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ABSTRACT 

The objective of this paper was to investigate the effects of curing parameters (i.e., 

temperature and time), on the permeability and mechanical strength of the printed molds. 

Several sets of samples were hence produced with a state-of-the-art 3D printer using well-

characterized silica sand and furan resin binder. Then, experiments were performed in which 

the evolution over time of the three-point bending (3PB) strength and permeability of the 

samples were monitored at three different curing temperatures. From these measurements, 

both the individual and combined effects of curing temperature and time on the functionality 

of the 3D printed molds were assessed. Moreover, Loss-On-Ignition (LOI) tests were also 

performed in order to relate the loss of binder mass to the variation in permeability and 

mechanical strength of the samples. The results showed that the printed molds can be stored at 

room temperature for a long time before being used, roughly preserving the initial properties. 

No significant change in 3PB strength was observed when curing at 100ºC. In contrast, the 

permeability was shown to decrease with increasing curing temperature. 
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I. INTRODUCTION 

 

Additive Manufacturing (AM), commonly referred to as Three-Dimensional Printing (3DP) 

was invented at MIT as a rapid prototyping technique to build three-dimensional parts directly 

from computer design model in layers [1–4]. In 3DP processes, a sliced 3D CAD design is 

used as input to print up a mold layer upon layer by binding granular material. AM can be 

defined as the process of joining particles to form an object layer upon layer from 3D design 

data, in contrast to subtractive manufacturing. Nowadays, 3DP has become the standard 

method for the production of molds and cores in casting industry as recently reviewed [5], 

with applications in various areas, such as aircraft, automobiles, and medical. The process of 

rapid prototyping has been widely accepted due to its significant potential to reduce the cost 

of manufacturing highly complex components [6–8]. Indeed, amongst all the rapid tooling 

and manufacturing processes, 3DP makes the most sense for quick integration into existing 

industries as it can produce high quality and complex sand molds adapted to casting 

applications within a short time frame [9]. Furthermore, the use of binder jetting technique to 

produce optimized part designs results in reductions in weight up to 33% as compared to 

traditional sand mold making process or even any other 3D printing technique [10]. 

 

The layer-based 3DP technology produces porous parts by binding individual particles, which 

generates permeable molds as required for metal casting. In the case of casting sand molds, 

ceramics are used as particle materials to provide refractoriness, and a liquid binder is used to 

ensure cohesion between particles by forming capillary bridges between the sand grains, as 

schematically shown in Fig.1. In particular, a capillary pressure is generated by the curvature 

of the liquid interface causing attraction between grains and high stiffness of the 3D printed 

parts. This generates a network of sand grains connected by resin bridges, which is suitable 

for printing complex casting sand molds. A detailed Scanning Electron Microscope (SEM) 

analysis of cross-linked resin bridges between sand particles was provided by researchers 

[11].  



 

 

Fig.1 Schematic representation of, (a) particle binder bonding and resin bridge in 3D printed 

sand molds, (b) tighly packed particles 

 

The interstices between the grains of sand in the 3D printed parts permit the evacuation of air 

during the filling of the mold as well as the flow of the gases generated during filling and 

solidification of the alloy. These gases are evacuated more or less rapidly depending on the 

permeability of the sand [12, 13]. Researchers have studied the gas emissions from mold and 

core sand binders, where the thermal degradation of binders was measured by collecting off 

gasses in specially designed ventilation hood at a constant flow rate [13]. Also a numerical 

model was developed to estimate the potential out-gassing of the furan bonded silica molds 

and cores [12]. In this respect, liquid binder blocks gas flow through the sand, resulting in 

slow filling of the mold cavity and more gas being trapped during pouring of the alloy. 

Therefore, the permeability of the mold must be high enough to accelerate filling and 

minimize casting defects. However, excessively high permeability values obtained by using 

coarse grains of sand may also lead to metal penetration defects due to large inter-sand grain 

spacing, so a compromise between both effects should be found. 

 

It should be noted that molds with excessively high levels of mechanical strength may give 

rise to hot tearing and high residual stresses resulting in casting defects [14, 15]. So casting 

sand molds should exhibit convenient mechanical strength to be handled during casting 

operations without deteriorating. Researchers have also investigated the surface roughness of 

the parts casted with 3DP molds, and showed that the surface roughness is dependent on the 



temperature of the molten metal and solid fraction at the instant of contact [16]. The flexural 

strength of the mold is a function of the grain size, binder content present in the mold and 

sand compaction [17, 18]. The effect of molding parameters (sand grain size, binder 

percentage and curing time) on chemically bonded sand mold mechanical properties 

(compression strength, shear strength and core hardness) were studied and was reported that 

their mechanical properties were found to increase with an increase in binder content and 

curing time [11]. It was also reported that high amounts of binder lead to more tensile and 

flexural strength but would affect the dimensional accuracy and surface uniformity of molds 

[19]. The evidence of evaporation of solvent and shortening of resin bridges were also 

provided using SEM analysis. Indeed, the binder evaporates during filling and cooling of the 

mold and a chemical reaction may occur when the liquid binder gets into contact with the 

binder, releasing gases. High amounts of binder lead to more flexural strength of the sand and 

shrinkage due to hardening and shortening of resin bridges, but generates excessive gas 

during casting operations [20–22]. This may result in poor quality of the casting part [21] and 

incomplete filling of the mold [23]. 

 

Organic furan binders are commonly used in foundries for 3DP of sand molds to cast light 

alloys [14, 15, 21, 23–26]. The impact of temperature on furan resin and binder structure was 

studied using spectrometer and was reported that the furan resin bonded sand is advantageous 

in making molds and cores of complex shape with precise dimensions [27]. Also, the curing 

mechanism of furfuryl alcohol and urea-formaldehyde furan resin were investigated using 

infrared spectroscopy (IR) technique and was reported that the main advantage of furan binder 

is that it cures at room temperature and possesses good mechanical strength [24]. Evidence 

was provided in the formation of three-dimensional structure due to dehydration 

polycondensation of –OH and addition reaction of C=C resulting in high mold strength. The 

furan binder condensation reaction produces water, which tends to slow down the rate of 

curing and hence affects the 3-point bending strength and permeability [28, 29]. Also, more 

water is evaporated from the mold when the ageing time of the 3DP part is increased. 

 

The effects of ageing parameters on the mechanical properties (strength and permeability) of 

the mold were previously studied using the ZCast 501 powder and Zb56 resin binder system 

of the Z Corporation [20]. In this work, the temperature was varied from 150° to 250°C with a 



curing time variation of 4-8 h. Others used cylindrical Z-cast samples to optimize the 

temperature and time for maximum compressive strength, finding that the effect of ageing 

time on the strength was negligible [30]. Also, researchers optimized the ageing cycle by 

considering the casting defects due to off-gassing of volatile binder components, showing that 

the optimum ageing cycle was at 316°C for 1 hour. Moreover, this optimized curing cycle 

also provided molds with convenient mechanical strength. However, the effects of curing 

temperature were not investigated and the range of curing times considered was limited to 

several hours. In particular, higher curing temperatures are known to accelerate the curing 

process [27]. 

 

The objective of the present work is to study the effects of curing parameters, i.e. curing time 

and temperature, on the strength and permeability of the 3DP sand molds. To do so, the 

ageing mechanisms were experimentally investigated using a set of 3DP samples produced 

with chemically-bonded sand as the ones used in casting applications. The evolution of the 

permeability and the three-point bending strength of the samples was monitored over a long 

time (up to 45 days) and related to the amount of binder present in the 3DP mold. The initial 

amount of binder was characterized by means of Loss on ignition (LOI) experiments, the 

mechanical strength was measured through standard 3-point bending tests and the 

permeability was determined by measuring the air flow rate through the samples at a given 

pressure. The experimental results extended our understanding of the ageing mechanisms in 

3DP sand molds and provided rigorous criteria for the choice of the ageing parameters. 

 

II. THEORETICAL BACKGROUND 

 

A porous medium is a type of matter composed of a solid matrix containing void spaces that 

can be discretized as individual pores. Gas or fluids can flow through the connected porosity 

of these materials, e.g. air through chemically-bonded casting sand, or be contained within the 

interstices of the solid matrix, e.g. liquid binder. Expendable molds used in casting processes 

are commonly made from quasi-spherical silica grains which are packed constituting a porous 

medium. Quartz is the only stable form of silica polymorph at normal ambient conditions, and 



the density value of α-Quartz (Silica) is known to be 2648 𝑘𝑔𝑚−3
. Therefore, the overall 

density of a given pack of quartz grains can be calculated by multiplying the density value of 

quartz by (1 - ε), where ε is the global porosity of the type of packing: 

- Simple cubic packing = π/6 × 2648 kg m−3 = 1376.96 kg m-3 

- Centred cubic packing = π√3/8 × 2648 kg m−3 = 1800.64 kg m
-3  

- Face-Centred Cubic = π/ 3√2× 2648 kg m−3 = 1959.52 kg m
-3  

 

It is reminded here that the theoretical maximum porosity for a simple cubic packing of 

uniform sand grain size is ε = (1- π/6) and is obtained with a simple cubic packing. 

 

The mechanical properties of sand packs mainly depend on the adhesion ability of adjacent 

sand particles sticking to each other and also on the cohesion properties of the binder. The 

binder liquid should exhibit convenient shear viscosity to fill the interstices without flowing 

down by gravity and the surface tension should be smaller than that of the water. 

 

Permeability can be defined as the ability of gases to flow through a porous media driven by a 

pressure gradient and depends on the particle shape, the particle size distribution of the solids 

forming the bed and the packing structure (i.e. bed bulk porosity). In casting, the pressure 

gradient is generated by the melt-head pressure during filling of the mold with the liquid alloy 

and the shrinkage of the solidified alloy during cooling. Darcy’s equation [31] is commonly 

used to predict creeping laminar flow through a porous medium of permeability k when the 

inertial effects are negligible. Using this equation, the flow rate Q of a gas with shear 

viscosity μ driven by a pressure gradient of ΔP through a core material of cross sectional area 

A and length L can be calculated as: 

 

𝑄 =  
𝑘𝐴

𝜇𝐿
∆𝑃 

 

(1) 

 

For the simplest case in which the packing material is formed by mono-sized spheres, 

Kozeny–Carman equation can be used to calculate permeability by assuming a bundle of 

cylindrical capillaries model: 

 



𝑘 =
𝜀𝑏𝑒𝑑

3  𝑑𝑠
2

180(1 − 𝜀𝑏𝑒𝑑)2
 

 

(2) 

 

where εbed is the average bulk porosity of the packed bed, ds is the diameter of the spheres 

and 180 the Kozeny–Carman pre-factor. 

 

Three-point bending (3PB) tests are commonly used to assess the mechanical properties of 

brittle materials, which are difficult to test these materials with standard tensile tests. 3PB 

tests are relatively easy to set up and interpret and are usually conducted on a rectangular bar 

of the tested material, which is placed over two roller supports while the load is applied via a 

third roller typically mounted halfway between the supports. The bending stress calculation 

from the measured load is given by Eq. (3): 

 

𝜎 = 𝐹 ×
3𝑙

2𝑏𝑑2
 

 

(3) 

 

where F is the load at the middle section of the bar, l is the length between the support span, b 

is the width of test bar and d is the thickness of the tested sample. 

The present work experimentally investigates the individual and combined effect of ageing 

and mass loss on the bending strength and permeability of 3DP sand molds. 

 

III. EXPERIMENTAL SETUP 

 

Materials 

The typical compositions of resin bonded sands used to produce casting molds and cores are 

93-99% silica and 1-3% binder [32]. Silica sand is one of the most abundant materials on the 

earth’s crust, and the commercially available standard sizes for mold production are 140 µm, 

190 µm and 250 µm [33].  



In the particular case of the present experiments, the components of the molding sand were 

quartz silica sand and a furfuryl-alcohol-based binder of density (1.1-1.2) g/cm³ [34, 35] also 

known as furan resin binder. The morphology of the silica sand particles (SiO2 99.1%) 

presents a regular spherical shape,  average particle size of 140 µm and a standard deviation 

of 20 µm. corresponding to American Foundry Society (AFS) size number of 97 [34]. The 

furan binder was a mixture of furfuryl alcohol (70-90 wt%), bisphenol A (5-15 wt%), 

resorcinol (1-10 wt%) and 3-aminopropyltriethoxysilane (0.1-0.2 wt%) [35]. [35]. 

The purpose of adding binder and catalyst [29, 36] is to give additional cohesion and strength 

to the powder, to ease the mold to retain its shape under a change in pressure, thermal 

expansion, and erosion when in contact with liquid metal. A Furan Binder (FNB) made up of 

an acid catalyst, furfuryl alcohol resin, urea and formaldehyde was used in the present 

experiments. Toluolsulfonic acid was used as catalyst to accelerate the generation a 3-

dimensional chain network through acid-hardening reaction and polycondensation when 

added to the furan resin, leading to hardening of the binder. The FNB’s condensation reaction 

produces water, which tends to slow down the cure rate (dehydration) [36]. 

 

Printing procedure and parameters 

The specimens were first designed using Catia V5 and then converted into .stl file format. 

Each sample was engraved with the specimen number to ease identification. The .stl file was 

transferred to NetFabb software, which is a connected software for additive manufacturing 

and design. The Schematic design of a Job-Box in NetFabb
TM

 is provided in Fig.2. 

 

 

Fig.2 Schematic design of a Job-Box (NetFabb) 



For the present work, the specimens were 3D-printed by means of the ExOne S-Print Furan 

[39] machine shown in Fig.3, with a job box size of 800 × 500 × 400 mm
3
. The printing 

process started by mixing sulfonic acid catalyst with 8 kg of silica sand particles inside a 

mixing chamber. Sand layers of 280-µm (i.e. 2 time size sand particle) thickness were spread 

successively over the build platform (X-Y plane) and then a compacting force was applied 

over the sand bed by means of a re-coater. Then, the print head nozzle injected the liquid 

binding adhesive (furfuryl alcohol binder) on top of the sand layers to bind them. As the 

binder droplets were injected over the layer of acid activated sand bed, this facilitates the 

formation a thin coating of furan binder on each individual sand grain. The surface of this 

binder coated sand grains crosslink with each other, forming a nearly cylindrical binder bridge 

between the sand particles. This bridge is generated by capillarity immediately after 

application of the binder and the corresponding strengthening mechanism occurs 

progressively over time. This makes the sand particles bond closer, experiencing surface 

tension and forming a strong binder-particle bridge. The 3DP samples were formed where the 

sand powder bounds to the liquid binding agent and unbounded sand remained surrounding 

the printed part. The entire process continues until the last slice of the sample was printed. 

 

Fig.3 3D sand printer used in the present experiments 

 



The printed specimens were then taken out of the job box and de-powdered. During the 

process of de-powdering, the unbounded sand particles were removed using soft brushes and 

air-blown. The printing process parameters are listed in Table 1 and were chosen in agreement 

with preceding literature [40, 41]. It is noted that spreading of sand at high speed by the 

recoater leads to non-uniform compaction of the sand bed and consequently lower packing 

density due to high porosity. In contrast, low values of recoating speed lead to high sand 

density, inducing greater flexural strength [17]. For this reason, 0.182 m/s (14% of the 

maximum achievable speed by the recoater-Sprint ExOne) were chosen. The print head 

voltage determines the volume of each furan droplet with the voltage set and was kept 

constant. Also, the printing resolution (furan drop spacing) was kept constant. The unbounded 

sand grains do not provide a good support for parts built higher up in the build volume, which 

may result in sinking of the specimens into the excess powder during compaction [42–44]. 

Therefore, the specimens were always printed over a thick sand layer of 1.4mm in the bottom 

of the job-box in order to neglect the sink issue and sub-layer displacements [42]. It is 

highlighted that quasi-identical binder contents were expected for all printed samples as the 

printing parameters were kept constant. 

 

The specimens were printed inside a room with standard room conditions, at a temperature of 

25 ± 1 °C and relative humidity of 40 ± 10%. 6 Job-Boxes (Fig 2) were printed. A total of 465 

samples were printed: 324 bars with square section (172 x 22.4x 22.4 mm
3
) for 3PB strength 

tests, 126 cylindrical specimens (diameter = 50mm, height = 50mm) for gas permeability 

tests, 9 bars with square section (172 x 22.4x 22.4 mm
3
) for mass loss test, 3 similar 

rectangular bars for sand 3DP mold porosity test, and 3 cubic specimens for loss on ignition 

(LOI) tests. In order to estimate the uncertainty of the measurements, 3 specimens were 

measured at each curing time for the 3PB test and 1 cylindrical specimen was measured 3 

times for each permeability test. The initial dimensions of the 3D printed parts (bars) were 

measured using a Vernier caliper, with length, breadth and height of 22.2 ± 0.02 mm, 22.3 ± 

0.02 mm and 171.8 ± 0.08 mm, respectively (95% confidence interval). The initial 3PB 

strength and permeability of the 3DP specimens was measured after printing of the samples, 

obtaining 1.75 ± 0.5 MPa and 60 ± 7 GP, respectively. The procedures used to measure the 

mechanical strengths and the permeability of the samples are presented in sections 3.6 and 

3.7, respectively. 



 

Table.1 Printing process parameters used with ExOne S-Print furan machine 

 

 

Ageing process 

As mentioned in section 2, the higher the amount of binder in a mold, the greater is its 

mechanical strength. However, higher binder contents are known to result in off-gassing and 

incomplete filling that may hinder the filling of the sand mold cavity [21, 25, 45]. Therefore, 

it is necessary to understand the influence of curing time and temperatures on the amount of 

binder present in the sample and the resulting bending strength and permeability of the 3DP 

mold. 

The investigated 3D printed sand molds suffer from excessive moisture content generated 

from polycondensation reaction after printing and require subsequent ageing in order to 

remove excess water content affecting the 3PB strength. For this reason, oven curing at low 

temperatures is suggested primarily so as to remove excessive moisture content. Besides, as 

mentioned above, the strengthening mechanism consists in curing of the binder and its 

subsequent solidification leading to hardening of the resin bridges and cohesion between sand 

grains. For these reasons, curing time and temperature have a significant influence on the 

strength and permeability of the printed molds. Since the boiling points at room conditions of 

water and furfuryl alcohol are 100°C and 180°C respectively, different curing temperatures 

were chosen to investigate the ageing mechanisms: 25º C, 100°C and 200°C. 

In the present work, the influence of the evaporation of each of the components on the 3PB 

strength and permeability of the 3DP mold were evaluated separately. The uncured condition 

corresponds to the initial stage of the 3DP before heating, after several hours self-curing at 

room temperature. The oven-cured stage corresponds to the post-processing of the 3DP by 

heating in an air-ventilated oven at 100°C and 200°C for several hours. The samples were 

removed from the oven and were allowed to cool down to room temperature before each test. 

 



The specimens were weighed every 12 h up to 60 h during storage at each curing temperature 

in order to assess the effect of mass loss rate during ageing. The length, the breadth and the 

height of the 3D printed bars were controlled every 2 h to 60 h during storage at each curing 

temperature in order to monitor the dimensional variations of the sand samples over time. No 

significant change was observed. Then, 3PB test and gas permeability tests were conducted at 

curing times ranging from 0 to 60 h. Here 0 h represent the time when the specimens were 

printed. An interval of 2 hours was chosen in between measurements for the first 60 hours. 

After that, the specimens were tested once after every 7 days, and continued up to 54 days. 

The selected storage times were relevant for high-volume mold production and storage for a 

longer time at industrial scale. In particular, the initial strength of the 3D printed sand cores is 

important for manipulation of the mold after printing, and was tested 5 minutes after 

production. The results after 2 and 60 h were representative of the 3D printed mold/core 

properties at the beginning and end of a typical core usage in foundry practice, and the results 

from 60 h to 54 days were representative of the 3D printed mold/core properties during 

storage. 

 

Density and porosity 

The porosity of the samples was determined with the oven-dry method [46]. The particle 

density was considered as being the density of SiO2-quartz (2648 kg.m
-3

), which constitutes 

99.1% of the sand used by the printer. A laboratory precision balance was used to weight the 

printed specimens after drying in a hot-air oven at 105°C for 24 hours, and the bulk density of 

the 3DP specimen was calculated as the mass of sample per unit bulk volume. It is worth 

reminding that both the volume of solid and the volume of pores were taken into account for 

the calculation of bulk density. In contrast, the particle density was equal to the mass of 

sample per unit volume of silica sand particles.  

From the bulk density and particle density, the total porosity of the 3DP specimens was 

calculated as, Porosity(%) = (1 − (Bulk density)/(Particle density)) × 100.  

The experimentally measured porosity values were close to 49% for all tested samples, with 

an estimated standard deviation of 0.2%. This porosity value roughly corresponds to the 

theoretical porosity of a simple cubic packing (~48%). 

 



Loss on Ignition 

Loss on Ignition is a widely used procedure to measure the amount of moisture, binder and 

impurities present in the sample through ignition at high temperatures. Three 3DP specimens 

were printed for this test, and the weight was close to 30g (initial mass) in all cases in 

agreement with previous works [26]. These specimens were then put into the ceramic 

crucibles. Before filling, the crucibles were pre-heated at 100°C in an oven to extract moisture 

and organic residues. After that, the 3DP specimens were put inside the crucibles and heated 

at 900°C for 30mins to burn-out and expel the binder and moisture. Then, the crucible was 

removed from the oven, and weight of the crucible was measured. The final mass is the 

weight of the burnt out specimen. LOI was then determined from Eq. (4): 

 

𝐿𝑂𝐼 =  
𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑚𝑎𝑠𝑠 − 𝐹𝑖𝑛𝑎𝑙 𝑚𝑎𝑠𝑠

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑚𝑎𝑠𝑠
× 100   % 

(4) 

 

Images of the crucibles containing the tested samples at the different stages of the LOI tests 

are provided in Fig.4. An average mass loss of 1.41%, with an estimated standard deviation of 

0.02%, was measured by the LOI tests performed on the sand mold samples. The low 

variability observed in the measured mass loss values of the tested samples was an indicator 

of the high reproducibility of the binder dosage process. 

 

  

Fig.4 LOI test crucible with (a) powdered 3DP specimens,(b) immediately after taking out of 

the oven at 900 °C and (c) after cooling it to 150 °C, before weighting the final mass 

 

 



Three-point Bending test 

The bending strength of the 3DP specimens was determined using a 3PB test, which is a 

destructive method commonly used for testing traditionally prepared sand molds. To 

determine the 3PB strength of the 3DP specimens, bars with a square section of length b = 

172 mm, and width d = 22.4 mm were printed. 3PB tests were performed on the 3DP bar 

specimens using a Simpson-Electrical PFG type universal strength test machine [47, 48], 

shown in Fig.5. This universal strength machine is widely used to measure the strength of 

resin bonded sand molds. The test fixture constitutes of two supporting pins, with a separation 

distance of l =150 mm. The load applied by the third pin was progressively increased at a rate 

of 0.1 MPa.s
-1

 until the samples broke and the 3PB strength was determined by reading the 

pressure gauge. The measuring range of the machine covered up to 12.8 MPa, with an reading 

uncertainty on the pressure gauge of ±0.05 MPa.  

 

 

Fig.5 Universal strength machine used for the 3PB test [48], (a) front view and  (b) 

dimensions of the bar 

 

Gas permeability test 

A permeability measurement device Simpson-Electrical, Type: PFG, Serial No.3290, Item 

No.592-824-600, [49] was used in the present experiments to measure the gas permeability of 

the 3DP sand mold samples following the recommendations of the American Foundry Society 

(AFS). The gas permeability value (GP) gives the volume of air in cm
3
 which passes through 

a cylinder, having a cross-sectional area of 1cm
2
 and a height of 1 cm, in 1 minute at a 



pressure of 100 mm SPWG (Static Pressure Water Gauge). The relationship for the 

calculation of GP is expressed by the following formula: 

𝐺𝑃 =  
𝑉 × ℎ

𝐹 × 𝑝 × 𝑡
 

 

(5) 

 

where, V is the volume of air flowing through the tested sample, h is the height of the sample 

, F is the cross-sectional area of the sample, p is the pressure in mm Static Pressure Water 

Gauge (SPWG) and t is the passage time for 2000 cm
3
 of air in minutes. In the present tests, 

the values V = 2000 cm
3
, h = 5 cm, F = 19.63 cm

2
 and p = 100 mm SPWG = 980 Pa were 

used [49–51] and the resulting t was measured. The viscosity of the fluid (air) was taken as 

1.8 × 10
-5

 Pa sec. Cylindrical samples with a diameter of d = 50 mm and length of l = 50 mm 

were used in these tests. The flow rate was measured with the digital permeability meter 

(Simpson-Digital permeability meter) [49], which has a measuring range of 0-1000 GP. It 

should be noted that Eq. (5) does not provide k as defined by Eq. (1). Indeed, GP obtained 

from Eq. (5) is gas viscosity-dependent while k obtained from Eq. (1) does not depend on the 

physical properties of the injected fluid. However, GP is commonly used in foundry industries 

as recommended by the American foundry society (AFS). For this reason, the results of 

permeability measurements will be presented in terms of GP in this work. 

 

 

IV. RESULTS 

 

The ageing effect on weight loss, 3PB strength and permeability were experimentally 

investigated using the tests presented in the preceding section. 

The results in terms of mass loss as a function of curing time are presented in Fig.6. It can be 

noted that, as expected, the total weight loss after curing was lower for 25°C and 100°C° than 

it was for 200°C. It was also observed that the evaporation rate increased with increasing 

curing times at 200°C. The amount of weight loss at 200°C was higher after 36 hours, due to 



the evaporation of both alcohol and water. Although the 3PB test were performed for all the 

specimens heat treated at 200°C, but it was not possible to measure the weight loss accurately 

after 36 hours due to loss of little sand particle while handling.  

 

Fig.6 Critical effect of curing time and temperature on mass loss of specimens 

 

The length, the breadth and the height of the 3D printed bars were controlled every 2 h to 60 h 

during storage at each curing temperature in order to monitor the dimensional variations of 

the sand samples over time. No significant change was observed. The 3PB strength of the 

samples is presented in Fig.7 as a function of the curing time for the three curing 

temperatures. From this figure, it can be deduced that bending strength remains approximately 

constant over time in the case of curing at 25ºC and 100ºC, apart from an initial increase in 

strength. However, a different tendency was observed when curing at 200ºC. Indeed, the 

bending strength decreased over time, roughly monotonically, for this curing temperature. 

Moreover, the values of 3PB obtained by ageing at 25ºC and 100ºC were very close and 

significantly greater than those obtained by ageing at 200ºC. It was noted that the 

measurements at 200ºC did not cover the full range of times up to 1296 h as the bending 

strengths were too low and did not fall within the working range of the apparatus for the 

further measurements. 



 

Fig.7 Critical effect of curing time and temperature on 3PB strength of specimens 

The permeability values of the mold samples measured at different curing times are presented 

in Fig.8 for the three investigated curing temperatures. From this figure, the results showed 

that permeability remained approximately constant over time in the case of curing at 25ºC and 

100ºC. However, a decrease in permeability over time was remarked when curing at 200ºC. 

Also, the permeability was shown to decrease with curing temperature, and the reasons will 

be discussed in section 5. 

 

Fig.8 Permeability of the samples vs. curing time at different temperatures 



The results in terms of mass loss as a function of 3PB strength and permeability were 

presented in Fig.9and 10. The mass loss at low temperatures may be explained by rapid 

evaporation of solvent. Moreover, a second stage occurs at high temperature when the resin 

bridge becomes brittle and breaks for prolonged heating at high temperatures, leading to 

loosening of powdered particles. Fig.9 shows that the 3PB strength was higher at 100°C as 

compared to the samples at 25°C, but decreased gradually at 200°C. However, permeability 

decreased with increased mass loss as can be observed in Fig.10. This is in contrast with the 

results obtained by previous researchers [20] and will be discussed in the following section. 

 

Fig.9 3PB strength vs. mass loss for the three curing temperatures 

  

Fig.10 Permeability vs. mass loss for the three curing temperatures 



V. DISCUSSION 

 

The solvent present in the binder is volatile and evaporates during the ageing process, leading 

to shortening and hardening of the resin bridges. Only water experiences significant 

evaporation with time at 25º C. Also, water evaporates faster at 100°C than it does at 25º C 

(the boiling temperature of water is close to 100°C under the experimental conditions of our 

tests), which results in higher values of mass loss as reported in Fig.6. On the other hand, the 

boiling temperature of furfuryl alcohol is 180°C, so it is the mixture of water and alcohol 

which experiences significant evaporation when curing at 200°C. The higher rate of 

evaporation at 200ºC leads to higher values of weight loss as shown in Fig.6. The increase of 

evaporation rate with increasing curing time reported at 200ºC may be related to the increase 

in the area of the free surface of liquid (binder + water) with time. Indeed, the specific surface 

area of the liquid is expected to increase as it progressively evaporates, resulting in higher 

evaporation rates. 

 

It was observed in Fig.7 that the 3PB strength experienced an initial increase before becoming 

constant with time after ~ 4h for 25ºC and 100ºC. This effect is generally associated with 

water being released during polycondensation occurring at the initial stages of curing, which 

leads to cross linked polymerization stemming from exothermic polycondensation [24]. This 

hardens the resin bridges between sand grains, providing greater mechanical strength (3PB) to 

the 3DP specimen. Moreover, the polymer chain network is expected to break gradually at 

200°C as the alcohol evaporates. This results in lower 3PB strength, of the 3DP specimens as 

presented in Fig.7, in good agreement with the results of previous researchers [20]. 

 

In the case of the present experiments, the furan system is a thermosetting resin (duroplast) 

which forms an insoluble infusible 3-dimensional polymer network chain through 

polymerization during curing stage [24]. The gradual increase in strength at lower 

temperatures (25°C, 100°C) may be related to the evaporation of the solvent, which causes 

shortening and hardening of resin bridges. This leads to both a gradual increase in 3PB 

strength and shrinkage of the mold [22]. The shrinkage of the mold samples during curing 

was also reported in previous works [22, 27, 52]. Therefore, an increase in ageing time causes 

more volumetric reduction of furan resin bridges, which results in more shrinkage and 



reduction of pore space between sand grains [11, 22], thus leading to lower gas permeability 

values. This is consistent with the results presented in Fig.10. 

 

The FNB is injected between the sand particles, filling the interstices and reducing the 

effective pore size available for gas flow. This presence of binder layers that settle on the 

grain walls results in permeability reduction as predicted by Eq. (2). Consequently, as the 

binder evaporates, the effective pore size should increase leading to higher permeability 

values. However, shrinkage occurs simultaneously, so the sand particles should also become 

more tightly packed as they are dragged by the remaining binder. As a result, the variation in 

permeability during binder evaporation is expected to be the combination of both effects. 

Given that Loss On Ignition is low (1.41%), the volume fraction of the pores occupied by 

binder should be also low. Therefore, shrinkage is expected to be the dominant mechanism 

which explains the reduction in permeability. 

 

Using Eq. (2), a permeability of 4.9 ×10
-11

 m
2
 (or) 49 Darcy is predicted for a sand packing 

with porosity 0.49 and grain size of 140µm, which is close to the measured value k = 

5.57×10
-11

 m
2
 (or) 56 Darcy provided by Eq. (1) for the present experiments. The slight 

difference between prediction and experiments may be explained by the presence of binder 

within the pores, which increases the effective ds in Eq. (2). Indeed, if the experimentally 

measured value of permeability value (k=56 Darcy) is used in Eq. (2), an effective grain 

diameter of ~ 155 µm is obtained. It is reminded that Eq. (2) provides accurate predictions in 

the case in which the volume fraction of binder (determined by LOI tests) is low. 

 

The GP values obtained with the current technique are viscosity-dependent as can be deduced 

from comparison between Eqs. (1) and (5). However, gas viscosity increases with 

temperature, thus generating greater pressure losses for the same flow rate at higher 

temperatures. Neither are other effects such as inertial pressure losses, fluid’s compressibility 

or slip on the wall taken into account by the permeability tests currently used in casting 

industry. Therefore, a new approach should be developed to obtain more accurate 

permeability values, which should improve the prediction of casting defects. Also, the three-

point bending test can only be used for measuring the strength in a particular region of the 



3DP specimen, so a different approach should be used to characterize the global strength of 

the samples. 

 

VI. CONCLUSIONS 

 

The effects of curing time and temperature on the permeability and 3PB strength of 3DP sand 

mold samples were experimentally evaluated. Both permeability and 3PB strength were 

shown to be altered by the curing process under certain conditions. Hardening of the binder 

and shrinkage of the mold arising from polycondensation reaction of the binder, which is a 

cross-linked, high-strength thermoset, may explain this. The following industrial implications 

are drawn:  

 The printed molds can be stored at room temperature for a long time before being 

used, roughly preserving the initial values of 3PB strength and permeability. 

 

 From the bulk density and the particle density values of the 3DP mold, the sand 

grains can be packed in a simple cubic structure, obtaining a porosity of 48%.  

 

 Despite not taking into account the volume of binder in the pores, the prediction 

provided by Kozeny–Carman equation was in good agreement with experimental 

permeability measurements obtained with a standard permeameter. This is 

explained by a low fraction of the pore volume being occupied by the binder, as 

deduced from the LOI tests. 

 

 The permeability of the 3D printed specimen decreases with increasing 

temperature, which is potentially due to shrinkage of the 3DP sand mold. 
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