposition methods, those that are helpful for finding struc-
turally over-constrained subparts have been identified and classi-
fied in three categories according to the type of subsystems.

2.4.1. Specific patterns

This category is based on the fact that, when considering
their engineering drawings, most systems can be decomposed
while recognizing specific patterns constructed by ruler and com-
pass. Recursive division is first proposed by Owen to handle 2D
constraint systems where only distance and angle constraints are
involved [17]. He introduced several rules for redundancy detec-
tion, including rules to detect over-rigid subparts and rules to
check angle redundancies [18]. Fudos and Hoffman adopted the
bottom-up graph reductionmethod thatworkswellwith over- and
well-constrained systems in two dimensions [19]. These methods
are polynomial in time but not general enough due to the limited
repertoire of patterns, which cannot cover all types of geometric
configurations.

2.4.2. Structural rigidity

This class gathers together methods that decompose a system
into structural rigid subsystems. Methods vary depending on the
adopted structural-rigidity definition aswell as on the correspond-
ing search algorithms. By modifying incremental network maxi-
mum flow theory, Hoffmann et al. developed the Dense algorithm
to identify 1-well-constrained subgraph [20]. Their definition of
structural-rigid subsystem derives from Laman’s theorem on the
characterization of the rigidity of bar frameworks [21]. How-
ever, the definition does not handle properly constraints such
as incidences and parallelisms, which are widely used in CAD
systems. Jermann et al. modified their definition by introducing
the notion of degree of rigidity (DoR) to replace the dimension
D [22]. The difference between the two lies on the fact that the
value of DoR varies with subsystems while D remains constant
whatever the subsystems are (e.g. in 2D, D = 3 and in 3D, D =
6). Based on the samenetwork flow theory, his algorithmOver-rigid

deals properly with specified parallel/incidence constraints but is
still restricted to generic conditions where incidence degeneracies
due to geometric theorems like co-linearities, co-planarities are
forbidden [23].
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2.4.3. Maximum matching
Those methods recognize structural over-constrained patterns

by directly comparing the DoFs and DoCs of a system (or sub-
system) without considering the dimension-dependent constant
D. The Dulmage–Mendelsohn (D–M) decomposition algorithm al-
lows for decomposing a systemof equations into over-constrained,
well-constrained and under-constrained subsystems [24]. It has
been used for debugging in equation-based modeling systems
such as Modelica [12]. Additionally, it computes a directed acyclic
graph (DAG) which provides a solving order among the strongly
connected components (SCC) of the system. Serrano has been
interested in using graph-theoretic algorithm to prevent over-
constrained systems where all constraints and geometric entities
are of DoF one [25]. Latham et al. extended the work of Serrano
by proposing maximum b-weighted matching to identify over-
constraints with arbitrary DoFs [26].

A structurally over-constrained part contains either redundant
or conflicting constraints. But the remaining partsmay also contain
numerical over-constraints [27]. This is because structure-based
analysis ignores numerical information of a system. Hence, to fur-
ther identify subtle over-constraints like geometric redundancy,
numerical methods have to be adopted.

2.5. Numerical over-constraints detection

Any geometric constraint can be transformed into a set of al-
gebraic equations [13]. Therefore, geometric over-constraints are
equivalent to a set of inconsistent (i.e. conflicting) or redundant
equations. Here, numerical detectionmethods have been classified
into two categories according to the type of constraints.

2.5.1. Linear over-constraints detection
Gauss elimination, LU factorizationwith partial pivoting andQR

factorizationwith columnpivoting have been successfully adopted
to find redundant/conflicting equations as well as spanning group
in systems of linear equations [28]. Light and Gossard applied
Gauss elimination to compute the rank aswell as to further identify
invalid equations [29]. Serrano extended their work to check ex-
istence of over-constraints within strongly connected components
of a system of equations [25]. Thesemethods enable stable and fast
detections but are limited to linear cases.

2.5.2. Non-linear over-constraints detection
Symbolic methods are theoretically reliable but the time com-

plexity is exponential. Kondo used Grobner basis method to
test dependency among 2D dimension constraints [30]. Gao and
Chou introducedWu-Ritt’s decomposition algorithm to determine
whether a system is over-constrained [14]. However, both meth-
ods do not directly find the spanning groups of over-constraints.

Optimization methods have been used to address constraints
satisfaction problems, which works well for under-constrained
systems [31].

Jacobian matrix analysis methods enable a faster detection by
studying Jacobian structure of equations. However, they are not
able to distinguish redundant and conflicting constraints. Themain
difference between these methods is the configuration where the
Jacobian matrix should expand. If the system is solvable, Haug
proposed to perturb the common root and recalculate the rank
once the Jacobian matrix is rank deficient [32]. However, if the
system is non-solvable, Foufou et al. suggest a Numerical Prob-
abilistic Method (NPM), which analyzes the Jacobian matrix at
random configurations [33]. However, there is a risk that the
Jacobian matrix is rank deficient at the chosen points but is full
rank everywhere else. Therefore, NPM is convenient in computa-
tion but may lead to incorrectly detected over-constraints. Instead
of randomly selecting configurations, Michelucci et al. suggested

to study the Jacobian structure at witness configurations where
incidence constraints are satisfied [34]. The witness configuration
and the target configuration share the same Jacobian structure. As a
consequence, all the over-constraints are identified.More recently,
Moinet et al. developed tools to identify conflicting constraints
through analyzing the witness of a linearized system of equa-
tions [35]. Their approach has been applied to the well-known
Double-Banana test case onwhich our approachwill also be tested
in Section 4.

From the above discussion, it is clear that different methods are
capable of handling certain geometric constraints systems. How-
ever, no method is able to cover all cases perfectly within our cri-
teria. Thus, in this paper, a new approach which couple structural
as well as numerical methods is proposed.

3. A generic approach coupling structural decompositions and

numerical analyses

This section describes our approach for detecting and treating
redundant and conflicting geometric constraints. The main idea is
to decompose the system of equations into smaller blocks that can
be analyzed iteratively using dedicated numerical methods. The
overall framework and algorithm are first introduced before de-
tailing the different steps involved.

3.1. Overall detection framework

The overall framework has been modeled in Fig. 1. It is based
on three nested loops: the structural decomposition into con-
nected components (CC); the structural decomposition of a CC into
its subparts (G1,G2,G3) and its corresponding DAG of strongly
connected components (SCC); the iterative numerical analysis of
these SCC . Pseudo-code for the main procedures is provided in
Section 3.2.

3.1.1. Loop among connected components

The system of equations (SE) is initially represented by a graph
structure G, where nodes correspond to variables and edges to
equations. The structure is first decomposed into n connected com-
ponents {CC1, . . . , CCn} using Breadth First Search (BFS) [36]. Such
a decomposition ismade possible thanks to the local support prop-
erty of NURBS or simply when using constraints which decouple
what happens along the x, y and z directions of the reference
frame (e.g. position or coincidence constraints). As a result, geo-
metric over-constraints can be detected separately for each CCi.

3.1.2. Loop among subparts obtained by D–M decomposition

The D–M decomposition is used to structurally decompose CCi

into a maximum of three subparts: Gi1 (over-constrained sub-
part), Gi2 (well-constrained subpart) and Gi3 (under-constrained
subpart). Each subpart (if it exists) will be analyzed iteratively
using the third nested loop explained below.

However, a single pass of the third loop on each Gij is not
sufficient. Indeed, any pass may lead to the removal of constraints,
which modifies the structure of the CCi and thus requires to apply
D–M decomposition again after the pass to obtain updated sub-
parts. The superscript d is used to note that CCd

i (resp. Gd
ij) refers

to CCi (resp. Gij) after its dth D–M decomposition. Although the
number of passes required is unknown in advance, it is guaranteed
that the processwill converge to a statewhere only one subpartGi3

is left. In other words, constraints will be either removed ormoved
to the third subpart along the process.
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Fig. 1. Overall framework composed of three nested loops defining the main structure of the detection algorithm.

3.1.3. Loop among strongly connected components
In addition to the subparts, D–M decomposition also provides

a DAG for each CCd
i . Nodes of this DAG are strongly connected

components SCCd
ijk. Edges of this DAG (purple arrows in Fig. 1)

denote solving dependencies between the SCCd
ijk and may cross

subparts Gd
ij boundaries. In the following, linkedSCC(Gd

ij) refers to
the operation that obtains (the subpart of) this DAG from the dth
D–M decomposition of CCd

ij that corresponds to the given subpart.
The third loop consists in trying to iteratively (in the DAG-

dependencies induced order) find numerical over-constraints in
each SCCd

ijk or, when it is solvable, propagate its solution to other
blocks. Since blocks are strongly connected, there is only one
potential solution to each block unless it contains only variables,
and this latter case can only be encountered in a third subpart Gd

i3.
The process works only the top-level of the DAG (red blocks in the
figure) because these blocks equations do not use variables from
other blocks.

For each red block, and as shown in the top-left part of the
Fig. 1, an appropriate numerical method (numFindRC in the figure
and the pseudo-code) tries to find redundant (R) or conflicting
(C) constraints. These over-constraints are then removed from
the currently analyzed connected component CCd

ij . If the block is
solvable, its (unique) solution is propagated to dependent blocks,
which may lead to additional redundant or conflicting constraints
being detected and removed from CCd

ij . Once all red blocks have
been analyzed, this part of the DAG (potentially turning blue blocks
into red ones) is recomputed until all blocks are analyzed. How-
ever, it is not needed to recompute the D–M decomposition on
the whole CCd

ij , it is sufficient to recompute only the maximum
matching for the current subpart by calling linkedSCC again. The
superscript m is used to note that Gdm

ij (resp. SCCdm
ijk ) refers to Gd

ij

(resp. SCCd
ijk) after itsmthmatching. Although the number of passes

required is unknown in advance, it is guaranteed that the process
will converge to a state where there are either no blocks left, or
these blocks only contain variables (and that is only possible for
the third subpart Gd

i3). In other words, constraints and variables
are removed until we obtain an under-constrained system with
multiple solutions, meaning no more propagation is possible. In
that last step, as shown in the bottom-left part of the figure, the

remaining system is analyzed for numerical conflicts and proceeds
with the next connected component.

3.2. Pseudo-code

This section provides the pseudo-code for the two main proce-
dures of the approach, surrounded by dotted rectangles on Fig. 1.

Algorithm 1 Structural decomposition
1: SE← System of Equations
2: G← Graph(SE)
3: [CC1, · · · , CCn] ←BFS(G)
4: for i = 1 to n do

5: [G1
i1,G

1
i2,G

1
i3] ←DM(CCi)

6: CC1
i
← CCi

7: for j = 1 to 3 do

8: d← 1
9: continue←True
10: while continue and Gd

ij
̸= ∅ do

11: continue,CCd+1
i
← findRC(CCd

i
,Gd

ij
)

12: d← d+ 1
13: [Gd

i1,G
d
i2,G

d
i3] ←DM(CCd

i
)

14: end while

15: end for

16: end for

17: return [CCd
1 , · · · , CCd

n ]

3.3. Strongly connected components analysis

This section discusses the techniques used to analyze the
strongly connected components SCCdm

ijk . This corresponds to
numFindRC function of Algorithm 2 (Section 3.2) used to find
redundant (R) and conflicting (C) constraints of a component if
they exist. Otherwise, the component is solved and the solutions
are propagated to the whole system.

Depending on the type of constraints, i.e. either linear or non-
linear ones, methods differ and are presented in the next subsec-
tions. The following notation A[i : j, l : k] is used to define the
matrix obtained by slicing the ith to jth rows, and the lth to kth
columns of A.
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Algorithm 2 findRC: Numerical analysis of Gd
ij subpart of CC

d
i

Require: CCd
i
and Gd

ij

Ensure: Boolean continue and updated CCd
i

1: [SCCd1
ij1 , · · · , SCCd1

ijN
] ←linkedSCC(Gd

ij
)

2: m← 1
3: Gd1

ij
← Gd

ij

4: while [SCCdm
ij1 , · · · , SCCdm

ijN
] ̸= ∅ do

5: l← 0
6: for k = 1 to N do

7: if onlyVariable(SCCdm
ijk

) then

8: l← l+ 1
9: else

10: [R, C] ← numFindRC(SCCdm
ijk

)

11: if [R, C] == ∅ then

12: solution← solve(SCCdm
ijk

)

13: propagate(solution,CCd
i
)

14: R← checkRedundant(CCd
i
)

15: C ← checkConflicting(CCd
i
)

16: end if

17: CCd
i
← removeRCfromCC(CCd

i
, [R, C])

18: end if

19: if l == N then ▷ all red blocks contain only variables
20: [R,C]← numFindRC(CCd

i
)

21: CCd
i
← removeRCfromCC(CCd

i
, [R, C])

22: return False,CCd
i

23: end if

24: end for

25: G
d(m+1)
ij

← update(CCd
i
)

26: m← m+ 1
27: [SCCdm

ij1 , · · · , SCCdm
ijN
] ←linkedSCC(Gdm

ij
)

28: end while

29: return True,CCd
i

3.3.1. Linear system
In the proposed approach, the QR factorization with column

pivoting is used to detect linear over-constraints. QR factorization
with an optional column permutation P , triggered by the presence
of a third output argument, is useful for detecting singularity or
rank deficiency. Fig. 2 shows the overall detection process. The
horizontal colored straight lines correspond to the linear equations
of the system A.x = b to be solved, where A has a dimension
m × n. Here, it is assumed that the rank of the system is r , which
means that there are r independent equations with m > r . The
rank is computed using SVD, which is relatively stable compared
to other methods.

As for QR factorization, columns are exchanged at the start of
the kth stage to ensure that
A(k)

k (k : m)

2
= max

j⩾k

A(k)
j (k : m)


2

(2)

where A
(k)
j (k : m) = A[k : m, j]. At each step of the factorization,

the column of the remaining un-factoredmatrix with largest norm
is used as the basis for that step and is moved to the lead posi-
tion [37]. This ensures that the diagonal elements of R occur in de-
creasing order and that any linear dependence among the columns
is certainly revealed by examining these elements. Permutation
matrix P rearranges the columns of At so that the columns appear
in the decreasing order of their norm.

The first r columns of At .P are the basis constraints of At and
the first r columns of Q form an orthogonal basis (Fig. 2b). Since
the remaining m − r columns are linearly dependent on the first
r columns [38], they are the over-constraints. The rank r also cor-
responds to the number of non-zero values of diagonal elements
of R.

To find linear dependencies between the columns, the following
deduction is needed. First, the matrix Q (:, 1 : r) is inverted using
the following equation:

At (:, 1 : r) = Q (:, 1 : r).R(1 : r, 1 : r)

Fig. 2. Block analysis of linear systems: (a) overall detection process, (b) QR
factorization with column pivoting.

and is then used in the following equation:

At (:, r + 1 : n) = Q (:, 1 : r).R(1 : r, r + 1 : n)

thus providing the following relationship between the two sliced
matrices At (:, r + 1 : n) and At (:, 1 : r):

At (:, r + 1 : n) = At (:, 1 : r).R(1 : r, 1 : r)−1R(1 : r, r + 1 : n)

Finally, to identify the redundant and conflicting equations, the
new b vector after factorization is redefined as follows:

bnew = b(r + 1 : n)− b(1 : r).R(1 : r, 1 : r)−1R(1 : r, r + 1 : n)

Redundant and conflicting equations are further distinguished
by comparing the value of the lastm− r elements of bnew with 0.

3.3.2. Non-linear system
When considering a system of non-linear equations, a two-

phases identification process is used. First, the Witness Configura-
tion Method [34] is used to find all the over-constraints (phase I),
and Grobner Basis or Incremental Solving is then applied to further
distinguish redundant and conflicting constraints (phase II).

Phase I. Taking advantage of the method proposed by Moinet
et al. [35], a generic witness configuration is generated from the
initial shape of the object to be deformed (step 1). Effectively, in
our case, the variables x are the positions of the control points
which have an initial location x(0) before deformation. Then, QR
factorization with column pivoting is used to analyze this witness
configuration (step 2). As a result, the sequence of equations is
reordered. The first r (rank of the Jacobian matrix) equations are
independent while the remaining ones are the over-constraints. In
Fig. 3, the curved colored lines represent non-linear equations.

Phase II. To further distinguish redundant and conflicting con-
straints, either Grobner Basis or Incremental Solving are applied. In
our algorithm, this choice relies on the number of equations. If the
number of equationsm ≤ 10, Grobner Basis is preferred [39]. Oth-
erwise, Incremental Solving is chosen. To explain the twomethods,
let us assume that the following constraints system is available
after Phase I (Fig. 4):
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1(x1, x2, . . . , xn) = 0
f2(x1, x2, . . . , xn) = 0

...

fr (x1, x2, . . . , xn) = 0
fr+1(x1, x2, . . . , xn) = 0

...

fm(x1, x2, . . . , xn) = 0

(3)
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Fig. 3. Block analysis of non-linear systems. Phase I: Over-constraints detection.

Fig. 4. Phase II: Distinguishing redundant and conflicting constraints.

where the Eq. (4) to r are the basis constraints and the equations
(r + 1) to m are the over-constraints.

The Incremental Solving method incrementally insert the over-
constraint fj = 0, j ∈ {r + 1, . . . ,m}, in the set of basis constraints
thus forming a new group of equations {f1 = 0, . . . , fr = 0, fj =
0}. If the new group is solvable, then the equation fj = 0 is redun-
dant, otherwise it is conflicting. Of course, the basis constraints are
always solvable.

When Grobner basis [11] are used, the method first computes
the reduced Grobner basis rgbr of the ideal ⟨f1, . . . , fr⟩. Since the
set of equations are solvable, rgbr ̸= {1}. Then, a loop on all
the over-constraints fj = 0, j ∈ {r + 1, . . . ,m}, starts and for
each over-constraint the reduced Grobner basis rgbr+j of the ideal
⟨f1, . . . , fr , fj⟩ is computed. If rgbr+j ≡ rgbr , then fj = 0 is a
redundant equation. If rgbr ⊂ rgbr+j, then fj = 0 is an independent
equation. Finally, if rgbr+j = {1}, then fj = 0 is a conflicting
equation.

3.4. Validation and evaluation of the solutions

Section 2.1 has introduced the multiple ways to model require-
ments within an optimization problem by specifying an unknown
vector X , the constraints to be satisfied F (X) = 0 and the func-
tion G(X) to minimize.

The approach described in this section allows for the identifica-
tion of redundant and conflicting equations. Correctness is ensured
since it consists of a fixed-point algorithm that only stops when
the system is solvable. Additionally, any removed equation is guar-
anteed to be either conflicting or redundant with the remaining
set. It has thus been shown that the set of equations F (X) = 0
can be decomposed in two subsets: Fb(X) = 0 containing the basis
equations, and Fo(X) = 0 the over-constrained ones.

To stay close to the requirements the designer has in mind, the
proposed approach then moves from the equations level to the
constraints level. Thus, the geometric constraints associated to the
equations Fo(X) = 0 are analyzed and all the equations related to
those constraints are gathered together in a new set of equations
F̃o(X) = 0. Of course, the equations Fo(X) = 0 are included in
the set of equations F̃o(X) = 0. Finally, the equations related to
constraints which are neither conflicting nor redundant form the
other set F̃b(X) = 0. This transformation allows working at the
level of the constraints and not at the level of the equations. This
is muchmore convenient for the end-user interested in working at
the level of geometric requirements.

Since this decomposition is not unique, it gives birth to various
potential final solutions (interactive decomposition is out of scope
of this paper). Therefore, several criteria are now introduced to
evaluate these solutions according to the initial design intent. To
be able to characterize the quality of the obtained solutions, the set
of user-specified parameters P is introduced. This set gathers to-
gether all the parameters the designer can introduce to define the
constraints his/her shape has to satisfy. For example, the distance
d imposed between two points of a NURBS surface is a parameter
characterizing a part of the design intent. Then, the idea is to
evaluate how much the solutions deviate from the initial design
intent and notably in terms of the parameters P .

To do so, the optimization problem containing the basis con-
straints is solved:{̃
Fb(X) = 0
minG(X)

(4)

and the solution X ′ is then used to evaluate the unsatisfied over-
constraints F̃o(X ′) as well as the real values P ′ of the user-specified
parameters P . For example, if the user-specified distance d be-
tween the two patches cannot bemet, then the real distance d′ will
bemeasured on the obtained solution. From this solution, it is then
possible to evaluate three quality criteria:

• Deviation in terms of parameters/constraints: this criterion
aims at measuring how far/close the real values P ′ of the
parameters are from the user-specified parameters P . This
criterion helps understanding if the design intent is pre-
served in terms of parameters and consequently in terms of
constraints.

df =

∑
i

⏐⏐P ′i − Pi
⏐⏐

∑
i |Pi|

(5)

• Deviation in terms of function to minimize: this criterion di-
rectly evaluates howmuch the objective functionGhas been
minimized. Here, the function is simply computed from the
solution X ′ of the optimization problem. To preserve the
design intent this value is to be minimized. Thus, it can be
used to compare the solutions between them.

dg = G(X ′) (6)

• Degree of near-dependency: rank deficiency of the Jacobian
matrix at the witness clearly reveals the dependencies be-
tween constraints. However, for NURBS-based equation sys-
tems, the constraints can be independent but near to be
dependent. In this case, the Jacobian matrix of F̃b(X) at the
solution point X ′ is ill-conditioned and the corresponding
solution can be of bad quality. The third criterion thus eval-
uates the condition number (cond) of the Jacobian matrix as
a measure of near-dependency [40]:

cond = cond(JJ̃Fb (X
′)) (7)
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Fig. 5. Initial geometry of the Double-Banana as described in [35].

Finally, even if those criteria characterize the quality of the
solution X ′ with respect to the design intent, they have not been
combined in a unique indicator. Thus, the results of the next section
will be evaluated by analyzing and comparing those three criteria
for each solution.

4. Results and discussion

This section presents two configurations on which the pro-
posed over-constraints detection and resolution technique has
been tested. The first one concerns the academic Double-Banana
testing case widely studied in the literature. It has been used to be
able to compare our solution to the ones generated by others. The
second example is more industrial and concerns the shaping of a
glass composed of several NURBS patches.

4.1. Double-Banana testing case

The variables X , the constraints F (X) = 0, and the parameters
P of the Double-Banana testing case are exactly the same as the
ones tested by Moinet et al. [35]. The only difference is that they
are using a coordinate-free formulation whereas ours is cartesian-
based. Here, the objective is to find the position of the 8 nodes
of a 3D structure so that the length of the 18 edges satisfy user-
specified dimensions. Fig. 5 illustrates the Double-Banana in its
initial configuration.

The Double-Banana configuration contains only one connected
component as revealed by BFS. The structural analysis using D-M
decomposition shows that it is under-constrained and our algo-
rithm then follows the bottom part of the Fig. 1. WCM analysis
is used within our numFindRC function and an over-constraint is
detected. More specifically, the equation e9 is here detected. Using
our Incremental Solving approach, the equation is further charac-
terized as a conflicting one. The equation e9 is therefore removed
and the system is solved using the initial position of the nodes as
initial values of the variables. Using the results, the equation e9
is then reevaluated and the associated parameter is compared to
the user-specified value. In the present case, e9 is not satisfied

Table 1

Comparison between our algorithm and Moinet’s approach on the Double-Banana
testing case.

Method Witness Over-constraint df cond

Our Initial sketch e9 0.53/45 16.97
Moinet et al. Initial sketch e18 4.38/32 73.33

since it is equal to 44.47 compared to the initial user-specified
requirement of 45. Thus, the deviation from the design intent is
df = 0.53/45.

Our algorithm gives a solution that is much closer to the initial
design intent than the algorithmofMoinet et al., and the remaining
system is less ill-conditioned after removing the conflicting con-
straint (Table 1). Actually, the algorithm of Moinet et al. identifies
e18 as a conflicting equation and its removal induces a deviation
df = 4.38/32 from the initial design intent.

4.2. Sketching a 3D glass

In this example, the idea is to show how the proposed
over-constraints detection and resolution approach can support
the sketching of a 3D glass composed of 4 connected NURBS
patches. The designer sketches his/her design intent and associated
requirements. Here, the objective is tomodify the upper part of the
glass by specifying the following elements:

• Variables: Each patch has a degree 5 × 5 and has a control
polygon made of 16 × 6 control points whose coordinates
are the variables of our optimization process (Fig. 6a). Since
the objective is to modify the upper part of the glass, the
designer selects how many rows of control points are to
be blocked and how many can move. For example, if the
designer wishes to free the upper row of control points of
the four patches, then there will be 6×4×3 = 72 variables
in the unknown vector X . The results will be illustrated with
4 and 5 rows free to move.
• Constraints: Three types of constraints are used to specify

how the shape of the 3D glass has to evolve:

– Position: 4 position constraints are added to the four
end points of the patches along the upper boundary
curves. As shown in Fig. 6c, the green points of the
patches need to move to new positions in the 3D
space. They are labeled from 1 to 4 and they generate
4× 3 = 12 linear equations labeled from 1 to 12 (Ta-
ble 2).

– Distance: 2 distance constraints are defined between
the opposite sides of the patches (Fig. 6d). They are
labeled 5 and 6 and they generate 2 × 1 non-linear
equations labeled 13 and 14 (Table 2).

– Coincidence and tangency: 8 coincidence and 8 tan-
gency constraints are specified to maintain the con-
tinuity between the upper parts of the patches during
the deformation (Fig. 6b). They are labeled from7 to 22
and they generate 8 × 3 linear and 8 × 3 non-linear
equations labeled from 15 to 62 (Table 2). The non-
linearity comes from the use of the vector product to
express the collinearity of normals.

Overall, there are 22 geometric constraints generating 62
equations in the set F (X) = 0. Some of those constraints
are conflicting and it is the purpose of this section to try to
see how our algorithm can detect and remove themwithout
affecting too much the design intent.
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Table 2

Typology of constraints and equations involved in the description of the 3D glass sketching example.

Constraint Equations Type Component Constraint Equations Type Component

4 1–3 Linear 1 12 30-32 Non-linear 2
2 4–6 Linear 2 13 33-35 Linear 2
1 7–9 Linear 1 14 36-38 Non-linear 2
3 10–12 Linear 2 15 39-41 Linear 1
5 13 Non-linear 1 16 42-44 Non-linear 1
6 14 Non-linear 2 17 45-47 Linear 1
7 15–17 Linear 1 18 48-50 Non-linear 1
8 18–20 Non-linear 1 19 51-53 Linear 2
9 21–23 Linear 1 20 54-56 Non-linear 2

10 24–26 Non-linear 1 21 57-59 Linear 2
11 27–29 Linear 2 22 60-62 Non-linear 2

Table 3

Status of the distance and position constraints (0 to remove and 1 to keep) to solve the 9 over-constrained configura-
tions.

Config. DIS(P1,P4) DIS(P2,P3) POS(P1) POS(P2) POS(P3) POS(P4)

1 0 0 1 1 1 1
2 1 0 0 1 1 1
3 1 0 1 1 1 0
4 0 1 1 0 1 1
5 0 1 1 1 0 1
6 1 1 0 0 1 1
7 1 1 1 1 0 0
8 1 1 1 0 1 0
9 1 1 0 1 0 1

Fig. 6. Initial sketch of glass geometry.

• Objective function: Since the proposed approach removes
the identified over-constraints, the resulting system of
equations F̃b(X) = 0 (Section 3.4) may become under-
constrained and a function G(X) has to be minimized. Here,
the idea is to make use of the approach of Pernot et al.
to define two types of deformation behavior [4]: either a
minimization of the variation of the shape (G1(X)) between
the initial and final configurations, or minimization of the
area of the final shape (G2(X)). In terms of design intent,
the first one tends to preserve the initial shape of the glass,
whereas the second forgets the initial shape and tends to
generate surfaces similar to tensile structures.

As revealed by BFS, the system can be decomposed into 2 +
24 × Nrows connected components CCi where Nrows is the number
of rows free to move. Among them, only two components CC1 and
CC2 contain both variables and equations while the others contain
only variables (Table 2). The analysis of those two components
gives rise to the identification of 2 conflicting equations which
correspond to either the position or distance constraints. Since the
result of the detection process is not unique, 9 configurations are
obtained and are gathered together in Table 3. Here, one has to

remember that even if the detection process identifies conflicting
equations, our algorithm removes the constraints associated to
those equations. For example, configuration 1 considers that the
two distance constraints (one between patches P1 and P4, and the
other between P2 and P3) are to be removed (0 in the table) and
the 4 position constraints are kept (1 in the table).

All configurations are then solved while acting on both the
number of upper rows to be fixed (Nrows = 4 or 5), and the
objective function to be minimized (either G1(X) or G2(X)). The
results are gathered together in Tables 4 and 5. Each configuration
is evaluated through the three previously introduced criteria dg , df
and cond. Some solutions are shown in Fig. 7.

One can first notice that depending on the configurations, the
deviation df on the constraints varies. For example, with Nrows =

4 and while minimizing G1(X), the configuration 7 generates a
solution that is closer to the design intent than configuration
6 (0.10684< 0.12607 in Table 4). For configuration 3, it is clear that
the deviation to the design intent in terms of constraints is more
importantwhenminimizing the area of the final surface thanwhen
minimizing the shape variation (0.2288> 0.10179 in Table 4). This
is clearly visible on Fig. 7c1 and c2.

But the deviation dgi on the objective function to be minimized
also varies. While considering the minimization of the shape vari-
ation, one can see that configuration 3 is less interesting than
configuration 1 in the sense that it minimizes less the shape varia-
tion (15459.52 > 13801.04 in Table 4).

Finally, for a given configuration, one can notice that when the
number of free rows increases, i.e. when there ismore freedom, the
objective function decreases and the solution is therefore closer
to the design intent. This is visible when comparing values from
Tables 4 and 5. Thus, the selection of the variables X are also
important when setting up the optimization problem.

5. Conclusion and future work

In this work, an approach for finding all over-constraints in
free-form geometric configurations has been introduced. It relies
on a coupling between structural decompositions and numerical
analysis. The process and its algorithm have been described and
analyzed with results on both academic and industrial examples.
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Fig. 7. Results of the sketching after removing conflicting constraints with Nrows = 4: (a) initial glass, (b1) configuration 1 and minimization of the shape variation,
(b2) configuration 1 and minimization of the area of the final surface, (c1) configuration 3 and minimization of the shape variation, (b2) configuration 3 and minimization of
the area of the final surface.

Table 4

Evaluation of the 9 configurations with Nrows = 4.

Config. Minimization of G1(X) Minimization of G2(X)

dg1 df cond dg2 df cond

1 13801.04 0.10000 2.8654e19 96733.72 0.10000 1.4272e18
2 17990.88 0.10182 8.3172e18 95225.05 0.28157 4.3894e17
3 15459.52 0.10179 1.5071e19 94483.08 0.22880 4.9533e17
4 12265.51 0.10975 8.8857e18 89924.13 0.22806 3.9399e18
5 10970.98 0.10971 3.9852e19 86879.47 0.25225 8.2501e18
6 15826.68 0.12607 3.4260e18 76878.26 0.68278 1.6567e18
7 12936.45 0.10465 3.8205e18 76167.99 0.62820 3.9842e17
8 13889.18 0.11385 2.5681e18 78657.81 0.59160 4.1485e18
9 14883.21 0.11720 1.2523e18 74351.81 0.71765 6.7658e16

Table 5

Evaluation of the 9 configurations with Nrows = 5.

Config. Minimization of G1(X) Minimization of G2(X)

dg1 df cond dg2 df cond

1 11266.93 0.10000 4.0149e17 85121.36 0.10000 3.3441e17
2 14719.05 0.10280 4.6031e17 86295.47 0.25034 6.5355e19
3 12506.55 0.10277 1.7748e19 85190.96 0.20076 1.0972e18
4 9944.87 0.11452 1.7903e18 79428.31 0.20592 1.7041e18
5 8799.29 0.11448 6.1454e17 77800.57 0.22919 1.0218e18
6 12561.66 0.13935 4.1681e18 69603.16 0.76646 8.5100e16
7 10441.11 0.10684 1.0862e18 69502.72 0.70009 2.3460e18
8 11134.09 0.12097 2.5394e18 71465.72 0.65901 1.5773e18
9 11877.59 0.12601 1.3790e19 67661.55 0.80372 8.4472e17

The approach has several benefits: it is able to distinguish between
redundant and conflicting constraints; it is applicable on both lin-
ear and non-linear constraints; and it applies numerical methods
on small sub-blocks of the original system, thus allowing to scale
to some large configurations. Additionally, since the set of over-
constraints of a system is not unique, it has been shown that our
approach is able to provide different sets depending on the selected
structural decomposition, and proposed criteria to compare them
and assist the user in choosing the constraints he/she wants to
remove. Even if the kernel of the algorithm works on equations
and variables, the decision is taken by considering the geometric
constraints specified by the designer at a high level.

A number of perspectives stem from thiswork. First, an automa-
tization of the process should assist the designer in selecting the set
of over-constraints that less deviate from his/her original design
intent. As it is, the designer has access to three main criteria (dg ,
df , cond) which can be difficult to analyze for a non-expert. Thus,
higher-level criteria should be imagined on top of those ones.
Second, the approach can be made interactive, i.e. allowing the
designer to select between the different conflicting sets along the
process, or evenmodify the faulty constraints. Finally, it is planned
to extend this work so that it can be used to detect and explain

geometric configurationswhich, evenwhen solvable, result in poor
quality designs.
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