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Abstract

Viscoelastic layers under floating floors are often used to reduce impact sound. A

standardized dynamic stiffness test is routinely used to estimate the performance

of a layer as an impact sound isolator. During the test, a material sample is placed

between a load plate and a motionless rigid foundation. In this work, equations

that provide a useful analytical description of the standardized test are derived.

The new analytical approach is linked with the analysis of multilayer elastomeric

bearings. The new approach leads to simpler analytical solutions as compared

with those of previous studies, which makes them easy to translate into com-

puter codes. The obtained expressions are almost independent of the shape of the

boundary and are only dependent on static values such as the area and moments

of inertia of the contour. Taking advantage of the new closed-form solutions, it

is shown that, under certain restrictions, the analytical approach may be used to

experimentally estimate the elastic parameters of a flexible material using a har-

monic (frequency-dependent) analysis. It is reported that results obtained using
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the proposed approach are in good agreement with those obtained using a com-

mercial finite element software.

Keywords: dynamic stiffness, elastic layer, elastic parameters, elastomeric

bearings

1. Introduction

Although the main objective of this paper is to propose a novel method to de-

termine the elastic parameters of a material based on the results of a standardized

dynamic stiffness test, the proposed analytical approach is framed within the anal-

ysis of multilayer rubber bearings, which are widely used in civil, mechanical,

and automotive engineering applications.

In 1954, Freyssinet [1] proposed the idea of reinforcing rubber blocks with thin

steel plates. These rubber bearings combine the vertical stiffness of a rubber pad

and the horizontal flexibility of rubber reinforced by thin steel plates perpendicular

to the vertical load. Elastomeric bearings are commonly employed to isolate the

vibration of machinery, buildings, and bridges. Evaluation of the horizontal, verti-

cal, and bending stiffnesses is very important to predict the dynamic response and

to design efficient applications of multilayer elastomeric bearings. Research on

the proper design of these vibration-isolation systems for buildings, bridges, nu-

clear facilities, and other kind of structures has also been reported more recently.

They have included theoretical, numerical and experimental studies [2, 3, 4].

To evaluate these stiffnesses, a number of theoretical analyses have been re-

ported in the technical literature, although they used different approaches and as-

sumptions [5]. Among them are the works of Gent and Lindley [6] and Gent

and Meinecke [7], in which they assumed use of an incompressible material, and
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the studies by Chalhoub and Kelly [8, 9, 10], in which the material was treated

as compressible. Although these approaches have presented rigorous solutions

to the vibration problem, they have limitations [11]. In all of these works, two

types of assumptions were made: kinematic assumptions about deformation and

assumptions about the state of stress, which led to the approximate fulfillment

of the internal equilibrium equations and rigorous fulfillment of the equilibrium

equations at the boundary. These kinds of solutions depend on the shape of the

boundary and present some mathematical complexity. Using a different approach,

simplified formulae have also been presented to facilitate the design of elastomeric

bearings [12].

It has been common to assume that rubber layers are bonded to rigid or flexible

supports, that is, no slip at the contact surface on the top and bottom of the layer.

The influence of an unbonded condition at interfaces has recently been studied by

Konstantinidis and Moghadam [13] by including partial slip at the contact surface,

which requires describing the interface using a friction model. They used a simple

Coulomb friction model in a strip and circular unbonded layer and observed that

even for pads with a high friction coefficient, a part of the pad close to the edge

experiences slip. However, the effect of slip is not that critical for unbonded rubber

layers with typical bulk-modulus-to-shear-modulus ratio values and large values

of a shape factor and friction coefficient [13]. Research on multilayer bearings

continues, including theoretical and applied studies [14, 15, 16].

In the present work, a new analytical approach strictly based on the fulfillment

of the equations of internal equilibrium will be presented. This approach leads to

much simpler analytical expressions that are almost independent of the shape of

the boundary, and they depend only on static values such as the area and moments
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of inertia of the contour shape.

It should be noted that some previous studies have also considered the rigor-

ous fulfillment of the equations of internal equilibrium, both in statics [17] and

in dynamics [4, 18, 19, 20], as well as in their application in the industry [21].

Although these approaches report solutions that also satisfy the equilibrium equa-

tions at the boundary, they have been applied only to circular and annular cross-

section shapes, as opposed to the greater generality of the solutions presented in

this work. In addition, the analytical solutions obtained here are mathematically

very simple compared with those of previous studies.

1.1. Dynamic stiffness of an elastic layer

Viscoelastic layers under floating floors are often used to provide sound and

vibration reduction [22]. These layers can be treated as simple linear springs

that undergo small displacements and can be described by their dynamic stiffness

per unit area. A test setup to determine the dynamic stiffness of an elastic ma-

terial used under a floating floor has been specified in standard ISO 9052-1 (see

Fig. 1) [23]. In summary, the test uses a sample of material placed between a

steel load plate and a motionless rigid foundation. The mass of a plate of the

same dimensions as the sample is 8 kg, which corresponds to a static load of 2

kPa. The plate is excited by an input dynamic force F applied to the center of

the load plate. The input force is commonly applied by an instrumented force

hammer. The force is measured by a force transducer and the vertical vibration

of the load plate is measured by an accelerometer positioned close to the exci-

tation point. The force and acceleration signals are Fourier-transformed to the

frequency domain by a dual-channel FFT analyzer. The accelerance frequency

response function (acceleration/force) is then obtained.
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Figure 1: Measurement setup for the determination of the dynamic stiffness of an elastic layer

according to the standard ISO 9052–1.

The dynamic stiffness per unit area is defined as the ratio between the applied

dynamic force per unit area and the dynamic displacement produced by this force,

given by the equation

s′ =
F/A
∆d

, (1)

where A is the surface of the sample, F is the dynamic force acting perpendicular

to the sample, and ∆d is the resultant dynamic change of thickness of the elastic

material.

The ISO standard considers the elastic layer loaded by the plate as analogous

to an idealized linear single-degree-of-freedom mass-spring system, and the mea-

surement of the mass-spring resonance frequency is used to calculate the dynamic

stiffness according to the standardized test. This resonance frequency, at which

the response amplitude is a relative maximum, is

fr =
1

2π

√
s′t
m′t
, (2)

where the s′t and m′t are the dynamic stiffness per unit area of the sample mate-
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rial and the mass per unit area of the load plate used during testing, respectively.

Therefore, the apparent dynamic stiffness per unit area is calculated as

s′t = 4π2m′t f 2
r . (3)

The resonance frequency is determined at a number of different input force lev-

els [24].

During a measurement of dynamic stiffness, if the force and the acceleration

are measured at different points on the surface of the plate, a number of close

resonance frequencies appear in the frequency response function. An example of

the experimental results obtained at five different excitation and response locations

in a dynamic stiffness test is shown in Fig. 2. Thus, this fact may be used for

obtaining other elastic parameters of the material being tested. The aim of this

work is to present a method to estimate the elastic parameters of an elastic layer

from experimental results of accelerance. These accelerances are measured using

an experimental setup based on standardized dynamic stiffness testing. The elastic

layer is viewed as either a non-porous material or a porous material with very high

lateral airflow resistivity, ensuring that the effect of the air contained within the

material is negligible.

2. Analytical modal analysis

Consider an elastic layer of uniform square cross section A and thickness e,

placed between a rigid homogeneous square plate of same cross section A and a

rigid motionless foundation. As shown in Fig. 3, a rectangular Cartesian coordi-

nate system is defined relative to an origin located at G∗, where G∗ is the mass

center of the plate, O is the center point of the lower face of the plate (upper face
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Figure 2: Experimental results of accelerance measured at five different excitation and response

locations.

of the elastic layer), and T XYZ is the coordinate system defined relative to an ori-

gin T located at the center of the lower face of the elastic layer. Thus u(x, y, z, t),

v(x, y, z, t), and w(x, y, z, t) are the displacements of the points of the elastic layer

as a function of the coordinates x, y, z and time t. Note that h = m/ρpA is the

thickness of the plate, where m and ρp are the mass and density of the plate, re-

spectively.

The elastic properties of the elastic layer material are described by its Pois-

son’s ratio (ν), Young’s modulus (E), bulk modulus (κ), shear modulus (G), Lame’s

first parameter (λ), and P-wave modulus (M).

In this work, the following assumptions are made:

1. No slip is allowed at the bonding surface between the plate and the elastic

layer or between the elastic layer and the rigid foundation.

2. The plate stiffness is much greater than that of the elastic layer, so the plate
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a) b)

Figure 3: Geometry of the problem: a) top view; b) side view.

can be considered a rigid body.

3. The thickness of the elastic layer is much lesser than its lateral dimension.

4. The displacement gradients in the elastic layer remain sufficiently small

throughout the subsequent deformations, so it is permissible to apply the

classical linear theory of elasticity.

5. For harmonic analyses, the damping of the plate can be neglected and the

damping of the elastic layer can be determined from the imaginary part of

their elastic parameters.

A modal analysis is used to find the rigid body modes that can be excited in the

plate. Since the plate is assumed to be a rigid body, we can use the fundamental

equations for the motion of rigid bodies in three dimensions [25]

Fx = müG∗ , (4a)
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Fy = mv̈G∗ , (4b)

Fz = mẅG∗ , (4c)

MxG∗ = IxG∗ θ̈x, (4d)

MyG∗ = IyG∗ θ̈y, (4e)

MzG∗ = IzG∗ θ̈z. (4f)

where the principal centroidal moments of inertia of the plate are

IxG∗ =
1
6

mA, IyG∗ = IzG∗ =
1

12
m(A + h2). (5)

To determine the linear and angular displacements of the mass center, we use

the following linear approximation [25]
u

v

w


G∗

≈


u

v

w


O

+
−→
θ ×
−−−→
OG∗. (6)

Since the plate is a rigid body, the rotations around points O and G∗ are identi-

cal. Therefore, it is necessary to determine the displacements and rotations around

O at the elastic layer. We notice that for the layer Çv/Çy = Çw/Çz = 0 at the inter-

faces x = 0 (foundation) and x = e (plate), and since
√

A � e, Çv/Çy = εy ≈ 0 and

Çw/Çz = εz ≈ 0 over most of the elastic layer. Consequently, we can consider that

u(x, y, z, t) = u(x, y, z, t),

v(x, y, z, t) � v(x, z, t),

w(x, y, z, t) � w(x, y, t).

(7)

To satisfy the boundary conditions at x = 0

u(0, y, z, t) = v(0, z, t) = w(0, y, t) = 0. (8)
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We use the method of separation of variables by writing

u(x, y, z, t) = eiωt fu(x)gu(y, z),

v(x, z, t) = eiωt fv(x)gv(z),

w(x, y, z) = eiωt fw(x)gw(y).

(9)

Now, the Lamé-Navier equations in Cartesian coordinates are [26]

ρ
Ç2u
Çt2 = (λ + G)

Ç

Çx

(
Çu
Çx

+
Çv
Çy

+
Çw
Çz

)
+ G

(
Ç2u
Çx2 +

Ç2v
Çy2 +

Ç2w
Çz2

)
,

ρ
Ç2v
Çt2 = (λ + G)

Ç

Çy

(
Çu
Çx

+
Çv
Çy

+
Çw
Çz

)
+ G

(
Ç2u
Çx2 +

Ç2v
Çy2 +

Ç2w
Çz2

)
,

ρ
Ç2w
Çt2 = (λ + G)

Ç

Çz

(
Çu
Çx

+
Çv
Çy

+
Çw
Çz

)
+ G

(
Ç2u
Çx2 +

Ç2v
Çy2 +

Ç2w
Çz2

)
.

(10)

Substitution of Eqs. (9) into (10) yields

u(x, y, z, t) = eiωt sin(kpx)(C1y + C2z + C3 + C8yz),

v(x, z, t) = eiωt

{
(C6z + C4) sin(ksx) +

C8z + C1

kp

(
cos(ksx) − cos(kpx)

)}
,

w(x, y, t) = eiωt

{
(C7y + C5) sin(ksx) +

C8y + C2

kp
(cos(ksx) − cos(kpx))

}
,

(11)

where α =
√

M/ρ is the P-wave velocity, β =
√

G/ρ is the S-wave velocity, kp =

ω/α is the P-wavenumber, ks = ω/β is the S-wavenumber, and Ci are arbitrary

constants.

To determine the motion of the plate, we must take into account the continuity

equations for the interface between the elastic layer and the plate, given by

u(e, y, z, t)

∣∣∣∣∣∣elastic layer
= u(e, y, z, t)

∣∣∣∣∣∣plate
,

v(e, z, t)

∣∣∣∣∣∣elastic layer
= v(e, z, t)

∣∣∣∣∣∣plate
,

w(e, y, t)

∣∣∣∣∣∣elastic layer
= w(e, y, t)

∣∣∣∣∣∣plate
.

(12)
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Therefore, at x = e

Çu
Çy

∣∣∣∣∣∣elastic layer
=

Çu
Çy

∣∣∣∣∣∣plate
;

Çv
Çz

∣∣∣∣∣∣elastic layer
=

Çv
Çz

∣∣∣∣∣∣plate
;

Çu
Çz

∣∣∣∣∣∣elastic layer
=

Çu
Çz

∣∣∣∣∣∣plate
;

Çw
Çy

∣∣∣∣∣∣elastic layer
=

Çw
Çy

∣∣∣∣∣∣plate
.

(13)

Since the plate is assumed to be elastic deformable, but whose stiffness tends

to infinity, the components θx, θy (see Fig. 4a) and θz (see Fig. 4b) for small

rotations are

θx

∣∣∣∣∣∣plate
=

1
2

(
Çw
Çy
−
Çv
Çz

) ∣∣∣∣∣∣plate(at x = e)
=

1
2

(
Çw
Çy
−
Çv
Çz

) ∣∣∣∣∣∣elastic layer(at x = e)
,

θy

∣∣∣∣∣∣plate
≈ −

Çw
Çx

∣∣∣∣∣∣plate
≈

Çu
Çz

∣∣∣∣∣∣plate
=

Çu
Çz

∣∣∣∣∣∣elastic layer (at x = e)
,

θz

∣∣∣∣∣∣plate
≈

Çv
Çx

∣∣∣∣∣∣plate
≈ −

Çu
Çy

∣∣∣∣∣∣plate
= −

Çu
Çy

∣∣∣∣∣∣elastic layer (at x = e)
.

(14)

Note that since the plate’ stiffness tends to infinity, the plate shear strain is

much greater than that of the elastic layer, so the tensorial shear strain components
1
2γxz and 1

2γxy of the infinitesimal strain tensor can be neglected in the equations

for θy and θz given by Eq. (14).

The components of the motion of the mass center G∗ and those of the plate

rotation are calculated through the substitution of u, v, and w from Eq. (11) into
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Figure 4: Rotations: a) of the upper face of the layer about Oy; b) of the upper face of the layer

about Oz.

Eqs. (6) and (14). Thus, it follows that

uG∗(t) = u0 = eiωtC3 sin(kpe),

vG∗(t) = v0 +
h
2
θz

= eiωt

{
C4 sin(kse) +

C1

kp
(cos(kse) − cos(kpe)) −

1
2

C1h sin(kpe)
}
,

wG∗(t) = w0 −
h
2
θy

= eiωt

{
C5 sin(kse) +

C2

kp
(cos(kse) − cos(kpe)) −

1
2

C2h sin(kpe)
}
,

θx(t) = eiωt 1
2

(C7 −C6) sin(kse),

θy(t) = eiωt(C8y + C2) sin(kpe),

θz(t) = −eiωt(C8z + C1) sin(kpe).

(15)
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Since the plate is a rigid body, θx(t) and θz(t) do not make sense if C8 , 0.

In addition, since the layer is bonded to the plate at x = e, this surface should

move as a rigid plane, i.e., the motion of any point P of coordinates (e, y, z) at that

surface, must verify that 
u

v

w


P

=


u

v

w


O

+
−→
θ ×
−−→
OP, (16)

where O is a point with coordinates (e, 0, 0),
−−→
OP = y ̂ + zk̂, and

−→
θ ×
−−→
OP =

∣∣∣∣∣∣∣∣∣∣∣∣∣
ı̂ ̂ k̂

θx θy θz

0 y z

∣∣∣∣∣∣∣∣∣∣∣∣∣
= (zθy − yθz)ı̂ − zθx ̂ + yθxk̂. (17)

To satisfy Eq. (16) we need C7 = −C6. Therefore, Eqs. (11) and (15) are now

u(x, y, z, t) = eiωt sin(kpx)(C1y + C2z + C3),

v(x, z, t) = eiωt

{
(C6z + C4) sin(ksx) +

C1

kp

(
cos(ksx) − cos(kpx)

)}
,

w(x, y, t) = eiωt

{
(−C6y + C5) sin(ksx) +

C2

kp
(cos(ksx) − cos(kpx))

}
,

(18)
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and

uG∗(t) = u0 = eiωtC3 sin(kpe),

vG∗(t) = v0 +
h
2
θz

= eiωt

{
C4 sin(kse) +

C1

kp
(cos(kse) − cos(kpe)) −

1
2

C1h sin(kpe)
}
,

wG∗(t) = w0 −
h
2
θy

= eiωt

{
C5 sin(kse) +

C2

kp
(cos(kse) − cos(kpe)) −

1
2

C2h sin(kpe)
}
,

θx(t) = −eiωtC6 sin(kse),

θy(t) = eiωtC2 sin(kpe),

θz(t) = −eiωtC1 sin(kpe).

(19)

Thus, we need to determine just six unknowns Ci. In order to do this, we express

Eq. (4) in terms of the six unknowns Ci, using that

(Fx, Fy, Fz) =

∫∫
(−σx,−τxy,−τxz)

∣∣∣∣∣∣
x=e

dA,

(MxG∗ ,MyG∗ ,MzG∗) =

∫∫
(zτxy − yτxz,−

h
2
τxz − zσx,

h
2
τxy + yσx)

∣∣∣∣∣∣
x=e

dA,
(20)

where σx, τxy, and τxz are the layer’s components of stress at the interface between

the layer and the plate (x = e). Considering the stress-strain relations [26], the

relationship between strains and plate’s motion [26], and using u, v and w given

by Eq. (18), the unknowns are obtained after integrating the six equations in Eq.

(20).

The components of the force and momentum are determined from Eq. (4).

From Eq. (4a), Fx = müG∗ , we obtain the vibration mode corresponding to pure

translation along the x-axis. The natural frequency ω is then determined by solv-

ing the transcendental equation tan(kpe) = tan(eω/α) = A
√

Mρ/mω. When we

14



perform a standardized experimental determination of the dynamic stiffness of an

elastic layer, e and ρ are usually very small quantities such that kpe = eω/α � 1.

So,

tan(kpe) ≈ kpe = eω
√

ρ

M
=

A
√

Mρ

mω
.

Solving for ω in the expression above gives ω2 = MA/em and the resonance

frequency in Hz is

f =
1

2π

√
AM
em

. (21)

Now, by comparing Eqs. (2) and (21) we find that the apparent dynamic stiff-

ness s′t = M/e. Therefore, M can be determined from a measured value of s′t . This

approach is valid when the undamped natural frequency of the system is close to

that obtained experimentally.

To determine the other modes of vibration, we substitute Eq. (19) into Fy =

mv̈G∗ and MzG∗ = IzG∗ θ̈z (see Eq. (4)). Manipulation of the equations yields the

frequency equation

ω2

12

{
6Ahm

√
GM cos2(kse) + 2Pm sin(kse) + AQ cos(kse)

}
= 0, (22)

where

P =
−A2ω

√
Mρ

2
cos(kpe) + 3Ah

√
GM sin(kse) +

(
ω2m

2
(A + h2) − 6AGh

)
sin(kpe),

and

Q =
√

GM(A2ρ − 6hm) cos(kpe) − ωm
√

Gρ(A + 4h2) sin(kpe),

which gives the natural frequencies. A solution of ω2 = 0 gives two natural fre-

quencies of the vibration modes for a rigid body corresponding to pure translation

along the y-axis and rotation about the z-axis. Substitution of Eq. (19) into Eqs.

(4c) and (4e) leads to other vibration modes, which have the same natural frequen-

cies since the equations are the same because of the symmetry.
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2.1. Numerical Example

A numerical experiment was performed to test the theory presented above. A

solid plate (m = 8 kg, h = 0.0255 m, and A = 0.04 m2) on top of an elastic

layer (ρ = 20 kg/m3, e = 0.003 m, M = 143951 N/m2, and ν = 0.45) has been

considered. For comparison, the problem was solved using a commercial finite

element program (ANSYS c©, Academic Research Mechanical, ver. 19.2). The

model consisted of 12800 three-dimensional SOLID186 elements (20 nodes per

element) and 58097 nodes with a uniform mesh. The theoretical and numerical

results are shown in Figs. 5 to 10.

The six modes of vibration corresponding to the six degrees of freedom of

the rigid body plate are determined. In addition, two double natural frequencies

are obtained due to symmetry. We see that the theoretical results are in good

agreement with those from ANSYS. The differences between the theoretical and

numerical natural frequencies were less than 3.4% in all cases.

3. Proposed methodology

In this section, a method for estimating the elastic parameters of the mate-

rial’s layer is proposed. The method is based on the theoretical analysis presented

above, but now we include the effects of a harmonic force applied to the plate.

Suppose now that a harmonic force of amplitude F0, F(t) = F0eiωt is applied

perpendicular to the top surface of the plate at a point, P, of arbitrary coordi-

nates (e + h, yF , zF). Then, we calculate the normal acceleration along the x-axis

at a point, Q, which is also located on the top surface of the plate at arbitrary

coordinates (e + h, yQ, zQ). Thus, we are considering the real conditions during

the standardized experimental determination of the dynamic stiffness of an elastic
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a) b)

Figure 5: u component of the plate: a) theoretical, Eq. (4a) (77.95 Hz); b) numerical (76.53 Hz).

a) b)

Figure 6: u component of the plate: a) theoretical, Eqs. (4b), (4c), (4e), and (4f) (23.50 Hz double);

b) numerical (23.40 Hz double).

a) b)

Figure 7: u component of the plate: a) theoretical, Eqs. (4b), (4c), (4e), and (4f) (23.50 Hz double);

b) numerical (23.40 Hz double).
17



a) b)

Figure 8: v component of the plate: a) theoretical, Eq. (4d) (23.50 Hz); b) numerical (23.48 Hz).

a) b)

Figure 9: u component of the plate: a) theoretical, Eqs. (4b), (4c), (4e), and (4f) (77.34 Hz double);

b) numerical (74.81 Hz double).

a) b)

Figure 10: u component of the plate: a) theoretical, Eqs. (4b), (4c), (4e), and (4f) (77.34 Hz

double); b) numerical (74.81 Hz double).
18



material of thickness e.

We must solve the new dynamic equilibrium equations by determining the

displacement of the mass center and the rotations of the plate given by Eqs. (4),

where we must consider the effects of the applied force, i.e. the resultant force

{F0eiωt, 0, 0}, (23)

and resultant moment produced by the force about point G∗

−−−→
G∗P × {F0eiωt, 0, 0} =

∣∣∣∣∣∣∣∣∣∣∣∣∣
ı̂ ̂ k̂

h/2 yF zF

F0eiωt 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣
= F0eiωt{0, zF ,−yF}. (24)

The expressions for the components of the displacement of the mass center

G∗ and those of the rotation of the plate are given by Eqs. (19), but ω is now the

frequency of the excitation force.

Taking the second derivative of Eq. (6) with respect to time, replacing G∗ and

O with Q and G∗ respectively, we obtain the acceleration of point Q as
ü

v̈

ẅ


Q

≈


ü

v̈

ẅ


G∗

+
−→
θ̈ ×
−−−→
G∗Q. (25)

Since we just need the acceleration along the x-axis, we have that

üQ = üG∗ + θ̈yzQ − θ̈zyQ. (26)

Calculating the constants Ci that satisfy Eqs. (4), we obtain after some algebra

that

üQ =
−ω2F0eiωt

Aω
√

Mρ cot(kpe) − mω2
+ F0eiωt(zFzQ + yFyQ) fθ, (27)
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where

fθ = 12ω
sin(kpe)
R

{
mω sin(kse) − A

√
Gρ cos(kse)

}
, (28)

with

R = 6Ahm
√

GM cos2(kse) + AQ cos(kse) + 2mP sin(kse).

Dividing Eq. (27) by F0eiωt, and using the following notation for the acceler-

ance transfer functions

AcQ =
üQ

F0eiωt , (29)

AcG∗ =
üG∗

F0eiωt =
−ω2

Aω
√

Mρ cot(kpe) − mω2
, (30)

yields

AcQ = AcG∗ + (zFzQ + yFyQ) fθ. (31)

Note that the functions in Eq. (31) depend on a set of variables, i.e.,

AcQ = AcQ(ω,M, ρ, e, A,m, h,G, yF , zF , yQ, zQ),

AcG∗ = AcG∗(ω,M, ρ, e, A,m),

fθ = fθ(ω,M, ρ, e, A,m, h,G).

(32)

The Taylor series expansion of function fθ(ω) in Eq. (32) about ω = 0 is given

by

fθ ≈
12e
A2M

ω2 +
12Ae2m + (108 − 36M/G)e3hm + 48e2h2m + 4A2e3ρ

A4M2 ω4 + O(ω5).

(33)

Therefore, we notice that if ω is very small,

fθ ≈
12eω2

A2M
(34)

and fθ does not depend explicitly on the parameter G.
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As in the proposed methodology, we will use fθ in Eq. (32) to find G as a

function of frequency ω, which means that the method cannot be used for small

frequencies. One way to reduce this limitation is to increase the sensitivity of fθ

when varying G by increasing the factor (e/A)2hm (see Eq. (33)). However, the

accuracy of the solution decreases as we increase e/A, and the plate could become

too heavy to handle if we increase m. Therefore, the simplest way to overcome

this problem would be to increase h using a material that is lighter and much more

rigid than the elastic material.

4. Determination of the elastic parameters of the layer

Let us consider that the values of ρ, e, A, m, and h are known. We need to

find the elastic parameters M(ω) and G(ω) at each frequency ω = 2π f . When

performing a standardized dynamic stiffness test, we can obtain two accelerance

transfer functions: (a) AcQ1 , which is the acceleration measured at point Q1(e +

h, yQ1 , zQ1) in response to a force applied at point P1(e + h, yF1 , zF1), and (b)AcQ2 ,

which is the acceleration measured at point Q2(e + h, yQ2 , zQ2) in response to a

force applied at point P2(e + h, yF2 , zF2). Therefore, by using Eq. (31) we can

write
AcQ1 = ÂcG∗ + (zF1zQ1 + yF1yQ1) f̂θ

AcQ2 = ÂcG∗ + (zF2zQ2 + yF2yQ2) f̂θ.
(35)

The hat symbol indicates that the values are determined experimentally. Equa-

tion (35) is a linear system of two equations and two unknowns: ÂcG∗ and f̂θ. The

solution for Eq. (35) is

ÂcG∗ =
AcQ2yF1yQ1 −AcQ1yF2yQ2 +AcQ2zF1zQ1 −AcQ1zF2zQ2

yF1yQ1 − yF2yQ2 + zF1zQ1 − zF2zQ2

,

f̂θ =
AcQ1 −AcQ2

yF1yQ1 − yF2yQ2 + zF1zQ1 − zF2zQ2

.

(36)
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In Eq. (36), we note that the only condition is that coordinates of points P1,

P2, Q1, and Q2 must be chosen such that they verify that

yF1yQ1 − yF2yQ2 + zF1zQ1 − zF2zQ2 , 0. (37)

Using the calculated value ÂcG∗ from Eq. (36) and noticing that ω, ρ, e, A,

and m are known, we can determine M by solving the nonlinear equation

ÂcG∗ =
−ω2

Aω
√

Mρ cot(kpe) − mω2
. (38)

Recalling that kpe = ω
√
ρ/Me � 1, we use that cot(kpe) ≈ 1/kpe. Thus, Eq.

(38) can be written as

ÂcG∗ =
−ω2

AM/e − mω2 . (39)

Therefore, solving Eq. (39) for M, we find the approximate value

M =
eω2(mÂcG∗ − 1)

AÂcG∗
. (40)

We can use Eq. (40) as the initial seed value for an iterative algorithm to find

the exact value of M that satisfies the nonlinear Eq. (38).

Now, we substitute the calculated value of f̂θ from Eq. (36) and the calculated

value of M from Eq. (38) into Eq. (28). Recalling that [26]

G =
M(1 − 2ν)
2(1 − ν)

(41)

and

ks = ω
√
ρ/G = ω

√
2ρ(1 − ν)
M(1 − 2ν)

, (42)

we can substitute Eqs. (41) and (42) into Eq. (28). Consequently, the value of

ν that satisfies the nonlinear Eq. (28) is found using an iterative algorithm. The

initial seed value of ν for the iterative process can be approximately 0.3.
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The remaining elastic parameters are finally calculated from M and ν using

Eq. (41) and the equations [26]

λ =
Mν

1 − ν
, (43)

κ =
M(1 + ν)
3(1 − ν)

, (44)

and

E =
M(1 + ν)(1 − 2ν)

1 − ν
. (45)

4.1. Numerical Examples

Numerical experiments were performed to test the methodology described

above. A solid plate made of light concrete (m = 8 kg, A = 0.04 m2, h = 0.333

m) on top of a viscoelastic layer was considered. The viscoelasticity of the layer

was implemented through the Prony series representation of the P-wave modulus

function [27, 28]

M(t) = M∞ + M0

n∑
i=1

αie−t/τi , (46)

where

M∞ = M0

1 − n∑
i=1

αi

 , (47)

and n is the total number of Prony series terms. The following values have been

considered in the numerical experiments: n = 2, M0 = 143951 N/m2, α1 = 0.5,

α2 = 0.25, τ1 = 0.0005 s, and τ2 = 0.001 s.

The geometry of the elastic layer is customarily represented by the shape fac-

tor S , which is defined as the ratio of the plane area A to the perimeter area not

bonded to the rigid plates [12]. Therefore, in our case S =
√

A/4e. The values of

ρ, ν, e, and S for each numerical experiment are given in Table 1.
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Table 1: Values of the density ρ, Poisson’s ratio ν, thickness e, and shape factor S of the viscoelas-

tic layer used for each numerical experiment.

Experiment Density (kg/m3) Poisson’s ratio Thickness (mm) Shape factor

1 100 0.45 3.0 16.67

2 200 0.44 3.0 16.67

3 200 0.45 3.0 16.67

4 200 0.46 3.0 16.67

5 200 0.47 3.0 16.67

6 400 0.45 3.0 16.67

7 600 0.45 3.0 16.67

8 200 0.45 2.5 20.00

9 200 0.45 3.5 14.29

10 200 0.45 4.0 12.50

The analysis was performed using ANSYS c©. A harmonic force of amplitude

1 N was applied at points P1(0.336, 0, 0.1) and P2(0.336, 0, 0.1), and the corre-

sponding acceleration responses were determined at points Q1(0.336, 0, 0) and

Q2(0.336, 0, 0.08), respectively. The values of M and ν were determined as a

function of ω = 2π f using the equations derived in section 4 for frequencies be-

tween 0 and 500 Hz. For numerical implementation, the values of M were found

by solving the nonlinear equations using Newton’s method, and the values of ν

were determined from the secant method. The rest of the elastic moduli of the

layer (bulk modulus, Young’s modulus, shear modulus, and Lame’s first param-

eter) were obtained using the estimated values for M and ν. The errors in the

estimated values were calculated as ε = 100 × |Ve − Va|/Va, where Ve is the es-
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timated value and Va is the actual value. The errors in estimating M and ν were

plotted as a function of frequency in Figs. 11, 12, and 13.

It can be seen from Fig. 11 that larger values of density of the layer increase

the error in estimating the real part of M at higher frequencies because of the effect

of higher modes. However, the error is less than 4% for frequencies below 200

Hz.

From Figs. 11–13 we observe that the absolute percentage error in estimat-

ing the Poisson’s ratio using the procedure proposed here is between 0.5% and

1.4% for frequencies above 8 Hz. As expected, errors are much larger at lower

frequencies as discussed after Eq. (34).

In addition, in Fig. 13 it can be observed that better results are obtained for

thinner layers, that is, when the shape factor is increased. Since we are considering

a standardized dynamic stiffness test, in which the area is fixed at 0.04 m2, the only

option for reducing the error would be to reduce the thickness of the layer as much

as possible.

It is also noticed that the error in estimating the P-wave modulus, M, increases

when Poisson’s ratio is near 0.5 (see Fig. 12). This is because the term 1 − 2ν

becomes very small as indicated in Eq. (41). The same occurs for E (see Eq.

(45)). In the case of ν = 0.49, the errors are approximately 11.2% for M and E

between 100 Hz and 500 Hz. However, the errors for the loss factor tan δ (the ratio

between the imaginary and the real parts of the complex moduli) were consistently

smaller than 2% as shown in Fig. 14.
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Figure 11: Absolute percentage error in estimating the P-wave modulus M and the Poisson’s ratio

ν for a viscoelastic layer (ν = 0.45, e = 3 mm) with different densities: a) real part of M; b)

imaginary part of M; c) Poisson’s ratio.
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Figure 12: Absolute percentage error in estimating the P-wave modulus M and the Poisson’s ratio

ν for a viscoelastic layer (ρ = 200 kg/m3, e = 3 mm) with different values of ν: a) real part of M;

b) imaginary part of M; c) Poisson’s ratio.
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Figure 13: Absolute percentage error in estimating the P-wave modulus M and the Poisson’s ratio

ν for a viscoelastic layer (ν = 0.45, ρ = 200 kg/m3) with different thicknesses: a) real part of M;

b) imaginary part of M; c) Poisson’s ratio.
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Figure 14: Complex P-wave modulus M = M′ + iM′′ and tan δ = M′′/M′ as a function of

frequency for a viscoelastic layer (ρ = 200 kg/m3, ν = 0.45, e = 4 mm). Gray continuous lines:

actual values; black dashed lines: estimated values.

5. Conclusions

It should be noted that until now, the analytical solutions for the type of prob-

lem posed in this article were based mostly on approaches that required rigorous

fulfillment of the equilibrium equations at the boundary. These kinds of solutions

depend on the shape of the boundary and present some mathematical complexity.

In the present work, a new analytical approach based strictly on the fulfillment

of the equations of internal equilibrium has been presented. This approach leads

to much simpler analytical expressions that are almost independent of the shape
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of the boundary, which makes them easy to implement into computer codes. The

expressions depend only on static values such as the area and moments of inertia

of the contour.

The new approach presented in this paper provides a useful analytical descrip-

tion of the standardized test commonly used to determine the dynamic stiffness

of a material. It has also been shown that the developed analytical solutions may

be used to experimentally estimate the elastic parameters of a flexible material,

using a harmonic (frequency-dependent) analysis. The only condition is that the

plate’s chosen material must be much more rigid than the flexible material being

tested. It is concluded that the method gives better results when the shape factor

is increased, that is, by reducing the thickness of the layer as much as possible.
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