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Simplified stiffness model for spherical
rough contacts

S. U. Butt*1, J.-F. Antoine2 and P. Martin2

Obtaining a surface with negligible roughness is very expensive, time consuming and

unnecessary. The influence of surface roughness on the contact stiffness is of great importance.

The extra cost associated with unnecessary surface finish can be limited by eliminating the

unnecessary machining operations beyond the required surface finish. In this article, a simplified

solution is presented to calculate the stiffness of rough contact between the workpiece and

spherical locator; also, the effect of surface roughness on the stiffness and deformation of rough

spherical contact is studied for different applied loads to find an ‘economic roughness’ under

machining forces.

Keywords: Analytical model, Contact mechanics, Rough contact, Contact stiffness, Contact deformation

List of symbols
aH maximum radius of Hertzian contact area, m
aL maximum radius of rough contact area, m
a‘L non-dimensional radius of

macrocontact, a9L ¼ aL=aH
Hmic microhardness
M second non-dimensional parameter
P radius of curvature, m
P0 maximum pressure distribution,

N m22

P0,H maximum Hertzian pressure distribution,
N m22

P9
o non-dimensional maximum pressure distribution
T first non-dimensional parameter
a roughness parameter, a ¼ sr=a2H
dC deformation of rough contact, m

dC(0) deformation at centre of rough contact, m
dH ideal Hertz deformation, m
s rms surface roughness RT, m
j non-dimensional radial position of contact,

j ¼ r=aL

Introduction
Hertzian contact theory was established to predict the
behaviour of ideally smooth contacting surfaces
assuming their contacts to be purely elastic. However,
real engineering surfaces are rough at microscopic level,
and their interactions involve the contact of surface
peaks at discrete spots called asperity tips.1 This surface
roughness affects the contact behaviour, and real con-
tact area becomes smaller than the one calculated by
Hertzian contact theory. Hertz replaced contacting
spherical surfaces with paraboloids, so that the contact
between two spheres is simplified to sphere–plane con-
tact with the sphere having equivalent radius given
by 1=r ¼ 1=r1 þ 1=r2. For the calculation, the sphere
is assumed to be rigid, and only the half space
supports deformation. An effective modulus of
elasticity is defined for this half space, which is
1=E9 ¼ ð12 v21Þ=E1 þ ð12 v22Þ=E2. Hertz pressure
distribution on the contact is written in equation (1)2

PHðr=aHÞ ¼ P0;H 12 ðr=a2HÞ
� �1=2 ð1Þ

Analytical models defining A ¼ 1=r1 and B ¼ 1=r2 as
principal curvature radii can be found in Refs. 3–5 to
calculate the contact area for the elastic Hertzian ellip-
tical contacts. Greenwood6 performed a comparison of
all the three models3–5 for principle curvature range of
1 # B=A # 25. The approach of Houpert7 provides
maximum Hertzian pressure and Hertzian deformation
as a function of the dimensionless load parameter for
B=A # 13; 576. Antoine et al.8 proposed an analytical
formulation dedicated to rolling bearings and whose
single formula fits the Hertzian theoretical values for a
large range of B=A ratio with the precision of 0.006%.
For rough contact calculations, the problem of aspe-

rities can be encountered similar to the contact of two
spheres. The contact of two rough surfaces is dealt as the
contact between an ideally smooth surface and a rough
surface having an equivalent surface roughness
s ¼ ½s21 þ s22�1=2.2 An fast Fourier transform based
deterministic model of elastic contact between rough
surfaces is presented in 9. The model predicted contact
areas and forces from various elastic contact models
using different roughnesses of the contacting surfaces.
Malayalamurthi and Marappan10 used finite element
analysis approach to model the contact area and contact
pressure of an elastic–plastic contact between a sphere
and a rigid flat surface. It was concluded that the
material having E/Y v300 exhibit different behaviours,
while for 300vE/Yv1000, the contact is fully plastic.
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Other elastic–plastic contact models based on finite
element analysis of a single asperity are proposed in
Refs. 11 and 12. The models predicted contact
parameters as the functions of plasticity index and
contact load. Static friction coefficient was highly
dependent upon the surface roughness through plasticity
index.
Jackson and Green13 also used finite element method

to model an elastic–perfectly plastic sphere in frictionless
contact with a rigid flat surface. Their work accounts the
contact geometry and material effects on overall beha-
viour of the contact. The contact area, force and press-
ure were found to be dependent upon the deformed
geometry in all regimes and effectively dependent upon
the material properties (e.g. strength) in the elastoplastic
and plastic regimes.
Beheshti and Khonsari1 compared the effect of sur-

face roughness on contact characteristics, like contact
pressure distribution, maximum contact pressure, con-
tact width and the real contact area, through existing
contact models of Kogut and Etsion,11,12 Jackson and
Green,13 Greenwood and Williamson,14 Zhao and
Maietta15 and Chang et al.16

The first analytical study for the effect of roughness on
spherical contact was performed by Greenwood and
Tripp.17 Their workwas based on the elastic deformation,
and it presented the deformation produced by an arbi-
trary pressure over the circular half space. The model was
based on two non-dimensional parameters: T and m.
It was shown that the contact area was directly while the
pressure was inversely proportional to the contact
roughness. This model is complex and requires extensive
numerical calculations. Furthermore, the parameters
b and g cannot be measured directly and are estimated
through statistical calculations. Additionally, these par-
ameters are sensitive to surface measurements.2,18

Mikic and Roc19 proposed an alternate numerical
solution considering plastic deformation of asperities,
but they did not report a generalised relation to calculate
the contact parameters. Greenwood et al.20 generalised
the results of both previous models17,19 in terms of a
single non-dimensional roughness parameter a, which is
a function of surface roughness and radius of curvature
(a ¼ sr=a2H ). It was concluded that the contact pressure
is governed by a, and if the value of a isv0.05, the effect
of roughness becomes negligible and Hertzian theory
may be applied.
Jourani21 proposed an elastoplastic model using the

concept of representative strain to calculate the effect of
surface roughness on real contact area and pressure
distribution on flat contacting surfaces. He calculated
the asperity deformation as the function of applied load
and pressure and concluded that the real contact area
remains a small fraction of apparent contact area. This
model has been compared with the spherical approach
and the spectral method using unidirectional ground and
sanded surfaces. It was concluded that, for a surface
with a low roughness, the elastic approach is sufficient to
model the rough contact. However, for surfaces having a
great roughness, the elastoplastic approach is more
appropriate to determine the real area of contact and
pressure distribution.
Bahrami et al.22 concluded that the maximum press-

ure distribution is the key parameter in rough contact
calculations. A generalised pressure distribution is

proposed, which is valid for whole range of rough con-
tacts. An analytical model was proposed, which was
valid for all the experimental results of all the previous
models17,19,20 for spherical rough contacts. The model of
Bahrami et al.22 gives a close approximation to the
experimental data, so their model is further simplified in
this study without performing experiments.
The work of Butt et al.23 is divided in two parts:

a kinematic model which helps to compensate the posi-
tioning error of the workpiece on machining fixture by
the axial advancements of six supporting locators, and
an analytical mechanical model which calculates the
positioning error of the workpiece due to the defor-
mation of elastic elements of the fixture. While the
workpiece is under load, there will also be deformation
at the contact of each of six locators (Fig. 1). Butt et al.23

did not take the contact deformation into account for
the final workpiece position calculation. They calculated
total stiffness of the system by considering locator–
baseplate contacts to be ideally smooth. Hertz contact
theory was applied to the contacts, but in reality, the
contact deformation depends upon the surface rough-
ness and radius of curvature (a ¼ sr=a2H ).

The interest of this article is to find an explicit
equation for maximum deformation of locator–work-
piece contact at the centre of rough contact, which is
proposed in the Bahrami model to be numerical. This
helps the authors to calculate the total deformation of all

1 Effect of locator deformation on final position of

workpiece
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the locators and, as a result, overall displacement of the
workpiece on the supporting locators.23 The solution
also helps to limit the minimum andmaximum roughness
of contacting surfaces to keep the contact stiffness and
deformation within acceptable limit. This proposed ana-
lytical solution is an extension of the solution obtained in
Ref. 22 anda step forward to the solution proposed inRef.
23.This article is composed as follows: the section on
‘Model of Bahrami’ briefly explains the solution of the
spherical rough contacts as proposed in Ref. 22; the sec-
tion on ‘Proposed model’ offers a simplified approxi-
mation for the beta function specific for the case of rough
workpiece–locator contact (Fig. 1); in the section
on ‘Application of the proposed model’, the effect of
roughness on the global stiffness and deformation of
rough contact is studied; and an application is illustrated
in the last section to demonstrate the utility of the pro-
posed model. This study justifies that the machining cost
of unnecessary finish can be reduced by limiting the sur-
face finish to a minimum value, which limits the contact
deformation and stiffness to an acceptable value.

Model of Bahrami
Bahrami et al.22 showed that the non-dimensional
maximum pressure distribution is the dominant par-
ameter having maximum effect on the properties of
rough contacts. Their model is based on the following
hypotheses:

(i) deformation mode of asperities is plastic
(ii) bulk deformation of the contact is elastic, and all

the bulk deformations occur at elastic half space
with effective modulus of elasticity E9

(iii) pressure at microcontacts is the microhardness of
the softer contacting material

(iv) surface roughness acts like plastic layer in the
sense that the pressure distribution can be con-
sidered as continuous P(r)

(v) the external pressure P(r) is the sum of pressures
at all microcontacts

(vi) effective microhardness is constant throughout
the contact area.

The non-dimensional pressure distribution for rough
contacts c and maximum pressure at the contact are
presented in equations (2)–(4). These equations give
Hertzian pressure distribution when contact roughness
approaches to zero

PðjÞ ¼ Poð12 j2Þc ð2Þ

c ¼ 1:5
P0

Po;H

aL

aH

� �2

21 ð3Þ

P0 ¼ ð1þ cÞ F

pa2L
ð4Þ

The model22 is generalised in terms of two non-
dimensional parameters: the first parameter is a,20 while
the second is t ¼ ðE9=HmicÞ

ffiffiffiffiffiffiffiffi
r=s

p
. The equations for

non-dimensional pressure (equation (5)) and non-
dimensional contact area (equation (6)) are obtained by

curve fitting

P9
0 ¼

1

1þ 1:22at20:16
ð5Þ

a9L ¼
1:605=ðP9

0Þ1=2 0:01 # P9
0 # 0:47

3:512 2:51P9
0 0:47 # P9

0 # 1

8<
: ð6Þ

Maximum deviation of equations (5) and (6) from the
real models20,24,25 is claimed to be,4.5%. As calculation
of a9L involves testing for each value of pressure P9

0,
Bahrami26 proposed a single equation (7) to approxi-
mate a9L.

a‘L ¼ aL

aH
¼ 1:80

ðaþ 0:31t0:056Þ1=2
t 0:028

ð7Þ

The numerical results of Bahrami model (equation (6))
are valid over full range of rough contacts. In the pro-
blem under consideration (Fig. 1), the maximum defor-
mation occurs at the centre of the contact, i.e.
j ¼ r=aL¼0. This deformation is shown in equation (8) as
proposed in Ref. 22

dcð0Þ ¼ P0aL

E9
Bð0:5; cþ 1Þ ð8Þ

where B is beta function giving the maximum defor-
mation value numerically. Bahrami et al.22 proposed an
analytical solution of the deformation at the border of
rough contact (j ¼ 1), but no analytical solution was
formulated for calculation of maximum deformation at
the centre of rough contact. In this article, an analytical
approximate solution of the non-dimensional contact
area is proposed to obtain the contact deformation and
stiffness of a rough sphere–plane contact (Fig. 1) using
the previously explained parameters a9L and P9

0.

Proposed model
Here, a single analytical equation for non-dimensional
contact area is proposed to avoid the testing of P9

0 in the
Bahrami model. Later, a beta function approximation is
performed for small values of c in equation (8).

Non-dimensional contact area estimation
The curve fitted non-dimensional contact area
(equation (6)) is compared with the estimated contact
area of the Bahrami model (equation (7)), and the error
is evaluated for different values of a and t. An error of
up to 30% has been revealed for some values of t and a
as shown in Fig. 2. This highlights the need of an explicit
equation having more precise estimated value of contact
area. For this purpose, a more precise equation is pro-
posed for the estimation of a9L for all values of P9

0, which
is further a function of t and a. Estimation is performed
by plotting equation (6) for all values of a9L, and then by
fitting the power equation curves with minimum least
square error. New proposed function of non-dimen-
sional contact area is presented in equation (9)

a9L;new ¼ 1:631 P920:496
0 2 0:631 P93:358

0 ð9Þ
where P9

0 can be evaluated through equation (5). Pro-
portional coefficients 1.631 and 0.631 are chosen to keep
the border condition ða9LðP9

0 ¼ 1Þ ¼ 1Þ valid. This pro-
posed estimated contact area (equation (9)) is compared
with the estimated contact area26 (equation (7)) for two



different values of t (1 and 1000) in Fig. 3, and their
relative error is compared in Fig. 2. Curves in Fig. 2 are
discontinuous; it is only because the actual function of
Eq. (6) is discontinuous at P9

0 ¼ 0:47.
The model of Bahrami is claimed to give a close

approximation to the experimental data; therefore, by
taking equation (6) to be a valid formulation, it can be
seen in Fig. 2 that equation (9) describes the non-
dimensional contact area with least error for all values of
a and t, and it is convenient to replace equation (6) with
the proposed equation (9).
The next step is to estimate the deformation at the

centre of contact calculated in terms of beta function,
which is calculated in terms of beta function in Ref. 22
and is shown in equation (8).

Beta function estimation
In the problem under consideration (Fig. 1), the defor-
mation at the centre of contacting surfaces for all the
locators is to be calculated for the precise position of the
workpiece in machine’s frame of reference. An algorithm
helps the position of the workpiece to converge to the
final position iteratively. The iterative calculations slow
down due to these numerical functions. An explicit
approximation of beta functions is necessary to obtain
quick results. For this purpose, an approximation
is proposed, which satisfies the results from the
numerical solution of equation (8) with minimum error.
By investigating the numerical result, it is observed that
the beta function is further a function of ‘gamma func-
tion (C)’ (equation (10)), again a numerical value

Bðx; yÞ ¼ CðxÞCðyÞ
Cðxþ yÞ ð10Þ

Gamma function
In 27,28, the complete gamma function C(z) is defined by
the improper integral

Ð1
0
e2tt z21dt for zw0. It is also

defined to be an extension of factorial to complex and
real number arguments presented by L. Euler (in 1729).
It is related to the factorial by the relation
C(z) ¼ (z-1)!:z[N, where N is positive integer.
Estimation models like Stirling approximation28 and

Gergö approximation29 for gamma functions are avail-
able in the literature. Gergö approximation is similar to
Stirling approximation but easier to use. The problem
under consideration (Fig. 1) involves very small values of c
(equation (3)), while Gergö and Stirling approximations
are the approximations of large factorials, and they pro-
duce large errors for very small values of c. An analytical
estimation needs to be formalised, which describes the
beta function for small values of c as well for this specific
case of rough contacts. For this purpose, an analytical
expression for gamma function estimation is obtained by
least square parameter optimisationover a large rangeof c
values. This analytical equation is presented in Eq. (11).
Beta function can further be obtained using equation (10)

Cðbþ 1Þ ¼ a1ðbþ a2Þbþa2

� 1þ a3

a4 þ ba5
þ a6

ba7 þ a8

� �
e2b a9 ð2pÞ1=2

ð11Þ

2 Comparison of proposed and Bahrami error for a9
L

3 Comparison of proposed and Bahrami estimation for a9
L
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where a1; . . .a9 are the parameters, and their optimal
values are shown in Table 1. A comparison of errors in
gamma and beta function using equation (11) is presented
in Fig. 4, where absolute values of errors in beta and
gamma functions are plotted in logarithmic scale. Higher
values of parameter c cause the cumulative error to often
return the infinity as seen in Fig. 4a.
The proposed expression for gamma function gives

better results for small values of c;, which is of great
interest for the problem under consideration (Fig. 1).
Other asymptotic models are more efficient for large
values of c, but their calculation produces noise for very
large values of c. The proposed model shows a homo-
geneous absolute error for all values of c. Hence, it can
be concluded that the proposed model gives better
accuracy for the surfaces having small c values.

The deformation at the centre of rough contact can be
calculated as a function of s from equations (8)–(11)
without testing of P9

0 (equation (6)).

Contact stiffness
Overall stiffness of the system depends upon the stiffness
of each locator and their contact with the workpiece, but
the contact stiffness depends upon the quality of the
contacting surface. Estimating influence of surface
roughness on the global contact stiffness is primordial
for precise mechanical behaviour modelling. The re-
lation between the force acting on a sphere–plane con-
tact and its deformation dc at the centre is non-linear as
shown in equation (12)30

F ¼ kdcð0Þ3=2 ð12Þ
where k ¼ ð16RE ‘2=9Þ1=2. Differential of equation (12),
with respect to displacement, furnishes the stiffness on
the contact, which is

kc ¼ 3

2
k½dcð0Þ�1=2 ð13Þ

Contact stiffness is the function of applied force,
material of locator and workpiece and a. The non-
dimensional parameter a is further a function of surface
roughness and radius of curvature (a ¼ sr=a2H). For the
problem under consideration (Fig. 1), the s affects more
on the contact stiffness as compared to r. Hertz stiffness
KH is calculated for ideal smooth surface. The ratio of
theoretical stiffness of rough surface and ideal Hertz
stiffness (Kc=KH) is plotted against surface roughness
(s) f for two different values r (0.5 and 0.005 m) in
Fig. 5. The forces acting on the contact is changed from
0.01 N to 100 kN in Fig. 5. For realistic values, the
stiffness ratio is plotted for the surface roughness range
of 0:4mm # s # 150mm for each value of force 10j, where
j ¼ 22,21...5. It can be seen that, as the contact load
increases and more asperities come in contact, the con-
tact stiffness increases sharply.11

Table 1 Optimised parameters in gamma function
approximation

Par. Value Par. Value

a1 0.5641886354 a2 0.500007096
a3 0.1091637999 a4 1.621840565
a5 0.992925298 a6 0.0115834573
a7 1.271839956 a8 1.505508639
a9 1

4 Comparison of proposed and existing approximations

5 Effect of contact’s roughness on its relative stiffness for

different applied loads
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The real to Hertzian contact deformation is written as
the function of stiffness ration in equation (14). The
effect of the roughness of contacting surface on the
actual deformation as compared to the Hertzian ideal
deformation for two different values r (0.5 and 0.005 m)
is shown in Fig. 6

dc
dH

¼ KC

KH

� �2

ð14Þ

Figs. 5 and 6 show that s has more effect on the contact
stiffness and deformation as compared to r. For less
force, the surface roughness affects more on the stiffness

and the deformation of the rough contact for lesser
forces. For high values of the normal forces, the effect of
the roughness is negligible as compared to overall
deformation of the contacting surfaces. For the same
surface roughness, relative contact stiffness and defor-
mation are directly related to applied load.
Similarly, the locators with less radius of curvature

experience more deformation, so it is recommended to
use the locators having large radius of curvature to
reduce the contact deformation. The quality of the
contacting surface has to be chosen according to the
operating conditions as the contact deformation causes
the geometrical deviation of the workpiece. After a
value, unnecessarily extra finished surface will not have
any necessary influence on the geometrical deviation.
If the stiffness, that the part should exhibit to allow
acceptable deformation under machining forces, is
known, then an ‘economic roughness’ can be defined in
order to avoid machining of unnecessary superfine sur-
face. A complete set of equations, to calculate the de-
formation of the rough surfaces using the proposed
model, is shown in Table 2.

Application of proposed model
For the application of the proposed model, the case
study is taken from Ref. 23. All the input data including
the orientation of the baseplate, positions and points of
contacts of the locators, magnitude and point of action
of clamps and machining force are taken as in Ref. 23.
The locators and baseplate are chosen to be made of
steels having the elastic modulus to be 200 GPa andHmic

to be 20 GPa. As explained in Butt et al.,23 stiffness of
the fixture and displacement of the baseplate can be
calculated with or without considering the effect of the
contact. The flowchart to calculate the workpiece
(baseplate) displacement is shown in Fig. 7 31

In this work, the main concern is to find the effect of
contact roughness on deformation of each locator and
overall displacement of the baseplate. Hertz contact theory
is used to calculate the contact deformation and stiffness of
all locators (Fig. 7) for ideally smooth contacts. The de-
formation of each locator and the displacement of base-
plate, for ideally smooth contacts, are shown by left most
points in Figs. 8 and 9 respectively.

Table 2 Equation set for calculating deformation of rough contact

Calculation steps Equation

Hertz contact area aH ¼ 3F r

4E 9

� �1=3

Roughness parameter a ¼ sr=a2
H

First non-dimensional parameter t ¼ E ‘

Hmic

r
s

	 
1=2
Non-dimensional pressure distribution P 9

0 ¼ 1
1þ1:22 at 20:16

Non-dimensional contact radius a9
L ¼ 1:631 P 920:496

0 2 0:631 P 93:358
0

Generalised pressure distribution exponent c ¼ 1:5 P 9
0a

92
L 2 1

Area of rough contact aL ¼ a9
LaH

Max. contact pressure P0 ¼ ð1þ cÞF=pa2
L

Estimated gamma function Cðb þ 1Þ ¼ a1ðb þ a2Þbþa2 1þ a3

a4þb a5
þ a6

b a7þa 8

� �
e 2b a9 ð2pÞ1=2

Estimation of beta function Bð0:5; cþ 1Þ ¼ Cð1=2ÞCðcþ1Þ
Cðcþ1:5Þ

Contact deformation at r ¼ 0 dc ¼ P0aL

E 9 Bð0:5; cþ 1Þ

6 Effect of contact’s roughness on its relative deformation

for different applied loads
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To calculate the deformation of locators having rough
contact and their effect on the baseplate displacement,
the Hertz theory is replaced by the proposed model
(Table 2). Force on each contact Fi can be calculated
through the magnitude vector of force acting on each
locator, while r, E9 and Hmic are also known. In order to
calculate the effect of surface roughness, s is varied from
0.01 to 100 mm. As all the variables are known, the
equations in Table 2 can be applied to calculate the
deformation of each contact, and equation (13) can be
used to calculate the contact stiffness to each locator.
The deformation of each locator and the displacement of
baseplate are shown in Fig. 8 and Fig. 9 respectively.
It can be seen from Figs. 8 and 9 that contact

roughness is an important parameter in calculating the
deformation of each locator and hence the final position
of the workpiece (baseplate). For this specific case, the
roughness affects the positioning error after it exceeds
0.5 mm and below that the effect of contact roughness is

almost negligible. It can be concluded that extra finished
contact surface is not needed to attain ideal results. For
example, if the locators and baseplate having equivalent
roughness of v0.1 mm are used, the locators’ defor-
mations have a maximum deviation of 5% from the
Hertz contact theory. The value of ‘economic roughness’
can be obtained depending upon the maximum allow-
able displacement of the workpiece. This limit can be
changed by changing the system parameters.

Conclusions
A simplified analytical solution has been presented to
calculate the stiffness of rough contact between a rec-
tangular workpiece and spherical locator (Fig. 1) with-
out any numerical resolution. A review of present
models, describing the deformation of rough plane–
sphere contact, has been presented. A simplified ana-
lytical solution has been proposed to calculate the con-
tact area of rough plane–sphere contact. A generalised
solution of deformation at the centre of contact has been
replaced by a more simplified explicit solution in order
to get quick result without the need of specialised
mathematical tools. At the end, stiffness of the rough
contact has been calculated and compared with the
Hertzian contact stiffness. This comparison enables us
to eliminate the cost related to extra finishing
operation (beyond the need) and to fabricate the cost
effective parts. An economic roughness can be defined to
limit the contact deformation to the maximum allowed
value.

7 Flow chart of algorithm to calculate overall displacement31

8 Deformation of locators as function of equivalent contact

roughness

9 Six degrees of freedom displacement of workpiece as

function of equivalent contact roughness (a linear

displacement; b angular displacement)
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