

S. Auer, O. Diaz, and G.A. Papadopoulos (Eds.): ICWE 2011, LNCS 6757, pp. 198–213, 2011.
© Springer-Verlag Berlin Heidelberg 2011

A Framework for Concern-Sensitive, Client-Side
Adaptation

Sergio Firmenich1,2, Marco Winckler3, Gustavo Rossi1,2, and Silvia Gordillo1,4

1 LIFIA, Facultad de Informática,
2 Universidad Nacional de La Plata and Conicet Argentina

{sergio.firmenich,gordillo,gustavo}@lifia.info.unlp.edu.ar
3 IRIT, Université Paul Sabatier, France

winckler@irit.fr
4 CiCPBA

Abstract. Currently the Web is a platform for performing complex tasks which
involve dealing with different Web applications. However, users still have to
face these tasks in a handcrafted way. While building “opportunistic” service-
based software, such as mashups, can be a solution for combining data and
information from different providers, many times this approach might have
limitations. In this paper we present a novel approach which combines concern-
sensitive application adaptation with user-collected data to improve the user ex-
perience while performing a task. We have developed some simple though
powerful tools for applying this approach to some typical tasks such as trip
planning. We illustrate the paper with simple though realistic examples and
compare our work with others in the same field.

1 Introduction

As wisely pointed out in [6], one of the most interesting facets of Web evolution is the
kind of end-users interaction with Web contents. At first, users could only browse
through contents provided by Web sites. Later, users could actively contribute with
content by using tools (e.g. CMS, wikis) embedded into these sites. More recently
different technologies provide users with tools allowing them to change the way Web
content was presented. For example, using visual Mashups [5, 14], users can compose
content hosted by diverse Web sites and they can run Greasemonkey scripts [9] to
change third part Web applications by adding content and/or controls (e.g. highlight
search results in Amazon.com which refer to Kindle).

These tools built under the concept of Web augmentation [2] extend what user can
do with Web contents, but they provided limited support to tasks that require naviga-
tion on multiple Web sites. For example, a user who is using the Web for planning a
holiday trip to Paris might ultimately visit several sites such as expedia.com for
flights, booking.com for hotels, wikipedia.org for general information about the city
and parisinfo.fr for points of interest, current events or expositions in Paris. From the
users’ point of view, the navigation of all these sites is part of the same task. The
existing augmentation techniques are of little help in this case. For example, Grease-
Monkey scripts can adapt the content on a specific Web site but it will require much

 A Framework for Concern-Sensitive, Client-Side Adaptation 199

effort to make it generic enough to integrate information provided by different appli-
cations. Mashups, meanwhile, can be used to integrate content from several Web
sites; however, a Mashup for expedia.com will not necessarily integrate information
from other users’ preferred Web sites (e.g. airfrance.fr, venere.com...). If these sites
provide public APIs, Mashups can be extended, but it does not prevent users to learn
how to do it beforehand. Quite often, users’ tasks are associated with opportunistic
navigation on different Web sites, which is difficult to predict [12]. In this context,
effective Web augmentation should overcome two main barriers: i) to take into ac-
count different applications which are visited by users (either through explicit naviga-
tion or just opening a new browser’s window with the corresponding URL); and ii) to
adapt the unknown target Web sites, considering that the user might need different
kind of adaptations at different sites.

This paper proposes a framework for creating flexible, light-weight and effective
adaptations to support users’ tasks during the navigation of diverse Web applications.
Our goal is to support users’ tasks by keeping his actual concern (and related data)
persistent through applications. For example, allowing that dates used on expedia.com
for booking a flight could be reused as input for booking.com while booking hotels in
the same period. Another example of adaptation that illustrate our approach is the
inclusion of new links allowing users to easily navigate from parisinfo.fr to related
articles at wikipedia.com whenever he needs further explanation about a topic.

In a previous work [8], we showed how to profit from the knowledge of the current
user’s concern to improve navigation in Web applications, by enriching the target
page with information or links which are useful in that specific concern. In this paper,
we push further this approach to allow adaptations that go beyond a single applica-
tion’s boundary. Moreover, we present a framework and a set of tools which allow
simplifying the process of concern-sensitive Web augmentation, reducing the pro-
gramming burden, and therefore allowing end-users to configure their own adapta-
tions even when they are complex as in the example above.

This paper is organized as follows: in section 2 we provide an overview of related
work. The framework is fully described in section 3. Section 4 presents tools built
upon the framework. Section 5 presents how we have validated our approach with
end-users. Finally, section 6 present conclusions and future work.

2 Related Work

The field of Web applications adaptation is broad; therefore, for the sake of concise-
ness we will concentrate on those research works which are close to our intent. The
interested reader can find more material on the general subject in [4]. As stated in the
introduction we can identify two coarse-grained approaches for end-user development
in Web applications: i) mashing up contents or services in a new application and ii)
adapting the augmented application, generally by running adaptation scripts in the
client side.

Mashups are an interesting alternative for final users to combine existing resources
and services in a new specialized application. Visual and intuitive tools such as [5,
14] simplify the development of these applications. Since most Web applications do
not provide Web services to access their functionality or information, [10] proposes a

200 S. Firmenich et al.

novel approach to integrate contents of third party applications by describing and
extracting these contents at the client side and to use these contents later by generat-
ing virtual Web services that allow accessing them.

The second alternative to build support for users tasks is Web augmentation [2],
where the target application is modified (adapted) instead of “integrated” in a new
one. This approach is very popular since it is an excellent vehicle for crowdsourcing.
Many popular Web applications such as Gmail have incorporated some of these user-
programmed adaptations into their applications, like the mail delete button (See
http://userscripts.org/scripts/show/1345). The most popular tool to support Web aug-
mentation is GreaseMonkey [9], whose scripts are written in JavaScript. The problem
with these scripts is their dependence on the DOM; if the DOM changes the script can
stop working. In [6] the authors propose a way to make GreaseMonkey scripts more
robust, by using a conceptual layer (provided by the Web application developer) over
the DOM. In [7] the authors extend the idea to allow scripts developers to write their
own conceptual abstractions to cut the dependency with unknown developers; in this
way, when the DOM changes, the maintenance is easier because only the matching
between the concepts and the DOM need to be redefined.

While we share the philosophy behind these works, we believe that it is necessary
to go a step further in the kind of supported adaptations. In [8] we showed how to use
the actual user concern (expressed in his navigational history) as an additional pa-
rameter to adapt the target application. By using the scripting interface we managed to
make the process more modular, and by defining adaptations for application families
(e.g. social networks) we improved the reuse of adaptation scripts. In the following
sections we show how to broaden the approach allowing end users to select which
information can be used to perform the adaptation, therefore improving the support
for his task and providing support for building more complex adaptations.

3 A Framework for Concern-Sensitive Augmentation

For the sake of comprehension we first introduce some basic concepts and back-
ground work; next we make an overview of the approach and of our tool support.

3.1 Background for the Framework

Our framework is based on the concept of concern-sensitive navigation (CSN). We
say that a Web application (or specifically a Web page) is concern-sensitive (CS)
when its contents, operations and outgoing navigation links can change (or adapt) to
follow the actual situation (concern) in which it is accessed [8]. Concern-sensitive
navigation is different from context-aware navigation, where other contextual pa-
rameters (location, time, preferences) are considered. Figure 1 illustrates the differ-
ences between flat and concern-sensitive navigation. Note that there are two kinds of
navigations: Flat navigations (represented with solid arrows) where the target Web
pages show always the same information, without taking into account the source of
navigation; in concern-sensitive navigations (represented with dashed arrows) mean-
while, the target pages adapt or enrich their contents by taking into account what was
the user concern in the previous page.

 A Framework for Concern-Sensitive, Client-Side Adaptation 201

In [8] we have argued that concern-sensitive navigation simplifies the user’s tasks
by providing him sensitive information or options according to his current needs. We
have also introduced an approach to build smart client-side adaptations, implemented
as browsers’ plugins, which allow making specific Web applications aware of the
concern in which they were accessed, changing contents and links in consequence.

Fig. 1. Flat Navigation vs. Concern-Sensitive Navigation

Figure 2 shows an example of concern-sensitive navigation across two applica-
tions: Google Maps (as the source of navigation) and Wikipedia (as the target). The
left-side displays Wikipedia links in the map of Paris; once selected, these links trig-
ger the page at the right-side of Figure 2, augmented with the corresponding map and
a set of links to those Wikipedia articles in the surroundings of the current one.

Fig. 2. Inter-application CSN between Google Maps and Wikipedia

In general, the task of CS adaptation of a page P requires that we: (a) know the ac-
tual user’s navigation concern (i.e. pages previous navigated, e.g. Google maps), (b)
record the set of relevant information from previously visited pages that are needed
for adaptation (e.g. the current map), and (c) have the capacity for enriching P with
contents or links related with (a) and (b) by intervening in P’s DOM.

3.2 The Approach in a Nutshell

The CSN approach works well for application families (e.g. plugins that work
for similar applications which share some features). However, it “only” provides

202 S. Firmenich et al.

end-users with a fixed set of adaptations. We have developed a software framework
which extends the concept of CSN by providing different kinds of users (end-users,
developers, etc) a set of tools to augment Web applications by considering the actual
user concern. Developers can use the framework to implement new adaptation func-
tions, named augmenters. Augmenters are built as generic adaptations featuring behav-
iours such as automatic filling in forms, highlighting text, etc. End-users can benefit of
these augmenters during navigating by “collecting” concern information to be used
when adapting the user interface (See section 3.3.1). By combining augmenters, the
framework also supports scenario engineering for developing customized adaptations
for specific domains such as trip planning (See section 3.3.2). For example a scenario
can be based in the use of the form filling augmenter when the user is navigating among
several Web sites for booking flights and hotels. The same form filling augmenter can
be used to fill forms related to a product search in different e-commerce Web sites, for
example by taking the department (e.g. electronics) and the keyword (e.g. iphone4) used
in amazon.com to complete the form automatically in fnac.fr.

The framework is described at Figure 3 using the pyramid approach [11]. The top
levels are more abstract while lower ones are more detailed. At the top layer, final
users can collect relevant information for their current task or concern by using the
DataCollector tool. Then, when they navigate to other sites they are able to execute
augmenters using this information; in this way they can satisfy volatile requirements
of adaptation (not foreseen by developers). At the middle layer, end users with pro-
gramming skills can extend the framework by developing augmenters and scenarios
as classes inheriting of AbstractAdapter and AbstractScenario, two outstanding
framework hot-spots. The bottom layer shows a more detailed view of the framework
design; a third hot-spot, AbstractComponent abstracts concrete components used in
scenarios; for example we developed a component which offers geo-location informa-
tion; another tool could empower the scenarios by giving them auto fill forms capa-
bilities (e.g. a component that implements carbon [1]).

Fig. 3. Framework structure

 A Framework for Concern-Sensitive, Client-Side Adaptation 203

Framework components act like libraries to be used for developing adaptations.
We briefly outline the main framework components:

• Adaptation Support Layer
o ClientSideAdaptationManager: is the Framework’s core, whose functions are to

coordinate others elements and to serve as communicator with the browser.
o NavigationHistory: is the navigation history object provided by the browser. We

have developed a wrapper on top of it to ease scenarios development.
o ConceptPersistenceManager: is responsible for saving and restoring user data

into the local files system.
o AbstractAdapter and AbstractScenario: are abstract classes from which concrete

augmenters and scenarios, correspondingly, developed by users must inherit.
o AbstractCommponent: is an abstract class used for extending the framework by

developing components to support new capabilities (e.g. geolocation).

• Adaptation Definition Layer
o DOMOperationLibrary: a library that operates with DOM elements; it raises the

level of typical JavaScript sentences easing the development of augmenters.
o EventManager: is the responsible of adding and removing listeners (Adaptation

Definition Layer) of events from the lower layer.
o NavigationHistoryManager: is a wrapper with which scenarios can make queries

about navigation history.
o ConcreteAdapter and ConcreteScenarios: are scripts developed by users with

programming skills. These classes are shown in Figure 3 in order to highlight
their place in the hierarchy. Some concrete augmenters as HighlightAdapter,
WikiLinkConverter, CopyIntoInputAdapter are included in our framework.

• Adaptation Execution Layer
o DataCollector: is the tool to allow users collecting information while navigating.

So far, two concrete DataCollectors have been implemented: one for selecting
plaintext information, and another to handle DOM elements.

o PocketManager: is our tool to allow users to move information among sites.
o AdaptationDispatcher: is the responsible of executing an adaptation under user

demand. It is useful to accomplish volatile requirements of adaptation.

3.3 Extending the Framework

The framework can be extended in two ways: by creating new augmenters (generic
basic adaptations), and by building scenarios (for supporting specific user’s tasks).
Although we do not restrict the kind of adaptations, we fully support the development
of adaptations which take into account the actual user concern. Since many times it is
not enough to be aware of the user's navigation history to fully know his concern,
further information about his current activity is often needed. The example given at
Figure 2, shows how some information is moved from GoogleMaps to Wikipedia. Our
framework offers two kinds of tools to move information among Web sites. The first
one is the DataCollector with which users can select elements from the current Web
page. The elements selected are added into the second tool named Pocket which can

204 S. Firmenich et al.

store either simple plain text or data with some semantic meaning as a concept name.
Once the information is stored into the Pocket, it will remain available for any Web
pages visited later on. Section 4.1 details how users collect information during navi-
gation.

3.3.1 Creating Augmenters with the Framework
The simplest way to extend our Framework is to develop a new augmenter. An aug-
menter is an adaptation component developed by users with programming skills.
Augmenters have two main contributions in our adaptation approach: they provide
tools for satisfying end-users’ volatile requirements for adaptations and they support
the development of sophisticated scenarios built by combining simpler augmenters.

An augmenter can be standalone or be executed with data collected as argument; in
this case this data is assigned by the actor who triggers the augmenter execution (ei-
ther a scenario or the user). For example, an augmenter aimed to highlight elements in
the page, must be able to do it for an element (for example the City instance “Paris”)
or for a collection of elements (for example, all City instances). Therefore augmenters
should be flexible with regard to the user’s needs. Figure 4 shows an augmenter
(WikiLinkConvertion) applied to parisinfo.com with the user coming from wikipe-
dia.com with his PointOfInterest instances (these are strings collected from the Web
pages visited and conceptualized or typed as PointOfInterest) in the Pocket (the float-
ing box showed at right in the Figure). As Figure 4 shows, the augmenter WikiLink-
Convertion is applied to any PointOfInterest occurrence in the page. Note that when
the user right clicks over PointOfInterest, a menu with the available augmenters is
opened and then he chooses “Convert to Wiki Link”, so WikiLinkConvertion is exe-
cuted with all instances of PointOfInterest as parameters.

Fig. 4. Plain text converted into links to add personal navigation

Since augmenters can be applied to different Web pages they must be developed
without a dependence of a particular DOM, as described in [6]. Moreover, when using
the framework, developers must:

• Construct an augmenter as a JavaScript object inheriting from AbstractAdapter,
the hot-spot shown in Figure 3.

• Implement the methods defined as abstract in AbstractAdapter. This is necessary
because the execute() method of AbstractAdapter (a template method) sends mes-
sages to concrete augmenters. Since the method execute() is the starting point of
an augmenter, if a message can not be dispatched, the execution will fail.
The method execute() receives data as parameter which is used to perform the
adaptation.

 A Framework for Concern-Sensitive, Client-Side Adaptation 205

Manipulating the DOM to adapt the page is a responsibility of augmenters. Since
DOM manipulation can be hard for users, the framework provides them with the
DOMOperationLibrary, a component inspired in the most popular JavaScript libraries
like Prototype (see http://www.prototypejs.org/) and jQuery (see http://jquery.com/)
to make DOM manipulation simpler. In this way, target DOM elements (those that are
abstracted by elements from the Pocket) are easily manipulated by operations like
style changes, hiding, removing, or adding content.

Augmenters are executed when a user explicit triggers them or when a scenario is
instantiated (see section 3.3.2). In Figure 5.a, we show a sequence diagram to demon-
strate how the framework chains the execution of augmenters. The object User repre-
sents the real user. First, the user chooses an element from the Pocket and when he
right clicks over it; a menu is opened with all augmenters available. When he selects
one of them, the Pocket sends the dispatch() message to the AdaptationDispatcher
that finally executes the augmenter with the execute() message. Note that when an
augmenter receives the execute message, it sends to itself both the isApplicableTo-
Concept and applyToInstance messages. All augmenters developed by users must
have these methods defined as in the augmenters showed in Figure 5.b

Fig. 5. a. sequence diagram describing user
triggering an augmenter.

Fig. 5. b. class diagram presenting the frame-
work extensions with augmenters and scenarios.

3.3.2 Creating Scenarios with the Framework
Augmenters are useful to perform simple tasks on a site; however, for complex tasks
users perform sets of activities, many times following pre-defined patterns. For exam-
ple, booking flights, and then booking a hotel is a common scenario. In different mo-
ments (and moreover for different users) the Web pages used to do these tasks may
change. However, the information used during the task is similar and the kind of ad-
aptation needed too. For example depart date, arrival date, and a destination are all the
pieces of information needed to perform (in a simplified view) this task in any Web
site of this kind.

A scenario is an event-driven script; it registers listeners for those events in which
it is interested in. These events usually refer to the user activity as when he opens sites
or collects new data. When an event occurs the scenario is loaded and it first checks
that the information it needs is available; if so, the scenario is instantiated. Scenarios
execute adaptations when some conditions (e.g. about the navigational history or

206 S. Firmenich et al.

collected data) are satisfied; to perform adaptations, they trigger augmenters that
change the DOM. A scenario could execute the same augmenter, but with different
arguments as Figure 6 shows. In Figure 6.a a Wikipedia article is adapted in the con-
text of a scenario. The scenario uses the LinkAdditionAdapter (an augmenter similar
to the one described in the previous section) to add a link close to each occurrence of
the target element. In Figure 6.a, the target elements are all instances of the Poin-
tOfInterst concept, and the adaptation is executed automatically when Flickr.com
appears in the navigational history. Figure 6.b shows a similar case, but now since
GoogleMaps is the previously visited Web page, a link to GoogleMaps is added.

Fig. 6. a. Navigation with Flickr concern. Fig. 6. b. Navigation with GoogleMaps
concern.

A scenario is realized in a quite similar way than augmenters (in the sense of being
a JavaScript file) but with some distinct features to register its interest in different
events. The scenario engineer has to respect these constraints:

• Construct the scenario as a JavaScript object inheriting from AbstractScenario, the
hot-spot shown in Figure 3.

• Implement the methods defined as abstract in AbstractScenario. There are methods
that will be executed during initialization when the browser is opened. Note, for ex-
ample, that scenarios can be interested in different events; therefore they must regis-
ter listeners which will be executed in order to instantiate the scenario when the
events happen. The same kind of inversion of control occurs when the framework
sends the loadScenario() message in order to wakeup the scenario.

• Specify which augmenters are necessary to carry out the scenario.
• Specify the set of concepts needed to instantiate the scenario and define them in the

DataCollector tool; thus, when users collect data, the available concepts or types are
those in which the scenarios are interested in (e.g. destination, dates, etc).
A scenario needs to manage more information than an augmenter. In this sense a

Scenario Engineer can use some tools provided by our framework that give him:
• The capability to add listeners to different events which will take place in the user

navigation context. For example a scenario could express interest in a Web page
load (contentLoadedEvent), or even in the instantiation of some particular concept
(cityInstantiatedEvent); this event occurs when the user has added a particular value
typed as City into the Pocket.

• Knowledge about the navigation history.
• Knowledge about concepts and concepts instances stored into the Pocket.

 A Framework for Concern-Sensitive, Client-Side Adaptation 207

Scenarios are not magically executed. A scenario is latent, waiting for the signal
needed to be executed. For example, the destinationInstantiated event could trigger
the scenario if it had registered a listener to be executed when instances of the Desti-
nation concept are created (see an example in section 4.3). To illustrate this, in Figure
7 we show how a scenario is executed when the user opens a Wikipedia article. At the
left of this Figure, we show a sequence diagram for the scenario CSPOILinkAddition,
a concrete scenario for the example of Figure 6. First, the scenario adds itself as the
listener of the contentLoadedEvent. Then, once the content is loaded, the EventMan-
ager object loads all scenarios that are waiting for this event (in the example there is
only one scenario). In the example of Figure 7, CSPOILinkAddition consults the
NavigationHistoryManager to know if the previous node of the history is Google-
Maps and, as it is true, CSPOILinkAddition sends the applyGMLinkConvert message.
The method applyGMLinkConvert gets all instances of the concept PointOfInterest by
sending the message getAllInstances to the Pocket object. After that, it sends the mes-
sage execute to the augmenter (LinkAdditionAdapter) with the current document (it is
the DOM target), all the PointOfInterest instances and a dictionary with parameters
that the augmenter needs.

Fig. 7. Sequence diagram for a scenario execution and code of the augmenter applied

The right side of Figure 7 shows an excerpt of the augmenter code used in this sce-
nario. The method execute() of the AbstractAdapter is first shown. This is a template
method that sends both isApplicableToConcept and applyToInstance messages, which
are defined in LinkAdditionAdapter. This augmenter has others method like getFunc-
tion that are not shown by the sake of conciseness.

4 Tool Support

The framework was implemented as a Firefox extension that provides all components
shown in the pyramid of Figure 3, plus other components such as some defaults aug-
menters. Hereafter, we illustrate the use of augmenters and scenarios by end-users.

4.1 Data Collector

In our approach, end-users execute the adaptations. Although this can be made both
explicitly (when users execute some augmenter) or implicitly (when a scenario is

208 S. Firmenich et al.

instantiated), some information is always needed since we aim to improve the user
experience by adapting the Web pages he navigates according to the needs of his
current concern. In this way users are empowered with tools to (when necessary)
collect meaningful information while they visit Web sites. This information can be
collected “automatically” when the user is instantiating a previously developed sce-
nario, and the underlying tool is aware of the semantics of the pages’ data, or might
be collected “by hand” using tools provided by the framework (concrete DataCollec-
tors). A DataCollector allows users to define untyped data (in order to quickly add
information into the Pocket for volatile adaptations), and typed data (usually to add
information for scenarios). The information collected is later available into the Pocket
and it can be used to perform adaptations. In Figure 8.a the user stores different in-
formation elements, collected with the PlaintextCollector component, into the Pocket.
PlaintextCollector has two options, “Put into the Pocket” and “Put into the Pocket as
volatile data” as it is shown. In this figure he collects several points of interest that he
would like to visit (from the Wikipedia article) and keeps them in the pocket. Since he
wants to type them as “PointOfInterest” he uses the “Put into Pocket” option which
opens the dialog.

4.2 Description of Default Augmenters in the Framework

Currently, some augmenters are provided by default with the framework. Some re-
markable ones follow:

• Highlight: it highlights the occurrences of the data received by parameter.
• CopyIntoInput: it pastes the value received as parameter into an input form field.

Once the augmenter is executed, it adds a listener to the click event which is re-
moved after the first time in which the target is an input.

• WikiLinkConvertion: it creates links to wikipedia.com pages using as input any
occurrences values received as a parameter. For example if the parameter is
“Paris” then the link would be to the Wikipedia article about Paris.

The augmenters Highlight and WikiLinkConvertion can perform adaptations for a
single value (e.g. “Paris”) or for a collection of values, instances of a concept (e.g.
City). The augmenter CopyIntoInput can only be executed with a single value.

Fig. 8. a. Information extraction from Wikipedia Fig. 8. b. Resulting adaptation

As an example we show how the CopyIntoInput augmenter is used in Figure 8.b.
Here the data collected before as instances of “PointOfInterest” is available into the

 A Framework for Concern-Sensitive, Client-Side Adaptation 209

Pocket (the floating box at the left in Figure 8.b) when the user opens Google Maps.
In order to use one of these instances the user right clicks over the target point of
interest to open the contextual menu with the augmenters available for the current
site. Once he has chosen the CopyIntoInput augmenter, the AdaptationDispatcher
triggers it. Since the augmenters provided as defaults are generic, they will always
appear in the contextual menu. However which augmenters are available depend on
the current site because augmenters can be generic enough to be applied to any page
(e.g. highlight) or specific for a single site (e.g. search the target value as a location in
GoogleMaps).

4.3 Scenario Instantiation by End-Users

A scenario waits for an event to be loaded; when the event occurs and all conditions
are satisfied, it is instantiated. Figure 9 shows the initial steps that a user would possi-
bly perform to satisfy the needs previously described at section 1. In Figure 9.a, while
he books (or just explore) the flights to Paris, he collects some data which will be
useful in the following steps. When users collect data they can give them a conceptual
meaning, by assigning a type to the selected value. In the example, the types used are
departDate, arriveDate and destination. When some data is collected the correspond-
ing event is triggered (e.g. destinationInstantiated). In Figure 9.a we show how the
scenario shows a popup message to offer users to use the information collected for
booking hotels; this message is showed after the dates and destination were collected.
Figure 9.b shows how the form field destination is filled in with the information pre-
viously collected. This scenario is executed once the user reaches the page book-
ing.com (either by following a link or entering a new URL). Notice that the scenario
can be instantiated, because the information needed is available into the Pocket. For
form filling cases, the adaptation could be automatic when the adaptation is developed
particularly for an application (in this case for Booking.com) or even by using other
tools like carbon [1] in order to automatically fill forms in any Web site. This use of
concern information improves the user experience by allowing him to “transport”
critical data among Web applications and use these data to adapt them.

Fig 9. a. Information extraction from expe-
dia.com

Fig 9. b. Form filling in booking.com with
information collected in previous Web sites

210 S. Firmenich et al.

Fig. 10. a. Information in pocket
used into a GoogleMaps scenario

Fig. 10. b. Information in pocket used into a Flickr
scenario

For example in Figure 10.a we show how, when the user arrives to Google Maps,
the information in the pocket can be used automatically to create Google Maps links
in the left bar. On the other hand, the same information can be used in another sce-
nario if the user opens Flickr.com as shown in Figure 10.b where the points of interest
are offered as Flickr’s tags. In this adaptation, the scenario engineer has used a
framework tool (the floating box is a PopUpMessage) for a message suggesting a
simple adaptation.

5 Evaluation of the Approach

To validate our approach and actual usage of the tools, we have conducted a usability
study with end-users. The goal of this evaluation was to investigate if client-side ad-
aptation is usable for solving common tasks whilst navigating the web. The adapta-
tions investigated in this study explored the following framework components: High-
light for changing color of important information, WikiLinkConvertion for creating
new links to Wikipedia, DataCollector for recording information for later usage, and
CopyIntoInput for automating filling in forms with dates previously collected by the
user.

The study was run with 11 participants (6 males and 5 females, aged from 23 to 46
years old). All participants were experienced Web users (i.e. > 5 years using the
Web) that spend a significant time browsing the Web as part of their daily activities
(in average 4,1 hours of navigation on the Web per day, SD=2,4 h). We have focused
on experienced users because we assume that they are more likely to formulate spe-
cial needs for adapting Web pages than novices with the Web. Participants were
asked to fill out a pre-questionnaire; following they were introduced to the system and
asked to conduct five tasks at their workplace, followed by a final interview and a
System Usability Scale questionnaire (i.e. SUS, [3]). The SUS has been used as a
complement to user observation, as it is widely used in comparative usability assess-
ments in industry. The five tasks were related to investigate the working hypothesis,
on how usable our approach is for solving common tasks whilst navigating Web sites.
All tasks were related to the following problem: the goal is to plan a trip to Paris to
visit an exposition, which includes collecting information such as dates and location

 A Framework for Concern-Sensitive, Client-Side Adaptation 211

of the exposition and booking a hotel; for that purpose users should visit different
Web sites and use our tools to perform client-side adaption on the page visited. In
average, users spent 37 minutes to complete the test. Usability was measure in terms
of time to accomplish tasks, number of tasks performed successfully, and user satis-
faction (via a questionnaire).

The results show that, generally, participants appreciate the concept of client-side
adaptation and the tool support. In the pre-questionnaire, when asked if they would
like to modify the Web pages they visit, 2 of 11 participants said no because “it could
be very time consuming”. Notwithstanding, all participants said that our tools for
client-side adaptation are useful and that they are willing to use them in the future.
Adaption across different Web site was described as “natural” by 7 participants and a
“real need” by 5 of them. The component DataCollector was the most successfully
applied by all participants; it was considered very useful and a “good substitute for
post-its”. However, success rate varied according to the augmenter employed: Copy-
IntoInput was considered very easy to use by participants and employed successfully
by 10 of them (90,9%). The augmenter highlight (72% of success rate, 8 participants)
was considered easy to use but 5 users blamed it because they could only apply it to
the exact word previously selected, and users cannot choose the color and/or the po-
lice used to highlight different pieces of information. Participants were very im-
pressed by the augmenter allowing links to Wikipedia from concepts (the WikiLink-
Convertion); despite the fact that it was considered extremely useful, the success rate
with this augmenter was the lower in the study, 18%, due to two main issues: the fact
that links can only be created from typed information and lack of visual feedback (i.e.
an icon) indicating where that action was possible. Nine participants (81,8%) said that
using the augmenters improved their performance with tasks, one user said it could be
faster without the augmenters and the other one didn’t see any difference. This user
perception has been confirmed by the time recorded during task execution using aug-
menters WikiLinkConvertion and CopyIntoInput.

This study also revealed some usability problems that motivate further develop-
ment in the tool. For example, users requested to have a visual indicator allowing
them to distinguish where augmenters have been applied (ex. links on the Web site x
links created with the augmenter WikiLinkConvertion). Users intuitively tried to acti-
vate some of the augmenters using Drag & Drop which is an indicator for further
research of more natural interaction with augmenters. The most frequent suggestions
for new augmenters include “automatic filling forms”, “create links to other Web sites
than Wikipedia”, and “automatic highlight at the Web page of information previously
collected”. This positive analysis is confirmed by a SUS score of 84,9 points (SD =
5,5), which is a good indicator of general usability of the system.

6 Conclusions and Future Work

In this work we have presented a novel approach for client-side adaptation which
takes into account the tasks that users perform while navigating the Web. We aim to
support complex concern sensitive adaptations in the client-side in order to improve
the users’ experience. We have developed a support framework which can be
extended with two kinds of adaptations: atomic augmenters (realizing simple adapta-
tion actions) and scenarios which comprise the use of different augmenters on some-
what predefined Web pages. These adaptations can be executed either manually, e.g.

212 S. Firmenich et al.

when the user triggers an adaptation action explicitly, or automatically when some
scenario is instantiated. Being built on solid engineering principles, the framework
can be extended and/or used both by end-users or developers (e.g. by developing
JavaScript code). In comparison with the usual client-side adaptations, we provide a
flexible mechanism to integrate information while users navigate the web, instead of
“just” providing tools to statically adapt Web sites. Our approach is based in two main
types of developers interventions: the first one (augmenters) supports generic scripts
with specific adaptation goals to be applied over any Web page, and the second one
(scenarios) can be used when the goal is to support users tasks among several Web
sites. We have performed a small but meaningful evaluation with end-users with ex-
cellent results.

We are working in several directions to improve the approach. The first one is to
improve the development process and tools for developers using the framework. Al-
though we have defined guidelines for both augmenters and scenarios development,
these must still be written in a quite similar way to bare JavaScript programming. Our
goal is to raise the abstraction level for developers by creating a domain specific lan-
guage that will simplify the specification of both augmenters and scenarios; this will
let users without JavaScript knowledge to develop adaptations easily.

Besides that, and as indicated in Section 5 we have detected usability problems in
some of our tools when users are trying to adapt the Web sites or even while they are
collecting data. In this sense we are developing not only new tools but also tuning the
existing ones and performing new evaluations with them.

References

1. Araujo, S., Gao, Q., Leonardi, E., Houben, G.-J.: Carbon: Domain-Independent Automatic
Web Form Filling. In: Benatallah, B., Casati, F., Kappel, G., Rossi, G. (eds.) ICWE 2010.
LNCS, vol. 6189, pp. 292–306. Springer, Heidelberg (2010)

2. Bouvin, N.O.: Unifying Strategies for Web Augmentation. In: Proc. of the 10th ACM
Conference on Hypertext and Hypermedia (1999)

3. Brooke, J.: SUS: a ‘quick and dirty’ usability scale. In: Usability Evaluation in Industry.
Taylor and Francis, London (1996)

4. Brusilovsky, P.: Adaptive Navigation Support. In: Brusilovsky, P., Kobsa, A., Nejdl, W.
(eds.) Adaptive Web 2007. LNCS, vol. 4321, pp. 263–290. Springer, Heidelberg (2007)

5. Daniel, F., Casati, F., Soi, S., Fox, J., Zancarli, D., Shan, M.: Hosted Universal Integration
on the Web: The mashArt Platform. In: Baresi, L., Chi, C.-H., Suzuki, J. (eds.) ICSOC-
ServiceWave 2009. LNCS, vol. 5900, pp. 647–648. Springer, Heidelberg (2009)

6. Diaz, O., Arellano, C., Iturrioz, J.: Layman tuning of websites: facing change resilience.
In: Proc. of WWW2008 Conference, Beijing, pp. 1127–1128 (2008)

7. Díaz, O., Arellano, C., Iturrioz, J.: Interfaces for Scripting: Making Greasemonkey Scripts
Resilient to Website Upgrades. In: Benatallah, B., Casati, F., Kappel, G., Rossi, G. (eds.)
ICWE 2010. LNCS, vol. 6189, pp. 233–247. Springer, Heidelberg (2010)

8. Firmenich, S., Rossi, G., Urbieta, M., Gordillo, S., Challiol, C., Nanard, J., Nanard, M.,
Araujo, J.: Engineering Concern-Sensitive Navigation Structures. Concepts, tools and ex-
amples. In: JWE 2010, pp. 157–185 (2010)

9. Greasemonkey,
http://www.greasespot.net/ (last visit on February 11, 2011)

 A Framework for Concern-Sensitive, Client-Side Adaptation 213

10. Han, H., Tokuda, T.: A Method for Integration of Web Applications Based on Information
Extraction. In: Proceeding of ICWE, New York, pp. 189–195. Springer, Heidelberg (2008)

11. Meusel, M., Czarnecki, K., Köpf, W.: A Model for Structuring User Documentation of
Object-Oriented Frameworks Using Patterns and Hypertext. In: Proceedings of ECOOP
1997, pp. 496–510 (1997)

12. Miller, C.S., Remington, R.W.: Modeling an Opportunistic Strategy for Information Navi-
gation. In: Proc. Of 23rd Conference of the Cognitive Science Society, 2001, pp. 639–644
(2001)

13. Yu, J., Benatallah, B., Casati, F., Daniel, F.: Understanding Mashup Development. IEEE
Internet Computing 12, 44–52 (2008)

14. Wong, J., Hong, J.I.: Making Mashups wit Marmite: Towards End-User Programming for
the Web. ACM, City (2007)

	A Framework for Concern-Sensitive, Client-Side Adaptation
	Introduction
	Related Work
	A Framework for Concern-Sensitive Augmentation
	Background for the Framework
	The Approach in a Nutshell
	Extending the Framework

	Tool Support
	Data Collector
	Description of Default Augmenters in the Framework
	Scenario Instantiation by End-Users

	Evaluation of the Approach
	Conclusions and Future Work
	References

