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Abstract 

In this work, a Mixed-Integer Linear Programming (MILP) model is developed to address 

optimal shale gas water management strategies among shale gas companies that operate 

relatively close. The objective is to compute a distribution of water-related costs and profit 

among shale companies to achieve a stable agreement on cooperation among them that allows 

increasing total benefits and reducing total costs and environmental impacts. We apply different 

solution methods based on cooperative game theory: The Core, the Dual Core, the Shapley 

value and the minmax Core. We solved different case studies including a large problem 

involving 4 companies and 207 wells. In this example, individual cost distribution (storage cost, 

freshwater withdrawal cost, transportation cost and treatment cost) assigned to each player is 

included. The results show that companies that adopt cooperation strategies improve their 

profits and enhance the sustainability of their operations through the increase in recycled water.  
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INTRODUCTION 

In recent years, the development of shale gas extraction has generated continuous growth in the 

production of natural gas, which is expected to increase in the coming years. In fact, the 

exploitation of shale gas in the United States has experienced rapid growth during the 2010s, 

accounting from 8 % of total natural gas production in 2000 to 49.8 % in 2015.1 This fast 

increase in natural gas production from shale formations is due to recent advances in 

technologies, such as horizontal drilling and hydraulic fracturing.2-6 However, these techniques 

entail some environmental risks and involve significant water footprint7. Specifically, during the 

hydraulic fracturing from 7500 to 38000 m3 of freshwater is consumed.8 After fracturing a well, 

a large amount of flowback water and produced water are generated as highly contaminated 

water.7,9 Therefore, proper management of wastewater is needed to deal with those large 

volumes of water. 

Current water management strategies include disposal of wastewater through Class II disposal 

wells, transfer to an onsite/centralized water treatment facility or direct reuse in the drilling of 

subsequent wells, and the reuse in new drilling and fracturing operations. From the 

environmental point of view, the best option is the direct reuse of the flowback water because it 

allows reducing the environmental problems associated with water management, such as 

transportation, disposal or treatment. 

Several publications have focused on the design and operation of shale gas supply chains for 

optimal water management.9-15 Alternatively, other studies have focused on the minimization of 

water consumption during shale gas production.16-18 or in the interactions between hydraulic 

fracture geometry, shalegas production, and wastewater generated19. In addition, mathematical 
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models for shale water management have been developed to minimize expenses (i.e., costs for 

the freshwater, treatment, storage, disposal, and transportation), freshwater usage and 

wastewater discharge either from a deterministic point of view10-12,14,17,20-22 or consider the 

inherent uncertainty in water and shale gas production13,15,23,24.  However, all these works have 

focused on studying water management considering that all wellpads are exploited by a single 

company, whereas in practice, there are typically different companies operating relatively close 

to each other in a given shale gas play as shown in Figure 1. 

FIGURE 1 

 

Companies that are working on the same shale play, and their shale pads are relatively close, 

could develop possible cooperation activities, such as sharing onsite water treatment facilities 

and wastewater among different wellpads (owned by different companies) that reduce the total 

demand for freshwater and the storage capacity in some wellpads and, consequently, the 

transportation costs. Additionally, these activities allow companies to reduce the environmental 

impact of their operations.  

This work studies possible cooperative strategies among companies that allow reducing both 

costs and environmental impacts of water management in shale gas production. The result of 

cooperation could be the same as the result obtained using simultaneous optimization between 

companies. However, the question is how to distribute costs or profit among the cooperating 

companies, which allows them to choose if they want to cooperate or not depending on their 

interests. In this work, to distribute the total payoff among the members, different solution 

method based on cooperative game theory, such as Core, Dual Core, the Shapley value and the 

minmax Core are applied.  
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Contrary to non-cooperative games, which do not analyze the coalitions and assume that each 

company acts independently to maximize its utility, in cooperative games companies interact 

with a common purpose and analyze the formation of coalitions among the members of a 

game.26 

Regarding this area, Gao and You studied non-cooperative game theory considering a particular 

class of games, specifically, leader-follower Stackelberg game structure for the entire shale gas 

supply chain.27,28 

The objective of this work is to compute the optimal operating conditions and to determine the 

distribution of the payoff among the different companies in order to achieve a stable agreement 

on cooperation among them. Operating conditions include the time, place and amount of 

freshwater acquired by each company, the number and size of water storage tanks, the drilling, 

and fracturing schedule of each wellpad, the schedule of water reuse, and the characteristics of 

onsite treatment facilities. 

The rest of this paper is organized as follows. The next section gives a general description of the 

cooperative game theory and its applications. Then, the problem statement is described. 

Different case studies are proposed in order to show the benefits of cooperative games in shale 

gas water management, and finally, conclusions are drawn. 

 

COOPERATIVE GAME THEORY 

Cooperative game theory predicts rational strategic behaviors of individuals in cooperating 

situations, i.e., it studies the interaction among coalitions of players. This theory has been 

applied to a wide variety of situations where costs and benefits resulting from cooperation are 

allocated to the “players”.29-33 For example, some works have studied game theory in the 
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management of water resources,34-38 and others have shown that game theory can help resolve 

conflicts over water acquisition.39,40 

Generally, a cooperative game is defined by a set of players { }1,  2,  ...,  N n=  and any subset of 

cooperation players S N⊆  is called “coalition”. When all players cooperate in a unique 

coalition, it is called the “grand coalition” { }1,  2,  ...,  S N n≡ = . Note that, the function that 

assigns the quantifiable unit to each coalition (e.g. profit, cost) is called “characteristic 

function” ( ( )Sυ ). This quantifiable unit can be interpreted according to stakeholder interest. In 

this work, we deal with profit, environmental and cost games. In a profit game, players favor a 

higher outcome for themselves, whereas in environmental and cost games, they prefer lower 

amounts. 

In general, a coalition is formed when the cooperation leads to add value. It is also possible to 

define the dual value of a coalition41. This is the value that the great coalition N loses if the 

coalition S does not cooperate with the grand coalition (Eq. 1). 

( ) ( ) ( )* \S N N Sυ υ υ= −                   (1) 

The main question in cooperative game theory is as follows: given the sets of feasible payoffs 

for each coalition, what payoffs will be given to each player? First, the properties that each 

payoff has to satisfy are described. Then, the allocation methods in cooperative game theory 

applied in this paper to allocate whatever quantifiable unit (cost, profit or environmental impact) 

of the grand coalition among the players are described in detail.  

 

Payoff allocation properties 

Players are willing to form the grand coalition given a fair allocation of the profit among the 

players. Otherwise, the outcome will be ineffective, and the players will not want to cooperate. 
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The allocation of whatever quantifiable unit is denoted by πi and defines the portion of the unit 

that is allocated to each player. The following important properties should be achieved (they are 

written for a profit game): 

• Efficiency guarantees that the total profit of the grand coalition must be equal to the sum 

of the profit share of each player N: 

( ) i
i N

Sυ π
∈

= ∑                    (2) 

• Individual rationality describes that the profit of the player that acts alone must be 

lower or equal than the profit of that player cooperating: 

{ }( )     i i i Nπ υ≥ ∈                   (3) 

• Coalitional rationality. It extends the individual rationality to coalitions, and establishes 

that the profit of a coalition must be lower than or equal to the profit of that coalition 

when it is part of the grand coalition: 

( )    ,  i
i S

S S N Sπ υ
∈

≥ ⊂ ≠∅∑                  (4) 

Note that, in environmental and cost games, the characteristic function in individual and 

coalitional rationality (Eqs. 3-4) will be higher than or equal to the corresponding outcome. 

An imputation π strongly dominates an imputation τ over a set S (written Sπ τ> )42 if: 

( )
    ,i i

i
i S

i S
S

π τ
π υ

∈

> ∀ ∈
<∑                    (5) 

These equations state that if all players in a coalition S get strictly more in the imputation π than 

in τ, and they can change from π to τ, then imputation π strongly dominates τ over S.We say that 

an imputation π weakly dominates an imputation τ over a coalition S (written  

Sπ τ≥ ) if: 
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( )
    ,i i

i i
i S

i S
S

π τ
τ π υ

∈

≥ ∀ ∈
< ≥∑                    (6) 

It is said that an imputation π dominates an imputation τ dually over a coalition S (written  

S
π τ

=
> ) if: 

( )

( )
\ \

    ,
,

   \

i i

i
i S

i i i i
i N S i N S

i S
S

if i S then N S

π τ
π υ

π τ τ π υ
∈

∈ ∈

≥ ∀ ∈
≤

∀ ∈ ≥ < ≥

∑
∑ ∑

               (7) 

Note that “strong domination” implies “weak domination” and, in turn it implies “dual 

domination”. Detailed information about dominations and their properties can be found in 

Stolwijk (2010).43 

 

Allocation methods in cooperative game theory 

The Core 

The Core is a central concept in game theory44 formed by all the imputations for which there is 

no sub-coalition that can obtain better results than the grand coalition. The Core is then formed 

by the set of imputations that are efficient and stable. An imputation is efficient if the total profit 

is distributed among all the partners, and it is stable if the principles of individual rationality and 

coalitional rationality are met. Therefore, the Core combines the three properties mentioned 

above and is defined as follows: 

( ) ( ) ( ), :      ,  N
i i

i N i S
C N c N and S for all S N Sπ π υ π υ

∈ ∈

  = ∈ℜ = ≥ ⊂ ≠∅ 
  

∑ ∑             (8) 

Basically, the Core includes all the points that are not strongly dominated. The core is also the 

set of all not weakly dominated imputations (see Stolwijk43 for a proof). 
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Let us illustrate the concept of Core with a small example. Assume a three-player game in 

which the individual players get the following profits: 

{ } { } { }( 1 ) 10; ( 2 ) 15; ( 3 ) 12υ υ υ= = =  the collaboration between two partners will produce 

the following profits for each coalition: { } { } { }( 1, 2 ) 30; ( 1,3 ) 25; ( 2,3 ) 30υ υ υ= = = , 

Finally, the grand coalition (the three players cooperating) will produce a profit 

{ }( 1, 2,3 ) 48υ =  . 

The set of Core imputations ( 1, 2,3i iπ =  ) is formed by all the solutions to the following set 

of constraints: 

{ }( )
{ }( )
{ }( )
{ }( )

{ }( )
{ }( )
{ }( )

1 2 3

1

2

3

1 2

1 3

2 3

1 2 3

1,2,3 48  Efficiency

1 10  Individual rationality
2 15
3 12

1,2 30  Coalitional rationality
1,3 25
2,3 30

, ,

π π π υ

π υ

π υ

π υ

π π υ

π π υ

π π υ
π π π

+ + = = 
≥ =


≥ = 
≥ = 

+ ≥ =


+ ≥ = 
+ ≥ = 

∈ℜ

     (9) 

An example at a solution to Eq. 9 would be 1 =π 13, 2 =π 19 and 3 =π 16. 

The allocation in the Core is fair in a weak sense because one player can benefit more than 

others. In addition to the Core, there are many Core variants that try to determine a fair profit 

allocation.26 

• The Dual Core 

The key concept in the Core definition is a strong dominance. An imputation not strongly 

dominated is also not weakly dominated and vice versa. If we replace strong domination by 
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weak domination, the set stays the same. However, if instead of «not strongly dominated» we 

use «not dually dominated» we could get a different set of imputations.  

The Dual Core is the set of all imputations not dually dominated.41 That means that if a coalition 

S leaves the grand coalition, either at least one member of S will have to pay a price, or no 

player in S has to pay a price and no player in \N S  has to pay a price. 

The Dual Core can be defined as follows: 

( ) ( ) ( ) ( ) ( ) ( ) ( ), :  | * ,   | *N
i i

i S i S
DC N c S S S S S S S Sπ π υ υ υ π υ υ υ

∈ ∈

  = ∈ℜ = ∀ = > ∀ ≠ 
  

∑ ∑   

(10) 

In the Core, it is eventually possible that imputations appear such that there is a sub-coalition S 

that makes it necessary to cooperate in the grand coalition to improve the benefit \N S . But at 

the same time, coalition S does not improve its benefit by this cooperation. The Dual Core does 

not have that problem. Therefore, the Dual Core is a subset of imputations in the Core that are 

more stable (fairer). Thus, the Dual Core is a solution concept that has better rational properties 

than the Core. If the Dual Core exists, imputations in the Dual Core are more rational (fair) than 

imputations in the rest of the Core. 

In non-cooperative games, the solution is usually given in terms of Nash equilibrium. Although 

Nash equilibrium is a non-cooperative concept, it has also been applied to cooperative games. 

Maybe the most interesting result is that the Dual Core is the set of all strict Nash equilibria and 

the Core is the set of all weak Nash equilibria. A detailed discussion on the relation of Nash 

equilibrium and Core / Dual Core is out of the scope of this work. The interested reader can find 

a comprehensive discussion in the literature.43 
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In general, for the kind of problems that we deal in this work, the Dual Core and the Core are 

coincident. Therefore, the set of imputations in the Core are also the set of strict Nash equilibria 

solutions. 

• Minmax Core 

Another variant of the Core that guarantees a rational, efficient and fair profit allocation is the 

minmax Core.45 This solution concept is based on the relative benefit in the percentage of ( )Sυ

, i.e., the greater the benefit, the higher the profit assigned to a sub-coalition S. The 

mathematical formulation is similar to the Core formulation. In this case, the coalitional profit is 

multiplied by η, which ensures that no coalition has a profit allocation greater than ( ) · Sη υ : 

( )

( )

min  
. .

 ,  

 

i
i N

i
i S

i

s t N

S S N S

i N

η
π υ

π ηυ

π
η

∈

∈

=

≤ ∀ ⊂ ≠∅

∈ℜ ∀ ∈
∈ℜ

∑
∑                  (11) 

In the three players example presented above the minmax Core produce the following 

imputations by optimizing (11): π1 = 12.97,   π2 = 19.46,  π3 = 15.57 

 

The Shapley value 

The Shapley value maybe is the most used solution concept that produces a unique imputation 

in cooperative game theory. 

While the Core in most of the cases represents a set of possible allocations with specific 

properties, the Shapley value (Eq. 12) provides a unique solution for every game in the 

coalitional form:  

( ) { }( ) ( )
{ }\

! 1 !
!i

S N i

S N S
S i S

N
π υ υ

⊆

− −
 = ∪ − ∑                      (12) 
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The Shapley value can be interpreted as follows: Let a coalition be formed by a player at a time. 

When the new player joins the coalition, he/she would like to receive his/her contribution 

( ) ( )S i Sυ υ∪ − . The Shapley value is the average value of this contribution taking into 

account all the different possible permutations in which a coalition can be formed. 

The solution among the players follows three axioms (symmetry, efficiency, and additivity –see 

Shapley (1953)46 for a detailed description–) that are derived from properties that should be 

satisfied by such an allocation. 

In general, the Shapley value is considered as a good answer in cooperative game theory, since 

it is based on those who contribute more to the groups should receive more. 

In the three players’ example, the Shapley value yields the following imputations: 

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )

1

2

3

1 1 1 1
1 1, 2 2 1, 3 3 1, 2, 3 2, 3 14

3 6 6 3
1 1 1 1

2 1, 2 1 2, 3 3 1, 2, 3 1, 3 19
3 6 6 3
1 1 1 1

3 1, 3 1 2, 3 2 1, 2, 3 1, 2 15
3 6 6 3

π υ υ υ υ υ υ υ υ

π υ υ υ υ υ υ υ υ

π υ υ υ υ υ υ υ υ

= − ∅ + − + − + − =

= − ∅ + − + − + − =

= − ∅ + − + − + − =

  

(13) 

PROBLEM DESCRIPTION 

In this work, as mentioned before, we focus on cooperative game theory to allocate a 

quantifiable unit (cost, profit or environmental impact) to each one of the companies which 

work in the same shale play. Companies will be able to follow different strategies, such as 

forming a ‘joint venture’ accepting the allocation of costs/benefits or environmental impacts that 

come from game theory, or establishing contracts (e.g., water sharing) that result in the 

imputation of costs/benefits equal to that obtained from cooperative game theory. 
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To formulate the shale water management problem, we use mathematical programming 

techniques. The target is to find an optimal solution (maximizing or minimizing an objective 

function) subject to a set of equality and inequality constraints. Specifically, our planning 

problem is formulated as a Mixed-Integer Linear Programming (MILP) problem and is 

composed of parameters (i.e., known input data) and continuous and discrete variables. 

 

Supply chain network description 

Any shale gas water management model available in literature can be eventually used and 

extended with cooperative game theory concepts. In this work, we adapted the model presented 

by Carrero-Parreño et al.22 

The superstructure addressed in this work (see Figure 2) comprises wellpads (i.e., companies, 

player) p, unconventional shale gas wells w, centralized water treatment technologies (CWT) k, 

natural freshwater sources f, and disposal wells d. 

 

FIGURE 2 

 

Natural freshwater needed for hydraulic fracturing is obtained from an uninterruptible 

freshwater source and is stored in freshwater tanks (FWT). After hydraulic fracturing, the water 

that comes out, called flowback water, is stored onsite in fracturing tanks (FT) before pre-

treatment (removing suspended solids, oil and grease, bacteria and certain ions) in mobile units, 

or else is transported to CWT facility, to a neighboring wellpad or to a Class II disposal well. It 

is assumed that each company has its own freshwater and fracturing tanks and its own 

pretreatment. After pre-treatment, the flowback and produced water stored in fracturing tanks 
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can be recycled as a fracturing fluid in the same wellpad, or it can be desalinated in portable 

onsite treatment.  

The following assumptions are made for the formulation of the model: 

1. A fixed time period is discretized into weeks as time intervals. 

2. Water transportation is only executed by trucks (the model can be easily extended to 

deal with transportation by pipes as well). 

3. The volume of water used to fracture a well must be available when needed –this 

includes the possibility of storage in tanks or a ‘just in time water availability’–, 

including water required in drilling, construction, and completion. 

4. The amount of water needed to carry out all the operations as well as the variation in 

flowback water with time after the well is turned in operation are known a priory.  

5. The well is turned in operation immediately after the drilled activities are finished. 

Qualitative mathematical model description 

The mathematical model is outlined in Eq. 14 and comprises assignment constraints, logic 

constraints, shale gas and flowback water production, well water demands, mass balances in 

storage tanks, onsite and offsite treatments, treatment and storage capacity constraints and 

objective functions. The MILP in Eq. 14 is described in detail in the Supplementary 

Information, Section S.1. 
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w on hf fb
t p w t p t p w t p w
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logic constraints
shale gas and

 
 
 − 
 
−  
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, , , ,
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,

, , 0,1

w gas n
t p w t p w
on hf fb
t p t p w t p w

flowback water production
well water demands
mass balances in storage tanks, onsite and offsite treatments
treatment and storage capacity constraints
f f

y y y
p S N

∈ℜ

∈
∈ ⊆

                   (14) 

In Eq. 14, f are the continuous variables representing flowrates, y are the binary variables that 

involve discrete decisions, and the subscripts t, p, and w are the time period, wellpad and well, 

respectively. The problem is implemented in GAMS 25.0.1.47 and solved using Gurobi 7.5.2.48  

Depending on the objective function considered, the mathematical model will identify the best 

water management strategy for maximizing the profit or minimizing the water-related costs or 

environmental impact (depending on the interests of companies) considering any number of 

players. The gross profit to be maximized includes revenue from shale gas, and expenses for 

wellpad construction and preparation, shale gas production and water-related costs (i.e., 

wastewater disposal cost, freshwater withdrawal, friction reducer cost, onsite and offsite 

treatment cost, wastewater and freshwater transportation cost and storage tank cost). The cost 

objective function to be minimized includes the aforementioned water-related cost. The 

environmental objective minimizes the environmental impacts associated with water 

withdrawal, treatment, and transportation. Environmental impacts are evaluated according to the 

principles of Life Cycle Impact Assessment (LCIA) using the ReCiPe methodology (see 

Supplementary Information, Section S.2). 
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CASE STUDIES AND DISCUSSION 

Benefits of cooperation 

Before focusing on applying the solution methods for cost or profit allocation described above, 

we study the benefits that are obtained when companies work together, and therefore there is 

interaction among them. 

The benefits from the absence of cooperation to full cooperation among players are explored in 

a motivating example composed of a three-player game (i.e., companies, wellpad) working 

relatively close. Data of the problem based on Marcellus play –cost coefficients and model 

parameters– and ReCiPe indicators database are given in the Supplementary Information, 

Sections S.3.1 and S.3.2, respectively. 

The time horizon of one year is discretized into weeks since most of the shale gas water is 

extracted during the first month after the well is drilled. However, this time period might be 

extended until the exploitation ends (10 – 20 years) with the renewal of the contract. The 

optimization model also includes one interruptible freshwater source, one centralized water 

treatment facility (CWT), one class II disposal well and three wellpads. Wellpads 1, 2 and 3 are 

composed of five, four and six wells, respectively. Each wellpad belongs and is operated by 

different companies with their own fracturing crew. The MILP model is implemented in GAMS 

and solved using Gurobi on a computer with 3GHz Intel Zeon Processor and 32 GB RAM 

running on Windows 7. 

In the case of the absence of cooperation, companies work independently, without sharing water 

recycled among different wellpads and onsite water treatment facilities. Hence, the 

mathematical model is solved for each individual company. Then, the total profit is equal to the 

sum of the individual profits. In contrast, when cooperation is carried out, the interaction 

between companies is allowed, therefore the mathematical model is solved including all 
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companies. In this cooperative situation, companies can adapt the fracturing schedule to achieve 

additional advantages in order to maximize revenue and water reuse and reduce water 

management costs. However, we also analyze the situation in which each company is willing to 

cooperate but it does not want to change its fracturing schedule that maximizes its revenue.  

First, to show the benefits of cooperation, we maximize the gross profit considering the absence 

of cooperation, full cooperation, and cooperation with a fixed fracturing schedule for shale 

water management strategies of three companies (i.e., wellpads). Figure 3 shows the optimal 

strategies obtained in each situation. When each company works independently (Figure 3 (a)) 

the total profit is $59.54M. In this case, the water that each company uses in drilling operations 

is the freshwater that comes from an external source and the water generated from the fractured 

wells belonging to its company. In this case, the total withdrawal of water increases to 160752 

m3. Additionally, each company must lease an onsite treatment to manage the water when there 

are no more wells to fracture at the end of the total time horizon. When companies cooperate 

(Figure 3 (b)) the total profit is $60.48M. In this case, the best strategic solution is to install an 

onsite treatment in wellpad 1. In this case, the optimal schedule obtained tries to maximize the 

total water reused (115263 m3). Note that, freshwater withdrawal decreases to 128856 m3, that 

is, around 19.8 % lower. Note also that company 3 only uses 18638 m3 of freshwater for its 

fracturing operations. This is because wellpad 3 is the furthest away from the freshwater source. 

As transportation is the highest individual cost, this strategy leads to significant savings 

compared to the other two cases, where it is not possible to reuse the same amount of water. 

Additionally, when companies cooperate but they are interested in maintaining their schedule 

fixed the total profit is $60.13M. In this case, reused water is limited to 90816 m3, which 

increases the total water treated. This implies the need for installing an extra onsite treatment in 
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wellpad 2, which increases the water treatment cost. Moreover, more freshwater is needed, 

increasing to 158302 m3; that is, around 18.6 % higher than in the full cooperation case. 

 

FIGURE 3 

 

To further demonstrate the benefit of cooperation, the previous example is expanded 

considering also the environmental objective function. We apply the epsilon-constraint method 

Pareto frontier49 to this bi-criteria optimization problem, obtaining the Pareto set of solutions, as 

shown in Figure 4, which indicates the existing trade-off between both objectives. Reductions 

of the LCIA can only be achieved by compromising the gross profit. 

 

FIGURE 4 

 

In Figure 4 the following cases are displayed: cooperative solution when companies minimize 

the LCIA (Point A), cooperative solution when companies maximize the gross profit (Point D), 

no cooperative solution when companies minimize the LCIA (Point B), the fracturing schedule 

is fixed in advance and each company maximizes its revenue cooperating to reduce water 

management costs (Point C), and  no cooperative solution when companies maximize the gross 

profit (Point E). 

On the one hand, taking into consideration the environmental objective (points A and B), a 

reduction of 62.5 % in the environmental impact is achieved (0.79 to 0.3) when all players work 

together and, additionally, the gross profit when all players cooperate is slightly higher. 

On the other hand, taking into consideration the economic objective (points C, D, and E), 

besides the profit increment of $942K when companies cooperate, a reduction of 41.1 % in 
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environmental impact is achieved. In the case where companies cooperate without changing 

their fracturing schedule, the gross profit increases by $590K compared to the absence of 

cooperation ($59.54M to $60.13M). However, setting the schedule limits the possibilities of 

cooperation, which the gross profit being 7.4 % lower than in the cooperative solution ($60.13M 

vs $60.48M).  

Additionally, the disaggregated water-related cost contribution and total shale gas revenue for 

all the cases are displayed in Figure 5. As can be seen, reusing wastewater for fracturing 

operations reduces water transportation impact since companies are working in the same area. 

Therefore, they do not have to transport the water from freshwater sources located far away 

from the shale play. On the other hand, although shale gas revenue is higher when a company 

works independently than cooperating, the gross profit that each company obtains when it 

works cooperating is higher than when it works independently. This is because adapting the 

fracturing schedule in a cooperation situation to maximize the total water recycled; it is possible 

to significantly reduce water-related costs.  

 

FIGURE 5 

 

An additional analysis of the environmental impacts was made in order to show that the total 

emissions from the water management vary greatly among the five cases (see Figure 6 (a)). On 

the one hand, in the cases focused on minimizing the environmental impacts (cases A and B), 

the LCIA is 49.6 % lower (0.66 to 0.33) when companies cooperate. On the other hand, in the 

cases focused on maximizing the profit (cases D and E), the LCIA is also lower when 

companies work together; in this case, it is around 31.7 % lower (0.80 to 0.55). The case when 

the schedule is fixed in advance (case C) has an environmental impact 27.9 % higher than case 
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D (when the schedule can change), but it is around 5.4 % lower (0.80 to 0.76) than case E 

(when companies work independently). 

Additionally, as climate change is the contribution with the highest impact in the endpoint 

category (see Section S.3.3.1 of the Supplementary Information), its corresponding midpoint 

indicator, the Global Warming Potential (GWP), is selected for the analysis. As can be seen in 

Figure 6 (b), in the cases focused on minimizing the LCIA (cases A and B), the GWP decreases 

around 50.3 % (2.54 to 1.26 kT CO2-eq) when companies cooperate, while cost also decreases 

by around 38.0 % ($3.72M/year to $2.31M/year), respectively. In the cases focused on 

maximizing the profit (cases D and E), GWP also decreases around 32.2 % (3.07 to 2.08 kT 

CO2-eq) when companies work together, and the cost also decreases by 32.9 % ($4.20M/year to 

$2.81M/year). It should be noted that the cost follows the same trend as the environmental 

impact, basically because transportation and electricity are the most influential factors in 

economic and environmental terms. 

 

FIGURE 6 

 

Clearly, throughout this analysis, it has been shown that full cooperation between companies 

brings potential economic and environmental benefits. 

Note that the case studies analyzed in this paper are limited to direct water management 

alternatives; however, it could be extended, for example, to fracturing jobs. The shale gas water 

management model used assumes that each wellpad has and is operated by its own crew, but 

eventually, a reduced number of crews could be available. In this situation, the crew could be 

another source of interaction among companies. Besides, strategies to control gas release to 

increase the total revenue could have an important economic impact.50,51 This will have 
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implications in the time profile of flowback/produced water generated. Therefore, although it is 

out of the scope of the present paper, the model could be extended to take into consideration 

other cooperation possibilities within the shale gas industry.  

 

Profit and environmental impact allocation in a three-player game 

In this section, we explain how to allocate the corresponding profit or environmental impact 

(depending on players’ interest) among the players of the grand coalition. As mentioned before, 

the Core, Dual Core, Shapley value and minmax Core are prominent solution concepts to 

allocate the profit (or environmental impact) in cooperative game theory. 

First, to calculate an imputation inside the Core, the characteristic function of each player and 

sub-coalition have to be computed. The characteristic function assigns a profit value 

(maximizing the gross profit in the shale gas water management model) or an environmental 

impact value (minimizing the LCIA) to each possible coalition. They are calculated solving the 

planning model as many times as coalitions are. In the case of the three-player game, the 

number of possible coalitions is equal to eight, including the empty set. Table 1 displays the 

characteristic values obtained, where υ is the characteristic function when the gross profit is 

maximized and µ is the characteristic function when the LCIA is minimized. Note that, for 

instance, the sum of { }( ) { }( ) { }( ){ }1 , 2 , 3υ υ υ ($59.54M) corresponds to point E (absence of 

cooperation) and the characteristic function { }( ){ }1,2,3υ ($60.48M) refers to point D 

(cooperation) in Figure 4. 

 

TABLE 1 
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As can be seen in Table 1, the gross profit obtained when the three companies cooperate is the 

highest ($60.5M) and it cannot be obtained if the companies worked independently ($59.5M). 

The same behavior occurs when minimizing the LCIA since the minimum LCIA is obtained 

when all the companies work together. 

Then, the constraint satisfaction problem (the Core) described in Eq. 15 must be solved to 

determine the profit allocation among players. The Core ensures a stable coalition (Pareto-

efficient) and combines the properties of efficiency and individual and coalitional rationality. 

Note that if the interest of stakeholders is to minimize LCIA, the environmental impact 

allocation in individual and coalitional rationality will be lower than or equal to the 

characteristic function.  

{ }( )
{ }( )
{ }( )
{ }( )

{ }( )
{ }( )
{ }( )

1 2 3

1

2

3

1 2

1 3

2 3

1 2 3

1,2,3 60478  Efficiency

1 21314  Individual rationality
2 15080
3 23146

1,2 36673  Coalitional rationality
1,3 45149
2,3 38629

, ,

π π π υ

π υ

π υ

π υ

π π υ

π π υ

π π υ
π π π

+ + = = 
≥ =


≥ = 
≥ = 

+ ≥ =


+ ≥ = 
+ ≥ = 

∈ℜ                   (15) 

where υ is the optimal profit of each coalition and π1, π2 and π3 define the portion of the profit 

that is allocated to each player. Notice that since Eq. 15 is a feasibility problem, if we are 

interested in a single imputation we can use any linear programming solver just by adding a 

dummy objective function (e.g. min z=1). 

The geometrical interpretation of the Core of the three-player game is graphically illustrated in a 

ternary plot in Figure 7. However, in the case of profit allocation, the feasible region that 

defines the core results in a small area, being difficult to observe it in the plot. That is, the 
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unique payoff division obtained with the Shapley value and the extreme points of the convex 

polyhedron that define the feasible core region are very close.  

In the case of environmental impact allocation, the Core is graphically illustrated in Figure 7.  

Each individual and coalitional rationality constraint divides the space into two regions one 

being the region feasible with the Core allocation (the direction of the arrows points out into the 

feasible region). The compact convex polyhedron formed by the intersection of all half-spaces is 

the Core. The Core contains an infinite number of stable imputations (i.e., any sub-coalition 

could not arise to reach a better result than in the grand coalition). It is important to highlight 

that the non-empty Core of three players is guaranteed in advance if the following sub-additive 

property is satisfied: { }( ) { }( ) { }( ) ( )1,2 1,3 2,3 2 Nυ υ υ υ+ + ≤ . The non-empty core guarantees 

that no conflicts are captured by the characteristic function, satisfying all players 

simultaneously. Figure 7 also displays the unique imputation obtained applying the Shapley 

value and the minmax Core solution method. As can be seen, both solutions correspond to 

stable imputation inside the Core.  

 

FIGURE 7 

 

In Table 2 (a), the marginal benefit of each player considering the profit allocation (obtained by 

using the Shapley value, minmax Core and the extreme allocation profit of the polyhedron that 

shapes the Core) is displayed. The marginal benefit solution for the Core extreme points 

captures the weak fairness of the Core for player 2. That is, if the companies decide to choose 

the allocation profit provided by the Core extreme points b and c, company 2 does not lose, but 

it does not benefit from joining the grand coalition either. There are always imputations that do 

not violate the individual or coalitional rationality constraints in which the player does not 
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increase its benefit. Hence, in the Core, some allocations might not be considered inherently fair 

in a strong sense because some players (or sub-coalitions) benefit more than others do. 

Table 2 (b) shows the environmental impact reduction comparing the allocated impact of each 

player obtained with the three different solution concept and the environmental impact of the 

absence of cooperation. 

 

TABLE 2 

 

How to find allocations for games with a large number of players 

In a three-player game, the number of coalitions is equal to eight –including the empty set–. 

However, the number of coalitions rises exponentially ( 2 N ) with an increasing number of 

players. For example, in the case of the eight-player game, the number of coalitions increases to 

256.  

Hence, computing the characteristic function of all possible coalitions to formulate the 

constraint satisfaction problem and calculate the Shapley value or the minmax Core will require 

extensive time and effort because the planning model should be solved as many times as 

coalitions. 

Therefore, if the number of players increases, it is not feasible (or at least practical) to solve an 

optimization problem for each sub-coalition. Due to that fact, a row generation algorithm was 

suggested to tackle the problem.46 

The main idea of the algorithm (detailed in Table 3) is to avoid testing the constraints for all 

possible coalitions to find an element in the Core. First, a master problem (Table 3 – Point 2) is 

solved including only the coalitions formed by individual players and the grand coalition. The 

solution to the master problem provides a possible imputation. Then, fixing the imputation 
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obtained in master problem, we solve a subproblem (Table 3 – Point 4) that searches for a 

coalition that violates the most any stability constraint. If such a coalition exists, the master 

problem is updated, and the procedure is repeated until we get an imputation inside the core. 

The algorithm presented only ensures a solution inside the Core. Note, however, that it is 

straightforward to add constraints that force fairer imputations. For example, for computing an 

element in the minmax Core we only need to adapt the master problem for the set of ‘active sub-

coalitions’ S: 

( )

( )

( )

min  
. .

   

i
i N

i
i S

i
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s t N

S S

 i N

η
π υ

π ηυ

π
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=
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TABLE 3 

 

Computing cost allocation in an eight-player game 

To show the efficiency of the algorithm, an eight-player game is solved. In this case, we focus 

on the minimization of water-related cost, minimizing at the same time environmental impacts 

related to transportation and water withdrawal. Thus, the problem is tackled by applying a row 

generation algorithm, following the steps detailed in Table 3. A total of 30 wells are allocated 

among the eight wellpads. Besides, three different freshwater natural sources are considered in 

this example. 

First, we compute the optimal individual water-related cost (shown in Figure 8, solution for the 

absence of cooperation) and the grand coalition cost (when all companies cooperate), which is 

equal to $2.9M. Then, we start the iteration process to allocate the cost among the players 
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without computing the cost for each coalition. The iterative process to allocate the cost is 

detailed in Table 4, displaying in the last row the cost allocated to each stakeholder. 

As can be seen in Figure 8, each player obtains significant savings cooperating. Moreover, the 

sum of total water management cost when the eight companies work separately is equal to 

$5.4M, which is 46 % higher than the optimal cost obtained when all companies cooperate 

($2.9M). 

 

FIGURE 8 

 

TABLE 4 

 

The larger resulting optimization problem is given when the eight companies are working 

together and consists of 7680 constraints, 11177 continuous variables, and 848 binary variables. 

Gurobi provides a solution with an optimality gap equal to 3 % after 1244 s of CPU time. The 

master and subproblem defined in the algorithm are solved in less than 100 s of CPU time for 

the master problem with optimality gap of 0 % and 1 % for the subproblem. 

 

Eight-player game strategies and environmental analysis 

The optimal strategic solution of the cooperative game theory for eight companies (i.e., 

wellpads) is displayed in Figure 9. As can be seen, companies 1 and 4 drill the wells using 

flowback water coming from the same and neighboring wellpads, while companies 7 and 8 only 

use freshwater from source 1 for fracturing operations. Company 6 withdraws water from the 

freshwater source 3, while companies 2, 3 and 4 from the freshwater source 2. Additionally, 

only the installation of one onsite treatment in wellpad 5 is required. Besides, the total water 
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withdrawal cooperating (241764 m3) decreases by around 27 % with respect to the absence of 

cooperation (329608 m3). 

 

FIGURE 9 

 

We quantify the emissions embodied in water management when companies cooperate and in 

the absence of cooperation. As can be seen in Figure 10, the environmental impact when the 

eight companies cooperate is around 58.0 % lower (0.34 vs. 0.81) than the environmental 

impact when the companies work separately. This is mainly due to the reduction of water sent to 

onsite treatment.  

Figure 10 shows that environmental effects directly related to onsite treatments have a major 

impact in a non-cooperative situation, as well as the greatest environmental reduction 

considering cooperation. The synergic effect of reducing the total freshwater water consumed 

when companies cooperate implies the increase of inter-wellpads water recycled and 

consequently, the reduction in the wastewater to be treated. Note that water treatment, especially 

desalination for hypersaline water, is an energy intensive operation since the state of the art for 

hypersaline water desalination is based on thermal treatments (multi-effect distillation with or 

without vapor recompression; membrane distillation, etc.). Besides, the model assumes that the 

treatment operates recovering as much water as possible to be close to a zero liquid discharge 

philosophy.  

For that reason, energy consumption is considerably reduced when the total water to be treated 

decrease in the cooperative situation, decreasing at the same time the environmental impact. 

Further analysis of this solution is displayed in the Supplementary Information, Section S.3.4. 
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FIGURE 10 

 

How to distribute the individual cost to each player  

In this last example, we try to approximate a real-world case study. For that reason, we consider 

that 4 companies (i.e., players) control a specific area. A total of 207 wells are distributed 

among 13 different wellpads where each company owns 3-4 of them. Unlike previous examples, 

in this case, each company decides to fix its fracturing schedule in advance to maximize the 

benefit by adjusting gas release with gas prices forecasts52. Hence, the objective function is 

focused on minimizing the water-related cost. That simply means to fix the values of the binary 

variables related to turning in operation the well, to the values decided by each company. 

We consider that each company, apart from knowing the total allocated cost of water 

management when they are cooperating (as shown in previous examples), wants to know how 

much it has to pay for storage, water withdrawal, transportation, treatment, and disposal. 

Thus, this example also analyzes the individual cost distribution (storage cost, desalination cost, 

transportation cost, etc.) to each company and the strategic interaction among them. We 

consider that each shale gas company must pay for its own cost of storage, water withdrawal, 

transportation, treatment, and disposal. The interaction among them is reflected by sharing 

water agreements in the impaired water that is sent from one to another company. 

In this case, we only contemplate the fair solution, therefore, the ‘minmax Core’ is applied.45 To 

do that, the following approach is implemented.  

Step 1. Compute the characteristic function (solving the water planning model) of each 

possible coalition (Table 5). 

Step 2. Determine the grand coalition cost. 
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Step 3. Fix the individual expenses to each player and the impaired water flowrate sent 

among companies obtained from the previous problem. 

Step 4. Determine the payoff of each player and the strategic interaction among them 

solving the following minmax Core problem (Eq. 17),  
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        (17)  

where πi is the allocation cost, η ensures that no coalition S has a cost share greater than η 

percentage and αi,i’ represents the cost coefficient that player i must to pay to player i’. For 

instance, if α1,2 is negative means that player 2 have to pay to player 1 the water that player 2 

receives. Therefore, player 1 reduces its total allocation cost proportional by the water sent. 

 

TABLE 5 

 

The total water-related cost when companies cooperate (grand coalition cost) is equal to 

$34.3M, 21% lower than the cost when companies work independently ($43.7M). The cost 

allocated to each player is equal to $8479K, $6266K, $10153K and $9448K, respectively. The 

individual cost distribution can be found in Table 6. 

 

TABLE 6 
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Companies interact with each other due to the water sent from one company to another one. For 

example, in a cooperative situation, as company 3 is the farthest away from the freshwater 

source, the solution reveals that company 3 must fracture its wellpads using the wastewater 

produced by the other companies. However, that means it is an important saving for company 3, 

which has to pay to company 2 for the water received. Table 7 shows the income and cost 

interaction among companies and Figure 11 displays the impaired water exchange among 

different wellpads when companies are cooperating and in the absence of cooperation where 

only the interaction among wellpads that belongs to a specific company is allowed. 

 

TABLE 7 

 

FIGURE 11 

 

The larger resulting problem is solved in Step 2 when the grand coalition is determined and the 

four companies are working together, and therefore, the 13 wellpads are interacting. In that case, 

the model has 81967 equations, 119939 continuous variables, and 13 binary variables. The CPU 

time did not exceed a few seconds to find the optimal solution and, in general, the model is 

solved in less than five seconds for all subproblems. 

 

CONCLUSIONS 

The current study highlights the importance of cooperation in shale gas industry to increase the 

profit and reduce the cost and environmental impact. The objective of this work is to investigate 

how to allocate whatever quantifiable unit in shale gas water management (costs, profit or 

environmental impact) among stakeholders when all companies work together. To do this, we 
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use the cooperative game theory that provides a framework to calculate imputations that should 

be the basis of negotiation among different companies. Specifically, we apply three important 

solution concepts in cooperative game theory, the Core, the minmax Core, and Shapley value. 

First, a motivating example composed of a three-player game shows the benefits of full 

cooperation that shale gas water management exhibits under different indicators, the gross 

profit, and the LCIA, respectively. An interesting fact that we found is that while the individual 

revenue decreases in the cooperative solution, the water management cost is decreased to a 

point where the profit is actually increased. A detailed procedure of how to allocate both profit 

and environmental impact allocation of this motivation example is presented. 

Then, a larger example composed of an eight-player game focused on minimizing water-related 

cost is analyzed to show that it is possible to efficiently solve these problems by means of a row 

generation algorithm. 

Finally, to further demonstrate the applicability of the proposed approach for a real world, a 

case study composed of 4 companies cooperating is analyzed. In addition, the individual cost 

distribution (storage cost, desalination cost, transportation cost, etc.) to each company and the 

strategic interaction among them is analyzed.  

The results obtained with the three case studies reveal savings of 30-50 % when all companies 

work together instead of working independently. The major economic saving is due to the 

increase of water reused, reducing at the same time water withdrawal and transportation. 

Regarding environmental concerns, this water management alternative helps to reduce the water 

footprint and emissions. 
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Figure Captions: 

Figure 1. Companies operating on the Marcellus shale play. 

Figure 2. Supply chain network of shale gas water management operations. 

Figure 3. The Optimal solution for (a) absence of cooperation, (b) full cooperation, and (c) 

cooperation with a fixed fracturing schedule for shale water management strategies 

of three companies (i.e., wellpads). 

Figure 4. Pareto set of solutions (blue circles) for the bi-criteria optimization problem that 

maximizes the gross profit and minimizes the life cycle impact assessment (LCIA). 

Cooperative solutions are displayed by circles (○) and the absence of cooperation by 

triangles (▲). Extreme solutions A and B correspond with the cases where shale 

companies minimize the LCIA, whereas in extreme solutions D and E companies 

focus on maximizing gross profit. Solution C has the fracturing schedule fixed in 

advance and each company maximizes its shale gas revenue cooperating in shale gas 

water management costs. 

Figure 5. Disaggregated water-related cost contribution (left axis) and total shale gas revenue 

(right axis) for cases A-E of shale water management strategies of three companies 

(i.e., wellpads). Case A (cooperation) and Case B (absence of cooperation) 

correspond to the cases in which shale companies minimize the LCIA, whereas in 

Case D (cooperation) and Case E (absence of cooperation) companies focus on 

maximizing the gross profit. Case C (cooperation) has the fracturing schedule fixed 

in advance. 

Figure 6. (a) Environmental impact of the different life cycle stages using ReCiPe Endpoint (H, 

A) normalized between 0 and 1, and (b) comparison of the total GWP (using ReCiPe 

Midpoint (H)) and cost between case studies A, B, C, D, and E. Left axis indicates 
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the total GWP (in kT CO2-eq) while right axis specifies the total cost of water 

management (in million dollars per year). 

Figure 7. Geometrical interpretation of the Core and the Shapley value to allocate the 

environmental impact of the three-player game. 

Figure 8. Optimal water-related cost of each player in the eight-player game (cooperating and 

in the absence of cooperation). 

Figure 9. Optimal shale water management solution of the cooperative game theory of eight 

companies (i.e., wellpads). 

Figure 10. Comparison of the total environmental impact in an eight-player game (cooperating 

and in the absence of cooperation) using ReCiPe Endpoint (H,A) normalized 

between 0 and 1. 

Figure 11. Impaired water and freshwater distribution among wellpads considering (a) absence 

of cooperation, and (b) full cooperation among companies. In the diagram, the 

companies 1, 2, 3 and 4 are denoted by C1, C2, C3, and C4 before the number of the 

wellpad, indicated by letter p. The source water withdrawal is denoted by pink circle 

arcs, where the inner circle refers to the total water in cubic meters sent to each 

wellpad. In the case of absence of cooperation, impaired water exchange is only 

allowed by wellpads that belong to the same company. Contrary, full cooperation 

allows impaired water exchange among all wellpads. 
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Table 1. Characteristic function for the three-player game focused on (a) the maximization 

of gross profit (k$) and (b) minimization of LCIA (points). 

(a) { }( )1υ  { }( )2υ  { }( )3υ  { }( )1,2υ  { }( )1,3υ  { }( )2,3υ  { }( )1,2,3υ  
 21314 15080 23146 36673 45149 38629 60478 
        
(b) { }( )1µ  { }( )2µ  { }( )3µ  { }( )1,2µ  { }( )1,3µ  { }( )2,3µ  { }( )1,2,3µ  
 118054 115689 158639 95558 118943 142664 148319 
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Table 2. (a) Marginal benefit (k$) of each player estimating the profit allocation based on 

the Shapley value, the Core and the minmax Core concepts, and (b) environmental impact 

reduction (%) in the cooperative game case compared to the absence of cooperation for 

each player, estimating the environmental impact allocation based on the Shapley value, 

the Core and the minmax Core concepts. 

 Solution concept Player 1 Player 2 Player 3 
(a) Shapley Value 339.3 196.7 400.8 

Minmax Core 335.7 237.5 364.6 
The Core - extreme 
points in the 
polyhedron of three 
companies game* 

a 534.2 249.0 155.0 

b 278.5 0 659.3 

c 534.2 0 403.6 

d 29.5 249.0 659.3 
(b) Shapley Value 73.5     63.7     52.6 
 Minmax Core 74.7 57.2 56.5 
 Extreme points in the 

polyhedron of three 
companies game** 

a’ 70.0 22.3 66.7 
 b’ 95.2 74.6 28.6 
 c’ 43.9 74.6 66.7 

*a, b, c, d are the extreme points of the polyhedron. Note that this polyhedron is not displayed 
in any figure because it is difficult to observe its geometrical interpretation due to the 
proximity of points. 

**a’, b’, c’ are the extreme points of the polyhedron displayed in Figure 7. 
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Table 3. Row generation algorithm. 

1. Set S ; e.g., {{1},{2}, ,{| |}}N= …S . Compute the individual costs ( )c S  for those 
coalitions S ∈S  and the total cost ( )c N  for the coalition N . 

2. Solve the master problem (LP)   

min

. ., ( )

 ( )

i
i N

i
i S

i

w

s t c N

w c S S

i N

π

π

π

∈

∈

=

− ≤ ∈

∈








 ∈



ℜ

∑

∑ S
 

3. If 0w > , STOP (the instance has an empty core). 

4. Otherwise, find a coalition ( )( )S S′ ∉ ′ = ∅/S  for which allocation is not in the core 
( )i

i S
c Sπ

∈ ′
> ′∑ , i.e., find the most violated core constraint fixing the cost allocation 

provided by the previous master problem iπ ∗ . 
 
Sub-problem (MILP) 
max

. .,  Assignment constraints
       Shale gas water recovered
       Water demand
       Mass balance in storage tanks
       Mass balance in onsite treatment and CWT plant
       Treatment and storage

s t

µ

, , , , ,

 capacity constraints     

    ( ') , ' : { | 1}

, , , {0,1}

i i
i S

hf fbon
t p t p w t p w i

i c S S i N x

y y y p N

x

x S

π µ

µ

∗

∈
+ = =

∈

ℜ

∈ =

∈

∈ ⊆
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5. If no such coalition S′  can be found, then STOP the algorithm because the allocation 
found is in the core. 

6. Otherwise, compute the total cost ( )c S′  for this coalition, add the constraint 
( )i

i S
w c Sπ

∈ ′
− ≤ ′∑ to the master problem (i.e., update { }S= ∪ ′S S ) and go to STEP 

2. 
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Table 4. Iteration process of row generation algorithm for an eight-player game. 

Iteration 
Master problem 

Subproblem *
1π  *

2π  *
3π  *

4π  *
5π  *

6π  *
7π  *

8π  
1 -1865.2 521.9 1040.2 784.1 619.4 820.0 435.3 555.5 { }2,3,4,5,6,7,8S =   
2 622.1 -1965.4 1040.2 784.1 619.4 820.0 435.3 555.5 { }1,3,4,5,6,7,8S =  
3 622.1 289.3 1040.2 784.1 -1635.3 820.0 435.3 555.5 { }1,2,3,4,6,7,8S =  
4 622.1 521.9 1040.2 784.1 619.4 820.0 435.3 -1931.8 { }1,2,3,4,5,6,7S =  
5 375.5 289.3 -541.9 784.1 619.4 820.0 435.3 129.5 { }1,2,4,5,6,7S =  
6 375.5 289.3 577.2 -334.9 619.4 820.0 435.3 129.5 { }3,5,6,7S =  
7 375.5 289.3 577.2 451.2 413.9 239.3 435.3 129.5 { }1,2,4,7S =  
8 375.5 289.3 577.2 451.2 413.9 428.0 246.7 129.5 { }1,2,4,6,7S =  
9 375.5 289.3 577.2 451.2 453.0 388.9 246.7 129.5 { }2,3,5,7S =  
10 375.5 289.3 577.2 471.7 453.0 388.9 226.2 129.5 No coalition found 
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Table 5. Characteristic function for the four-player game focused on minimizing the 

water-related costs (k$). 

{ }( )1c  { }( )2c  { }( )3c  { }( )4c  { }( )1,2c  { }( )1,3c  { }( )1,4c  

10196 9841 13827 9815 17171 7253 19985 
       

{ }( )2,3c  { }( )2,4c  { }( )3, 4c  { }( )1,2,3c  { }( )2,3, 4c  { }( )1,3,4c  { }( )1,2,4c  

17791 19124 17051 19653 26168 28814 24377 
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Table 6. Individual cost allocated to each player (k$). 

Cost Player 1 Player 2 Player 3 Player 4 

Storage  242 325 239 244 

Friction reducers 182 150 295 112 

Water withdrawal 1096 1699 111 1678 

Transport  5036 7992 1515 9364 

Pretreatment  640 532 828 421 

Desalination  682 495 - 471 
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Table 7. Impaired cost interaction among companies (k$). 

 Player 1 Player 2 Player 3 Player 4 

Player 1 - - - 601.554 

Player 2 - - -7166.134 2239.925 

Player 3 - 7166.134 - - 

Player 4 -601.554 -2239.925 - - 

 

 

  

This article is protected by copyright. All rights reserved.



 

 
 

 

  

This article is protected by copyright. All rights reserved.



 

 
 

 

  

This article is protected by copyright. All rights reserved.



 

 
 

 

  

This article is protected by copyright. All rights reserved.



 

 
 

 

  

This article is protected by copyright. All rights reserved.



 

 
 

 

  

This article is protected by copyright. All rights reserved.



 

 
 

 

  

This article is protected by copyright. All rights reserved.



 

 
 

 

  

This article is protected by copyright. All rights reserved.



 

 
 

 

  

This article is protected by copyright. All rights reserved.



 

 
 

 

  

This article is protected by copyright. All rights reserved.



 

 
 

 

  

This article is protected by copyright. All rights reserved.



 

 
 

 

This article is protected by copyright. All rights reserved.


	Abstract
	introduction
	cooperative game theory

	Payoff allocation properties
	Allocation methods in cooperative game theory
	The Core
	 The Dual Core
	 Minmax Core

	The Shapley value
	problem DESCRIPTION

	Supply chain network description
	Qualitative mathematical model description
	case studies and discussion

	Benefits of cooperation
	Profit and environmental impact allocation in a three-player game
	How to find allocations for games with a large number of players
	Computing cost allocation in an eight-player game
	Eight-player game strategies and environmental analysis
	How to distribute the individual cost to each player
	conclusions

	Acknowledgments
	Appendix
	References



