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Abstract: In this work, a non-stationary technique based on the Power method for accelerating
the parallel computation of the PageRank vector is proposed and its theoretical convergence
analyzed. This iterative non-stationary model, which uses the eigenvector formulation of the
PageRank problem, reduces the needed computations for obtaining the PageRank vector by
eliminating synchronization points among processes, in such a way that, at each iteration of
the Power method, the block of iterate vector assigned to each process can be locally updated
more than once, before performing a global synchronization. The parallel implementation of
several strategies combining this novel non-stationary approach and the extrapolation methods
has been developed using hybrid MPI/OpenMP programming. The experiments have been
carried out on a cluster made up of 12 nodes, each one equipped with two Intel Xeon hexacore
processors. The behaviour of the proposed parallel algorithms has been studied with realistic
datasets, highlighting their performance compared with other parallel techniques for solving the
PageRank problem. Concretely, the experimental results show a time reduction of up to 58.4% in
relation to the parallel Power method, when a small number of local updates is performed before
each global synchronization, outperforming both the two-stage algorithms and the extrapolation
algorithms, more sharply as the number of processes increases.

Keywords: PageRank; power method; non-stationary iterations; parallel processing; distributed
shared memory; hybrid MPI/OpenMP

1. Introduction

The PageRank algorithm is a well-known algorithm used for determining the relevance of
Web pages [1]. From a theoretical point of view, for solving this problem, we need to obtain the
stationary distribution of a discrete-time, finite-state Markov chain, whose transition probability
matrix P is obtained as follows—given an ordered set of n Web pages, let us consider the associated
adjacency matrix G = [gij]

n
i,j=1, where gij = 1 when there is a link from page j to page i, with i 6= j,

and gij = 0 otherwise. This adjacent matrix leads us to the transition matrix P = [pij]
n
i,j=1 defined in

the following manner:

pij =

{ gij
cj

, if cj = ∑n
i=1 gij 6= 0,

0, otherwise.

Note that cj represents the number of out-links from a page j. In this way, the PageRank vector is
a probability vector x such that Px = x, with ‖x‖1 = ∑n

i=1 |xi| = ∑n
i=1 xi = 1.
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Definition 1 ([2]). A matrix P = [pij] ∈ <n×n is a column stochastic matrix if it satisfies the
following conditions:

(i) pij ≥ 0, ∀i, j = 1, 2, . . . , n.

(ii) ∑n
i=1 pij = 1, ∀j = 1, 2, . . . , n.

When the transition matrix P is column stochastic and irreducible (i.e., its graph is strongly
connected) there exists a unique positive PageRank vector and we can use the Power method [3]
to obtain it. Algorithm 1 explains the original Power method for computing the PageRank vector,
where e = (1, 1, . . . , 1)T .

Algorithm 1: Power method.

Initialization x(0) = e
n , l = 0, ε;

repeat
x(l+1) = Px(l);
δ = ‖x(l+1) − x(l)‖1;
l = l + 1;

until δ < ε;

However, the Web contains dangling pages—that is, pages without out-links—and in this
case the matrix P is non-stochastic. Moreover, the Web graph is usually not irreducible.
Therefore, the convergence of Algorithm 1 is not ensured. In order to get over these problems, Page and
Brin [1] replace the transition matrix P with a column stochastic matrix P̄ = α(P + vdT) + (1− α)veT ,
where d ∈ <n is defined by di = 1 if and only if page i has not any out-link (i.e., ci = 0), and the
vector v ∈ <n is some probability distribution over pages. Originally v = e

n was used. The parameter
α is called the damping factor and determines the weight given to the actual Web link graph in the
model. Setting α such that 0 < α < 1, the matrix P̄ is column stochastic, irreducible and it satisfies that
‖P̄x‖1 = ‖x‖1, that is, P̄ preserves the L1 norm. Hence, Algorithm 1 can be reformulated using the
matrix P̄ for computing the PageRank vector; see Algorithm 2.

Algorithm 2: Power method for solving P̄x = x.

Initialization x(0) = e
n , v = e

n , l = 0, α, ε;
repeat

x(l+1) = αPx(l);
γ = ‖x(l)‖1 − ‖x(l+1)‖1;
x(l+1) = x(l+1) + γv;
δ = ‖x(l+1) − x(l)‖1;
l = l + 1;

until δ < ε;

Although Algorithm 2 was initially used for ranking Web pages, setting as damping factor α =

0.85 [1], this algorithm has become very useful in other scientific and technical application areas such
as Computational Molecular Biology, Bioinformatics [4,5] and Geographical Information Science [6],
where α often has a concrete meaning and the graph structure may not resemble the structure of
the Web link graph. Moreover, the study of the behaviour of the PageRank vectors with respect to
changes in α is being used for detecting link spammers [7,8]. In addition, a PageRank model is more
realistic as the parameter α is closer to 1. However, as α increases, the number of iterations required
for convergence of Algorithm 2 grows dramatically [2]. Therefore, new techniques for accelerating
its computations are needed. Over the last years, different strategies to accelerate the Power method
have been analyzed, such as extrapolation methods [9], adaptive methods [10] and Arnoldi-type
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algorithms [11–13]. These listed acceleration methods are based on the eigenvector formulation of
the PageRank problem. Recently, some approaches based on the linear system formulation of the
PageRank problem have also been studied [14–17].

The Arnoldi-type algorithm proposed in Reference [11] is a restarted Krylov subspace method,
obtained by combining the Arnoldi process and small singular value decomposition that relies on
the knowledge of the largest eigenvalue. The experiments performed in Reference [11] compare the
rate of convergence by means of the number of iterations needed for convergence of the designed
Arnoldi-type algorithm with respect to the Power method, obtaining that this method does not improve
the Power method, when the damping factor α is small (e.g., α = 0.85). Similar conclusions were
reached about the efficiency of the Power method for small values of α compared with the quadratic
extrapolation method [9] and with approaches based on the linear system formulation of the PageRank
problem [14].

Although no numerical experiments about the running time needed for the convergence of this
Arnoldi-type algorithm were done in Reference [11], as it was shown in a more recent work [13], the
Arnoldi-type algorithms may not be efficient when the damping factor α is high and the dimension
of the search subspace is small. The code for the experiments performed in Reference [13] was
implemented in Matlab and executed in a sequential mode.

However, taking into account the large size of the Web link graph, parallel processing becomes
necessary for computing the PageRank vector. In Reference [14], parallel algorithms based on
Krylov subspace methods are analyzed, showing that although these methods reduce the number of
iterations needed for computing PageRank, on some graphs, their parallel implementation does not
provide time saving in relation to the parallel Power method. In Reference [15], a parallel inner-outer
algorithm is proposed for the dense linear system formulation of the PageRank problem, achieving a
substantial gain with respect to the Power method, specially when α is close to 1. In Reference [18],
parallel algorithms based on the Power extrapolation methods are considered, showing that these
algorithms can outperform the inner-outer Power algorithm proposed in Reference [15]. However,
their convergence speed depends on a good choice of the different parameters involved in these
methods. In order to overcome this limitation, a heuristic based on the parallel algorithms designed
in Reference [18] was constructed in Reference [19]. In Reference [20], new parallel algorithms for
computing PageRank are designed based on the sparse linear system formulation of the PageRank
problem. The displayed numerical experiments showed that these algorithms, based on the two-stage
methods [21], can achieve better results than both the extrapolation Power methods [18] and the
inner-outer techniques proposed in Reference [15]; other related works can be found, for example, in
References [22–25].

In this paper, using the eigenvector formulation of the problem, a non-stationary technique
based on the Power method for accelerating the parallel computation of PageRank is proposed.
These non-stationary methods aim to reduce the number of global iterations of the Power method,
by eliminating synchronization points at which a process must wait for information from the
remaining processes. In Section 2 we describe this iterative technique and we show its convergence.
Section 3 reports the parallel implementation details and the different strategies considered for
computing PageRank. Section 4 displays experimental results showing the behaviour of the designed
algorithms for realistic test data on a current Symmetric Multi-Processing (SMP) supercomputer.
Finally, some conclusions are presented in Section 5.

2. Non-Stationary Power Algorithms: Design and Convergence Analysis

Let us consider P =
[

Pt
1 Pt

2 · · · Pt
p

]t
, where each row block Pi, 1 ≤ i ≤ p, is a matrix of order

ni × n, with ∑
p
i=1 ni = n. Analogously, we consider the iterate vectors x(l) and v partitioned according

to the block structure of P. Obviously, the Power method for solving P̄x = x (Algorithm 2) can be
executed in parallel. In this case, each process actualizes one of the p blocks of the vector x(l+1) and a
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synchronization of all processes is needed, at the end of each iteration, to construct the global iterate
vector x(l+1). Due to this synchronization, the property of preserving the L1 norm remains valid
and therefore the formulation of Algorithm 2 can be used for designing this parallel version of the
Power method.

Taking into account that the Power iterations on web-sized matrices are so expensive,
different strategies for accelerating the computation of PageRank can be considered. First of all,
in order to reduce the synchronizations between processes we can consider a non-stationary strategy in
which the block of the vector x(l+1) assigned to a process is updated more than once before all processes
synchronize on a barrier, that is to say, each process i actualizes q(i) times the iterate vector x(l+1)

i
before a synchronization is done. However, the condition of preserving the L1 norm is not ensured
in this last case. Therefore, Algorithm 2 can not be used for our purpose in its current formulation.
For this reason, we have proposed an equivalent formulation of Algorithm 2 in which the condition
on the L1 norm is not needed. That is, if Algorithm 1 is applied on the matrix P̄, some algebraic
manipulations yields:

x(l+1) = P̄x(l)

= α(P + vdT)x(l) + (1− α)veTx(l)

= αPx(l) + αvdTx(l) + (1− α)veTx(l)

= αPx(l) + αdTx(l)v + (1− α)‖x(l)‖1v. (1)

Taking into account (1), Algorithm 3 shows the above mentioned non-stationary strategy.
Note that although the matrix P̄ is dense, it is not necessary to explicitly construct it.

Algorithm 3: Parallel non-stationary algorithm for solving PageRank.

Initialization x(0) = e
n , v = e

n , l = 0, q(i), i = 1, 2, . . . , p, α, ε;
for i = 1, 2, . . . , p, do in parallel

repeat
y(0) = x(l);
for k = 1, 2, . . . , q(i), do

y(k)i = αPiy(k−1);
γ = αdTy(k−1) + (1− α)‖y(k−1)‖1;

y(k)i = y(k)i + γvi;

y(k)j = y(k−1)
j , j 6= i ;

end

x(l+1)
i = y(q(i))i ;

Perform an all-gather operation to obtain x(l+1) = [x(l+1)
1 , . . . , x(l+1)

p ];

Compute ‖x(l+1)
i ‖1;

Perform a sum all-to-all reduction over ‖x(l+1)
i ‖1 to obtain ‖x(l+1)‖1;

Compute ‖x(l+1)
i − x(l)i ‖1;

Perform a sum all-to-all reduction over ‖x(l+1)
i − x(l)i ‖1 to obtain δ = ‖x(l+1) − x(l)‖1;

l = l + 1;
until δ < ε;

end

Alternatively, the synchronizations between processes can be eliminated in the sense that each
process updates parts of the current iterate without waiting for the other parts of x(l) to be updated.
Instead, processes use a vector composed of parts of different previous, not necessarily the latest,
iterates; see, for example, Reference [26].
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In order to describe this asynchronous version let us define the sets Jl ⊆ {1, 2, . . . , p}, l = 1, 2, . . .,
by i ∈ Jl if the ith block of the vector x(l) is computed at the lth iteration. The values r(l, i) are used
to denote the iteration number of the ith block being used in the computation of any block at the lth
iteration. Let us denote by Hi(x) = yi the operator that performs the following computations:

yi = αPix

γ = αdTx + (1− α)‖x‖1

yi = yi + γvi.

With this notation, Algorithm 4 describes the asynchronous Power method for solving PageRank.

Algorithm 4: Parallel asynchronous Power method for solving PageRank.

Initialization x(0) = e
n = (x(0)1 , x(0)2 , . . . , x(0)p ), v = e

n , l = 0, q(i), i = 1, 2, . . . , p, α, ε;
repeat

if i ∈ Jl then

x(l+1)
i = Hi

(
x(r(l,1))1 , x(r(l,2))2 , . . . , x(r(l,p))p

)
;

end
else

x(l+1)
i = x(l)i ;

end
l = l + 1;

until δ < ε;

Note that the local convergence of the processes in an asynchronous iterative algorithm does not
ensure its global convergence. In order to ensure the convergence of Algorithm 4 we assume that the
asynchronous iterations satisfy the following common conditions; see, for example, Reference [27].

r(l, i) < l, ∀l = 1, 2, . . . , 1 ≤ i ≤ p. (2)

lim
l→∞

r(l, i) = ∞, 1 ≤ i ≤ p. (3)

The set {l | i ∈ Jl} is unbounded for all 1 ≤ i ≤ p. (4)

Assumption (2) implies that only previously computed iterate vectors can be used,
while condition (3) ensures that iterates computed too far away are not used; condition (4) states that
all vector blocks are always computed as the iteration proceed. Under conditions (2)–(4), taking into
account that the problem involves a nonnegative stochastic and irreducible matrix with a spectral
radius equal to 1, from Reference [28] it follows that Algorithm 4 converges to the PageRank vector
corresponding to the analyzed Web pages, performing a simple normalization at the end of the
algorithm.

While Algorithm 3 can be implemented on shared, distributed and distributed shared
architectures, the implementation of an asynchronous algorithm like the one described in Algorithm 4
presents many difficulties on both distributed and distributed shared memory architectures since
nodes have only local information, there is no global clock, and the delays may be unpredictable.
Moreover, the results obtained in a previous work about the parallelization of the PageRank
problem [25] showed that the synchronous and asynchronous execution times of the Power method are,
in general, very similar on a shared memory computer; depending on the graph and on the number
of cores used, one algorithm is better than the other. The reason resides presumably in a different
density pattern of the matrices. In a matrix in which the density pattern is not homogeneous along the
files assigned to each process, an asynchronous execution will avoid processes to be inactive, waiting
for other processes to finish their computations. In fact, as it was studied in Reference [25], in the
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asynchronous case, each process performs a different number of iterations, but the minimum over all
processes is close to the number of iterations of the corresponding synchronous execution. In the best
case, all processes perform similar iterations while in other cases there are processes that perform more
than twice iterations.

Taking all this into consideration, Algorithm 3 can be an alternative for the parallel computation
of the PageRank vector in order to eliminate some limitations in practice of Algorithm 4.

From a theoretical point of view, it is possible to show that the parallel non-stationary method for
solving PageRank described in Algorithm 3 can be seen as a particular case of the parallel asynchronous
method defined by Algorithm 4 satisfying conditions (2)–(4), and therefore convergence of Algorithm 3
would also be ensured. For this purpose, we need to make a definition for all the parameters involved
in the description of the asynchronous Algorithm 4, in such a way that this asynchronous algorithm
leads to the same iterate vectors computed by Algorithm 3. First, let us define s(i), i = 1, 2, . . . , p,
as follows:

s(1) = q(1),

s(i) = s(i− 1) + q(i), i = 2, 3, . . . , p.

Also, let us denote by T the sum of all values q(i), i = 1, 2, . . . , p, that is, T = ∑
p
i=1 q(i) = s(p).

On the other hand, let us define the sets Jl , for all l ≥ 1, according to Algorithm 5, where a\b denotes
the integer division between two integers a, b.

Algorithm 5: Jl set definition, l ≥ 1.

Initialization p > 1, q(i) ≥ 1, i = 1, 2, . . . , p, l = 1;
repeat

for i = 1, 2, . . . , p, do
init(i) = s(i)− q(i) + 1 + T((l − 1)\T);
end(i) = s(i) + T((l − 1)\T);
if l ∈ [init(i), end(i)] then

7 Jl = {i};
end

end
l = l + 1;

until;

By analyzing Algorithm 5, it is observed that, at the first T iterations, the sets Ii, defined as

I1 =
{

a ∈ Z+ | a ∈ [init(1), end(1)]
}
=
{

a ∈ Z+ | a ∈ [1, q(1)]
}

,

Ii =
{

a ∈ Z+ | a ∈ [init(i), end(i)]
}

=
{

a ∈ Z+ | a ∈ [q(1) + q(2) + . . . + q(i− 1) + 1, q(1) + q(2) + . . . + q(i)]
}

, i = 2, 3, . . . , p,

are a partition of the set {1, 2, . . . , T}, that is, Ii 6= ∅,
⋃p

i=1 Ii = {1, 2, . . . , T} and Ii ∩ Ij = ∅, i 6= j.
Therefore, every element l of the set {1, 2, . . . , T} will belong to a unique set Ii, that is, line 7 of
Algorithm 5 is well defined. Similarly, we conclude that the above is true for the next T iterations and
so on.

To finish with the description of the asynchronous parameters, let us define the values r(l, i), l =
1, 2, . . . , 1 ≤ i ≤ p as in Algorithm 6.
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Algorithm 6: Asynchronous parameters r(l, i), l = 1, 2, . . . , 1 ≤ i ≤ p.

Initialization p > 1, q(i) ≥ 1, i = 1, 2, . . . , p, l = 1;
repeat

for i = 1, 2, . . . , p, do
init(i) = s(i)− q(i) + 1 + T((l − 1)\T);
end(i) = s(i) + T((l − 1)\T);

6 tmp = max(0, T((l − 1)\T)− (T − s(i)));
if (l > init(i) & l ≤ end(i)) then

8 r(l, i) = l − 1;
end
else

11 r(l, i) = tmp;
end

end
l = l + 1;

until;

Therefore, for showing the convergence of Algorithm 3, first we need to show that the parameters
r(l, i) defined in Algorithm 6 and the sets Jl defined in Algorithm 5 verify conditions (2)–(4).

Proposition 1. Let us consider the parameters r(l, i), l = 1, 2, . . . , 1 ≤ i ≤ p, defined in Algorithm 6 and the
sets Jl , l = 1, 2, . . ., defined in Algorithm 5. Then, the parameters r(l, i) and the sets Jl satisfy conditions (2)–(4).

Proof. From line 6 of Algorithm 6, it follows

0 ≤ tmp ≤ T((l − 1)\T) ≤ T
l − 1

T
= l − 1 < l, and

tmp > T((l − 1)\T)− T > T(
l − 1

T
− 1)− T = (l − 1)− 2T.

Therefore, from lines 8 and 11 of Algorithm 6 it follows that conditions (2) and (3) are true. On the
other hand, from the definition of the sets Jl in Algorithm 5 it follows that for all 1 ≤ i ≤ p, Jl = {i} at
least once in every T consecutive asynchronous iterations, concretely q(i) times (see, e.g., Table 1 for an
illustrative example). Therefore, the set {l | i ∈ Jl} is clearly unbounded for all 1 ≤ i ≤ p and therefore
assumption (4) is satisfied.

Now, we are in a position to prove the convergence of the parallel non-stationary Algorithm 3.

Theorem 1. Let P be the transition matrix of the PageRank problem. Then, the parallel non-stationary
Algorithm 3 converges to the PageRank vector performing a simple normalization at the end of the algorithm.

Proof. Taking into account Equation (1) and Proposition 1, to show the convergence of Algorithm 3
we need to show that the sequence of iterate vectors generated by Algorithm 4 with the asynchronous
parameters defined in Algorithms 5 and 6, corresponds to the sequence generated by Algorithm 3.
For this purpose, first note that the cardinality of the sets Jl indicates that only one block of the iterate
vector (of the p blocks) is updated at each asynchronous iteration. On the other hand, note that a set of
T consecutive asynchronous iterations is equivalent to one iteration of Algorithm 3. Also, note that,
after these T asynchronous iterations are completed, a new iteration starts with the most recent values
obtained in previous iterations, which is equivalent to a synchronization in Algorithm 3. In order
to more clearly visualize this equivalence we show in Table 1 an example of how the asynchronous
iterations match the synchronous counterpart. Therefore, as the matrix P̄ is a non-negative stochastic
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and irreducible matrix with spectral radius equal to 1, from [28] the convergence of Algorithm 4
and hence the convergence of Algorithm 3 is ensured.

Table 1. Example of equivalence between non-stationary synchronous and asynchronous iterations,
p = 4 and (q(1), q(2), q(3), q(4)) = (2, 3, 1, 2).

Asynchronous Iterations Synchronous
(See Algorithm 4) Iterations (Algorithm 3)

Iter.
r(l, 1) r(l, 2) r(l, 3) r(l, 4)

computed
x(l) Iter. x(l)l block: Jl

1 0 0 0 0 {1} x(1)1 = H1(x(0)1 , x(0)2 , x(0)3 , x(0)4 )

1

y(q(1))1
2 1 0 0 0 {1} x(2)1 = H1(x(1)1 , x(0)2 , x(0)3 , x(0)4 )

3 0 0 0 0 {2} x(3)2 = H2(x(0)1 , x(0)2 , x(0)3 , x(0)4 )

y(q(2))24 0 3 0 0 {2} x(4)2 = H2(x(0)1 , x(3)2 , x(0)3 , x(0)4 )

5 0 4 0 0 {2} x(5)2 = H2(x(0)1 , x(4)2 , x(0)3 , x(0)4 )

6 0 0 0 0 {3} x(6)3 = H3(x(0)1 , x(0)2 , x(0)3 , x(0)4 ) y(q(3))3

7 0 0 0 0 {4} x(7)4 = H4(x(0)1 , x(0)2 , x(0)3 , x(0)4 )
y(q(4))4

8 0 0 0 7 {4} x(8)4 = H4(x(0)1 , x(0)2 , x(0)3 , x(7)4 )

The above first 8 asynchronous iterations are equivalent to the synchronous iteration 1:

(x(2)1 , x(5)2 , x(6)3 , x(8)4 ) = (y(q(1))1 , y(q(2))2 , y(q(3))3 , y(q(4))4 )
This vector is used in the next asynchronous and synchronous iterations.

9 2 5 6 8 {1} x(9)1 = H1(x(2)1 , x(5)2 , x(6)3 , x(8)4 )

2

y(q(1))1
10 9 5 6 8 {1} x(10)

1 = H1(x(9)1 , x(5)2 , x(6)3 , x(8)4 )

11 2 5 6 8 {2} x(11)
2 = H2(x(2)1 , x(5)2 , x(6)3 , x(8)4 )

y(q(2))212 2 11 6 8 {2} x(12)
2 = H2(x(2)1 , x(11)

2 , x(6)3 , x(8)4 )

13 2 12 6 8 {2} x(13)
2 = H2(x(2)1 , x(12)

2 , x(6)3 , x(8)4 )

14 2 5 6 8 {3} x(14)
3 = H3(x(2)1 , x(5)2 , x(6)3 , x(8)4 ) y(q(3))3

15 2 5 6 8 {4} x(15)
4 = H4(x(2)1 , x(5)2 , x(6)3 , x(8)4 )

y(q(4))4
16 2 5 6 15 {4} x(16)

4 = H4(x(2)1 , x(5)2 , x(6)3 , x(15)
4 )

The above 8 asynchronous iterations are equivalent to the synchronous iteration 2:

(x(10)
1 , x(13)

2 , x(14)
3 , x(16)

4 ) = (y(q(1))1 , y(q(2))2 , y(q(3))3 , y(q(4))4 )
This vector is used in the next asynchronous and synchronous iterations.

17 10 13 14 16 {1} x(17)
1 = H1(x(10)

1 , x(13)
2 , x(14)

3 , x(16)
4 )

3

y(q(1))1
18 17 13 14 16 {1} x(18)

1 = H1(x(17)
1 , x(13)

2 , x(14)
3 , x(16)

4 )

19 10 13 14 16 {2} x(19)
2 = H2(x(10)

1 , x(13)
2 , x(14)

3 , x(16)
4 )

y(q(2))220 10 19 14 16 {2} x(20)
2 = H2(x(10)

1 , x(19)
2 , x(14)

3 , x(16)
4 )

21 10 20 14 16 {2} x(21)
2 = H2(x(10)

1 , x(20)
2 , x(14)

3 , x(16)
4 )

22 10 13 14 16 {3} x(22)
3 = H3(x(10)

1 , x(13)
2 , x(14)

3 , x(16)
4 ) y(q(3))3

23 10 13 14 16 {4} x(23)
4 = H4(x(10)

1 , x(13)
2 , x(14)

3 , x(16)
4 )

y(q(4))4
24 10 13 14 23 {4} x(24)

4 = H4(x(10)
1 , x(13)

2 , x(14)
3 , x(23)

4 )

The above 8 asynchronous iterations are equivalent to the synchronous iteration 3:

(x(18)
1 , x(21)

2 , x(22)
3 , x(24)

4 ) = (y(q(1))1 , y(q(2))2 , y(q(3))3 , y(q(4))4 )
This vector is used in the next asynchronous and synchronous iterations.

...
...

...
...

...
...

...
...

...
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3. Parallel Implementation

Taking into account the study carried out in Section 2, we propose and analyze different strategies
based on the non-stationary technique. These strategies are summarized in Algorithm 7.

Algorithm 7: Parallel algorithms for solving PageRank.

1 Initialization x(0) = e
n , v = e

n , l = 0, q(i), i = 1, 2, . . . , p, r, α, ext, ε;
2 for i = 1, 2, . . . , p, do in parallel
3 if ext = 1 then
4 repeat
5 x(l+1)

i = αPix(l);
6 γ = αdTx(l) + (1− α)‖x(l)‖1;

7 x(l+1)
i = x(l+1)

i + γvi;

8 if (l + 1 = r + 2) then x(l+1)
i =

x(l+1)
i −αr x(l+1−r)

i
1−αr ;

9 Perform an all-gather operation to obtain x(l+1) = [x(l+1)
1 , . . . , x(l+1)

p ];

10 Compute ‖x(l)i ‖1;

11 Perform a sum all-to-all reduction over ‖x(l)i ‖1 to obtain ‖x(l)‖1;
12 l = l + 1;
13 until l > r + 1;
14 end
15 repeat
16 y(0) = x(l);
17 for k = 1, 2, . . . , q(i), do
18 y(k)i = αPiy(k−1);
19 γ = αdTy(k−1) + (1− α)‖y(k−1)‖1;

20 y(k)i = y(k)i + γvi;

21 y(k)j = y(k−1)
j , j 6= i ;

22 end

23 x(l+1)
i = y(q(i))i ;

24 Perform an all-gather operation to obtain x(l+1) = [x(l+1)
1 , . . . , x(l+1)

p ];

25 Compute ‖x(l+1)
i ‖1;

26 Perform a sum all-to-all reduction over ‖x(l+1)
i ‖1 to obtain ‖x(l+1)‖1;

27 Compute ‖x(l+1)
i − x(l)i ‖1;

28 Perform a sum all-to-all reduction over ‖x(l+1)
i − x(l)i ‖1 to obtain δ = ‖x(l+1) − x(l)‖1;

29 l = l + 1;
30 until δ < ε;

31 Compute πi =
x(l)i
‖x(l)‖1

;

32 Perform a gather operation over πi to obtain π = x(l)

‖x(l)‖1
in a root process;

33 end

The first algorithm, which we have called MSTEP algorithm, corresponds to Algorithm 7 setting
ext 6= 1, that is, in the MSTEP algorithm, lines from 3 to 14 are not executed, yielding to a parallel
non-stationary Power algorithm (lines from 15 to 30) in which each part of x(l+1) (x(l+1)

i ) can be
updated more than once (q(i) ≥ 1 times) without waiting for the other parts of x(l+1) to be updated and
therefore eliminating synchronization points among processes. When ext = 1, Algorithm 7 explains a
second algorithm, called the EMS algorithm. The first part of this algorithm (first repeat-until loop)
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consists in applying r + 2 Power iterations, that is, each part of x(l+1) is updated only once at each
lth iteration, performing an extrapolation at the last r + 2 iteration (see line 8). This extrapolation is
applied only once. Note that if r = 1, a simple extrapolation is performed at iteration 3, while if r = 2 a
quadratic extrapolation is applied once at iteration 4. In the second part of the EMS algorithm (second
repeat-until loop), after the extrapolation has been performed, each part of x(l+1) is again updated but
more than once without synchronizing with the remaining processes. This strategy can be seen as a
particular case of a non-stationary algorithm in which an initial vector nearest to the solution is used
as initial vector.

On the other hand, a relaxation parameter β > 0 can be introduced in the EMS algorithm
and replace the computation of x(l+1)

i in line 23 with the equation x(l+1)
i = βy(q(i))i + (1 − β)x(l)i ,

obtaining its relaxed counterpart which we have called the RELEMS algorithm. Note that, at each
global iteration of the second repeat-until loop, each process computes the relaxation of its vector block
before the synchronization among processes has been accomplished. Clearly, with β = 1 the EMS
algorithm is recovered.

The algorithms described here have been implemented in C++ on an HPC cluster of 12 nodes HP
Proliant SL390s G7 connected through a network of low-latency QDR Infiniband-based. Each node
consists of two Intel XEON X5660 hexacore at up to 2.8 GHz and 12 MB cache per processor, with 48 GB
of RAM. The operating system is CentOS Linux 5.6 for ×86 64 bit.

Taking into account the hierarchical hardware design of this HPC cluster, the parallel
programming of these algorithms has been done combining distributed memory parallelization on the
node interconnect with shared memory parallelization inside each node. For this purpose, there is
the option to use pure MPI (Message Passing Interface) [29] and treat every CPU core as a separate
entity with its own address space. However, in this work we have combined the MPI and OpenMP
(Open Multi-Processing) [30] programming models into a hybrid paradigm, exploiting parallelism
beyond a single level. Adding OpenMP threading to an MPI code can be an efficient way to run on
multicore processors that are part of a multinode system like this HPC cluster. Since OpenMP operates
in a shared memory space, it is possible to reduce the memory overhead associated with MPI tasks and
reduce the need for replicated data across tasks [19]. In this way, the parallel environment has been
managed using a hybrid MPI/OpenMP model. In order to explain and analyze this hybrid model,
we have used similar notation to that used in our previous works [18–20]. Concretely, s× c means that
s nodes of the HPC cluster are utilized for data distribution and for each one of these nodes, c OpenMP
threads are considered. That is, we consider a distributed shared memory (DSM) model with p = s× c
processes or threads. With this notation, if c = 1 the algorithms are executed in distributed memory
(DM) using s nodes, while if s = 1 the execution of the algorithms is performed using c threads on a
single node, that is, in shared memory (SM).

For the sake of clarity, we can consider that Algorithm 7 describes the parallelization of the
non-stationary methods using a distributed memory programming in such a way that each one of the p
MPI processes is assigned to a physical node. Then, in the distributed shared memory implementation,
a number of OpenMP threads are spawned by every MPI process in order to execute in parallel the
computation of lines 5–8, 10, 18–20, 25 and 27. The loop that implements every of these computations
is headed with a “parallel for” pragma (“#pragma omp parallel for”). This parallel OpenMP pragma
spawns a group of threads and splits the loop iterations between the spawned threads following some
system-specific strategy. On the other hand, a dynamic scheduling scheme was used for partitioning
the work related to lines 5 and 18. In this dynamic strategy, groups of size determined by the user
are allocated to the threads following a first-come, first-served scheme. According to the nonzero
pattern of the matrix P, a static scheme for distributing the work could cause a different number of
nonzero elements of the matrix P allocated from one thread to another, leading to an unbalanced
computational cost of the work associated with lines 5 and 18. Therefore, this dynamic scheduling
scheme was preferable over a static strategy. The computation of lines 6, 10, 19, 25 and 27 needs a
reduction operation when the OpenMP parallel region ends. In this computation, as well as in the
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rest of the parallel tasks, a static scheduling scheme ensures, a priori, a load balancing among threads.
However, if this static strategy is used, the number of fork/join concurrency control mechanisms
is incremented. In order to avoid this increase of fork/join operations, we have included these
computations in the previous dynamic OpenMP “parallel for,” namely line 5 or 18.

4. Numerical Experiments and Results

In order to investigate and analyze the algorithms described here, we have used several datasets
of different sizes, available from the Laboratory for Web Algorithmics [31]; see Table 2. These transition
matrices have been generated from a web-crawl [32].

Table 2. Graphs collection. n = number of nodes, nnz =number of arcs, Dgn = percentage of dangling
nodes, Dens = density (arcs/nodes), M = memory requirements using mCSR format.

Graph n nnz Dgn (%) Dens M (GB)

uk-2002 18,520,486 298,113,762 14.91 16.01 1.32
it-2004 41,291,594 1,150,725,436 12.76 27.87 4.75

webbase-2001 118,142,155 1,019,903,190 23.41 8.63 5.12
uk-2006-10 93,436,772 3,130,910,405 13.52 33.50 12.71
uk-2007-05 105,896,555 3,738,733,648 12.23 35.31 15.11

The computation of the PageRank vector requires to work with large matrices, so their
manipulation in a full format is not appropriate because the memory requirements would be too high.
However, since these matrices have a large number of zero elements, special storage formats must be
considered for sparse matrices, in which only nonzero elements be stored. For this purpose we have
based on the Compressed Sparse Row (CSR) format [33]. The CSR format stores the matrix in three
vectors: one vector for floating point numbers and the other two vectors for integers. The floating
point vector stores the values of the nonzero elements of the matrix, following a row-wise scheme.
On the other hand, one of the integer vectors stores the column indexes of the elements in the values
vector and the other one stores the locations in the values vector that start a row. We have represented
the two vectors of indexes of the CSR format by integers without sign of 32 bits, while the values and
the iterate vectors have been represented by means of double precision floating point with 64 bits.

Given that, in these matrices, all nonzero elements of each column are equal, these fixed values are
stored once in an ordered vector, obtaining a modified CSR format (mCSR). The memory requirements
to store the matrix with this format is obtained by the following expression MmCSR = 32(n + 1) +
32nnz + 64n ≈ 32(3n + nnz) bits, where n is the matrix size (number of nodes of the Web graph) and
nnz is the number of nonzero elements of the matrix (number of arcs of the Web graph). The use of
the mCSR format achieves a reduction of memory requirements of about 630–73% with respect to the
original CSR format; see, for example, References [19,25]. Table 2 summarizes the characteristics for
each graph, including the memory requirements of the mCSR format.

On the other hand, in the link matrices used to calculate PageRank, the number of nonzero
elements per row can differ immensely. In order to balance the calculations in our parallel
implementations, a nonzero elements partitioning is used, where each node has to handle
approximately the same amount of nonzero elements. Generally, for the PageRank calculations,
this distribution strategy behaves better than row-wise distributions and other hypergraph
partitioning-based decomposition techniques; see, for example, References [18,20]. In point of fact,
when nonzero element partitioning is used, the times obtained with the parallel synchronous Power
algorithm were always better than those obtained with the asynchronous counterpart [25]. This
partitioning has a positive influence on the performance of the synchronous version because it balances
the computational work per process, while the behaviour of the asynchronous algorithm can vary
immensely from an execution to another. In a synchronous implementation, the synchronization
after each iteration ensures that all updated components of the iterate vector will be available at the
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next iteration. This availability is not true for an asynchronous implementation. From this point
of view, both the convergence of the asynchronous algorithm and the number of local iterations
performed in each process depend on the update order of the iterate vector components [34]. Figure 1
compares the needed iterations for reaching convergence with both the synchronous and asynchronous
Power algorithms. For this purpose, the asynchronous algorithm was executed three times, and the
maximum and minimum number of iterations across processes are reported in this figure. As it can
be seen, the number of synchronous iterations needed for convergence of the Power method for the
analyzed matrices is similar, 86 iterations for the uk-2002 matrix and 89 iterations for the it-2004
matrix. In the asynchronous case, each process performs a different number of iterations. Then,
although some processes perform a number of local iterations less than the number of iterations of
the synchronous model, the number of local iterations performed for the slower process increases
degrading the performance. This is consistent with some observations done in previous works [34,35]
about the interest of the asynchronous algorithms for load unbalanced problems or for problems
executed in a heterogeneous parallel computing system, while these asynchronous model are not
always advantageous for well-balanced problems like ours.

(a) (b)

Figure 1. Comparison of convergence rates of the synchronous Power method versus the asynchronous
version, SM, α = 0.85, ε = 10−8. (a) Number of iterations, uk-2002. (b) Number of iterations, it-2004.

In the rest of the experiments reported here, we used ε = 10−6, for the stopping criterion and we
have run our algorithms for several values of α.

Taking into account that the work among nodes has been balanced by means of the above
explained nonzero element distribution, the best strategy for designing the parallel algorithms
proposed here is the one that keeps this load balancing. Therefore, at each global iteration of the
algorithm, every block of the iterate vector must be updated the same number of times before all
processes synchronize to get a new global iterate. However, in the hypothetical case in which the
node workload may be unbalanced or when working on a heterogeneous parallel computing system,
the designed algorithms allow us to perform different number of updates for each block of the iterate
vector avoiding the downtime of any of the nodes and leading to a better load balancing in the parallel
algorithms. Figure 2 illustrates the behaviour of the convergence rates of the Power method and the
MSTEP methods for the uk-2002 matrix and setting α = 0.85, 0.95, and 0.99. The notation MSTEP(q)
indicates that, at each global iteration, each vector block i is updated q(i) = q times in the algorithm
before synchronizing.

Note that the synchronization points in the MSTEP methods are reduced in relation to the
Power method as q increases. However, in this algorithm, actualizing a certain number of times each
block of vector without waiting for the update of other parts of the global iterate vector, is more
computationally intense than applying one iteration of the Power method. As long as this overhead is
minimal, the proposed acceleration is beneficial. In order to show this, Figure 3 displays the comparison
of times (per iteration and total time) between the Power method and the MSTEP algorithm for several
values of q. As it can be seen in Figure 3, the values of q must be kept small. The best choices of q are
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obtained for q between 2 and 4. Particularly, using 4 cores in shared memory, the MSTEP algorithm
achieves a gain in relation to the parallel Power method up to 21% for the smallest matrix of our dataset.
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Figure 2. Comparison of convergence rates of the MSTEP methods with respect to the Power method,
uk-2002, SM p = 4 (1× 4), ε = 10−6. (a) Number of iterations. (b) Reduction of synchronization
points (%).
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Figure 3. Parallel MSTEP algorithms, uk-2002, SM p = 4 (1× 4), ε = 10−6. (a) Time per iteration (s.).
(b) Total time (s.). (c) Total time (s.).

Figure 4 compares the floating-point operations per second (Flops) accomplished by this algorithm
using different configurations of processes. Even though an acceptable performance is obtained using
the 12 available cores of one node, it is not comparable with the performance obtained using distributed
memory or a hybrid scheme.
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Figure 4. Performance of the MSTEP algorithm, q = 2, ε = 10−6, α = 0.99. (a) DSM (Flops). (b) SM
versus DM, uk-2007-05 (Flops).
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Figure 5 analyzes the effect of performing the extrapolation before running the non-stationary
iterations, that is the EMS algorithm is considered. The notation EMS(r) indicates the value of r used
for the extrapolation. As it is expected, simple extrapolation (r = 1) is not effective. This makes sense
because, from a theoretical point of view, a simple extrapolation assumes that α is the only eigenvalue
of modulus α and this is inaccurate. In fact, it is known that the use of the simple extrapolation
technique (r = 1) in the Power method slows down its convergence [36]. On the other hand, the choice
of r in our algorithm depends on the condition number of the problem. Given our experience with the
EMS algorithm, while for a well-conditioned problem a good choice for r is r = 6, it should be chosen
greater than 6 when α→ 1, obtaining generally a good strategy by choosing r = 30.

(a) (b) (c)

Figure 5. Comparison of convergence rates of the EMS methods with respect to the Power method,
it-2004, SM p = 4 (1× 4), q = 2, ε = 10−6. (a) Number of iterations. (b) Time reduction (%). (c) Time
reduction (%).

To analyze the effectiveness of the proposed parallel algorithms, we have also compared them
with the inner-outer Power algorithm (In-out) proposed in Reference [15], the parallel extrapolation
algorithms (EXT and RELEXT) proposed in Reference [18], and the parallel two-stage algorithms (LTW
and extrapolated LTW) designed in Reference [20].

In order to compare these algorithms, their parallel implementations have been developed using
the same mCSR storage format as in the algorithms treated in this work. Furthermore, the parallel
implementations of these methods have also been developed using a hybrid MPI/OpenMP scheme
and the same matrix distribution strategy. We would like to point out that the OpenMP code proposed
in [15] was analyzed using 8 cores. Also, the Web graphs used for showing its performance were
compressed into bvgraph compression schemes [37]. However, as we showed in a previous work [20],
the compression scheme used in Reference [15] causes 4− 8x slowdown with respect to the mCSR
storage format, being the mCSR storage format much more efficient for computing the PageRank
vector.

Figure 6 compares the gain obtained by both the non-stationary and the inner-outer Power
methods in relation to the parallel Power method. This figure includes the relaxed version of the EMS
algorithm, called RELEMS algorithm. Good choices of the relaxation parameter β, in this algorithm,
are between 0.98 and 0.99. As this figure shows, the parallel algorithms treated herein accelerate the
computation of the PageRank vector more significantly than the parallel inner-outer Power algorithm.
In fact, for α = 0.99 and using 32 processes, the inner-outer Power algorithm achieves a gain in relation
to the parallel Power method between 5.21% and 35.86% while the achieved gain by means of the
RELEMS algorithm was between 31.17% and 58.38%.

Figure 7 analyzes the global speedups achieved for the extrapolated non-stationary algorithms
with respect to those obtained for the EXT and RELEXT algorithms from [18], setting the sequential
Power method as reference algorithm. Notice that, using a number less than or equal to 8 processes,
similar efficiencies are obtained. However, the non-stationary algorithms outperform, more sharply,
both the EXT and RELEXT algorithms as the number of processes increases and, therefore, the number
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of needed communications among processes. In this sense (see Figure 7), the non-stationary algorithms
have accelerated the convergence time in relation to the sequential Power algorithm up to 14 times
using 4 nodes and 4 OpenMP threads per node, and up to 18 times using 8 nodes with the same
thread configuration.
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Figure 6. Non-stationary versus Power inner-outer algorithms, ε = 10−6, DSM p = 32 (8× 4), α =

0.99, β = 0.99, q = 2, r = 30. (a) Total Time. (b) Time reduction with respect to the parallel Power
algorithm (%).
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Figure 7. Non-stationary versus extrapolated Power algorithms, ε = 10−6, α = 0.99. (a) webbase-2001
(Speedup). (b) it-2004 (Speedup).

Figure 8 compares the algorithms developed in this work, EMS and RELEMS algorithms, with the
parallel two-stage algorithms designed in [20] for solving PageRank, called LTW algorithm and its
extrapolated version (LTW EXT). As it can be seen in Figure 8a, the best parallel two-stage algorithm
also outperforms the inner-outer and the extrapolated Power algorithms as the number of processes
increases. Nevertheless the gains achieved with these methods are not comparable with those obtained
with the proposed EMS and RELEMS algorithms. So, the parallel non-stationary algorithms obtain a
reduction time of up to 37% in relation to the best (extrapolated or non-extrapolated) parallel two-stage
algorithm, when setting α = 0.98.
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Figure 8. Non-stationary versus two-stage algorithms, ε = 10−6, α = 0.98. (a) Parallel running times,
uk-2007-05 matrix. (b) Parallel running times, webbase-2001 matrix.

5. Conclusions

In this paper, using the eigenvector formulation of PageRank, a non-stationary technique based
on the Power method for the parallel computation of PageRank was proposed and its convergence
established. For theoretically ensuring the global convergence of the proposed parallel non-stationary
algorithms, we have shown that the designed non-stationary technique can be seen as a particular
case of asynchronous algorithm in which the involved parameters have been constructed satisfying
sufficient conditions for such convergence. The parallel implementations of several strategies
combining this technique and the extrapolation methods have been developed using a hybrid
MPI/OpenMP model. The MSTEP algorithm has been designed using the basic parallel non-stationary
Power method, while the EMS algorithm is a particular case of the parallel non-stationary algorithms
in which an initial vector nearest to the solution is previously obtained. This vector is obtained using
once the extrapolation technique. Additionally, the RELEMS algorithm corresponds to the relaxed
counterpart of the EMS algorithm.

For validating the proposed algorithms, we used different datasets, publicly available from the
Laboratory for Web Algorithmics [31]. Taking into account the characteristics of the transition matrices,
a modified Compressed Sparse Row format has been used involving a considerable reduction of
memory requirements with respect to the popular CSR format of up to 73%. In order to balance the
calculations among nodes, a nonzero elements partitioning is used, obtaining empirically that, in order
to keep this load balancing, every block of the iterate vector must be locally updated the same number
of times (q) before constructing the next global iterate. Moreover, the best non-stationary algorithms
were obtained using a small q between 2 and 4.

By comparing the proposed parallel non-stationary algorithms, the best results have been obtained
with the EMS and RELEMS algorithms, choosing r = 6 as the parameter involved in the extrapolation
for well-conditioned problem (e.g., using α = 0.85) and greater than 6 when the damping factor α is
closer to 1. Moreover, good choices for the relaxation parameter of the RELEMS algorithm are between
β = 0.98 and β = 0.99.

Lastly, but not least important, the numerical results analyzed in this work show the good
behaviour of the parallel non-stationary algorithms compared with some well-known techniques
used for computing PageRank such as the parallel extrapolation algorithms studied in Reference [18],
the inner-outer Power algorithm proposed in Reference [15], and the parallel two-stage algorithms
designed in Reference [20], obtaining gains of up to 58.4% in relation to the parallel Power algorithm.
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