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Abstract

The aim of the present study was to clarify the mech-
anisms by which a sucrose-rich diet (SRD) produces an
increase in the pancreatic â-cell mass in the rat. Normal
Wistar rats were fed for 30 weeks either an SRD (SRD
rats; 63% wt/wt), or the same diet but with starch instead
of sucrose in the same proportion (CD rats). We studied
body weight, serum glucose and triacylglycerol levels,
endocrine tissue and â-cell mass, â-cell replication rate
(proliferating cell nuclear antigen; PCNA), islet neogenesis
(cytokeratin immunostaining) and â-cell apoptosis (pro-
pidium iodide). Body weight (g) recorded in the SRD rats
was significantly (P<0·05) larger than that of the CD
group (556·0&8·3 vs 470·0&13·1). Both serum glucose
and triacylglycerol levels (mmol/l) were also significantly
higher (P<0·05) in SRD than in CD rats (serum glucose,
8·11&0·14 vs 6·62&0·17; triacylglycerol, 1·57&0·18 vs
0·47&0·04). The number of pancreatic islets per unit area

increased significantly (P<0·05) in SRD rats (3·29&0·1
vs 2·01&0·2). A significant increment (2·6 times) in the
mass of endocrine tissue was detected in SRD animals,
mainly due to an increase in the â-cell mass (P=0·0025).
The islet cell replication rate, measured as the percentage
of PCNA-labelled â cells increased 6·8 times in SRD rats
(P<0·03). The number of apoptotic cells in the endocrine
pancreas decreased significantly (three times) in the SRD
animals (P=0·03). The cytokeratin-positive area did
not show significant differences between CD and SRD
rats. The increase of â-cell mass induced by SRD was
accomplished by an enhanced replication of â cells
together with a decrease in the rate of â-cell apoptosis,
without any evident participation of islet neogenesis. This
pancreatic reaction was unable to maintain serum glucose
levels of these rats at the level measured in CD animals.
Journal of Endocrinology (2002) 174, 225–231

Introduction

Prolonged administration of either a high fructose or
sucrose diet to genetically selected rats induces a metabolic
syndrome characterised by insulin resistance and decreased
glucose tolerance, as well as increased plasma triglyceride
and cholesterol levels (Cohen et al. 1977, Cohen 1978).
We have previously reported that administration of a
sucrose-rich diet (SRD) to normal rats for 6 months
induced such metabolic abnormalities, together with a
significant increase in both pancreatic islet number and
â-cell area (Lombardo et al. 1996). These changes were
accompanied by normal insulin plasma levels and
pancreatic insulin content. However, the mechanisms
by which the sucrose feeding produced the pancreatic
morphological changes were not clear.

We have also found that sucrose administration to
young normal hamsters results in time-dependent
pancreatic changes, with increased â-cell mass caused by
incremental â-cell replication and islet neogenesis, but

keeping blood glucose levels within the normal range
(Del Zotto et al. 1999). Administration of this diet to
pregnant normal hamsters induced similar pancreatic
changes in the newborn animals. However, these changes
were of greater magnitude and were accompanied by
a significant decrease in â-cell apoptosis together with a
significant decrease in blood glucose levels (Gagliardino
et al. 2000).

Normal pancreatic â-cell mass results from the final rate
between two opposite processes: growth and destruction.
Many experimental procedures lead to the stimulation of
â-cell growth (Rosenberg et al. 1983, Bonner-Weir et al.
1989, Parsons et al. 1992, Wang et al. 1995, Lombardo
et al. 1996). Among them, those obtained by modifying
food intake are of especial interest for studying the
pathophysiology of type 2 diabetes.

In order to clarify the mechanisms by which a high
sucrose diet produces the above-mentioned pancreatic
changes in the rat, we have studied â-cell replication rate,
islet neogenesis and â-cell apoptosis in normal Wistar rats
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fed an SRD for 6 months. Our data showed that increased
â-cell replication and decreased â-cell apoptosis could
account for the increase in â cells induced by SRD at this
period.

Materials and Methods

Animals and diets

Normal male Wistar rats (180–200 g body weight;
National Institute of Pharmacology, Buenos Aires,
Argentina) were maintained in a temperature-controlled
room (23 )C) with a fixed 12 h light:12 h darkness cycle.
They were initially fed standard rat laboratory chow
(Ralston Purina, St Louis, MO, USA) to standardise the
nutritional status. After 1 week, the rats were randomly
divided into two groups: the experimental group received
a semi-synthetic SRD (63% wt/wt), while the control rats
received the same semi-synthetic diet but with starch
instead of sucrose in the same proportion (CD; 63%
wt/wt). Details of this procedure have been reported
previously (Chicco et al. 1994). Both diets provide
approximately 15·28 kj/g chow. The animals had free
access to food and water and were maintained on their
respective diets for a period of 30 weeks.

The weight of each animal was recorded twice per
week, and the individual caloric intake and weight gain of
at least ten animals in each group were assessed twice per
week during the experimental period. On the day of the
experiment, food was removed at 0900 h, and experiments
were performed between 0900 and 1200 h. The experi-
mental protocol was approved by the Human and Animal
Research Committee of the School of Biochemistry,
Universidad Nacional del Litoral, Santa Fe, Argentina.

Blood parameters

Rats were anaesthetised with an intraperitoneal injection
of pentobarbital (60 mg/kg body weight), and blood
samples were drawn from the jugular vein and centrifuged
at 4 )C. The serum samples obtained were assayed either
immediately or within the next 3 days after having been
stored at "20 )C. Serum glucose (Bergmeyer 1974) and
triacylglycerol (Laurell 1966) levels were determined by
spectrophotometric methods.

Immunohistochemical and morphometrical study of islets

After removal of the whole pancreas, the fat tissue was
carefully dissected away and the wet weight of the total
gland recorded. Samples of the tail of the pancreas were
then fixed in Bouin’s fluid and embedded in paraffin, and
serial sections (5 µm) were obtained from different levels of
the blocks. Haematoxylin–eosin staining was used for
general structural observation. Each section from a given

series was mounted on separate slides to stain adjacent
sections for immunocytochemical identification of
(1) insulin-secreting cells (â cells) and (2) glucagon-,
somatostatin- and pancreatic polypeptide-secreting cells
(non-â cells). For this purpose, specimens were incubated
with appropriate dilutions of (1) our own guinea pig
anti-insulin serum (1:20 000) and (2) a mixture of the
other three rabbit antisera: antiglucagon (1:400), anti-
pancreatic polypeptide (1:10 000) (both kindly provided
by Dr Lise Heding, Novo Nordisk, Copenhagen,
Denmark) and anti-somatostatin (1:6000) (a gift from Dr
Suad Efendic, Department of Endocrinology, Karolinska
Institute, Copenhagen, Denmark). The reaction was com-
pleted using the streptavidin–biotin complex method,
with either peroxidase or alkaline phosphatase together
with carbazole and fast blue respectively as chromogens.
Sections were counterstained with haematoxylin. Controls
for serologic specificity were made by preincubating a
given antiserum with an excess of the corresponding
hormone for 24 h at 4 )C. Morphometrical analysis was
made by the point-counting method using an 8#8 mm
grid (256 squares and 289 intersections) mounted on the
eyepiece of the microscope. To obtain the values of
different parameters for â and non-â cells in the same
section, we first processed the tissue for detection of â cells
by using anti-insulin serum, and then made the morpho-
metrical measurements. In a second step, and on the top of
the same section, we added the immunostain for detecting
non-â cells and made the measurement again. Values for
non-â cells resulted from the difference between both
evaluations. Using this procedure, 11 639 and 20 314
insular cells were surveyed for the CD and SRD groups
respectively.

With the data recorded, we calculated a unit area of
total pancreas (15 872 intersections of the grid=10 µm)
excluding connective tissues. We were then able to obtain
the area occupied by endocrine pancreas, exocrine
pancreas, total pancreas, â cells and non-â cells, and
several ratios and relationships as described in the Results.
We also estimated the number of islets per unit area
(mm2). In addition, the ratio between islet cell area and
the number of islet cells (â and non-â) were calculated to
obtain cell sizes. To estimate the islet and â-cell mass, we
multiplied the respective volume density by the total
weight of the pancreas (Bonner-Weir et al. 1989).

Every islet or small group of endocrine cells was
recorded in each section, thus obtaining the number and
areas of both â and non-â cells.

â-cell apoptotic rate

To identify apoptotic images, we used the propidium
iodine technique (Scaglia et al. 1997). Deparaffinised and
dehydrated sections were washed in phosphate-buffered
saline (PBS) before incubation for 30 min in a dark
humidified chamber with a solution of propidium iodine
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(4 µg/ml; Sigma, St Louis, MO, USA) and ribonuclease A
(100 µg/ml; Sigma). A Zeiss Axiolab epifluorescence
microscope equipped with an HBO50 mercury lamp,
together with two different filters, was used for visualis-
ation of autofluorescent labelling. For the quantitative
evaluation of immunofluorescence, positively labelled
apoptotic endocrine cells were counted under a #40
objective lens in sections obtained from different levels of
the blocks. The number of apoptotic cells was expressed
as the percentage of the total islet cells counted.

Cytokeratin immunostaining

To reveal the presence of cytokeratin (CK)-positive cells,
we used a specific monoclonal antibody for CK 19
(anti-CK clone 4·62; 1:40; Sigma) and the streptavidin–
biotin complex method, with peroxidase and carbazole as
chromogens. Before performing the staining, we treated
deparaffinised sections with 250 ml antigen-retrieval sol-
ution (Vector Laboratories Inc., Burlingame, CA, USA)
for 10 min in a 500 W microwave oven (Madsen et al.
1997). The number of CK-positive cells is expressed as the
percentage of the total islet cells counted.

Islet cell replication rate: double-immunolabelling studies

Islet cell replication rate was estimated by detecting
proliferating cell nuclear antigen (PCNA; 1:4000; Sigma),
using a modified avidin–biotin peroxidase method (Hsu
et al. 1981). We quantified and expressed the replication
rate as the percentage of PCNA-labelled cells among the
total islet cells.

We followed two different procedures. (1) We per-
formed double staining of the following pairs: â (insulin
antibody) and PCNA (PCNA antibody), and no â (glu-
cagon, somatostatin and pancreatic polypeptide pool) and
PCNA. We then used the streptavidin–biotin com-
plex method, with peroxidase and alkaline phosphatase
together with carbazole and fast blue respectively as
chromogens. Incubations with primary antibodies were
overnight whereas those with the secondary biotinylated
antibodies were for 30 min. (2) For serial double-
immunofluorescence labelling, sections pretreated with
non-immune sera from rabbit diluted in Tris-buffered

saline (pH 7·4) were incubated in a moist chamber at room
temperature for 30 min with a solution of propidium
iodine (4 µg/ml; Sigma) and ribonuclease A (100 µg/ml;
Sigma) and for 1 h with glucagon antibody. After washing
with PBS, fluorescence labelling of primary antibody was
accomplished through a second incubation at room tem-
perature for 45 min in the dark with the IgG-specific
fluorescein-conjugated affinity-purified goat antibody
against IgG (heavy plus light chains; Jackson Immuno
Research Laboratories, Inc., Baltimore, MD, USA). After
another washing with PBS, the sections were mounted
in Tris–glycerol (pH 8·4) for analysis by fluorescence
microscopy.

Statistical analysis

Data are presented as means&S.E.M. Statistical analysis was
performed using paired and unpaired Student’s t-test. A
P value of <0·05 was considered significant.

Results

Body weight recorded in animals given the SRD (SRD
rats) at the time of death was significantly higher than that
of the CD group (556&8 vs 470&13 g; P<0·05). The
pancreas weight did not show significant differences
between CD and SRD rats (1·56&0·07 mg vs
1·62&0·04 mg respectively). Both serum glucose and
triacylglycerol levels (mmol/l) were significantly higher
(P<0·05) in SRD rats: glucose, 6·62&0·17 for CD and
8·11&0·14 for SRD; triacylglycerol, 0·47&0·04 for CD
and 1·57&0·18 for SRD.

The sections stained with haematoxylin–eosin revealed
the general histological pancreatic normal appearance both
in CD and SRD rats. Immunohistochemistry showed the
usual topographic distribution of the cells within the islets
in both groups of animals, with the â cells occupying the
central zone and the non-â cells located at the islet
periphery.

Morphometrical analysis of the pancreases is shown in
Table 1. The number of pancreatic islets per unit area
increased significantly (P<0·05) in SRD rats com-
pared with CD rats. Moreover, a significant increase was

Table 1 Morphometrical analysis of pancreases from rats fed a sucrose-rich (SRD) or a
control diet (CD) for 30 weeks. Values are the means&S.E.M. of four rat pancreases
included in each group

No. of
islets/mm2

â-cell mass
(mg)

PCNA
index rate (%)

CK
index rate (%)

Apoptotic
index rate (%)

Diet
CD 2·01&0·2c 6·0&0·27a 0·04&0·03b 11·6&3·1 4·3&1·1
SRD 3·29&0·1 15·5&0·38 0·27&0·09 13·9&2·5 1·4&0·5

aP<0·0025; bP<0·03; cP<0·05.
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observed in the mass of endocrine tissue of SRD animals.
This increment was mainly due to an increase in the â-cell
mass (2·6 times). The islet cell replication rate (Fig. 1),
measured as the percentage of PCNA-labelled â cells,
increased 6·8 times in SRD rats. In addition, although the
number of apoptotic cells was scarce in the endocrine
pancreas, this number decreased significantly (three times)
in the SRD animals (Fig. 2).

The CK immunostaining revealed positive-reacting
endocrine cells always located at the islet periphery. The
CK-positive area did not show significant differences
between CD and SRD rats (Fig. 3). Other signs of
neogenesis, such as a higher number of insulin-reacting
cells in ductal epithelium together with an increase in their
PCNA index, as well as a higher proportion of both small
islets and islets in close contact with ducts were not found.
The non-â-cell mass was also larger in the SRD group,

although to a lesser extent with respect to the â-cell
increase. On the other hand, the ratio between the islet
cell area and the number of islet cells, which expresses the
endocrine cell size, did not reveal significant differ-
ences; the values (µm2) were as follows (CD vs SRD):
â cells, 121·48&9·73 vs 118·35&6·46; non-â cells,
97·55&6·24 vs 95·59&7·05.

Discussion

Our current results showed and confirmed those of
Lombardo et al. (1996) that normal rats fed for 30 weeks
with an SRD have a significant increase of both pancreatic
islet and â-cell mass.

Chronic administration of glucose induces an insulin-
resistant state which represents an increased demand for

Figure 1 Double-immunolabelling pancreatic islets: nuclear proliferating cell nuclear antigen (PCNA) and cytoplasmic (insulin) stainings.
The arrows point to positive-reacting cells, which are also seen at higher magnification (inserts). (a) Control (CD) and (b) sucrose-rich diet
(SRD) rats (#200; #1000 (inserts)).

Figure 2 Pancreatic islets showing glucagon-positive cells in the periphery (immunofluorescence). Apoptotic nuclei (propidium iodine)
corresponding to B cells are seen in the central zone (arrows). (a) CD rats and (b) SRD rats (#200).
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insulin secretion that triggers changes in â-cell function
(Leahy 1996). Pancreatic â-cell mass has to cope with
insulin demand to keep serum glucose levels within
normal range. Long-term adaptation of the â-cell mass to
an increased demand results from an increase in the â-cell
number through hyperplasia and neogenesis (Polonsky
et al. 1998, Bonner-Weir 2000). However, â-cell expan-
sion can be offset by concomitant apoptosis (Pick et al.
1998, Donath et al. 1999). In the present study, the
increase of â-cell mass induced by SRD was accomplished
by an enhanced replication of B cells (increased PCNA
index rate) together with a decrease in the rate of â-cell
apoptosis, without any evident signs (participation) of islet
neogenesis. This pancreatic reaction was, however, unable
to cope with the increased peripheral demand of insulin,
since SRD animals exhibited higher serum glucose levels
than did CD animals.

The moderate hyperglycaemia portrayed by our animals
represents an additional challenge for the pancreatic â cells
since glucose can increase the replication of these cells, as
occurs in both rats (Bonner-Weir 1989) and Psammomis
obesus (Donath et al. 1999). However, hyperglycaemia can
also adversely affect â-cell turnover in human islets
(Maedler et al. 2001b).

Replication of pre-existing â cells represents the main
mechanism by which the normal adult increases the
insulin-secreting active mass, although such a replication
progressively decreases with ageing (Bonner Weir 2000,
Montanya et al. 2000). Even when, during foetal and
neonatal life, islets are newly formed from precursor cells
that bud off from the pancreatic ducts (Swenne 1982,
Hellerström 1984), only a low degree of neogenesis exists
in the adult, this mechanism being enhanced under strong
stimuli (Bonner-Weir 2000). CKs are considered good
markers of the neogenetic area from which cells, originat-
ing in the ductal epithelium (protodifferentiated stem

cells), are added to the islet mass (Bouwens et al. 1994,
Wang et al. 1995). In the present study, CKs immuno-
reacted only with peripheral islet cells, probably non-â
cells, as was previously reported (Bouwens et al. 1994).
Other signs of islet neogenesis, such as an increase in the
replication rate and in the number of insulin-labelled cells
at the ductal compartment, as well as an increment in the
proportion of small islets and islets closely associated with
ductal epithelium, were not evident in the pancreas of the
SRD animals. Altogether, these observations suggest that
neogenesis is not an important mechanism related to the
islet mass increase currently observed.

The number of apoptotic cells significantly decreased
when the rats received an SRD. Apoptosis is a morpho-
logically identifiable form of cell death, triggered by a
variety of metabolic stimuli, that plays an important role in
remodelling the â-cell mass as the counterpart of prolifer-
ation (Wyllie et al. 1980, Steller 1995, Scaglia et al. 1997).
Hoorens et al. (1996) postulated that the rat â cells have
a constitutive apoptotic programme that is blocked by
proteins whose synthesis is stimulated by glucose in a
dose–response manner. Thus, stimulation of such proteins
triggered by SRD could account, at least partly, for the
decreased apoptotic rate found in our experiments.

It has been reported that elevated glucose concen-
trations directly induce â-cell apoptosis in cultured islets
from diabetes-prone P. obesus (Donath et al. 1999) and
from normal humans (Federici et al. 2001), but an increase
in glucose concentration to 11 mM in rat islets promotes
â-cell survival (Hoorens et al. 1996, Efanova et al. 1998,
Donath et al. 1999, Maedler et al. 2001a). To explain this
uneven behaviour, it has been argued that apoptosis
induced by high glucose might involve Fas and upregu-
lation of the Fas receptor (Maedler et al. 2001b), and that
human islets constitutively express FasL, while islets from
2- to 3-month-old rats do not (Hanke 2000). Thus,
differences in sensitivity to glucose may exist among
species and also among individuals of the same species.

Sucrose administration to young hamsters for 5 weeks
induces an increase in islet- and â-cell mass caused by
incremented â-cell replication rate and islet neogenesis
(Del Zotto et al. 1999). Even when the animals were kept
on this diet for up to 24 weeks, they maintained their
blood glucose levels within the normal range. A simul-
taneous increase of islet neogenesis-associated protein-
positive cell mass was also observed in these animals (Del
Zotto et al. 2000), suggesting the participation of this
peptide in the control of islet neogenesis.

Although sucrose administration to normal hamsters
and rats triggered in both animals an increased â-cell mass,
we found differences in the mechanisms leading to such an
increase: neogenesis plus increased â-cell replication in the
former and increased replication together with decreased
apoptosis in the latter. When feeding hamsters for
24 weeks and rats for 30 weeks with an SRD, we found
that the hamsters remained normoglycaemic while the rats

Figure 3 CK19-immunolabelled pancreatic islet from a CD rat.
Positive-reacting non-â cells are seen in the periphery;
counterstained with haematoxylin (#200).

Sucrose feeding and â-cell mass increase · H DEL ZOTTO and others 229

www.endocrinology.org Journal of Endocrinology (2002) 174, 225–231

Downloaded from Bioscientifica.com at 10/03/2019 08:48:08PM
via free access



showed a significant increase in serum glucose, as a result
of the lack of a neogenic reaction. Thus, this reaction may
play a key role in islets to satisfactorily adapt their â-cell
mass to an increased demand of insulin. Additionally,
we found that the ratio of â-cell mass:body weight is
three times larger in hamsters than in rats (Del Zotto et al.
2000). This characteristic might also contribute to the
more efficient pancreas reaction found in hamsters to
the increased demand of insulin induced by SRD.

On the basis of the different capacity of pancreatic
â-cell populations to cope with nutritionally increased
insulin demand, Shafrir et al. (1999) have established two
groups among models resembling type 2 diabetes. Those
animals having a sturdy pancreas exhibit persistent hyper-
insulinaemia, with an insulin resistance being compensated
for by a good response of â cells (anti-diabetic adaptation),
while other animals have a brittle pancreas which cannot
respond efficiently to the demands for a compensatory
insulin release, and consequently develop a diabetic syn-
drome. According to our results, hamsters would belong to
the first and rats to the second group postulated by Shafrir
et al. (1999).

Our study shows, coincidentally with that previously
reported (Leahy 1996), that diverse animal models can
respond in a different manner under similar conditions to
either â-cell function overload or hyperglycaemia. The
pancreatic response to hyperglycaemia seems to be geneti-
cally determined; thus, the efficacy of the mechanisms that
attempt to cope with similar experimental conditions will
vary, rendering either a compensatory hyperinsulinaemic-
normoglycaemic state or a diabetic state. Further studies
using models similar to the one presently employed may
help to find the underlying mechanisms that condition the
uneven pancreatic compensatory response.
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