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Abstract

Explicit substitutions (ES) were introduced as a bridge between the theory of rewrite systems with
binders and substitution, such as the k-calculus, and their implementation. In a seminal paper Melliès
observed that the dynamical properties of a rewrite system and its ES-based implementation may
not coincide: he showed that a strongly normalising term (i.e. one which does not admit infinite
derivations) in the k-calculus may lose this status in its ES-based implementation. This paper studies
normalisation for the latter systems in the general setting of higher-order rewriting: Based on recent
work extending the theory of needed strategies to non-orthogonal rewrite systemswe show that needed
strategies normalise in the ES-based implementation of any orthogonal pattern higher-order rewrite
system.
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1. Introduction

This paper studies normalisation for calculi of explicit substitutions (ES) implementing
higher-order term rewrite systems (HORS). The latter are rewrite systems in which binders
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Terms X := 1 | XX | kX | X[s]
Substitutions s := id | ↑ | X · s | s ◦ s

(kX)Y →Beta X[Y · id]
(X Y)[s] →App X[s]Y [s] (X · s) ◦ t →Map X[t] · (s ◦ t)
(kX)[s] →Lam kX[1 · (s ◦↑)] id ◦ s →IdL s

X[s][t] →Clos X[s ◦ t] (s1 ◦ s2) ◦ s3 →Ass s1 ◦ (s2 ◦ s3)
1[X · s] →VarCons X ↑ ◦ (X · s) →ShiftCons s
1[id] →VarId 1 ↑ ◦ id →ShiftId ↑

Fig. 1. The kr calculus.

and substitution are present, the k-calculus [3] being a typical example. A recent approach
to the implementation of HORS is the use of ES [1,4,12,18]. ES were introduced as a
bridge betweenHORSand their concrete implementations.Their close relationwith abstract
reduction machines [1,4,16] allows us to speak of ES-based implementations of HORS. The
idea behind these implementations is that the complex notion of substitution is promoted
to the object-level by introducing new operators into the language in order to compute
substitutions explicitly. This allows HORS to be expressed as more fine-grained (first-
order) rewrite systems in which no complex substitution nor binders are present. Such a
process may be applied to any HORS [9]. As an example Fig. 1 shows the rules of kr [1],
a calculus of ES implementing the k-calculus (based on de Bruijn indices notation [13] in
order to discard annoying issues related to the renaming of variables 1).

An obstacle which arises when using ES for implementing HORS is that results on
normalisation which hold in the higher-order rewriting setting may not be preserved in
its implementation. A well-known example of this mismatch is due to Melliès [25]: he
exhibited a strongly normalising (typed) term in the k-calculus for which the kr-calculus
introduces an infinite derivation. The problem is not confined to the setting of k-calculus
but rather affects any HORS. For example the following well-typed Haskell program:

map (\x → (map id [ map id [true] ])) [ map id [true] ] ,

where id abbreviates \x → x, is easily seen to be strongly normalising (and reduces
to [[[true]]]), however its ES-based implementation (cf. Example 7) may introduce
infinite derivations for it in a similar way to [25] (cf. Appendix A).

This mismatch calls for careful consideration of normalising strategies in the context of
ES-based implementations of HORS. This paper studies normalisation in the latter systems
based on needed strategies, a notion introduced in [17]. Needed strategies are those which
rewrite redexes which are “needed” (cf. Section 2.3) in order to attain a normal form, assum-
ing it exists. For example, the underlined redex in 1[2 · (k1) 1 · id] is not “needed” in order
to achieve a normal form since there is a derivation, namely 1[2 · (k1) 1 · id]→VarCons 2,
that never reduces it. In fact the infinite derivation of the aforementioned Haskell program
in the ES-based implementation takes place inside a substitution s in a term of the form
1[X · s].

1 Variables in terms are represented as positive integers. For example, kx.x is represented as k1, kx.ky.x as
kk2, and kx.y as k2



E. Bonelli / Theoretical Computer Science 333 (2005) 91–125 93

The literature on needed strategies for higher-order rewrite systems has required them
to be orthogonal [15,17,24] (an exception is [35], however, only weakly orthogonal sys-
tems are studied). A system is orthogonal if no conflicts (overlap) between redexes may
arise. The theory of neededness for orthogonal systems does not suffice in our setting
since HORS (even orthogonal ones) are implemented as non-orthogonal systems in the
ES-based approach. For example, although the k-calculus is orthogonal, kr is not, as wit-
nessed by the critical pair: (kX)[s]Y [s] ←App ((kX)Y)[s]→BetaX[Y · id][s]. However,
recently an extension has been introduced for non-orthogonal systems [26,27]. Motivated
by this work on needed derivations for non-orthogonal systems we prove the following
new result: all needed strategies in ES-based implementations of arbitrary orthogonal
pattern HORS normalise. This extends the known result [27] that needed strategies in
kr normalise.

As an example of (one of) the issues which must be revisited in the extended setting
of HORS is a result [27, Lemma 6.4] which states that if the first redex in a standard
kr derivation occurs under a “k” symbol, then no other redex in the derivation occurs at
that symbol or above it. A standard derivation is one in which computation takes place
in an outside-in fashion (cf. Definition 12). What makes “k” so special in this regard in
the kr-calculus is that creation of redexes above “k”, from below it, is not possible. We
introduce the notion of insulating symbol 2 in order to identify these special symbols in the
ES-based implementation of arbitrary higher-order rewrite systems (under our definition
“k” is insulating), and prove an analogous result.

Another contribution is the notion of correspondence for tracing redexes along derivations
of the substitution calculus (in the kr-calculus, the substitution calculus is r and consists
of all the rewrite rules of Fig. 1 except for Beta). The need for such a notion arises from the
fact that the residual theory for overlapping rewrite systems may cause redexes to be lost
after some number of r rewrite steps (cf. Section 4). For example, the Beta redex in M is
lost in the following r derivation:

M = ((kX)Y)[id]→App(kX)[id]Y [id]→Lam(k(X[1 · id ◦ ↑])) Y [id]. (1)

The correspondence relation shall allow such redexes to be retrieved once they “re-appear”.
The ideas developed suggest further interesting approaches towards an axiomatic treatment
of the issue in the style of [26] or more recently [29].

Structure of the paper: Section 2 reviews the ERSdb higher-order rewriting formalism, the
notion of standard derivation using the redex-permutation approach and its applications to
the theory of neededness for orthogonal systems.Also,Melliès’extension to non-orthogonal
systems are briefly discussed. Section 3 identifies the Standard-Projection Proposition as
the only requirement for an orthogonal pattern HORS to verify normalisation of needed
strategies. Section 4 is devoted to verifying that the latter holds for HORS.We then conclude
and suggest possible future research directions.An accompanying appendix provides further
details and proofs.

2 In [7] we used the terminology “uncontributable” however the author deems that the word “insulating”, as
suggested by a referee, is more appropriate.
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2. Setting the scene

This section provides a short introduction to the ERSdb higher-order rewriting formalism
and its ES-based implementations. Further details may be consulted in [6] or [8].

2.1. The ERSdb formalism and its ES-based implementations

The ERSdb formalism: ERSdb is a higher-order rewriting formalism based on de Bruijn
indices notation. Rewrite rules are constructed from metaterms; metaterms are built from:
de Bruijn indices 1, 2, . . . , metavariables Xl, Yl, Zl, . . . , where l is a label (i.e. a finite
sequence of symbols) over an alphabet of binder indicators a,b, . . . , function symbols
f, g, h, . . . equipped with an arity n with n>0, binder symbols k,l, m, n, . . . equipped with
an arity n with n > 0, and a metasubstitution operatorM[[N ]].

Definition 1 (Metaterms). The grammar for metaterms is

M ::= n | Xl | f (M, . . . ,M) | n(M, . . . ,M) | M[[M]].
Labels in metavariables reference binders occurring “above” them (when depicted as trees)
and henceforth we shall assume that their length coincides with the number of these binders
and that they contain no repeated elements. More precisely, we restrict our attention to all
metaterms M such that the predicate WFe(A) holds, where e is the empty label and WFl (A)
is defined as follows:
• WFl (n) holds.
• WFl (Xk) iff l = k and l contains no repeated elements.
• WFl (f (M1, . . . ,Mn)) iff for all 16 i6n we have WFl (Mi).
• WFl (n(M1, . . . ,Mn)) iff there exists a /∈ l s.t. for all 16 i6n, WFal (Mi).
• WFl (M1[[M2]]) iff WFl (M2) and there exists a /∈ l s.t. WFal (M1).

For example, app(kXa, Ye) is a metaterm, however f (nkXaa) and f (Xa) are not. As is
standard, positions in metaterms are defined as the paths of their tree representation [2,14].
For example, the position of Xa and Ye in app(kXa, Ye) is 1.1 and 2, respectively; also
the position of kXa is 1. We use e for the root position. We write Pos(M) for the set of
all positions of M and M|p for the subterm of M at position p assuming p ∈ Pos(M). For
example, Pos(app(kXa, Ye)) = {e, 1, 2, 1.1} and app(kXa, Ye)|1.1 = kXa.We use< for the
strict prefix ordering on positions, 6 for the prefix ordering on positions and k to indicate
that two positions are disjoint (i.e. pkq if neither p < q nor q < p). If p < q we say that p
is strictly above q and if p6q we say that p is above q. The leftmost symbol of a metaterm
is its head symbol.

Definition 2 (Rewrite rule). A rewrite rule is a pair of metaterms L→R s.t.
(1) the head symbol of L is either a function or a binder symbol (hence L may not be a

metavariable),
(2) all metavariables occurring in R also occur in L (disregarding labels), and
(3) there are no metasubstitutions in L.



E. Bonelli / Theoretical Computer Science 333 (2005) 91–125 95

We refer to L as the LHS and to R as the RHS, of the rewrite rule. An ERSdb R is a set
of rewrite rules. The kr-calculus of Fig. 1 is an ERSdb as are all first-order rewrite systems.
Two other examples are:

Example 3 (ERSdb rewrite rules). The b rewrite rule of the Lambda Calculus in which
terms are represented using de Bruijn indices notation:

app(kXa, Ye)→bdb
Xa[[Ye]].

The map ERSdb, encoding the higher-order function which maps an argument function over
a list:

map(nXa, nil)→map.1 nil
map(nXa, cons(Ye, Ze))→map.2 cons(Xa[[Ye]],map(nXa, Ze)).

An ERSdb R is left-linear if for every rewrite rule L→R in R and for every X, X occurs
at most once in L. For example, bdb and map are left-linear but the following rewrite rule
for quantifier permutation imply(∃∀Xab,∀∃Xba)→Comm true is not since X occurs twice
in imply(∃∀Xab,∀∃Xba), once with label ab and once with label ba. In the sequel of this
article we shall consider only left-linear ERSdb.

Terms aremetatermswithout occurrences ofmetavariables normetasubstitution.A rewrite
step is obtained by instantiating rewrite rules with valuations; the latter result from extend-
ing assignments (partial functions from metavariables to terms) to the full set of metaterms.

Definition 4 (Valuation). Let j be a (partial) function from metavariables to terms. The
valuationj overmetaterms (uniquely) determined byj, is the (partial) function that satisfies
the following conditions:

jn= n,
jXl = jXl,

jf (M1, . . . ,Mn)= f (jM1, . . . ,jMn),

jn(M1, . . . ,Mn)= n(jM1, . . . ,jMn),

j(M1[[M2]])= j(M1){{1← jM2}},

where M{{n ← N}} is the result of substituting a term N for the index n>1 in a term M
and is defined as follows:

f (M1, . . . ,Mn){{n← N}} = f (M1{{n← N}}, . . . ,Mn{{n← N}}),
n(M1, . . . ,Mn){{n← N}} = n(M1{{n+ 1← N}}, . . . ,Mn{{n+ 1← N}}),

m{{n← N}} =


m− 1 if m > n,
Un0(N) if m = n,
m if m < n,
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where for i>0 and n>1 we define the updating functions Uni (.) as follows:

Uni (f (M1, . . . ,Mn))= f (Uni (M1), . . . ,Uni (Mn)),

Uni (n(M1, . . . ,Mn))= n(Uni+1(M1), . . . ,Uni+1(Mn)),

Uni (m)=
�
m+ n− 1 if m > i,
m if m6 i.

In the rewrite rule ∃∀Xab→Comm0 ∀∃Xba, a valuation that assigns the de Bruijn index 1 to
the metavariableXab and also toXba does not reflect the binder commutation that the labels
of metavariables are expressing. Thus, in the sequel we restrict our attention to the subset
of all valuations that are coherent with the contextual information described by the labels
of binder indicators in metavariables. Such valuations are dubbed coherent valuations.

Definition 5 (Coherent valuations).
• A valuation j is coherent if for every pair of metavariablesXl andXl0 in the domain of j,

Coh(l,jXl) = Coh(l0,jXl0).
• Let S be a set of variables {x0, x1, . . .}, M a metaterm and l be a label of binder indicators.

Also, let |l| denote the number of elements in l and l@i the ith symbol in l (i6 |l|). Then
Coh(l,M) is defined as Coh0(l,M), where

Cohi (l, n)=


n if n6 i,
l@(n− i) if 0 < n− i6 |l|,
xn−i−|l| if n− i > |l|,

Cohi (l, f (M1, . . . ,Mn))= f (Cohi (l,M1), . . . ,Cohi (l,Mn)),

Cohi (l, n(M1, . . . ,Mn))= n(Cohi+1(l,M1), . . . ,Cohi+1(l,Mn)).

For example, the valuation that is obtained by instantiating all occurrences of Xa, Ye
and Ze in the rule map.2 by the terms cons(1, nil), 2 and nil, respectively, is coherent. The
resulting rewrite step is

map(n(cons(1, nil)), cons(2, nil))
→map.2 cons(cons(2, nil),map(n(cons(1, nil)), nil)). (2)

Determining whether a term matches the LHS of a rewrite rule in an arbitrary ERSdb is
not as simple as syntactic or first-order matching. For example, in order to determine if
a term is an instance of the LHS of the gdb rule, where gdb is k(app(Xa, 1))→gdbXe, it
must be determined whether the one term to be substituted for Xa and Xe does not have
occurrences of free 1-level indices. Likewise, in the case of the aforementioned Comm and
Comm0 rewrite rules, it must be determined whether the term assigned to Xab results from
the one assigned to Xba by interchanging 1- with 2-level indices. As a consequence, we
shall focus our attention on a subset of ERSdb for which the matching process is simpler.
Such ERSdb are called pattern ERSdb. Definition 6 corresponds to the usual requirement
that LHS of rewrite rules be higher-order patterns in other rewrite formalisms such as
[22,30,31].
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Definition 6 (Pattern ERSdb).
• The binding allowance of X in L→R is the set

Tn
i=1 li , 3 where {Xl1 , . . . , Xln} is the set

of all X-based metavariables (i.e. of the form Xl for some label l) in L→R.
• An ERSdb R is a pattern ERSdb (PERSdb) if the following condition holds for every
L→R in R: For every X, if we let Xl1 , . . . , Xln be all the X-based metavariables in L,
then
(1) l1 = l2 = · · · = ln and l1 is the binding allowance of X in L→R and
(2) for all Xk ∈ R, |k|> |l1|.

For example, gdb and Comm are not pattern ERSdb. However, those described in
Example 3 are. The fact that matching is simpler in pattern ERSdb is also reflected in
the ES-based implementations of pattern ERSdb (described below). The latter do not con-
tain explicit substitutions on the LHS (except for those which encode de Bruijn indices). In
contrast, ES-based implementation of gdb and Comm do. 4 This is witness to the fact that
when translating to a first-order ES-based setting, higher-order matching may not always
be coded as syntactic matching. The “occurs check” imposed by gdb or the “commutation
of indices check” imposed by Comm are complex features of higher-order matching that
require further machinery (matching modulo a calculus of ES) in order to be mimicked in
a first-order setting.

A redex r is a quadruple consisting of a term M, a rewrite rule L→R, a (coherent)
valuation, and a position p in M such that M at position p is an instance of the LHS of the
rewrite rule L→R via the aforementioned valuation; the induced rewrite step is written
M→r N and we say that we contract r in M and obtain N. M is the source and N the target
of r. Letters r, s, t, . . . stand for redexes. Let s, r be redexes with source M, then s nests r,
written s < r , if the position of s is a prefix of the position of r in M; if neither s nests r nor
r nests s, then they are said to be disjoint in M and we write skr . Two redexes r, s which are
instances of the same rewrite rule are called similar, we also say that r is similar to s.We use
→R for the rewrite step relation induced by an ERSdb R and �R for its reflexive–transitive
closure. A derivation is a sequence of rewrite steps; we use letters /,u, . . . for derivations;
|/| stands for the length (number of rewrite steps) of a derivation /. Two rewrite steps s, r
are composable if the target of s coincides with the source of r; in this case we write s; r for
their composition (i.e. the derivation in which r is computed after s); this notion is extended
to a sequence of rewrite steps as expected. If r1, . . . , rn are composable rewrite steps, then
r1; . . . ; rn is the derivation resulting from composing them.We use eM for the empty rewrite
step whose source and target is M. Note that eM ; v = v = v; eN if v is a derivation from M
to N. Derivations that start (resp. end) at the same term are called coinitial (resp. cofinal).

ES-based implementations of HORS: Any ERSdb may be implemented as a first-order
rewrite system with the use of explicit substitutions [9,6]. The implementation process
roughly goes about dropping labels in metavariables, encoding indices n as 1[↑n−1] and re-
placing metasubstitution operators •[[•]] in rewrite rules with explicit substitutions •[• · id].
Note that the operation of substitution is promoted to the object-level language. Therefore,

3 Note that although labels are sequences of binder indicators, here we are referring to the underlying set of the
labels li . For example, the underlying set of the label ab is {a,b}.

4 Namely, k(app(X[↑], 1))→ES(gdb)X and imply(∃∀X,∀∃X[2 · 1 · (↑ ◦ ↑)])→true.
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new rules—the substitution calculus—are added in order to define the behaviour of the new
explicit substitutions; this calculus is in charge of propagating substitutions until they reach
indices and then discarding the substitutions or replacing the indices. The details of the
implementation process may be consulted in [9,6].

In this paper we fix the r-calculus [1] as substitution calculus. Its rules are those of
Fig. 1 (disregarding Beta) in which the rules App and Lam are generalised to arbitrary
function symbols f and binder symbols n as follows:

f (X1, . . . , Xn)[s] →Funcf f (X1[s], . . . , Xn[s]),
n(X1, . . . , Xn)[s] →Bindn n(X1[1 · (s ◦↑)], . . . , Xn[1 · (s ◦↑)]).

Since the r-calculus is confluent [1] and strongly normalising [11] we shall write r(N) for
the (unique) r-normal form of N. If R is an ERSdb, then we write RES

r for its ES-based
implementation and refer to it as an implementation (of R).

Example 7. The implementation of the HORS bdb is kr, in other words (bdb)
ES
r = kr.

That of map is the first-order rewrite system consisting of r and the following rewrite rules:

map(nX, nil)→ES(map.1) nil,
map(nX, cons(Y, Z))→ES(map.2) cons(X[Y · id],map(nX,Z)).

Two basic properties of ES-based implementations of HORS are Simulation (ifM→RN ,
then for someM 0,M→RESM 0�r r(N)) andProjection (M→RES

r
N thenr(M)�R r(N)).

The rewrite step (2) may be simulated in its ES-based implementation as

map(n(cons(1, nil)), cons(2, nil))
→ES(map.2) cons(cons(1, nil)[2 · id],map(n(cons(1, nil)), nil))
→Funccons cons(cons(1[2 · id], nil[2 · id]),map(n(cons(1, nil)), nil))
→VarCons cons(cons(2, nil[2 · id]),map(n(cons(1, nil)), nil))
→Funcnil cons(cons(2, nil),map(n(cons(1, nil)), nil)).

Remark 8. Although we have restricted our attention to left-linear pattern ERSdb, the im-
plementation procedure described in [9,6] applies to any ERSdb.

2.2. Standardisation

Informally, a standard derivation is one in which computation takes place in an outside-in
manner. This notion may be formalised using the redex-permutation approach [20,26,28].
We briefly recall this approach.

Given two non-overlapping redexes r, s in some term M we define the notion of a redex
residual of r after contracting s (written r/s) with an example. InM = (kk(2 2)) ((k1) 2) 3
→bdb

(k((k1) 3) ((k1) 3)) 3 = N , the residuals of r = ((k1) 2) in M after contracting the
underlined redex s are the two copies of (k1) 3 in N. Note that s has no residuals in N (i.e.
for any s, s/s = ∅), and also that r/s is a finite set of redexes. The outermost redex in N
is said to be created since it is not the residual of any redex in M. If UM is a finite set of
non-overlapping redexes (i.e. r, s ∈ UM implies r does not overlap s) in M and s is a redex
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Fig. 2. Basic tiles.

Fig. 3. Oriented tiles.

in M, then UM/s = {v|∃u ∈ UM, v ∈ u/s}. The residuals of r after a derivation r1; . . . ; rn
coinitial with it, is defined as ((r/r1)/r2) . . . /rn. A development of UM is a derivation
/ = r1; . . . ; rn s.t. ri ∈ UM/(r1; . . . ; ri−1) for i ∈ 1, . . . , n and UM// = ∅ (if this last
condition is not satisfied we say / is a partial development of UM ). A well-known result
called Finite Developments states that all partial developments are finite [3,33]. This allows
one to prove the following property for any left-linear pattern ERSdb.

Proposition 9 (Parallel moves or basic tile lemma Barendregt [3], Huet and Levy [17]).
Given two non-overlapping redexes r, s in some term M, the divergence resulting from con-
tracting r and s may be settled by developing their corresponding residuals (Fig. 2(a)).
Moreover, for any u in M, u/(r; s/r) = u/(s; r/s).

Fig. 2(b) shows two basic tiles in the k-calculus. As depicted, these basic tiles may
be “glued” in order to construct tilings between some coinitial and cofinal derivations /
and u, in which case we write /≡u and say that / and u are Lévy-permutation equivalent
[20,23,26,28]. For example, s1; r1; r2≡r3; s2; r2, however I (I 1)→bdb

I 1 6 ≡I (I 1)→bdb
I 1.

Roughly speaking, /≡u means that / and u do the same work.
By comparing the relative positions of r and s in a basic tile [26,28] we can further

classify tiles into disjoint and nested. The left tile in Fig. 2(b) is an example of the former
and the right tile in the same figure an example of the latter. Furthermore, we can assign
an orientation to these tiles as indicated in Fig. 3 and define standard derivations as an
appropriate “minimal” derivation.

Definition 10 (Reversible/irreversible tiles and permutations).
• A reversible tile is a diagram of the form depicted in Fig. 2(a) such that r and s are

disjoint. We denote such a tile as r; s/r�s; r/s. An irreversible tile is a diagram of the
form depicted in Fig. 2(a) such that s nests r. We denote such a tile as r; s/rBs; r/s.
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• A reversible permutation ( r⇒) is defined as /1; r; s/r;/2
r⇒/1; s; r/s;/2 where r;

s/r�s; r/s; an irreversible one ( i⇒) as /1; r; s/r;/2
i⇒/1; s; r/s;/2 where r; s/rBs;

r/s.

We write⇒ for the reflexive–transitive closure of r⇒∪ i⇒ and' for the least equivalence
relation containing r⇒. The aforementioned notion of Lévy-permutation equivalence may
now be formalised as follows.

Definition 11 (Lévy-permutation equivalence). Two coinitial and cofinal derivations /,u
are Lévy-permutation equivalent if /≡u, where≡ is the least equivalence relation contain-
ing⇒.

Finally, we may formulate a precise definition of standard derivations.

Definition 12 (Standard derivation Melliès [26,28]). A derivation/ is standard if it ismin-
imal in the following sense: there is no sequence of the form / = /0

r⇒· · · r⇒/k−1
i⇒/k ,

where k>1.

For example r3; r4 is standard, but the following derivation r3; s2; r2
K 1 (Ia)→r3(k2) (Ia)→s2(k2) a→r21

is not since s2 is nested by a redex (in this case, (k2) (Ia)) whose residual is immediately
contracted in the next step, namely r2.

Reformulated in this way by Melliès, the standardisation theorem proved for the k-
calculus [3,23] and term-rewriting systems [10,17]was extended in [26,28] to any left-linear
pattern HORS.

Theorem 13. (Standardisation Barendregt [3], Huet and Lévy [17], Lévy [23],
Melliès [26,28]).
(1) (Existence) For any / there exists a standard derivation u s.t. /⇒u.
(2) (Unicity) If u1≡u2 and u1,u2 are standard derivations, then u1'u2.

The first item states that every derivation may be transformed into a standard derivation
(we say the derivation is “standardised”) by oriented tiling. The second item states that stan-
dard derivations are unique up to disjoint tilings in Lévy-permutation equivalence classes.
If we let std(/) stand for the (unique modulo') standard derivation in the≡-equivalence
class of /, then, for example, std(s1; r1; r2) = std(r3; s2; r2) = r3; r4 as illustrated in
Fig. 2(b).

2.3. Neededness

Standard derivations are used to show that needed strategies are normalising in orthogonal
systems. A rewrite system is orthogonal if any pair of coinitial redexes r, s do not overlap.
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Definition 14 (Needed redexes in orthogonal systems). A redex r in M is needed if it has
at least one residual in any coinitial derivation /, unless / contracts a residual of r [24].

For example, for the rewriting system {f (Xe, b)→f c, a→a b} the right occurrence of a
in f (a, a) is needed but not the left one since the derivation f (a, a)→a f (a, b)→f c never
reduces the left occurrence of a nor any of its residuals and no residuals of a are left in c. A
needed rewrite strategy is one that only selects needed redexes. By defining a measure |M|
as “the length of the unique standard derivation (modulo') to M’s normal form’’ it may be
shown [17,26,28] that if M→rN for some needed redex r, then |M| > |N|; hence needed
strategies normalise in orthogonal rewrite systems. This measure is well-defined since in
orthogonal systems any two coinitial derivations to (the unique) normal form may be tiled
or, in other words, are Lévy-permutation equivalent [17,26,28].

In the case of non-orthogonal systems the notion of needed redex requires revision.
Indeed, in R = {a→a1a, a→a2b} the derivation to normal form / : a→a2b leaves no
residual of a1. However, one cannot conclude that the a1 redex is not needed since although
it is not reduced in / a redex which overlaps with this a1 redex has. Thus the notion of
needed redex is extended to needed derivations as follows.

Definition 15 (Needed derivations in non-orthogonal systems Melliés [27]). / : M�N

is needed in a non-orthogonal rewrite system if for any term P and any derivationw : N�P ,
|std(/;w)| > |std(w)|.

Note that now a→a1a is needed in the aforementioned example. The concept of needed
redexes is extended to that of derivations since, in contrast to orthogonal systems, terms in
non-orthogonal ones may not have needed redexes. For example, in {xor(true, Xe)→L true,
xor(Xe, true)→R true,X→X true} the term xor(X,X) has no needed redexes [21].

Neededderivations get us “closer” to a normal form, however the aforementionedmeasure
for orthogonal systems is no longer well-defined in the case of non-orthogonal systems:
There may be two or more ≡-distinct normalising derivations. Consider the following
derivations:

/1 : a→a1a→a2b

/2 : a→a1a→a1a→a2b

/3 : a→a1a→a1a→a1a→a2b.

. . .

They are ≡-distinct normalising derivations since each a1-step creates a new copy of a. In
[27] such badly-behaved systems are discarded by requiring the property of finite normalisa-
tion cones (FNC) to be fulfilled.A normalisation cone for a termM is a family {wi : M�N |
i ∈ IM} of normalising derivations such that every normalising derivation / : M�N is
Lévy-permutation equivalent to a unique derivation wi (i.e. ∃!i ∈ IM s.t. /≡wi). In fact,
this definition specialises the definition of [27, Definition 4.8] since we make use of the
fact that ES-based implementations of orthogonal HORS are confluent [9]. A rewrite sys-
tem enjoys finite normalisation cones when there exists a finite normalisation cone for any
term M.
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Redefining the measure of a term |M| to be “the length of the longest standard derivation
in M’s cone to M’s normal form” allows one to show [27] that if / : M�N is a needed
derivation, then |M| > |N|; hence needed strategies normalise in non-orthogonal rewrite
systems satisfying FNC.

3. FNC for ES-based implementations of HORS

It is therefore of interest to identify conditions guaranteeing that ES-based implementa-
tions of HORS enjoy finite normalisation cones. In [27] the FNC property is shown for kr;
this result relies on two observations:
(1) if / is a standard derivation in kr ending in a r-normal form, then r(/) is standard in

the k-calculus, and
(2) needed strategies are normalising for the k-calculus.
r(/) is obtained by mapping each kr rewrite step in / to its “corresponding” or “projected”,
if any, rewrite step in k.We shall develop the required machinery in order to provide a formal
definition of “projection” in Section 4.2 (cf. Definition 29). For now we illustrate it with an
example: if / : (1 1)[(k1) 2 · id]→Beta(1 1)[1[2 · id] · id], then r(/) takes the form

((k1) 2) ((k1) 2)→bdb
2 ((k1) 2)→bdb

2 2.

In this paper we show that the FNC property holds for the ES-based implementation of
arbitrary orthogonal PERSdb (recall from Section 2.1 that PERSdb are pattern ERSdb). This
generalises the result which was originally verified for the k-calculus. The proof follows
the same lines as in [27] and is developed in Section 4; it relies on our meeting requirement
(1), namely

Proposition 16 (Std-Projection Proposition). Let R be a left-linear PERSdb. Every stan-
dard derivation / : M�N in RES

r with N in r-normal form is projected onto a standard
derivation r(/) : r(M)�N in R. Besides, every RES redex in / is projected to a unique
R redex in r(/).

That FNC follows from the Std-Projection Proposition may be proved as follows:

Proposition 17. The ES-based implementation of any orthogonal PERSdb R verifying the
Std-Projection Proposition enjoys FNC: every closed RES

r -term has FNC.

Proof. Suppose, on the contrary, that there exists a closed RES
r term with an infinite number

of normalising RES
r derivations, modulo Lévy-permutation equivalence. We may construct

an infinite tree whose nodes are the derivationsM�N which may be extended to standard
normalising derivations M�N�P , where nodes are ordered by the prefix ordering, and
by König’s Lemma (since every RES

r term contains only a finite number of redexes) deduce
the existence of an infinite derivation /∞. Moreover, since r is strongly normalising we
know that /∞ has an infinite number of RES-steps.
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Let /∞ be of the formM
r1→M1

r2→M2
r3→· · ·. Every finite prefix /i : M�Mi of /∞ may

be extended to a standard normalising path vi : M�Mi�N .

M
r1 //

RES
r !! !!B

BB
BB

BB
B M1

r2 //
RES

r

����

M2
r3 //

RES
r}}}}zz

zz
zz

zz
. . .

...

N

And, by Proposition 16, each r(vi ) : r(M)�r(Mi)�r(N) = N is a standard and
normalising R derivation. Since R is orthogonal all the normalising derivations r(vi ) :
r(M)�r(N) = N must be Lévy-permutation equivalent. Thus we have: r(v1)≡r(v2)≡
r(v3)≡r(v4)≡ · · · .And from Theorem 13(2) and the fact that /'u implies |/| = |u| we
deduce that: |r(v1)| = |r(v2)| = |r(v3)| = |r(v4)| = · · · .

We reach a contradiction from the fact that there are an infinite number of RES redexes
in /∞ and that Proposition 16 projects RES redexes to unique R redexes: For every i >
0 there is a j > i such that |r(vj )| > |r(vi )|. See below, where the squiggly arrow
labeled r(ri) is the identity if ri is a r redex and is an R redex if ri is an RES redex
(cf. Definition 29).

Remark 18. In [27] also the notion of leftmost-outermost computation of the k-calculus
is generalised to arbitrary left-linear pattern HORS: a derivation / : M→N is declared
external when for every standard derivation v : N→P , /; v is a standard derivation too. It is
shown that if / : M→N is an external rewriting derivation in kr, then r(/) : r(M)→r(N)
is an external rewriting derivation in the k-calculus [27, Lemma 6.5].

4. The Std-Projection Proposition

We now concentrate on the proof of the Std-Projection Proposition which proceeds by
contradiction and is developed in three stages. Before continuing however, we remark that
it is non-trivial. In fact, in the general case in which N is not required to be a r-normal form
it fails. The following kr derivation v is standard:

((k(11))1)[(k1)c · id] →Beta ((k(11))1)[1[c · id] · id] →Beta (11)[1 · id][1[c · id] · id].

However r(v) is not standard in the k-calculus:

r(v) : (k(11))((k1)c)→b (k(11))c→bcc.
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The problem is that disjoint b redexes become nested after they are projected. We shall see
that such a situation may not arise if v is a standard derivation which ends at a r-normal
form.

Let v be any standard RES
r derivation. The idea of the proof, inspired from [27], is to show

that every reversible (resp. irreversible) permutation in the projection (cf. Definition 29)
r(v) of v may be mimicked by one or more reversible (resp. reversible permutations fol-
lowed by one or more irreversible) permutations in v, the ES-based derivation. Hence
we may conclude by reasoning by contradiction. We prove in Stage 1 that the projection
of an RES step results in a unique R step, if v ends in a r-normal form. We prove then
that every permutation in r(v) is mimicked by a series of permutations in v as explained
above. Reversible permutations are treated in Stage 2, and irreversible permutations in
Stage 3.

4.1. Stage 1 (substitution zones)

First of all, note that v consists of two kinds of rewrite steps: RES steps and r steps. We
argue that it is not possible for a RES step to take place inside a substitution if v ends in
a r-normal form. The reason is that in that case the RES redex would occur inside some
term P in P · s and hence under the “·” symbol. Since v is standard, redexes reduced below
a “·” symbol cannot create redexes above it, and since N is a pure term we arrive at a
contradiction. We formalise this argument below (Lemma 23).

Definition 19. Given an implementation RES
r of an ERSdb R with C the set of function and

binder symbols, we define g ∈ C of arity n as insulating in RES
r if

(1) either, g does not occur on the LHS of any rule in RES
r ,

(2) or, g occurs on the LHS of a rule in RES
r only under the form g(X1, . . . , Xn) (i.e. it

occurs applied to metavariables).

Example 20. The “k” symbol is an example of an insulating symbol in the kr-calculus,
i.e. in (bdb)

ES
r . Whereas, the application symbol is not insulating in kr due to the Beta-rule.

Also, for any PERSdb R the cons symbol “·” is insulating in RES
r since it is only the rules

of r that govern the behaviour of “·”.

The notion of insulating symbol attempts to capture those symbols from which reduction
below it cannot create/erase redexes above it. For example, in the rewrite step

M = g(h(c)[id])→Funchg(h(c[id])) = N, (3)

where R = {g(h(X))→c}, the redex v at the root position of N is created by rewriting at
the position 1 in M, thus a rewrite step whose redex occurs below “g” in M has created a
redex above it in N. Note that according to Definition 19 “g” is not insulating. Were we not
to restrict our attention to left-linear rewrite systems other forms of redex creation different
from the one discussed above (a redex contributing symbols to the pattern of the created
redex) would also be present. Indeed, in left-linear systems redexes could be created simply
by equating subterms as in the step f (a, b)→af (b, b), whereR = {f (X,X)→f a, a→ab}.
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Remark 21. Although similar, the concept of insulating symbol does not coincide with
that of a constructor symbol in a constructor Term Rewrite System [21]: given a construc-
tor TRS there may be constructor symbols which are not insulating (for example, “s” in
f (s(s(x)))→x) and likewise there may be insulating symbols that are not constructor
symbols (for example, “f” in f (x)→a).

We say that a derivation r1; . . . ; rn preserves a position p when the position of none
of the redexes ri is a prefix of p. Rephrasing in the terminology introduced in Section
2, a derivation r1; . . . ; rn preserves a position p when none of the redexes ri is
above p.

Lemma 22. Let RES
r implement R. Suppose that a position p is strictly above a redex

P→rQ. Every standard derivation / = r;w preserves p when
(1) either, p is a g-node for g an insulating symbol in RES

r ,
(2) or, p is a g-node for g a function or binder symbol in RES

r and w is a r derivation.

Proof. Given the standard derivation / = r;w and the position p strictly above r two
cases may arise: either / preserves p (in which case we are done) or otherwise / may
be reorganised modulo ' into a derivation /1; u; v;/2 such that /1 preserves the po-
sition p, the position p is strictly above a redex u, and a redex v is above p. We shall
see that the latter case results in a contradiction. Note that the derivation u; v cannot
be standard, unless u creates v. Now, in at least the following two cases creation is not
possible:
(1) When p is the position of an insulating symbol in RES

r . This follows from the fact that
contraction of a redex below an insulating symbol may not create a redex above it.

(2) When the position p is a function or binder symbol node and u is a r redex then an RES

redex must have been created, in other words, the only possible pattern of creation is
when u is a Funcf redex for some function symbol f or a Bindn redex for some binder
symbol n and v is an RES redex. See (3) for an example. Note that it is not possible for
u to be an RES

r redex and v a r redex since r redexes above function or binder symbols
cannot be created from below them.

Regarding the first item of Lemma 22 only the particular instance of it in which the g-node
is a “cons” node “·” shall be used in the sequel. Regarding the second, it shall be used as
stated.

We say a redex r : M→N occurs in the left argument of a cons, if the position p of r in
M is of the form p = p1.1.p2 with M|p1 = P · s for some term P and substitution s. The
following key lemma states that the left argument of a cons determines an “enclave” in a
standard RES

r derivation to r-normal form. �

Lemma 23. Let RES
r implement R and let / : M�N be a standard RES

r derivation with N
in r-normal form. Then no RES

r redex ever occurs in the left argument of a cons.

Proof. By contradiction. Suppose there exists an ri with source O contracted in / =
r1; . . . ; rn inside the left argument P of a cons P · s. Suppose, furthermore, that the position
of the subterm P · s in O is p. Since the “·” symbol is insulating, then by Lemma 22(1) the
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Fig. 4. Correspondence vs. residual.

derivation ri; . . . ; rn preserves p. Since N is a pure term (i.e. has no explicit substitutions)
we arrive at a contradiction. �

4.2. Correspondence: definition and properties

The next stage of the proof requires relating RES steps in a RES
r derivation v with their

“corresponding” steps in the projection of v, written r(v), via the substitution calculus r
(see Fig. 4). As mentioned in Section 1, and explained below in further detail, this no-
tion differs from that of residuals as found in the rewriting literature and introduced in
Section 2.2. Indeed, an attempt to define correspondents through the usual notion of resid-
uals is doomed to fail. The problem is that RES redexes may be lost when traversed by
substitutions as illustrated in (1), in the introduction to this article. Therefore, an appropri-
ate notion of correspondent and correspondence relation for tracing RES redexes through
r derivations must be defined. We shall address this matter immediately before continuing
with the next stage of the Std-Projection Proposition, namely Stage 2 (Section 4.3).

Remark 24. Note that we are interested in tracing only “what’s left” of an RES redex (and
not arbitrary RES

r redexes) after r-rewriting to r-normal form.

The correspondence relation builds on the notion of descendant. IfM→sN , then just as
the residual relation /s allows us to relate redexes in M with those in N after contracting
s, the descendant relation [[s]] allows us to relate positions in M with those in N after
contracting s. The concept of descendants is not novel (see [5] for references). In fact,
in many presentations of rewrite systems the residual relation is defined by means of a
descendant relation [10,17,19,33]: redexes are traced by keeping track of the position of
their head symbol.

Call p ∈ Pos(M) a symbol position if the head symbol of M|p is either a function or
binder symbol and let us write SPos(M) for the subset of Pos(M) consisting of the symbol
positions in M. A descendant relation scheme for a rewrite rule L→R is a binary relation
[[L→R]] that relates symbol positions in L with those in R and extends the relation between
positions indicated by the metavariables: if p is the position of a metavariable X in L, then
p[[L→R]]q for all the positions q in R such that R|q = X. This relation is extended to
rewrite steps as expected. Consider the redex r = (M,L→R,j, p) and the rewrite step
M = C[jL]→rC[jR] = N . The induced descendant relation [[r]] ⊆ SPos(M)× SPos(N)
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is defined as follows:
• If q is disjoint to p or q < p, then q[[r]]q.
• If q = p.q1, where q1 is a non-metavariable position in L, then q[[r]] is the set of all

positions p.q 01 in N such that q1[[L→R]]q 01.• If q = p.q1.q2, where q1 is a metavariable position in L, then q[[r]] is the set of all
positions p.q 01.q2 in N such that q1[[L→R]]q 01.

As in the case of the residual relation, the descendant relation may be extended to derivations
by relation composition. Before stating the definition of correspondent we recall from
Section 2 that two redexes r, s which are instances of the same rewrite rule are called
similar.

Definition 25 (Correspondent). Consider an implementation RES
r of an ERSdb R, where

each r-rewrite rule is equipped with a descendant relation scheme and an RES redex r in M.
Let / : M�rN and suppose that p[[/]]q where p is the position of r in M and s = N|q is
a redex similar to r. We then say that s is a /-correspondent of r in N and write r[[/]]s.

In the sequel of this presentation we shall fix the descendant relation schemes for the
rewrite rules of the r-calculus which are described below. Note that only the ones for Funcf
for f a function symbol and Bindn for n a binder symbol need be specified. We recall from
Section 2.1 the rewrite rules Funcf and Bindn

f (X1, . . . , Xn)[s] →Funcf f (X1[s], . . . , Xn[s]),
n(X1, . . . , Xn)[s] →Bindn n(X1[1 · (s ◦↑)], . . . , Xn[1 · (s ◦↑)]).

The descendant relation scheme for Funcf is

1[[Funcf ]]e

1.i[[Funcf ]]i.1, for all 16 i6n.

The descendant relation scheme for Bindn is the same. As an example of the induced
descendant relation on rewrite steps, in the derivation / of (1) the Beta redex at position 1
in M has the Beta redex at position e (the root position) as /-correspondent.

These descendant relation schemes shall guarantee that two important properties of the
tracing of RES redexes through r derivations to normal form are met: the structure of
RES redexes is preserved (Lemma 26) and the particular r derivation used is unimportant
(Lemma 27).

Let �r denote r reduction to r-normal form. The fact that the r-calculus preserves the
structure of RES redexes is evidenced in the following result which is proved in theAppendix
(Section B.4).

Lemma 26 (Correspondence lemma). Suppose / : M�rN , let p ∈ SPos(M) be the
position of a RES redex r, and p[[/]]q. Then q is the position of an RES redex s similar to
r (i.e. s[[/]]r). Moreover, if p is not inside the body of a substitution, then s is the unique
correspondent of r.
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A symbol position p in M is said to be “inside the body of a substitution” if there is a
subterm of M of the form P [s] at position q and q.2 > p (cf. substitution symbol positions
in Section B.2). A crucial building block on which the Correspondence Lemma is erected
is the fact that the particular r derivation chosen, called / above, is of no relevance. More
precisely, all r derivations from a term M to its (unique) r-normal form N induce the same
descendent relation (and hence the same correspondence relation). This property is called
parametricity.

Lemma 27 (Parametricity). All / : M�rN induce the same descendant relation [[/]]
over SPos(M)× SPos(N).

The proof of this fact is developed in the style of [33, Proposition 3.2.14] and is relegated
to the Appendix (Section B.1).

Remark 28. Parametricity fails due to “syntactic coincidences” [17] if all positions are
traced (instead of just symbol positions) and arbitrary r derivations considered (instead of
r derivations to r-normal form). For example, consider the termsM = 1[id][id] and N =
1[id] and derivations v : 1[id][id]→Clos1[id ◦ id]→IdL1[id] and / : 1[id][id]→VarId1[id].
If we trace the subterm 1[id] in M occurring at position 1 we obtain 1[[v]]e and 1[[/]]1,
respectively.

We may now define formally the projection of a RES
r derivation.

Definition 29 (Projection of RES
r derivations). Let v be a RES

r derivation. We define r(v)
by induction on the length of v:

r(eM)
def= er(M) r(u;w) def=

(
r(w) ifM u→rN,

v1; . . . ; vn;r(w) ifM u→RESN,

where v1; . . . ; vn is a development in R of the set u[[/]] of /-correspondents of u for any
r derivation / from M to r(M).

In virtue of the parametricity property of r, in this definition we may consider any r
derivation / from M to r(M). Thus, Definition 29 does not depend on the r derivation /
chosen. However, it does depend on the development of u[[/]] since different reductions are
obtained for each such selection. However, all such reductions are '-equivalent, and thus
the projection may be seen to yield an'-equivalence class of R derivations. The reason that
all such reductions are '-equivalent is that although r may duplicate the correspondents
of a RES redex it may not nest them, therefore u[[/]] is a set of disjoint correspondents. 5

This fact is proved by introducing the following notion of r-disjoint sets of positions and
showing that r descendants of r-disjoint sets are, once again, r-disjoint (see Lemma 36 in
the Appendix).

5 This is known as the disjointness property [3,20]. It has been considered in [20, Definition 4.3.1] where,
following results due to Hyland, it shown to hold for b developments (it fails for full b reduction). See also [34].
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Definition 30 (r-disjoint set). Let p, q ∈ SPos(M). We say p is r-nested with q in M iff
there exists some position o s.t. p = o.1.p0 and q = o.2.q 0 and one of the following two
conditions hold:
• either, the head symbol ofM|o is •[•],
• or, the head symbol ofM|o is • ◦ •.
A set S of disjoint symbol positions in M is said to be r-disjoint if for every p, q ∈ S, p is
not r-nested with q.

Intuitively, a r-disjoint set of positions captures “statically” a set of disjoint symbol
positions which r rewriting cannot nest. Indeed, note that two disjoint symbol positions
risk getting nested through r rewriting if one of the two conditions of Definition 30 hold.
An example of the first condition is

M = f (a)[g(b) · id]→Funcf f (a[g(b) · id]) = N,
where the descendants of the disjoint symbol positions 1 and 2.1 in M get nested in N. An
example of the second condition is

O = (f (a) · id) ◦ (g(b) · id)
→MapM · (id ◦ (g(b) · id))→FuncfN · (id ◦ (g(b) · id)) = P,

where the descendants of the disjoint symbol positions 1.1 and 2.1 in O get nested in P. A
formal proof of this observation if given in the Appendix (Proposition 41).

4.3. Stage 2 (reversible permutations)

From the analysis in Stage 1 we know that every RES redex contracted in v does not
occur inside the body of a substitution. As a consequence of Lemma 26 it has a unique
correspondent R redex in r(v). This means that if r(v) = R1; . . . ;Ro, then there is a
function q : {1, . . . , o}→{1, . . . , n}which associates to any R redex Rk in r(v) the unique
RES redex rq(k) in v = r1; . . . ; rn to which it corresponds.

Let Rk and Rk+1 be two consecutive R redexes in r(v). Note that the RES
r derivation

ri; . . . ; rj = rq(k)+1; . . . ; rq(k+1)−1 between rq(k) and rq(k+1) contracts only r redexes, as
depicted below.

We now show that every reversible standardisation permutation r(v) r⇒x in R may be
mirrored as a non-empty series of reversible standardisation permutations v r⇒· · · r⇒/ in
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RES
r , where r(/) = x. It suffices to show that if Rk and Rk+1 can be permuted using

a reversible tile (Rk;Rk+1�R0k;R0k+1), then a number of reversible permutations may be
applied to rq(k); ri; . . . ; rj ; rq(k+1) yielding / s.t. r(/) = R0k;R0k+1. Before proceeding a
remark on the inverse of the descendent relation, also called the ancestor relation.

Remark 31 (Ancestors of positions outside substitutions). Let r be an RES redex in M oc-
curring at a position p not inside a substitution.As already noted, it has a unique correspond-
ing R redex R in r(M) occurring at some position p0. Moreover, the following property on
the ancestors of positions not inside substitutions holds: for every position q 0 in r(M) with
q 0 < p0, we have q < p where q is the (unique) ancestor of q 0 as illustrated below. The
proof may be found in the Appendix (Lemma 43). The fact that q 0 is unique follows from
the observation that r may not create new function or binder symbols.

Suppose that the two R redexes Rk and Rk+1 can be permuted using a reversible tile,
that is, Rk;Rk+1�R0k;R0k+1. We construct an RES

r derivation / s.t. v'/ and r(/) =
R1; . . . ;R0k;R0k+1; . . . ;Rp.

By Lemma 22(2), the derivation ri; . . . ; rj preserves the position of any function or
binder symbol strictly above rq(k). And, in particular, the lowest symbol g appearing above
Rk : r(P )→r(Q) and R0k in the term r(P ). By Remark 31, the ancestor of the symbol g
is strictly above rq(k) in P. Note that, as discussed in Stage 1, g cannot be a “cons” symbol
“·”.

As a consequence the derivation w = rq(k); ri; . . . ; rj ; rq(k+1) may be reorganised mod-
ulo ' into a derivation w0 such that r(w0) = R0k;R0k+1. In order to do so,
• let p be the position of this occurrence of g in P and let us assume that P |p = g(N1, . . . ,
Nm) and, moreover,
• suppose rq(k) occurs inNl1 and the head symbol of rq(k+1) occurs inNl2 for l1, l2 ∈ 1..m

and l1 6= l2.
We may now reorganise / as follows:
(1) First contract all the redexes in ri; . . . ; rj prefixed by p.l2,
(2) Second contract rq(k+1),
(3) Third contract the (unique) residual of rq(k),
(4) Finally contract the remaining redexes of ri; . . . ; rj , i.e. those prefixed by p.1, . . . ,

p.l2 − 1, p.l2 + 1, . . . , p.m.

4.4. Stage 3 (irreversible permutations)

Finally, we show that also irreversible standardisation permutations in R may be mim-
icked in the implementation: every irreversible standardisation permutation r(v) i⇒x in R
may be mirrored as a non-empty series of standardisation permutations v r⇒· · · r⇒/0 i⇒· · ·
i⇒/ with at least one irreversible permutation in RES

r , where r(/) = x.
Hence the proof of Proposition 16 follows by contradiction: indeed, every standardisation

permutation acting on the projected higher-order rewrite derivation may be mimicked by
projection-related standardisation permutations of the same nature (reversible/irreversible)
over derivations in the implementation.
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Suppose two R redexes Rk : r(P )→r(Q) and Rk+1 can be permuted using an irre-
versible tile Rk;Rk+1BR0k;w. Remark the following:

Remark 32. Let r be a redex in M at some position p, instance of a rule L→R. Call the
pattern of r the subterm ofM at position pwhere the arguments of r (i.e. the terms substituted
for the variables of L) are replaced by holes. Similarly to Remark 31, every symbol f in
the pattern of R0k strictly above Rk in r(P ) has a unique ancestor in P, and this ancestor
is above the occurrence of rq(k). Moreover, none of these symbols occurs embraced by a
substitution operator. This follows from two facts:
(1) first, by Lemma 22, the derivation ri; . . . ; rj preserves all these symbols (in particular

the lowest one), and
(2) second, rq(k+1) is an RES redex for R a PERSdb hence its LHS contains no occurrences

of the substitution operator •[•].

We now continue with Stage 3 of the proof. Let p be the occurrence of the unique r
ancestor of the head symbol g of Rk+1 in P, and P |p = g(M1, . . . ,Mm). Let l ∈ 1..m such
that rq(k) occurs in Ml . Notice that by Lemma 22(2) the r derivation ri; . . . ; rj preserves
p and thus all these r-redexes are either disjoint to p or in one of the Mis, i ∈ 1..m. We
proceed to reorganise the derivation w = rq(k); ri; . . . ; rj ; rq(k+1) as follows:
• first, we reorganisewmodulo' by selecting to contract first all ther-redexes in ri; . . . ; rj

which do not occur at the position of rq(k). In other words, we obtain

v = v1; . . . ; vm; vm+1; r 0q(k); vm+2; rq(k+1)'rq(k); ri; . . . ; rj ; rq(k+1)

such that
◦ the derivation vi , for i ∈ 1..l − 1, is composed of all the redexes in ri; . . . ; rj whose

position is prefixed by p.i,
◦ the derivation vl is composed of all the redexes in ri; . . . ; rj whose position is prefixed

by p.l but disjoint to the position of rq(k),
◦ the derivation vi , for i ∈ l + 1..m, is composed of all the redexes in ri; . . . ; rj whose

position is prefixed by p.i,
◦ the derivation vm+1 is composed of all the redexes in ri; . . . ; rj whose position is

disjoint to p,
◦ r 0q(k) is the unique residual of rq(k) after v1; . . . ; vm+1.
By Remark 32 the redex rq(k+1) must have emerged in the target of vm+1.
• Second, note that the r-redexes remaining in vm+2 = rk1; . . . ; rko all occur at the position

of r 0q(k) or below. Thus we may apply o+ 1 irreversible permutations starting from v to

obtain v0, v i⇒· · · i⇒| {z }
o+1

v0 where

v0 = v1; . . . ; vm+1; r 0q(k+1);/r 0q(k);/rk1 ; . . . ;/rko .

Since r(v0) = R0k;w, we set / = v0 and conclude.
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This concludes the proof of Proposition 16. As a consequence we have:

Theorem 33. Let R be any orthogonal pattern ERSdb. All needed derivations normalise
in the ES-based implementation RES

r of R.

Remark 34. Although our interest is in normalisation we would like to point out that
Proposition 16 may be seen as reducing standardisation for HORS to that of first-order
systems. Given a derivation v : M�N in an orthogonal pattern ERSdb R, we recast v in
the ES-based implementation of R, then we standardise the resulting derivation in the first-
order setting [10] and finally we project back to the higher-order setting. The resulting R
derivation/ shall not be just any standard derivation fromM toN, but also Lévy-permutation
equivalent to v, in other words, v≡/. This may be verified by proving that v⇒/ implies
r(v)≡r(/) (Lemma 45).

5. Conclusions

We have addressed normalisation by needed reduction in the ES-based approach to the
implementation of HORS. Melliès [25] observed that the implementation of a higher-
order rewrite system by means of calculi of explicit substitution may change its normal-
isation properties fundamentally; indeed, a term possessing no infinite derivations in the
k-calculus may lose this property when shifting to the kr-calculus. Based on an exten-
sion of the theory of needed redexes to overlapping systems [27] we have shown that all
needed derivations normalise in the ES-based implementation of any orthogonal pattern
HORS; the latter result has been established in the setting of the ERSdb formalism for
higher-order rewriting. The key property that has been addressed in order to apply the
aforementioned theory is to show that standard derivations in the ES-based implementa-
tion of a HORS project to standard derivations in the higher-order setting (Std-Projection
Proposition).

In [9] the ES-based implementation of HORS does not fix a particular calculus of explicit
substitutions. Instead a macro-based presentation encompassing a wide class of calculi of
ES is used. The study of the abstract properties that make the proof of the Std-Projection
Proposition go through would allow the results presented here to be made independent of
r, the calculus of ES which we have dealt with in this paper.

The fact that the redexes may be lost if one applies current literature on the theory
of residuals as discussed in Section 4.2, seems to indicate that for the particular class of
overlapping rewrite systems consisting of calculi of explicit substitution a more interesting
theory can be developed. In such a theory a RES redex which is suddenly polluted by
a number of substitution operators should not disappear but rather change “status”, for
example it could become “passive” (since a “veil” has been drawn over it). This is certainly
an improvement over it being lost!Of course, “passive” redexes could become “active” again
(or “unveiled”) by the works of the substitution calculus. A serious attempt at developing
such a theory would require steering free of complications introduced by syntax. The author
deems that an axiomatic approach in the sense of [26] or more recently [29] should be
appropriate although this requires more detailed investigation.
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Appendix A. The map-example

The Haskell program

map (\x → (map id [ map id [true] ])) [ map id [true] ]
is represented as the ERSdb term

P = map(kmap(k1, hmap(k1, htruei)i)| {z }
f

, hmap(k1, htruei)i).

To make this section more readable we occasionally use h. . .i for lists (for example, we
abbreviate cons(true, nil) by htruei), and also applicative style notation (for example, we
shall write map id htruei instead of map(id, htruei)). We shall write I for k1.

Here we show how to reproduce Melliès’ counter-example [25] in the modified setting of
the mapESr rewrite system of Example 7. The latter consists of the r-calculus together with:

map(nX, nil) →ES(map.1) nil,
map(nX, cons(Y, Z)) →ES(map.2) cons(X[Y · id],map(nX,Z)).

Let us define

s1 = map I htruei · id,
rec(s) = ↑ ◦ (true[s] · id),
sn+1 = rec(sn),

Cx(y) = ↑ ◦ (true[y] · x),
Dx(y) = cons(1[true[x] · y],map I h i) · x.

The reader may verify that the term P reduces to a term Q containing the subterm
1[map I htruei · id][map I htruei · id]. We observe that

1[map I htruei · id][map I htruei · id]
→Clos 1[(map I htruei · id) ◦ (map I htruei · id)| {z }

s1

]

→Map 1[(map I htruei)[s1] · (id ◦ s1)]
→IdL 1[(map I htruei)[s1] · s1]
+→r 1[(map (k1[1 · (s1 ◦ ↑)]) htrue[s1]i) · s1]
→map.2ES 1[cons(1[1 · (s1 ◦ ↑)][true[s1] · id],map (k1[1 · (s1 ◦ ↑)]) h i) · s1]
+→r 1[cons(1[true[s1] · s1 ◦ (↑ ◦ (true[s1] · id))],map I h i) · s1]
= 1[Ds1(s1 ◦ rec(s1))].
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Note that from above s1 ◦ s1 +→mapESr
Ds1(s1 ◦ s2). Let Cn stand for C applied n times.

The result is completed by verifying that the following statement, taken from [25] and
instantiated to our current example where the arrows refer to mapESr rewriting, holds

sn ◦ sn+1
+→ Cn−1

sn+1(Dsn+1(sn+1 ◦ sn+2)).

As a consequence there is an infinite computation in mapESr of s1 ◦ s1, and hence of P.

Appendix B. Proofs

B.1. Parametricity (Section 4.2)

Let SPos(M, f ) stand for the set of positions of a function or binder symbol f in the term
M (this notion shall not be required for f a substitution symbol: “↑”, “id”, “◦” or “·”).

Remark 35. If p ∈ SPos(M, f ) for some function or binder symbol f, v : M�rN and
p[[v]]q, then q ∈ SPos(N, f ). That is to say, r descendants of function or binder symbols
are once again function or binder symbols, and moreover, they have the same “name”. This
may be verified by inspecting the rewrite rules of the r-calculus.

Recall from Section 4 that �r denotes r reduction to r-normal form. The proof of
Parametricity (Lemma 27) follows.

Proof. We use a proof technique due to van Oostrom [33]. We must prove that if v,/ :
M�rN then [[v]] = [[/]]. Before proceeding two observations:
Observation 1. The r-calculus does not create function or binder symbols, i.e. if S ⊆

SPos(M) is the set of all positions in M of some (binder or function) symbol f and
M

r→rN
0 then S[[r]] is the set of all symbol positions of f in N 0 .

Observation 2. If we replace some (function or binder) symbol f in M occurring at a
position p with a fresh symbol g obtainingM 0, then the derivation v is transformed into
a new r derivation v0, and

p[[v]]q⇐⇒p[[v0]]q.
This may be verified by induction on the length of v.
Now let p ∈ SPos(M, f ) (i.e. p is a position of the symbol f in the term M) and let g be

a fresh symbol. Then replacing f with g in M yields a term M 0 and two new r derivations
v0 and /0 fromM 0 to N1 and N2, respectively, such that

p[[v]]q⇐⇒p[[v0]]q and p[[/]]q⇐⇒p[[/0]]q. (B.1)

Since g is a fresh symbol then

p[[v0]]q⇐⇒ the head symbol of N1|q is g. (B.2)

The left-to-right direction of (B.2) follows from Remark 35. For the right-to-left direction
of (B.2) is proved as follows: suppose the head symbol ofN1|q is g and thatp ∈ SPos(M, g)
then by the first observation it follows that p must be an ancestor of q, that is, p[[v0]]q.
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So, joining the equivalences (B.1) with the equivalence (B.2) we obtain:

p[[v]]q⇐⇒p[[v0]]q⇐⇒ the head symbol of N1|q is g

and

p[[/]]q⇐⇒p[[/0]]q⇐⇒ the head symbol of N2|q is g.

Finally, the result follows from noting that N1 = N2 from the confluence of the r-
calculus. �

B.2. On r-disjoint sets (Section 4.2)

In this section, we show that the descendant of a r-disjoint set is, once again, r-disjoint.

Lemma 36 (Descendants of a r-disjoint set). Let M be a term and S be a r-disjoint set in
M. Suppose / : M�rN . Let S0 be the set of / descendants of positions in S in N. Then S0
is a r-disjoint set in N, i.e. all / descendants of positions in S are once again disjoint and,
moreover, they are not r-nested.

Proof. Let S be a r-disjoint set in M and suppose M u→rN (the general result follows by
induction on the length of the derivation). The proof is by induction on the (length of the)
position where the rewrite step takes place. The interesting cases are a subset of those in
which the rewrite step takes place at the root.
(1) f (P1, . . . , Pn)[s]→f (P1[s], . . . , Pn[s]). If S = {p} then the u descendants of p are

a r-disjoint set in N (note that if p ∈ s then p shall have n descendants). Otherwise,
consider any two positions p, q ∈ S with p 6= q. Then
• either, there are indices i, j with 16 i, j6n such that p ∈ Pi and q ∈ Pj ,
• or, p, q ∈ s.
In both cases their u descendants are disjoint and not r-nested. Note that it is not
possible that p ∈ Pi for some 16 i6n and q ∈ s since S is not r-nested.

(2) P [s][t]→P [s ◦ t]. If S = {p} then either p ∈ P , or p ∈ s or p ∈ t . These cases are
seen to hold. Otherwise, consider any two positions p, q ∈ S with p 6= q. Then it must
be that p, q ∈ P , or p, q ∈ s or p, q ∈ t , in all cases S0 is seen to be a r-disjoint set
in N.

(3) 1[id]→1 or ↑ ◦ id→↑. These cases hold trivially since S = ∅ and there are no u
descendants to consider.

(4) 1[P · s]→P . If S = {p} then either p ∈ P , or p ∈ s and the result follows since p has
at most one u descendant. Otherwise, consider any two positions p, q ∈ S with p 6= q.
Then either p, q ∈ P or p, q ∈ s or p ∈ P and q ∈ s, and the result holds as above.

We say p ∈ SPos(M) is a substitution position in M iff there is a prefix q of p such that
the head symbol ofM|q is either, a “◦” or “·”-symbol or, is the substitution operator (•[•])
and q.26p. A non-substitution position is a symbol position that is not a substitution
position. �
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Corollary 37 (Descendants of non-substitution symbol positions). Let M be a term and
p ∈ SPos(M) a non-substitution symbol position in M. Suppose / : M�rN . Then there
is a unique q ∈ SPos(N) such that p[[/]]q and, moreover, q is a non-substitution symbol
position.

Proof. Follows from the proof of Lemma 36 by taking S = {p} and noting that duplication
of p is not possible. �

B.3. r-Nesting Captures Dynamic Nesting (Section 4.2)

In this section, we show that the notion of r-nesting captures “completely” all situations
in which the r-calculus nests disjoint symbol positions.

A symbol position p ∈ SPos(M) dynamically nests a symbol position q ∈ SPos(M)
in M if there is a r derivation / : M�rN such that p[[/]]p0, q[[/]]q 0 and p0 < q 0. We
show that two disjoint symbol positions are dynamically nested if and only if they are r-
nested (Proposition 41). This is the main result of the section. Before doing so however,
we prove some auxiliary results. The first two lemmas determine what the descendants of
nested positions look like (Lemma 38) and what the descendants of r-nested positions look
like (Lemma 39), respectively. The final auxiliary result provides an “invariant” condition
required for the proof of the main result of this section.

Lemma 38 (One-step descendants of nested symbol positions). Let p, q ∈ SPos(M) with
p < q. LetM u→rN and let p[[u]]p0 and q[[u]]q 0 in N. Then either
(1) p0 < q 0 or,
(2) {p0, q 0} is a r-disjoint set in N.

Proof. By induction on the (length of the) position where the rewrite step takes place. If
the rewrite step is at an internal position, then the result is either obvious or follows from
the induction hypothesis. Therefore, we concentrate on the case where the rewrite step is at
the root position.
(1) f (M1, . . . ,Mn)[s]→f (M1[s], . . . ,Mn[s]). Ifp, q ∈ Mi for some 16 i6n thenp0, q 0

are unique and p0 < q 0. If p = 1 and q ∈ Mi with 16 i6n then p0 = e < q 0. Finally,
if p, q ∈ s then

p0 < q 0 if i < p0 and i < q 0 for some 16 i6n,
{p0, q 0} r-disjoint otherwise.

(2) n(M1, . . . ,Mn)[s]→n(P1[1 · (s ◦↑)], . . . , Pn[1 · (s ◦↑)]), as in the previous case.
(3) P [s][t]→P [s ◦ t]. Then either p, q ∈ P , or p, q ∈ s, or p, q ∈ t . In each case p0, q 0

are unique and p0 < q 0.
(4) 1[id]→1 or ↑ ◦ id→↑. These cases hold trivially since there are no symbol positions

in M.
(5) 1[P · s]→P . Then p, q ∈ P and p0, q 0 are unique, and p0 < q 0.
(6) id ◦ s→s. Then p, q ∈ s and p0, q 0 are unique, and p0 < q 0.
(7) ↑ ◦ (P · s)→s. Analogous to the previous case.
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(8) (s1 ◦ s2) ◦ s3→s1 ◦ (s2 ◦ s3). Then either p, q ∈ s1, or p, q ∈ s2 or p, q ∈ s3. In all
cases p0, q 0 are unique and p0 < q 0.

(9) (P · s) ◦ t→P [t] · (s ◦ t). If p, q ∈ P or p, q ∈ s then p0, q 0 are unique and p0 < q 0.
Otherwise p, q ∈ t and we reason as follows:

p0 < q 0 if 1.2 < p0 and 1.2 < q 0,
p0 < q 0 if 2.2 < p0 and 2.2 < q 0,
{p0, q 0} r-disjoint otherwise. �

Lemma 39 (One-step descendants of r-nested symbol positions). Letp, q ∈ SPos(M)with
p r-nested with q. Let M u→rN and let p[[u]]p0 and q[[u]]q 0 in N. Then one of the
following holds:
(1) either, p0 < q 0,
(2) or, {p0, q 0} is a r-disjoint set in N,
(3) or, p0 is r-nested with q 0 in N.

Proof. By induction on the (length of the) position where the rewrite step takes place.
• rewrite step at the root position.

(1) f (M1, . . . ,Mn)[s]→f (M1[s], . . . ,Mn[s]). Then
◦ If p, q ∈ Mi with 16 i6n then p0, q 0 are unique and p0 is r-nested with q 0.
◦ If p, q ∈ s then one of the following cases holds:

p0 r-nested with q 0 if i < p0 and i < q 0 for some 16 i6n,
{p0, q 0} r-disjoint otherwise.

◦ If p = 1 and q ∈ s then p0 = e < q 0 for all q 0 ∈ q[[u]].
◦ If p ∈ Mi for some 16 i6n and q ∈ s then one of the following cases holds:

p0 r-nested with q 0 if i < q 0,
{p0, q 0} r-disjoint otherwise.

(2) n(M1, . . . ,Mn)[s]→n(M1[1 · (s ◦↑)], . . . ,Mn[1 · (s ◦↑)]), as in the previous case.
(3) P [s][t]→P [s ◦ t]. If p, q ∈ P , or p, q ∈ s, or p, q ∈ t then p0, q 0 are unique and

p0 is r-nested with q 0. If p ∈ M and q ∈ s or q ∈ t then the same holds. If p ∈ s
and q ∈ t then also p0, q 0 are unique and p0 is r-nested with q 0. No other cases are
possible.

(4) 1[id]→1 or↑ ◦ id→↑. These cases hold trivially since there are no symbol positions
in M.

(5) 1[P · s]→P . Then p, q ∈ P and p0, q 0 are unique, and p0 is r-nested with q 0.
(6) id ◦ s→s or ↑ ◦ (P · s)→s. Then p, q ∈ s and p0, q 0 are unique, and p0 r-nested

with q 0.
(7) (s1 ◦ s2) ◦ s3→s1 ◦ (s2 ◦ s3). Then p0, q 0 are unique and p0 is r-nested with q 0.
(8) (P · s) ◦ t→P [t] · (s ◦ t). Then
◦ If p, q ∈ P or p, q ∈ s then p0, q 0 are unique and p0 is r-nested with q 0.
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◦ If p ∈ P and q ∈ t (the case p ∈ s and q ∈ t is analogous) then we reason as
follows:

p0 r-nested with q 0 if 1.2 < q 0,
{p0, q 0} r-disjoint otherwise.

◦ If p, q ∈ t then we reason as follows:

p0 r-nested with q 0 if 1.2 < p0 and 1.2 < q 0,
p0 r-nested with q 0 if 2.2 < p0 and 2.2 < q 0,
{p0, q 0} r-disjoint otherwise.

• rewrite step at an internal position.
(1) M = f (M1, . . . ,Mn) and Mi

u→rM
0
i for some 16 i6n. Then either p, q ∈ Mj

with j 6= i and the result is direct, or p, q ∈ Mi and we may use the induction
hypothesis.

(2) M = n(M1, . . . ,Mn), as in the previous case.
(3) M = P [s]. Then if p, q ∈ P or p, q ∈ s we conclude directly or we apply the

induction hypothesis as above. Otherwise p ∈ P and q ∈ s in which case p0 is
r-nested with q 0 for all p0 ∈ p[[u]] and q 0 ∈ q[[u]].

(4) M = P · s. We use the induction hypothesis.
(5) M = s ◦ t . Analogous to the caseM = P [s]. �

Lemma 40. Let p, q ∈ SPos(M). If p is r-nested with q in M then there exists a rewrite
stepM u→rN and positions p0, q 0 ∈ SPos(N) such that p[[u]]p0, q[[u]]q 0 and,
(1) either, p0 < q 0,
(2) or, p0 is r-nested with q 0 in N.

Proof. We proceed by case analysis. By hypothesis p = o.1.p1 and q = o.2.q1 and we
have two cases to consider:
• M|o = M1[s]. We shall consider all possible cases forM1.

(1) M1 = M2[s0]. ThenM|o→ClosM2[s0 ◦ s] and the unique descendants of p and q are
r-nested in N.

(2) M1 = f (M1, . . . ,Mn) (the caseM1 = n(M1, . . . ,Mn) is similar).ThenM|o→Funcf
f (M1[s], . . . ,Mn[s]). If p is inMi then we may choose q 0 such that the result holds,
namely the descendant that lies in the copy of s embracingMi . If p = e then for any
q 0 such that q[[u]]q 0 we have p0 < q 0.

Note that there are no further cases to consider forM1.
• M|o = s1 ◦ s2. We consider all possible cases for s1.

(1) s1 = s3 ◦ s4. Then M|o→Ass s3 ◦ (s4 ◦ s2) and the unique descendants of p and q
are r-nested in N.

(2) s1 = M1 · s3. ThenM|o→MapM1[s2] · (s3 ◦ s2). Then p shall have a unique descen-
dant. As for q 0 we select the occurrence which is more convenient.

Note that there are no further cases to consider for s1. �
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Proposition 41. Let RES
r be an implementation of an ERSdb R. Let p, q ∈ SPos(M)

p dynamically nests q in M iff p is r-nested with q in M.

Proof. (⇒)Let p and q be disjoint symbol positions in M and suppose there is a r derivation
/ : M�rN such that p[[/]]p0, q[[/]]q 0 and p0 < q 0. Then by Lemma 36 {p, q} is not a
r-disjoint set. Therefore, one of two situations arises: either, p is r-nested with q in M, or q
is r-nested with p in M. By Lemma 39 (as extended to the many step rewriting relation) and
the fact that p0 < q 0, it is not possible for q to be r-nested with p in M. Hence we conclude.
(⇐) Suppose p isr-nestedwith q inM.We show that there exists a derivation/ : M�rN

such that p[[/]]p0, q[[/]]q 0 and p0 < q 0. We use induction on +→r since r is strongly
normalising [11,32,36]. LetM u→rM

0 by applying Lemma 40. Then p[[u]]p00, q[[u]]q 00, and
(1) either, p00 < q 00 and by taking p0 = p00 and q 0 = q 00 we are done,
(2) or, p00 r-nested with q 00. Then we apply the induction hypothesis. �

B.4. Correspondence lemma (Section 4.2)

If p = p0.i is a position in M where i is some natural number, then the predecessor of p
is given by pred(p,M)def=p0. A rod in M is a pair (p, q) s.t.
• p, q ∈ SPos(M),
• p < q, and
• for every o ∈ Pos(M) such that p < o < q, either o ∈ SPos(M), or M|o = M 0[s] and
o.16q.

We write p <S q for the rod (p, q). For example, in the term

(3 4)[(kk1 · id) ◦ (k2 ·↑)]) (k1)

we have e <S 1.1 and 1.2.1.1 <S 1.2.1.1.1, but e <S 1.2 is not a rod.
The intuitive idea is that r rewriting preserves the structure of RES redexes. Since the

patterns of these redexes may be described by rods, a basic result required for the Cor-
respondence Lemma (Lemma 26) is that r rewriting preserves rods. This is precisely the
statement of the following lemma.

Lemma 42 (Rod preservation). Let p, q ∈ SPos(M) and M u→rN . Suppose p <S q and
p[[u]]p0.
(1) Then there is a unique q 0 ∈ SPos(N) such that q[[u]]q 0 and p0 <S q 0.
(2) Moreover, if p.i6q then p0.i6q 0.

Proof. By induction on the (length of) the position where the u-rewrite step takes place.
• The rewrite step takes place at the root. We consider the following subcases:

(1) f (M1, . . . ,Mn)[s]→f (M1[s], . . . ,Mn[s]). If p, q ∈ Mi for some 16 i6n then
p0, q 0 are unique and p0 <S q 0. If p = 1 and q ∈ Mi with 16 i6n then p0 = e <S
q 0. Finally, if p, q ∈ s then suppose i < p0 for some 16 i6n. Take the unique q 0
such that i < q 0. Then p0 <S q 0.

(2) n(M1, . . .,Mn)[s]→n(M1[1 · (s ◦↑)], . . .,Mn[1 · (s ◦↑)]). As in the previous case.
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(3) P [s][t]→P [s ◦ t]. Then either p, q ∈ P , or p, q ∈ s, or p, q ∈ t . In each case
p0, q 0 are unique and p0 <S q 0.

(4) 1[id]→1 or↑ ◦ id→↑. These cases hold trivially since there are no symbol positions
in M.

(5) 1[P · s]→P . Then p, q ∈ P and p0, q 0 are unique, and p0 <S q 0.
(6) id ◦ s→s or ↑ ◦ (P · s)→s. Then p, q ∈ s and p0, q 0 are unique, and p0 <S q 0.
(7) (s1 ◦ s2) ◦ s3→s1 ◦ (s2 ◦ s3). Then either p, q ∈ s1, or p, q ∈ s2 or p, q ∈ s3. In all

cases p0, q 0 are unique and p0 <S q 0.
(8) (P · s) ◦ t→P [t] · (s ◦ t). If p, q ∈ P or p, q ∈ s then p0, q 0 are unique and p0 <S

q 0. Otherwisep, q ∈ t and suppose 1.2 < p0 (the case 2.2 < p0 is handled similarly).
Then take the unique q 0 such that p0 <S q 0.

• rewrite-step at an internal position.
(1) M = f (M1, . . . ,Mn) and Mi

u→rM
0
i for some 16 i6n. If p, q ∈ Mj with i 6= j

then the result is direct, if i = j then we use the induction hypothesis. Otherwise
p = e. If q ∈ Mj with i 6= j the result is direct. Suppose therefore that q ∈ Mi

hence q = i.o. Note that o is a non-substitution symbol position inMi since p <S q.
By Corollary 37 there is a unique o0 u descendant of o and moreover o0 is a non-
substitution symbol position. Then p0 = e <S q 0 = i.o0.

(2) M = n(M1, . . . ,Mn). As in the previous case.
(3) M = P [s], M = P · s or M = s ◦ t . Then either p, q ∈ P or p, q ∈ s or p, q ∈ t

and the result is direct or follows from the induction hypothesis. �

Lemma 26 (Correspondence lemma). Let RES
r be an implementation of an ERSdb R. Sup-

pose / : M�rN , let p ∈ SPos(M) be the position of an (L,R) redex r with (L,R) ∈ RES,
and p[[/]]p0. Then p0 is the position of an (L,R) redex r 0 in N, i.e. r[[/]]r 0. Moreover, if p
is not inside the body of a substitution, then r 0 is the unique correspondent of r.

Proof. We shall show that the pattern of r descends toN|p0 . Since the LHS of a RES rewrite
rule does not contain substitution symbols, it suffices to show that for each pair of positions
o, pred(o,M) ∈ SPos(M) in the pattern of r (thus p6pred(o,M) < o) we have

pred(o,M)[[/]]q 0 implies q 0 = pred(o0, N), (B.3)

where by Lemma 42 q 0 is the unique descendent of pred(o,M) below p0, and o0 is the
unique descendent of o strictly below p0. This situation is summarised in Fig. B.1.

This suffices since we may then traverse the pattern of r in a breadth-first manner and
reconstruct, with the aid Remark 35, the pattern in N, hence r 0 shall be an instance of the
same rewrite rule as r.

In order to prove (B.3) let us proceed by contradiction. By Lemma 42 on rod preservation
we know that q 0 <S o0, and hence that q 0 < o0. Suppose, moreover, that there is a position
q 00 in N such that q 0 < q 00 < o0. This is illustrated in Fig. B.2.

Since N is a r-normal form then N is a pure term and hence q 00 ∈ SPos(N). Now
since function and binder symbols may not be created by r there is a (unique) position
q ∈ SPos(M) such that q[[/]]q 00. By case analysis we shall see that this is not possible.
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Fig. B.1. Pattern descendence.

Fig. B.2. Pattern descendence. Impossible situation.

(1) o < q. Impossible since by Lemma 38 we would have o0 < q 00 or {o0, q 00} r-disjoint
(hence o0kq 00), both of which contradict our knowledge that q 00 < o0.

(2) q < o. Note that q 6= pred(o,M) by the disjointness property. So then q < pred(o,M)
and by Lemma 38 we would have q 00 < q 0 or {q 00, q 0} r-disjoint (hence q 00kq 0), which
is not possible since q 0 < q 00.

(3) qko. First observe the following fact which is a direct consequence of the definition of
r-nested symbol positions (Definition 30): If p, q ∈ SPos(M), p r-nested with q and
pred(q,M) ∈ SPos(M), then p r-nested with pred(q,M). Second, by Proposition 41
q is r-nested with o and by the first observation q is r-nested with pred(o,M). Then
by Lemma 39 three situations may arise:

(a) either, q 00 < q 0, which is not possible.
(b) or, q 00 r-nested with q 0. Then by definition of r-nested q 0 must be a substitution

position and this together with the fact that N is a pure term yields a contradiction.
(c) or, {q 00, q 0} r-disjoint in N, hence q 00kq 0 and we arrive at a contradiction.

The assertion that if p is not inside the body of a substitution, then s is the unique corre-
spondent of r, follows from Corollary 37. �

B.5. Ancestors of non-substitution positions (Section 4.3)

We recall from Section 2 that if s, r are redexes with source M, then we say s nests r,
written s < r , if the position of s is a prefix of the position of r in M; if neither s nests r nor
r nests s, then they are said to be disjoint in M and we write skr .
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Lemma 43 (Ancestor of non-substitution position). Let p, q ∈ SPos(M) with p a non-
substitution symbol position, supposeM u→RES

r
N , and p[[u]]p0, q[[u]]q 0, and q 0 < p0. Then

q < p.

Proof. Note that the condition that p be a non-substitution symbol is required as the fol-
lowing example illustrates: (kP)[k1 · id]→Lamk(P [1 · ((k1 · id) ◦ ↑)]), wherep = 2.1 and
q = 1 (hence q 0 = e and p0 = 1.2.2.1.1).

Let us verify that q < p is the only possible situation. Note that by Lemma 36 (descen-
dants of a r-disjoint set) it must be the case that p 6= q. So three further situations are
possible.
• pkq. Let us consider three further subcases. Since they are exhaustive and none of them

are possible we arrive at a contradiction.
(1) {p, q} is a r-disjoint set in M. Then by Lemma 36 we must have that {p0, q 0} is a

r-disjoint set in N, which is not possible since q 0 < p0.
(2) p is r-nested with q in M. We reach a contradiction by Lemma 39.
(3) q is r-nested with p in M. We reach a contradiction since if q is r-nested with p in

M then p must be a substitution position.
• p < q. By Lemma 38 it follows that either p0 < q 0 or {p0, q 0} is a r-disjoint set in N.

Neither case is possible since q 0 < p0.
• q < p. By Lemma 38 it follows that q 0 < p0. Note that {p0, q 0} r-disjoint in N is not

possible.
Note that the condition that p be a non-substitution symbol is required as the following
example illustrates: (kP)[k1 · id]→Lamk(P [1 · ((k1 · id) ◦ ↑)]), where p = 2.1 and q = 1
(hence q 0 = e and p0 = 1.2.2.1.1).

This result may be extended to finite derivations in RES
r by noting that the unique r

descendant of a non-substitution symbol position is once again a non-substitution symbol
position. �

B.6. Lévy-equivalent derivations project to Lévy-equivalent derivations (Section 4.4)

We recall from Section 2 that if s, r are redexes with source M, then we say s nests
r, written s < r , if the position of s is a prefix of the position of r in M; if neither s
nests r nor r nests s, then they are said to be disjoint in M and we write skr . Before
proving the main result, we prove that non-overlapping redexes have non-overlapping
correspondents.

Lemma 44 (Correspondents of r-nested and nested redexes). Let RES
r be an implementa-

tion of an ERSdb R and r, u be RES redexes in M. Let / : M�rN , r[[/]]r 0, u[[/]]u0. If r is
r-nested with u in M or r nests u in M:
(1) either, r 0 nests u0,
(2) or, r 0 is disjoint with u0.

Proof. We shall consider the case in which r is r-nested with u in M; the other one may be
dealt with similarly.
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Fig. B.3. Non-overlapping redexes may not have overlapping correspondents.

Let p (resp. q) be the position of the head symbol of r (resp. u) in M. Suppose p[[/]]p0
and q[[/]]q 0. By Lemma 39 (as extended to the many step rewriting relation) either p0 < q 0,
or {p0, q 0} is a r-disjoint set in N, or p0 is r-nested with q 0 in N. Since N is a r-normal form,
the last case is not possible. If {p0, q 0} is a r-disjoint set in N, then r 0 and u0 are disjoint
and we are done. Otherwise, suppose p0 < q 0. We are left to verify that r 0 and u0 do not
overlap.

Suppose that u0 overlaps r 0, i.e., there is a position o0 in the pattern of r 0 such that o0 is
also a position in the pattern of u0. Then we have p0 < q 06o0, as Fig. B.3 illustrates. Since
r[[/]]r 0 there must be a position o1 in the pattern of r such that o1[[/]]o0. Likewise, there
must be a position o2 in the pattern of u such that o2[[/]]o0. But this contradicts the fact that
the ancestor relation on function and binder symbols induced by r rewriting is a (partial)
function. Therefore, r 0 nests u0. �

Lemma 45. Let v and / be RES
r derivations. If v⇒/ then r(v)≡r(/).

Proof. Let v : M r→ N1
u0→ N for {r, u}RES

r redexes in M such that r does not nest u, and
u0 is the (unique) r residual of u. It suffices to show that the claim holds for the following
two cases:
• Case 1: if v�/ for / = u; r 0, then r(v)≡r(/), and
• Case 2: if vB/ for / = u;/0, then r(v)≡r(/).
Our analysis depends on whether r and u are r or RES redexes in M and shall distinguish
cases 1 and 2 as needed.
• In either case, if r and u are r redexes then the result holds trivially by completeness of

r and reflexiveness of ≡: er(M)≡er(M).
• Suppose u is a r redex and r a RES redex (the viceversa case is analogous). Then

r(v) : r(M)�Rr(N1) = r(N) and r(/) : r(M) = r(N2)�Rr(N 0).
By parametricity of r the correspondents of r in r(N2) are the same as those in r(M).
Furthermore, the Correspondence lemma together with Lemma 36 on descendants of a
r-disjoint set of symbol positions determine that any two developments of the correspon-
dents of r and r 0, respectively, shall yield equivalent derivations modulo '.
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• Suppose both u and r are RES redexes in M. Here we distinguish the two subcases:
◦ Reversible permutation (Case 1). Suppose {r, u} are disjoint redexes in M. Then if

the correspondents of {r, u} via r are disjoint in r(M) we may simply develop them
and obtain equivalent derivations modulo ', as above. Otherwise, by Lemma 36 on
descendants of a r-disjoint set of positions we may assume that r is r-nested with u.

Let S = {r1, . . . , rn} be the set of (pairwise disjoint by Lemma 36) correspondents
of r in r(M). Then by Lemma 44 each correspondent u0 of u is either disjoint with
all redexes in S or is nested by some (one) redex in S. Finally, note that the set of
correspondents of u in r(M) are pairwise disjoint too by Lemma 36.

Thus we may construct the standardisation r(v)⇐r(/), where r(v) rewrites all ris
in some order and then rewrites all the correspondents of u in some order, and r(/)
rewrites all correspondents of u in someorder, and then all the (unique) correspondents
of the ris in some order.
◦ Irreversible permutation (Case 2). Suppose u nests r. Let S = {u1, . . . , un} be the set

of (disjoint by Lemma 36) correspondents of u in r(M). Then by Lemma 44 each
correspondent of r in r(M) is either disjoint with all redexes in S or is nested by some
(one) redex in S. Finally, note that the set of correspondents of r in r(M) is pairwise
disjoint too.

Thus we may construct the standardisation r(v)⇒r(/), where r(v) rewrites all
the correspondents of r in some order and then rewrites all the (unique correspondents
of the) uis in some order, and r(/) rewrites all the uis in some order and then all the
(correspondents of) r in some order. �
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