
Annals of Pure and Applied Logic 163 (2012) 935–950

Contents lists available at SciVerse ScienceDirect

Annals of Pure and Applied Logic

journal homepage: www.elsevier.com/locate/apal

Justification Logic as a foundation for certifying mobile computation✩

Eduardo Bonelli a,b,∗, Federico Feller c
a Depto. de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña, 352 Bernal - B1876BXD - Bs. As., Argentina
b CONICET, Argentina
c LIFIA, Facultad de Informática, Universidad Nacional de La Plata, Argentina

a r t i c l e i n f o

Article history:
Available online 19 October 2011

MSC:
68N18
03B40

Keywords:
Curry–de Bruijn–Howard isomorphism
Typed lambda calculus
Mobile computation
Justification Logic

a b s t r a c t

We explore an intuitionistic fragment of Artëmov’s Justification Logic as a type system for a
programming language for mobile units. Such units consist of both a code and a certificate
component. Our language, the Certifying Mobile Calculus, caters for code and certificate
development in a unified theory. In the same way that mobile code is constructed out of
code components and extant type systems track local resource usage to ensure the mobile
nature of these components, our system additionally ensures correct certificate construction
out of certificate components. We present proofs of type safety and strong normalization
for a run-time system based on an abstract machine.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

We explore an intuitionistic fragment (IJL) of Artëmov’s Justification Logic (JL) as a type system for a programming
language for mobile units. This language caters for both code and certificate development in a unified theory. JL may be
regarded as refinement of modal logic S4 in which ✷A is replaced by [s]A, for s a proof term expression, and is read: ‘‘s is a
proof of A’’. It is sound and complete w.r.t. provability in PA (see [2] for a precise statement) and realizes all theorems of S4.
It therefore provides an answer to the (long-standing) problem of associating an exact provability semantics to S4 [2]. JL is
purported to have important applications not only in logic but also in Computer Science [5]. This work may be regarded as
a small step in exploring the applications of JL in programming languages and type theory.

Modal necessity ✷A may be read as the type of programs that compute values of type A and that do not depend on
local resources [15,19,17] or resources not available at the current stage of computation [22,23,12]. The former reading
refers to mobile computation (✷A as the type of mobile code that computes values of type A) while the latter to staged
computation (✷A as the type of code that generates, at run-time, a program for computing a value of type A). See Section 8 for
further references. We introduce the Certifying Mobile Calculus or λCert

✷ by taking a mobile computation interpretation of IJL.
IJL’s mechanism for internalizing its own derivations provides a natural setting for code certification. A contribution of our
approach is that, in the same way that mobile code is constructed out of code components and extant type systems track
local resource usage to ensure the mobile nature of these components, our system additionally ensures correct certificate
construction out of certificate components. A mobile unit is an expression of the form boxs M consisting of both a code part
M and a certificate part s. The syntax of code and certificates is described in detail in Section 3. The certificate is an encoding
of a type derivation. This expression shall be well-typed only in the case where s encodes a typing derivation for M . Since

✩ Work partially supported by Instituto Tecnológico de Buenos Aires.
∗ Corresponding author. Tel.: +54 11 4365 7100x4310.

E-mail addresses: ebonelli@unq.edu.ar (E. Bonelli), federico.feller@gmail.com (F. Feller).

0168-0072/$ – see front matter© 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.apal.2011.09.007

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/237112053?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.apal.2011.09.007
http://www.elsevier.com/locate/apal
http://www.elsevier.com/locate/apal
mailto:ebonelli@unq.edu.ar
mailto:federico.feller@gmail.com
http://dx.doi.org/10.1016/j.apal.2011.09.007

936 E. Bonelli, F. Feller / Annals of Pure and Applied Logic 163 (2012) 935–950

composite mobile units may be constructed out of simpler mobile units, our type system also guarantees that certificates
for the former are correctly constructed out of certificates for the latter. See Section 7 for examples.

λCert
✷ arises from a Curry–de Bruijn–Howard interpretation of a Natural Deduction presentation of IJL based on a

judgemental analysis of Justification Logic given in [6]. Propositions and proofs of IJL correspond to types and terms of
λCert

✷ . Regarding semantics, we provide an operational reading of expressions encoding proofs in this system in terms of
global computation. An abstractmachine is introduced that computes overmultipleworlds. Apart from the standard lambda
calculus expressions new expressions for constructingmobile units and for computing in remote worlds are introduced.We
state and prove type safety of a type system for λCert

✷ w.r.t. its operational semantics. Also, we prove strong normalization.
This paper is organized as follows. Section 2 briefly recapitulates ILPnd [6], a Natural Deduction presentation of IJL. We

then introduce a term assignment for ILPnd and discuss differences with the term assignment in [6] including the splitting
of validity variables [6] into code and certificate variables. Section 4 introduces the run-time system of λCert

✷ , the abstract
machine for execution ofλCert

✷ programs. Section5 analyses type safety and Section6 strongnormalization. Section7presents
some examples. References to related work follows. Finally, we conclude and suggest further directions for research.

This work extends [8] by including a description of ILPnd [6] the Natural Deduction formulation of IJL, due to the first
author and S. Artëmov, on which this work is based. It includes proofs of relevant results and corrects a bug in scheme (7)
of the machine reduction semantics of λCert

✷ together with updated proofs of subject reduction and strong normalization.

2. Natural deduction for IJL

As mentioned, JL [3,4] is a refinement of modal logic S4 in which ✷A is replaced by [s]A. Here s is an expression
representing a Hilbert style proof and is called a proof polynomial. In the minimal propositional logic fragment of JLwithout
plus, IJL, proof polynomials are constructed from proof variables and constants using two operations: application ‘‘·’’ and
proof-checker ‘‘!’’. The usual propositional connectives are augmented by a new one: given a proof polynomial s and a
proposition A build [s]A. The intended reading is: ‘‘s is a proof of A’’. The axioms and inference schemes of JL are:

A0. Axiom schemes of minimal logic in the language of JL
A1. [s]A ⊃ A ‘‘verification’’
A2. [s](A ⊃ B) ⊃ ([t]A ⊃ [s · t]B) ‘‘application’’
A3. [s]A ⊃ [!s][s]A ‘‘proof checker’’
R1. Γ ✄ A ⊃ B and Γ ✄ A implies Γ ✄ B ‘‘modus ponens’’
R2. IfA is an axiomA0–A3, and c is a proof constant, then

✄[c]A
‘‘necessitation’’

For verification one reads:‘‘if s is a proof of A, then A holds’’. As regards the proof polynomials the standard interpretation
is as follows. For application one reads: ‘‘if s is a proof of A ⊃ B and t is a proof of A, then s · t is a proof of B’’. Thus ‘‘·’’ represents
composition of proofs. For proof checking one reads: ‘‘if s is a proof of A, then !s is a proof of the sentence ‘s is a proof of A’ ’’.
Thus !s is seen as a computation that verifies [s]A.

In previous work [6] a Natural Deduction presentation of IJL (ILPnd) is introduced by considering two sets of hypothesis,
truth and validity hypothesis, and analysing the meaning of the following Hypothetical Judgement with Explicit Evidence:

∆; Γ ✄ A | s

The syntactic categories involved in this judgement are defined as follows:

Proof Term s, t ::= a | v | s · t | λa : A.s | !s | letc s be v : A in t
Proposition A, B ::= P | A ⊃ B | [s]A
Truth Context Γ ::= · | Γ , a : A
Validity Context ∆ ::= · | ∆, v : A

A brief description of the judgement follows. ∆ is a sequence of validity assumptions, Γ a sequence of truth assumptions, A is
a proposition and s is a proof term. A validity assumption is written v : Awhere v ranges over a given infinite set of validity
variables and states that A is true and moreover that its truth does not depend on other truth assumptions (although it may
depend on validity assumptions). Likewise, a truth assumption is written a : A where a ranges over a given infinite set of
truth variables and states that A is true. If ∆ = v1 : A1, . . . , vn : An and Γ = a1 : B1, . . . , am : Bm, then in ∆; Γ we assume:
(1) all vi, i ∈ 1..n, to be distinct, (2) all aj, j ∈ 1..m, to be distinct, (3) no vi, i ∈ 1..n, should occur in v1 : A1, . . . , vi−1 :

Ai−1, vi+1 : Ai+1, . . . , vn : An; Γ and (4) no aj, j ∈ 1..m, should occur in ∆; a1 : B1, . . . , aj−1 : Bj−1, aj+1 : Bj+1, . . . , am : Bm.
We write x to denote either of these variables. The judgement is read as: ‘‘A is true with evidence s under validity assumptions
∆ and truth assumptions Γ ’’. Note that s is a constituent of this judgement without whose intended reading is not possible.
The meaning of this judgement is given by axiom and inference schemes (Fig. 1). We say a judgement is derivable if it has a
derivation using these schemes.

All free occurrences of a (resp. v) in s are bound in λa : A.s (resp. letc t be v : A in s). A proposition is either a variable P ,
an implication A ⊃ B or a validity proposition [s]A. We write ‘‘·’’ for empty contexts and s{x/t} for the result of substituting
all free occurrences of x in s by t (bound variables are renamed whenever necessary); likewise for A{x/t}.

E. Bonelli, F. Feller / Annals of Pure and Applied Logic 163 (2012) 935–950 937

Minimal Propositional Logic Fragment

oVar
∆; Γ , a : A, Γ ′

✄ A | a

∆; Γ , a : A ✄ B | s
⊃ I

∆; Γ ✄ A ⊃ B | λa : A.s

∆; Γ ✄ A ⊃ B | s ∆; Γ ✄ A | t
⊃ E

∆; Γ ✄ B | s · t

Provability Fragment

mVar
∆, v : A, ∆′

; Γ ✄ A | v

∆; · ✄ A | s
✷I

∆; Γ ✄ [s]A |!s

∆; Γ ✄ [r]A | s ∆, v : A; Γ ✄ C | t
✷E

∆; Γ ✄ C{v/r} | letc s be v : A in t

∆; Γ ✄ A | s ∆; Γ ⊢ s ≡ t : A
EqEvid

∆; Γ ✄ A | t

Fig. 1. Explanation for hypothetical judgements with explicit evidence.

A brief informal explanation of some of these schemes follows. The axiom scheme oVar states that the judgement
∆; Γ , a : A, Γ ′ ✄ A | a is evident in itself. Indeed, if we assume that a is evidence that proposition A is true, then we
immediately conclude that A is true with evidence a. The introduction scheme for the [s] modality internalizes metalevel
evidence into the object logic. It states that if s is unconditional evidence that A is true, then A is in fact valid with witness
s (i.e. [s]A is true). Evidence for the truth of [s]A is constructed from the (verified) evidence that A is unconditionally true
by prefixing it with a bang constructor. Finally, ✷E allows the discharging of validity hypothesis. In order to discharge the
validity hypothesis v : A, a proof of the validity of A is required. In this system, this requires proving that [r]A is true with
evidence s, for some evidence of proof r and s. Note that r is evidence that A is unconditionally true (i.e. valid) whereas s is
evidence that [r]A is true. The former is then substituted in the place of all free occurrences of v in the proposition C . This
construction is recorded with evidence letc s be v : A in t in the conclusion.

Since ILPnd internalizes its own derivations and normalization introduces identities on derivations at the meta-level,
such identities must be reflected in the object-logic too. This is the aim of EqEvid. The schemes defining the judgement of
evidence equality∆; Γ ⊢ s ≡ t : A are the axioms for β equality and β equality on ✷ together with appropriate congruence
schemes (consult [6] for details). It should be noted that soundness of ILPndwith respect to IJL does not require the presence
of EqEvid. It is, however, required in order for normalization to be closed over the set of derivations.

A sample derivation in ILPnd of [s](A ⊃ B)⊃[t]A⊃[s·t]B follows,whereΓ = a : [s](A ⊃ B), b : [t]A,∆ = u : A ⊃ B, v : A
and r = letc a be u : A ⊃ B in letc b be v : A in !(u · v):

·; Γ ✄ [s](A ⊃ B) | a

u : (A ⊃ B); Γ ✄ [t]A | b

∆; · ✄ A ⊃ B | u ∆; · ✄ A | v

∆; · ✄ B | u · v
✷I

∆; Γ ✄ [u · v]B |!(u · v)
✷E

u : (A ⊃ B); Γ ✄ [u · t]B | letc b be v : A in !(u · v)
✷E

·; Γ ✄ [s · t]B | letc a be u : A ⊃ B in letc b be v : A in !(u · v)
⊃ I

·; a : [s](A ⊃ B) ✄ [t]A ⊃ [s · t]B | λb : [s]A.r
⊃ I

·; · ✄ [s](A ⊃ B) ⊃ [t]A ⊃ [s · t]B | λa : [s](A ⊃ B).λb : [t]A.r

3. Term assignment

We assume a set {w1, w2, . . .} of worlds, a set {
•

v1,
•

v2, . . .} of code variables and a set {
◦

v1,
◦

v2, . . .} of certificate variables.
We use Σ for a (finite) set of worlds. ∆ and Γ are as before. The syntactic categories of certificates, values and terms are
defined as follows:

s, t ::= a |
◦

v | s · t | λa : A.s | !s | letc s be
◦

v: A in t | fetch(s)
V ::= boxs M | λa.M

M,N ::= a |
•

v | V |M N | unpackM to ⟨
•

v,
◦

v⟩ in N | fetch[w]M

938 E. Bonelli, F. Feller / Annals of Pure and Applied Logic 163 (2012) 935–950

Certificates have two kinds of variables. Local variables a are used for abstracting over local assumptions when constructing
certificates. Certificate variables

◦

v represent unknown certificates. s · t is certificate composition. !s is certificate
endorsement. letc s be

◦

v: A in t is certificate validation, the inverse operation to endorsement. Finally, fetch(s) certifies
the fetch code movement operation to be described shortly. An example of a certificate is the following, which encodes the
sample derivation of Section 2:

λa : [s](A ⊃ B).λb : [t]A.letc a be
◦

u: A ⊃ B in (letc b be
◦

v: A in !(
◦

u ·
◦

v))

Values are a subset of terms that represent the result of computations of well-typed, closed terms. A value of the form
λa.M is an abstraction and one of the form boxs M is a mobile unit. A term is either a term variable for local code a, a term
variable for mobile code

•

v, a value V , an application term M N , an unpacking term for extraction of code–certificate pairs
from mobile units unpackM to ⟨

•

v,
◦

v⟩ in N (free occurrences of
◦

v and
•

v in N are bound by this construct) or a fetch term
fetch[w]M . In an unpacking term, M is the argument and N is the body; in a fetch term we refer to w as the target of the
fetch and M as its body. The operational semantics of these constructs is discussed in Section 4.

The term assignment results essentially (the differences are explained below) from the schemes of Fig. 1 with terms
encoding derivations and localizing the hypothesis in∆,Γ at specific worlds. Also, a reference to the current world is added.
Typing judgements take the form

Σ; ∆; Γ ✄ M : A@w | s (1)

Σ is a list of worlds; all worlds referenced in the judgement belong to Σ . Validity and truth contexts are now sequences of
expressions of the form v : A@w and a : A@w, respectively, withw ∈ Σ . The former indicates that mobile unit v computing
a value of type A may be assumed to exist and to be located at world w. The latter indicates that a local value a of type A
may be assumed to exist at world w. The truth of a proposition at w shall rely, on the one hand, on truth hypothesis in Γ

that are located at w, and on the other, on validity hypothesis in ∆ that have been fetched, from their appropriate hosts, to
the current location w. Logical connectives bind tighter than @, therefore an expression such as A ⊃ B@w should be read as
(A ⊃ B)@w.

It should be mentioned that IJL is not a hybrid logic [1]. In other words, A@w is not a proposition of our object logic. For
example, expressions of the form A@w ⊃ B@w′ are not valid propositions.

Typing schemes defining (1) are presented in Fig. 2 and discussed below. A first difference with ILPnd is that the scheme
EqEvid has been dropped. Although the latter is required for normalization of derivations to be a closed operation (as already
mentioned), our operational interpretation of terms does not rely on normalization of Natural Deduction proofs. For a
computational interpretation of IJL based on normalization the reader may consult [6]. A further difference is that ✷I has
been refined into two schemes, namely �I and Fetch. The first introduces a modal formula and states it to be true at the
current world w. The second states that all worlds accessible to w may also assume this formula to be true.

In this work mobile code is accompanied by a certificate. We speak ofmobile units rather than mobile code to emphasize
this. Since mobile units are expressions of modal types and validity variables v represent holes for values of modal types,
validity variables v may actually be seen as pairs ⟨

•

v,
◦

v⟩. Here
•

v is the mobile code component and
◦

v is the certificate
component of the mobile unit.1 As a consequence, the modality axiom mVar of ILPnd now takes the following form, where
judgement Σ ⊢ w ensures w is a world in Σ (it is defined by requiring w ∈ Σ):

Σ ⊢ w
VarV

Σ; ∆, v : A@w, ∆′
; Γ ✄

•

v: A@w |
◦

v

Substitution of code variables for terms in terms (M{
•

v/N}) and substitution of certificate variables for certificates in
certificates (t{

◦

v/s}) and in terms (M{
◦

v/s}) is defined as expected. We illustrate the definition of the first of these notions.

a{
•

v/N}
def
= a

•

v {
•

v/N}
def
= N

•

u {
•

v/N}
def
=

•

u
(PQ){

•

v/N}
def
= P{

•

v/N}Q {
•

v/N}

(λa.P){
•

v/N}
def
= λa.P{

•

v/N}

(boxs P){
•

v/N}
def
= boxs P{

•

v/N}

(fetch[w] P){
•

v/N}
def
= fetch[w] P{

•

v/N}

(unpack P to ⟨
•

u,
◦

u⟩ in Q){
•

v/N}
def
= unpack P{

•

v/N} to ⟨
•

u,
◦

u⟩ in Q {
•

v/N}

1 The ‘‘◦’’ is reminiscent of a wrapping with which the interior ‘‘•’’ is protected. Hence our use of the former symbol for certificates and the latter for
code.

E. Bonelli, F. Feller / Annals of Pure and Applied Logic 163 (2012) 935–950 939

Σ ⊢ w
VarT

Σ; ∆; Γ , a : A@w, Γ ′
✄ a : A@w | a

Σ; ∆; Γ , a : A@w ✄ M : B@w | s
⊃ I

Σ; ∆; Γ ✄ λa.M : A ⊃ B@w | λa : A.s

Σ; ∆; Γ ✄ M : A ⊃ B@w | s Σ; ∆; Γ ✄ N : A@w | t
⊃ E

Σ; ∆; Γ ✄ M N : B@w | s · t

Σ ⊢ w
VarV

Σ; ∆, v : A@w, ∆′
; Γ ✄

•

v: A@w |
◦

v

Σ; ∆; · ✄ M : A@w | s
�I

Σ; ∆; Γ ✄ boxs M : [s]A@w | !s

Σ; ∆; Γ ✄ M : [s]A@w′
| t Σ ⊢ w

Fetch
Σ; ∆; Γ ✄ fetch[w′

]M : [s]A@w | fetch(t)

Σ; ∆; Γ ✄ M : [r]A@w | s Σ; ∆, v : A@w; Γ ✄ N : C@w | t
�E

Σ; ∆; Γ ✄ unpackM to ⟨
•

v,
◦

v⟩ in N : C{
◦

v/r}@w | letc s be v : A in t

Fig. 2. Term assignment for ILPnd.

The schemes ⊃ I and ⊃ E form abstractions and applications at the current world w. Applications of these schemes are
reflected in their corresponding certificates. Scheme �I states that if we have a typing derivation ofM that does not depend
on local assumptions (although it may depend on assumptions universally true) and s is a witness to this fact, then M is in
fact executable at an arbitrary location. Thus amobile unit boxs M is introduced. The Fetch scheme types the fetch instruction.
A term of the form fetch[w′

]M at world w is typed by considering M at world w′. We are in fact assuming that w sees w′

(or that w′ is accessible from w) at run-time. Moreover, since the result of this instruction is to compute M at w′ and then
return the result to w (cf. Section 4), worlds w′ and w are assumed interaccesible.2 The unpack instruction is typed using
the scheme �E. Suppose we are given a term N that computes some value of type C at world w and depends on a validity
hypothesis v : A@w. Suppose we also have a termM that computes a mobile unit of type [r]A@w at the sameworldw. Then
unpackM to ⟨

•

v,
◦

v⟩ in N is well-typed at w and computes a value of type C{
◦

v/r}. The certificate letc s be v : A in t encodes the
application of this scheme.

The following substitution principles reveal the true hypothetical nature of hypothesis, both for truth and for validity.
Both are proved by induction on the derivation of the second judgement.

Lemma 3.1 (Substitution Principle for Truth Hypothesis). If Σ; ∆; Γ1, Γ2 ✄ M : A@w | s and Σ; ∆; Γ1, a : A@w, Γ2 ✄ N :

B@w′
| t are derivable, then so is Σ; ∆; Γ1, Γ2 ✄ N{a/M} : B@w′

| t{a/s}.

Lemma 3.2 (Substitution Principle for Validity Hypothesis). If Σ; ∆1, ∆2; · ✄ M : A@w | s and Σ; ∆1, v : A@w, ∆2; Γ ✄ N :

B@w′
| t are derivable, then so is Σ; ∆1, ∆2; Γ ✄ N{

◦

v/s}{
•

v/M} : B{
◦

v/s}@w | t{
◦

v/s}.

Regarding the relation of this type system for λCert
✷ with ILPnd we have the following result, which may be verified by

structural induction on the derivation of the first judgement. Applications of the Fetch scheme become instances of the
scheme J

J
with copies of identical judgements in ILPnd.

Lemma 3.3. If Σ; ∆; Γ ✄ A@w | s is derivable, then so is ∆′
; Γ ′ ✄ A′

| s′ in ILPnd, where ∆′ and Γ ′ result from ∆ and Γ ,
respectively, by dropping all location qualifiers and A′ and s′ result from A and s, respectively, by replacing all occurrences of

•

v and
◦

v by v and all certificates of the form fetch(s) with s.

4. Operational semantics

The operational semantics of λCert
✷ follows ideas from [19]. We introduce an abstract machine over a network of nodes.

Nodes are named usingworlds. Computation takes place sequentially –we are, in effect, modelling sequential programs that

2 We consider a term assignment for a Nat. Ded. presentation of a refinement of S4 (and not S5; see Lemma 3.3). This reading, which suggests symmetry
of the accessibility relation in a Kripke style model (and hence S5), is part of the run-time interpretation of terms (cf. 8).

940 E. Bonelli, F. Feller / Annals of Pure and Applied Logic 163 (2012) 935–950

Machine state N ::= W; w : [k,M]

Network environment W ::= {w1 : C1, . . . wn : Cn}

Current continuation k ::= return w | finish | k ▹ l
Continuation layer l ::= ◦ N | V ◦ | unpack ◦ to ⟨

•

v,
◦

v⟩ in N
Continuation stack C ::= ϵ | C: : k

Fig. 3. λCert
✷ run-time system syntax.

W; w : [k,MN]
(1)

−→ W; w : [k ▹ ◦ N,M]

W; w : [k ▹ ◦ N, V]
(2)

−→ W; w : [k ▹ V ◦,N]

W; w : [k ▹ (λa.M) ◦, V]
(3)

−→ W; w : [k,M{a/V }]

W; w : [k, unpack(M, v,N)]
(4)

−→ W; w : [k ▹ unpack(◦, v,N),M]

W; w : [k ▹ unpack(◦, v,N), boxs M]
(5)

−→ W; w : [k,N{
◦

v/s}{
•

v/M}]

{w : C; ws}; w : [k, fetch[w′
]M]

(6)
−→ {w : C: : k; ws}; w′

: [return w,M]

{w : C: : k; ws}; w′
: [return w, V]

(7)
−→ {w : C; ws}; w : [k, V {w′/w}]

Fig. 4. Reduction schemes of λCert
✷ .

are aware of other worlds (other than their local host), rather than concurrent computation – at some designated world. An
abstract machine state is an expression of the formW; w : [k,M] (Fig. 3). Theworldw indicates the nodewhere computation
is currently taking place.M is the code that is being executed under local context k (M is the current focus of computation).
The context k is a stack of terms with holes (written ‘‘◦’’) that represent the layers of terms that are peeled out in order to
access the redex. This representation ensures a reduction relation that always operates at the root of an expression and thus
allows us to properly speak of an abstract machine. An alternative presentation based on a small or big-step semantics on
terms, rather than machine states, is also possible. Continuing our explanation of the context k, it is a sequence of terms
with holes ending in either return w or finish. return w indicates that once the term currently in focus is computed to a
value, this value is to be returned to world w. The type system ensures that this value is, in effect, a mobile unit. If k takes
the form finish, then the value of the term currently in focus is the end result of the computation. Finally, k ▹ l states that
the outermost peeled term layer is l. This latter expression may be of one of the following forms: ◦ N indicates a pending
argument, V ◦ a pending abstraction (that V is an abstraction rather than a mobile unit is enforced by the type system) and
unpack ◦ to ⟨

•

v,
◦

v⟩ in N a pending unpack body.
Finally, W is called a network environment and encodes the current state of execution at the remaining nodes of the

network. The domain of W is the set of worlds to which it refers. Also, we sometimes refer to W; k as the network
environment.

The initial machine state (over Σ = {w1, . . . , wn}) is W; w : [finish,M], where W = {w1 : ϵ, . . . , wn : ϵ}, w ∈ Σ and
M is any term. Similarly, the terminal machine state is one of the form W; w : [finish, V]. Note that in a terminal state the
focus of computation is a fully evaluated term (i.e. a value).

The operational semantics is presented by means of a small-step call-by-value reduction relation whose definition is
given by the reduction schemes depicted in Fig. 4. Each reduction scheme is assigned an identifying number (indicated
on top of each arrow) for easier reference. In (4) and (5) we write unpack(M, v,N) and unpack(◦, v,N) as abbreviations
for unpackM to ⟨

•

v,
◦

v⟩ in N and unpack ◦ to ⟨
•

v,
◦

v⟩ in N , resp. The scheme (1) selects the leftmost term in an application for
reduction and pushes the pending part of the term (in this case the argument of the application) into the context. Once
a value V is attained (which the type system, described below, will ensure to be an abstraction) the pending argument is
popped off the context for reduction and V is pushed onto the context. Finally, when the argument has been reduced to a
value, the pending abstraction is popped off the context and the beta reduct placed into focus for the next computation step.
In the case that reduction encounters an unpack term, the argument M is placed into focus whilst the rest of the term is
pushed onto the context. When reduction of the argument of an unpack computes a value, more precisely a mobile unit, the
code and certificate components are extracted from it and substituted in the body of the unpack term. Note that the schemes
presented up to this point all compute locally, we now address those that operate non-locally. If computation’s focus is on a
fetch instruction, then the execution context k is pushed onto the network environment for the current worldw′ and control
transfers to world w. Moreover, focus of computation is now placed on the term M . Finally, the context of computation at
w is set to return w thus ensuring that, once a value is computed, control transfers back to the caller. The latter is the rôle
of the final reduction scheme.

5. Type soundness

This section addresses progress (well-typed, non-terminal machine states are not stuck) and subject reduction (well-
typed machine states are closed under reduction). Recall from above that a machine state N is terminal if it is of the form

E. Bonelli, F. Feller / Annals of Pure and Applied Logic 163 (2012) 935–950 941

C .Finish
Σ ⊢ W ; finish : A@w

Σ ⊢ W ; k : B@w Σ; · ; · ✄N : A@w | s
C .Abs

Σ ⊢ W ; k ▹ ◦ N : A ⊃ B@w

Σ ⊢ W ; k : B@w Σ; · ; · ✄V : A ⊃ B@w | s
C .App

Σ ⊢ W ; k ▹ V ◦ : A@w

Σ ⊢ W ; k : B{
◦

v/t}@w Σ; v : A; · ✄N : B@w | s
C .Box

Σ ⊢ W ; k ▹ unpack ◦ to ⟨
•

v,
◦

v⟩ in N : [t]A@w

Σ ⊢ {w′
: C; ws} ; k : A@w′

C .Return
Σ ⊢ {w′

: C: : k; ws} ; return w′
: A@w

!Σ = {w1, . . . , wn} W = {w1 : C1, . . . wn : Cn}

Σ; · ; · ✄M : A@wj | s Σ ⊢ W ; k : A@wj MState
Σ ⊢ W ; wj : [k,M]

Fig. 5. Typing schemes for machine states.

W; w : [finish, V]. It is stuck if it is not terminal and there is no N′ such that N −→ N′. Two new judgements are introduced,
machine state judgements and network environment judgements:

• Σ ⊢ W ; wj : [k,M]

• Σ ⊢ W ; k : A@wj

The first states that W; wj : [k,M] is a well-typed machine state under the set of worlds Σ . The second states that the
network environment together with the local context is well-typed under the set of worlds Σ .

A machine state is well-typed (Fig. 5) if the following three requirements hold. First W is a network environment with
domain Σ . Second, M is closed, well-typed code at world wj with certificate s that produces a value of type A, if at all.
Finally, the network environment should be well-typed. The type of W; finish has to be the type of the term currently in
focus and located at the same world as indicated in the machine state. A network environment W; k ▹ ◦ N is well-typed
with type A ⊃ B at world w under Σ , if the argument is well-typed with type A at w, and the network environment
W; k is well-typed with type B at the same world and under the same set of worlds. Note that A ⊃ B is the type of
the hole in the next term layer in k, and shall be completed by applying the term in focus to N . This is reminiscent of
the left introduction scheme for implication in the Sequent Calculus presentation of Intuitionistic Propositional Logic. This
connection is explored in detail in [13,10]. The C .App and C .Box schemes may be described in similar terms. Regarding the
judgement Σ ⊢ {w′

: C: : k; ws} ; return w′
: A@w, in order to verify that the type A at w of the value to be returned to

world w′ is correct, the context at w′ must be checked, at w′, to see if its outermost hole is indeed expecting a value of this
type.

We now state the promised results. Both are proved by structural induction on the derivation of the judgement Σ ⊢ N.
Together these results imply soundness of the reduction relation w.r.t. the type system: if a machine state is typable under
Σ and is not terminal, then a well-typed value shall be attained.

Proposition 5.1 (Progress). If Σ ⊢ N is derivable and N is not terminal, then there exists N′ such that N −→ N′.

Proof. If Σ ⊢ N, then there exist A, s such that: (a) Σ; ·; · ✄ M : A@w | s and (b) Σ ⊢ W ; k : A@w. From (a),M ≠ a,
•

v since
M is closed. Thus we consider the remaining possibilities forM and k.

• M is a value V = boxt P or V = λx.P .
– (1.1). k = finish. N is terminal and hence the result holds.
– (1.2). k = k′

▹ ◦ N . By the machine reduction scheme (2), N → W ; w : [k′
▹ V ◦,N].

– (1.3). k = k′
▹ V ′

◦. By the typing scheme C .App there exist B, t ′ such that Σ; ·; · ✄ V ′
: A ⊃ B@w | t ′. Therefore, from

⊃ I , V ′
= λb.N . Finally, by reduction scheme (3), N → W ; w : [k′,N{a/V }].

– (1.4). k = k′
▹ unpack ◦ to ⟨

•

v,
◦

v⟩ in N . By the typing scheme C .Box there exist t ′, A′ such that A = [t ′]A′. Therefore
V = boxt P . Finally, by reduction scheme (5), N → W ; w : [k′,N{

◦

v/s}{
•

v/M}].
– (1.5). k = return w′. By the typing scheme C .Return, W = {w′

: C :: k′
; ws}. Therefore, from the reduction scheme

(7), N → {w′
: C; ws} ;w′

: [k′, V].

942 E. Bonelli, F. Feller / Annals of Pure and Applied Logic 163 (2012) 935–950

• M = P Q . By reduction scheme (1), N → W ; w : [k ▹ ◦ Q , P].
• M = unpack P to ⟨

•

v,
◦

v⟩ in Q . By reduction scheme (5), N → W ; w : [k ▹ unpack ◦ to ⟨
•

v,
◦

v⟩ in Q , P].
• M = fetch[w′

] P . By reduction scheme (6), N → {w : C :: k; ws} ;w′
: [return w, P]. �

The proof of Subject Reduction relies on the following result whose proof is by induction on the derivation of Σ; ∆; Γ ✄

M : A@w′′
| s.

Lemma 5.1 (Substitution Principle for Worlds). If Σ; ∆; Γ ✄ M : A@w′′
| s and Σ ⊢ w′,then Σ; ∆{w/w′

}; Γ {w/w′
} ✄

M{w/w′
} : A@w′

{w/w′
} | s.

Proposition 5.2 (Subject Reduction). If Σ ⊢ N is derivable and N −→ N′, then Σ ⊢ N′ is derivable.
Proof. By case analysis on the reduction scheme applied. We present two sample cases, the remaining ones are developed
along similar lines.

• Case (5). Suppose N = W ; w : [k ▹ unpack ◦ to ⟨
•

v,
◦

v⟩ in N, boxs M] and N′
= W ; w : [k,N{

◦

v/s}{
•

v/M}]. Assume,
moreover, Σ ⊢ N. Then byMState there exist A′, s′ such that:
(5.1) Σ; · ; · ✄boxs M : A′@w | s′

(5.2) Σ ⊢ W ; k ▹ unpack ◦ to ⟨
•

v,
◦

v⟩ in N : A′@w

From (5.1) and by �I there exist s, A such that A′
= [s]A and s′ = !s:

(5.3) Σ; · ; · ✄boxs M : [s]A@w | !s
From (5.2) and by C .Box there exist B, t such that:
(5.4) Σ ⊢ W ; k : B@w

(5.5) Σ; v : A; · ✄N : B{
◦

v/s}@w | t
From (5.3) and by �I , Σ; · ; · ✄M : A@ω | s. From this, (5.6) and the Substitution Principle por Validity Hypothesis:

Σ; · ; · ✄N{
◦

v/s}{
•

v/M} : {
◦

v/s}{
◦

v/s}@w | t{
◦

v/s}.

Since B{
◦

v/s}{
◦

v/s} = B, from (5.4) and (5.6) byMState, Σ ⊢ W ; w : [k,N{
◦

v/s}{
•

v/M}].
• Case (7). Suppose N = {w : C: : k;ws} ;w′

: [return w, V] and N′
= {w : C;ws} ;w : [k, V {w′/w}]. Assume, moreover,

Σ ⊢ N. Then byMState, there exist A′, s′ such that:
(7.1) Σ ⊢ {w : C: : k;ws} ; return w : A′@w′

(7.2) Σ; · ; · ✄V : A′@w′
| s′

From (7.1) and by C .Return, Σ ⊢ {w : C;ws} ; k : A′@w. Also, from (7.2) and by the Substitution Principle for
Worlds, Σ; · ; · ✄V {w′/w} : A′@w | s′. Finally, from these last two judgements and MState, Σ ⊢ {w : C;ws} ;w :

[k, V {w′/w}]. �

Notice that although certificates are substituted and combined at run-time they are not checked at run-time. Indeed, it
is the type system that guarantees statically that all generated certificates will be correctly constructed in the sense that if a
value boxs M is ever produced at run-time, then s is an encoding of a typing derivation for M . Information on certificates in
the run-time system is required, however, in order to formulate Subject Reduction.
Corollary 5.1 (Safety). Suppose Σ ⊢ N is derivable and N −→

∗ W; w : [k, boxs M], then Σ; · ; · ✄M : A@w | s.
This result is an immediate consequence of Subject Reduction.

6. Strong normalization

We prove strong normalization (SN) of machine reduction by translating machine states to terms of the simply typed
lambda calculuswith unit type (λ1,→). For technical reasons (whichwe comment on shortly) we shall consider the following
modification of the machine reduction semantics of λCert

✷ obtained by replacing the reduction scheme:
(2) W; w : [k ▹ ◦ N, V] −→ W; w : [k ▹ V ◦,N]

by the following two new reduction schemes:
(2.1) W; w : [k ▹ ◦ N, V] −→ W; w : [k ▹ V ◦,N], N is not a value
(2.2) W; w : [k ▹ ◦ V , λa.M] −→ W; w : [k,M{a/V }]

These schemes result from refining (2) by inspecting its behaviour in any non-terminating reduction sequence. IfN happens
to be a value, then each (2) step is followed by a (3) step. The juxtaposition of these two steps gives precisely (2.2). The
reduction scheme (2.1) is just (2) when N is not a value. It is clear that every non-terminating reduction sequence in the
original formulation can be mimicked by a non-terminating reduction sequence in the modified semantics in such a way
that each (2) step

• either it is not followed by a (3) step and thus becomes a (2.1) step or
• it is followed by a (3) step and hence (2) followed by (3) become one (2.2) step.

E. Bonelli, F. Feller / Annals of Pure and Applied Logic 163 (2012) 935–950 943

F(W; w : [finish,M])
def
= M

F(W; w : [k ▹ ◦ N,M])
def
= F(W; w : [k,M N])

F(W; w : [k ▹ V ◦,N])
def
= F(W; w : [k, V N])

F(W; w : [k ▹ unpack ◦ to ⟨
•

v,
◦

v⟩ in N,M])
def
=

F(W; w : [k, unpackM to ⟨
•

v,
◦

v⟩ in N])

F({w : C: : k; ws}; w′
: [return w,M])

def
= F({w : C; ws}; w : [k,M])

Fig. 6.Mapping from machine states in λCert
✷ to terms in λCert

✷ .

Therefore, it suffices to prove SN of the modified system in order to deduce the same property for our original formulation.
This is done in two phases, depicted below:

Machine reduction
(λCert

✷) F(·)

// Lambda reduction
on terms of λCert

✷ T (·)

// Typed lambda calculus
(λ1,→)

First we relate machine reduction with a notion of reduction that operates directly on lambda terms via a mapping F(·)
(Fig. 6). Then we relate the latter with reduction in λ1,→ via a mapping T (·) (Fig. 7).

6.1. From machine reduction in λCert
✷ to lambda reduction in λCert

✷

The mapping F(·) flattens out the local context of a machine state in order to produce a term of λCert
✷ and replaces all

worlds by a distinguished world ‘‘•’’ whose name is irrelevant. We write M for M{w1/•} . . . {wn/•}, the result of replacing
all worlds in M with •. The mapping is injective on typable machine states whose focus of computation differ only in the
names of the worlds that occur in them.

Lemma 6.1. Let N be W ; w : [k,M]. If Σ ⊢ N and M = M ′ then F(W ; w : [k,M]) = F(W ; w : [k,M ′
]).

This property is required for proving type preservation of F(·) (it is also used in Lemma 6.4), the result we present next.
In its statement we assume • belongs to Σ . It is proved by induction on the pair ⟨|W|, k⟩, where |W|, the size of W, is the
sum of the length of the context stacks of all worlds in its domain: |{w1 : C1, . . . , wn : Cn}|

def
=

n
i=1 |Ci| and |ϵ|

def
= 0 and

|C: : k| def
= 1 + |C |.

Lemma 6.2. Let N be W; w : [k,M]. IfΣ ⊢ N is derivable and Σ ⊢ •, then there exist A and s such that Σ; · ; · ✄F(N) : A@• | s
is derivable.

In order to relate machine reduction in λCert
✷ with reduction in λ1,→ we introduce lambda reduction. These schemes are

standard except for the last one which states that fetch terms have no computational effect at the level of lambda terms. It
should be mentioned that strong lambda reduction is considered (i.e. reduction under all term constructors).

Definition 6.1 (Lambda Reduction for λCert
✷). Lambda reduction is the contextual closure of the following reduction axioms:

(λa.M)N −→β M{a/N}

unpack boxs M to ⟨
•

v,
◦

v⟩ in N −→β✷
N{

•

v/M}{
◦

v/s}
fetch[w]M −→ftch M

Before addressing the property that F(·) preserves abstract machine reduction (cf. Lemma 6.4) wemention an additional
property which will be required for the proof of this fact. It states that F(·) preserves lambda reduction over terms that are
placed in any network environment and context that yields typable machine states.

Lemma 6.3. If M −→β,β✷,ftch M ′ and Σ ⊢ W ; w : [k,M] is derivable, then F(Σ ⊢ W ; w : [k,M]) −→β,β✷,ftch F(Σ ⊢

W ; w : [k,M ′
]).

We can now establish that the flattening map is also reduction preserving.

Lemma 6.4. 1. If N −→1,2.1,4,7 N′, then F(N) = F(N′).
2. If N −→2.2,3,5,6 N′, then F(N) −→β,β✷,ftch F(N′).

Proof. Both items are proved by case analysis on the reduction scheme applied.

944 E. Bonelli, F. Feller / Annals of Pure and Applied Logic 163 (2012) 935–950

T (a) def
= a

T (
•

v)
def
= v unit

T (λa.M)
def
= λa.T (M)

T (M N)
def
= T (M) T (N)

T (boxs M)
def
= λa.T (M), a fresh of type 1

T (unpackM to ⟨
•

v,
◦

v⟩ in N)
def
= (λv.T (N)) T (M)

T (fetch[w]M)
def
= (λa.a) T (M)

Fig. 7.Mapping from types and terms in λCert
✷ to λ1,→ .

1. In the case of (1), (2.1) and (4), the result is immediate from the definition of F(·). Regarding (7),N = {w : C: : k; ws}; w′
:

[return w, V] −→ {w : C; ws}; w : [k, V {w′/w}] = N′. We reason as follows:

F({w : C: : k; ws}; w′
: [return w, V]) =

F({w : C; ws}; w : [k, V]) = by Lemma 6.1
F({w : C; ws}; w : [k, V {w′/w}]) =

2. Since case (3) is similar to (2.2) we develop all but the former:
• Case (2.2). Suppose that N = W; w : [k ▹ ◦ V , λa.M] −→ W; w : [k,M{a/V }] = N′. Then F(N) = F(W; w :

[k, (λa.M) V]). Since (λa.M) V −→β M{a/V }, by Lemma 6.3:

F(W; w : [k, (λa.M) V]) −→β,β✷,ftch F(W; w : [k,M{a/V }])

• Case (5). Suppose N = W; w : [k▹ unpack ◦ to ⟨
•

v,
◦

v⟩ in N, boxs M] −→ W; w : [k,N{
◦

v/s}{
•

v/M}] = N′. Then we have
F(N) = F(W; w : [k, unpack boxs M to ⟨

•

v,
◦

v⟩ in N]). We resort to the reduction step unpack boxs M to ⟨
•

v,
◦

v⟩ in N
−→β✷

N{
◦

v/s}{
•

v/M} and then Lemma 6.3 to deduce:

F(W; w : [k, unpack boxs M to ⟨
•

v,
◦

v⟩ in N]) −→β,β✷,ftch F(W; w : [k,N{
◦

v/s}{
•

v/M})

• Case (6). Suppose N = {w : C; ws}; w : [k, fetch[w′
]M] −→ {w : C: : k; ws}; w′

: [return w,M] = N′. Since
fetch[w′

]M −→ftch M , then by Lemma 6.3:

F({w : C; ws}; w : [k, fetch[w′
]M]) −→β,β✷,ftch F({w : C; ws}; w : [k,M])

We are left to verify that:

F({w : C: : k; ws}; w′
: [return w,M]) = F({w : C; ws}; w : [k,M])

This follows from the definition of F(·). �

6.2. From lambda reduction in λCert
✷ to reduction in λ1,→

λ1,→ (cf. Section 11.2 of [20]) is the standard simply typed lambda calculus with an additional type constructor 1 and an
additional term unit of type 1. The second part of the proof consists in relating lambda reduction in λCert

✷ with reduction in
λ1,→. As mentioned, for that we introduce a mapping T (·) that associates types and terms in λCert

✷ with types and terms in
λ1,→. Function types are mapped to function types and the modal type [s]A is mapped to functional types whose domain is
the unit type 1 and whose co-domain is the mapping of A.

T (P)
def
= P

T (A ⊃ B) def
= T (A) ⊃ T (B)

T ([s]A)
def
= 1 ⊃ T (A)

Mapping of terms (Fig. 7) is straightforward given that on types; the case for fetch guarantees that each−→ftch step ismapped
to a non-empty step in λ1,→. T (·) over terms is both type preserving and reduction preserving.

Lemma 6.5. If Σ; ∆; Γ ✄ M : A@w | s is derivable in λCert
✷ , then ∆′, Γ ′ ✄ T (M) : T (A) is derivable in λ1,→, where

1. Γ ′ results from replacing each hypothesis a : A@w by a : T (A) and
2. ∆′ results from replacing each hypothesis v : A@w by v : 1 ⊃ T (A).

Proof. By induction on the derivation of Σ; ∆; Γ ✄ M : A@w | s. The base cases are straightforward. We include some
sample inductive cases.

E. Bonelli, F. Feller / Annals of Pure and Applied Logic 163 (2012) 935–950 945

• Case �I . The derivation ends in:

Σ; ∆; · ✄ M : A@w | s
�I

Σ; ∆; Γ ✄ boxs M : [s]A@w | !s

From the IH ∆′ ✄ T (M) : T (A) is derivable. From weakening in λ1,→ we obtain ∆′, a : 1 ✄ T (M) : T (A). Thus
∆′ ✄ λa.T (M) : 1 ⊃ T (A) is derivable.

• Case Fetch. The derivation ends in:

Σ; ∆; Γ ✄ M : [s]A@w′
| t Σ ⊢ w

Fetch
Σ; ∆; Γ ✄ fetch[w′

]M : [s]A@w | fetch(t)

Then, if we let B stand for the type 1 ⊃ T (A), we can derive:

∆′, Γ ′
✄ λa.a : B ⊃ B ∆′, Γ ′

✄ T (M) : B
⊃ E

∆′, Γ ′
✄ (λa.a) T (M) : B

• Case �E. The derivation ends in:

Σ; ∆; Γ ✄ M : [r]A@w | s Σ; ∆, v : A@w; Γ ✄ N : C@w | t
�E

Σ; ∆; Γ ✄ unpackM to ⟨
•

v,
◦

v⟩ in N : C{
◦

v/r}@w | letc s be v : A in t

From the IH, ∆′, Γ ′ ✄ T (M) : 1 ⊃ T (A) and also ∆′, v : 1 ⊃ T (A), Γ ′ ✄ T (N) : T (C). We conclude as follows, noting
that T (C) = T (C{

◦

v/r}) and resorting, once again, to B as shorthand for the type 1 ⊃ T (A):

∆′, v : B, Γ ′
✄ T (N) : T (C)

∆′, Γ ′
✄ λv.T (N) : B ⊃ T (C) ∆′, Γ ′

✄ T (M) : B
⊃ E �

∆′, Γ ′
✄ (λv.T (N)) T (M) : T (C)

It is standard when proving that a mapping is reduction preserving over some set of terms in a programming language
based on some variant of the lambda calculus to require that this mapping also commute with substitution. Since we have
substitution over both local variables and validity variables we need two such results. The first one holds: T (M){a/T (N)} =

T (M{a/N}). However, the second one fails. Indeed, T does not commute with substitution of (the mapping of) validity
variables (i.e. T (M){v/T (N)} ≠ T (M{v/N}); take M =

•

v). However, the following does hold and suffices for our purposes:
T (M){v/λa.T (N)} −→

∗

β T (M{
•

v/N}{
◦

v/s}). The arrow −→
∗

β denotes the reflexive, transitive closure of −→β while −→
+

β

(below) denotes its transitive closure.

Lemma 6.6. If M −→β,β✷,ftch N, then T (M) −→
+

β T (N).

Proof. By induction onM . The base cases are trivial since no reduction steps may originate from a or
•

v. The inductive cases
follow from the fact that reduction is closed under all constructors in λ1,→. We illustrate the cases where reduction takes
place at the root ofM .

• Case −→β . Suppose (λa.M)N −→β M{a/N}. We reason as follows:

= T ((λa.M)N)
= T (λa.M) T (N) (Def. of T (·))
= (λa.T (M)) T (N) (Def. of T (·))

−→β T (M){a/T (N)}
= T (M{a/N})

• Case −→β✷
. Suppose unpack boxs M to ⟨

•

v,
◦

v⟩ in N −→β✷
N{

•

v/M}{
◦

v/s}. We reason as follows:

T (unpack boxs M to ⟨
•

v,
◦

v⟩ in N)
= (λv.T (N)) T (boxs M) (Def. of T (·))
= (λv.T (N)) λa.T (M) (Def. of T (·))

−→β T (N){v/λa.T (M)}

−→
∗

β T (N{
•

v/M}{
◦

v/s})

• Case −→ftch. Suppose fetch[w]M −→ftcs M . Then T (fetch[w]M) = (λa.a) T (M) −→β T (M). �

946 E. Bonelli, F. Feller / Annals of Pure and Applied Logic 163 (2012) 935–950

6.3. Combining the results

Our desired result (Proposition 6.1) may be proved by contradiction as follows. Assume that −→1,2.1,4,7 reduction is
SN. Suppose, also, that there is an infinite reduction sequence starting from a machine state N1. From our assumption this
sequence must have an infinite number of interspersed −→2.2,3,5,6 reduction steps:

N1 −→
∗

1,2.1,4,7 N2 −→2.2,3,5,6 N3 −→
∗

1,2.1,4,7 N4 −→2.2,3,5,6 N5 −→
∗

1,2.1,4,7 N6 −→2.2,3,5,6 . . .

Then (Lemma 6.4) we have the following lambda reduction sequence over typable terms (Lemma 6.2):

F(N1) = F(N2) −→β,β✷,ftch F(N3) = F(N4) −→β,β✷,ftch F(N5) = F(N6) −→β,β✷,ftch . . .

Finally, we arrive at the following infinite reduction sequence (Lemma 6.6) of typable terms (Lemma 6.5) in λ1,→, thus
contradicting SN of λ1,→:

T (F(N1)) −→
+

β T (F(N3)) −→
+

β T (F(N5)) −→
+

β . . .

In order to complete our proof we now address our claim, namely that −→1,2.1,4,7 reduction is SN. It is the proof of
this result that has motivated the modified reduction semantics presented at the beginning of this section. Every (2) step
followed by a (3) step will be mapped to a β step in λ1,→ (and hence contributes to the λ1,→ reduction sequence). However,
those (2) steps that are not do not contribute to this reduction sequence. This splitting of (2) allows us to show that, in fact,
the latter may be safely ignored.

First a simple yet useful result for proving SN of combinations of binary relations that we have implicitly made use of
above.

Lemma 6.7. Let −→1 and −→2 be binary relations over some set X. Suppose

1. −→1 is SN and
2. M is a mapping from X to some well-founded set such that
(a) x −→1 y implies M(x) = M(y)
(b) x −→2 y implies M(x) > M(y)

Then −→1 ∪ −→2 is SN.

Before we use this lemma for our proof of SN of −→1,2.1,4,7, some definitions are required. The size of a termM , written
|M|, is defined as the number of variables and constructors inM:

|a| = |
•

v |
def
= 1

|λa.M| = |boxs M|
def
= |M| + 1

|M N| = |unpackM to ⟨
•

v,
◦

v⟩ in N|
def
= |M| + |N| + 1

|fetch[w]M|
def
= |M| + 1

The size of a context k, written |k|, is defined by taking the sum of the sizes of the terms with holes, where each hole counts
as 1:

|return w|
def
= 1

|finish|
def
= 1

|k ▹ l| def
= |k| + |l|

| ◦ N|
def
= |N| + 1

|V ◦ |
def
= |V | + 1

|unpack ◦ to ⟨
•

v,
◦

v⟩ in N|
def
= |N| + 1

We will write |k,M| to abbreviate |k| + |M|.

Lemma 6.8. −→1,2.1,4,7 reduction is SN.

Proof. First we prove SN of schemes (1) and (4). Then we conclude by resorting to Lemma 6.7, introducing a measure M2
such that:

1. N −→1,4 N′ implies M2(N) = M2(N′) and
2. N −→2.1,7 N′ implies M2(N) > M2(N′).

SN of schemes (1) and (4) follows from noting that the following measure M1 of machine states over pairs of natural
numbers (ordered lexicographically) strictly decreases when schemes (1) and (4) are applied3:

M1(W; w : [k,M])
def
= ⟨|W|, |M|⟩

3 It also decreases when (7) is applied. However, it does not necessarily decrease when (2.1) is applied.

E. Bonelli, F. Feller / Annals of Pure and Applied Logic 163 (2012) 935–950 947

We are left to verify that the following measure M2 enjoys the required properties stated above:

M2(W; w : [k,M])
def
= ⟨|W|, |k,M| − len(k) − m(M)⟩

where len(k) is the length of k andm is the following mapping from closed terms to positive integers:

m(V)
def
= 0

m(M N)
def
= 1 + m(M)

m(unpackM to ⟨
•

v,
◦

v⟩ in N)
def
= 1 + m(M)

m(fetch[w]M)
def
= 1

This measure decreases strictly for both (2.1) and (7), whereas it yields equal numbers for (1) and (4).

• Case (1).

M2(W; w : [k,M N])
= ⟨|W|, |k,M N| − len(k) − m(M N)⟩
= ⟨|W|, |k,M N| − len(k) − 1 − m(M)⟩
= ⟨|W|, |k ▹ ◦ N,M| − len(k) − 1 − m(M)⟩
= M2(W; w : [k ▹ ◦ N,M])

• Case (2.1). Recall from above that N is not a value. Therefore, it is either an application, an unpack term or a fetch term.
Note that for each of thesem(N) > 0. Therefore, we reason as follows:

M2(W; w : [k ▹ ◦ N, V])
= ⟨|W|, |k ▹ ◦ N, V | − len(k) − 1 − m(V)⟩
= ⟨|W|, |k,N, V | + 1 − len(k) − 1⟩
> ⟨|W|, |k, V ,N| + 1 − len(k) − 1 − m(N)⟩
= ⟨|W|, |k ▹ V ◦,N| − len(k) − 1 − m(N)⟩
= M2(W; w : [k ▹ V ◦,N])

• Case (4).

M2(W; w : [k, unpackM to ⟨
•

v,
◦

v⟩ in N])

= ⟨|W|, |k, unpackM to ⟨
•

v,
◦

v⟩ in N| − len(k) − m(unpackM to ⟨
•

v,
◦

v⟩ in N)⟩

= ⟨|W|, |k, unpackM to ⟨
•

v,
◦

v⟩ in N| − len(k) − 1 − m(M)⟩

= ⟨|W|, |k ▹ unpack ◦ to ⟨
•

v,
◦

v⟩ in N,M| − len(k) − 1 − m(M)⟩

= M2(W; w : [k ▹ unpack ◦ to ⟨
•

v,
◦

v⟩ in N,M])

• Case (7). Let n = |{w : C: : k; ws}|.

M2({w : C: : k; ws}; w′
: [return w, V])

= ⟨n, |return w| + |V | − len(return w) − m(V)⟩
= ⟨n, 1 + |V | − 1 − m(V)⟩
= ⟨n, |V |⟩

= ⟨n, |V {w′/w}|⟩

> ⟨n − 1, |k, V {w′/w}| − len(k)|⟩
= ⟨n − 1, |k, V {w′/w}| − len(k) − m(V {w′/w})|⟩
= M2({w : C; ws}; w : [k, V {w′/w}]) �

We can finally state our desired result, whose proof we have presented above.

Proposition 6.1. −→ is SN.

7. Examples

Consider the following λCert
✷ expression encoding a proof of the IJL axiom scheme [s](A ⊃ B) ⊃ [t]A ⊃ [s · t]B (where

s, t are any proof term expressions and A, B any propositions):

λa.λb.unpack a to ⟨
•

u,
◦

u⟩ in (unpack b to ⟨
•

v,
◦

v⟩ in (box◦
u·

◦
v

•

u
•

v))

This is read as follows: ‘‘Given a mobile unit a and a mobile unit b, extract code
•

v and certificate
◦

v from b and extract code
•

u
and certificate

◦

u from a. Then create new code
•

u
•

v by applying
•

u to
•

v and a new certificate for this code
◦

u ·
◦

v. Finally, wrap both

948 E. Bonelli, F. Feller / Annals of Pure and Applied Logic 163 (2012) 935–950

of these up into a new mobile unit’’. The new mobile unit is created at the some current (implicit) world w. Moreover, the
example assumes that both a and b reside at w. The following variant M illustrates the case where mobile units a and b
reside at worlds wa and wb which are assumed different from the current world w:

unpack fetch[wa] a to ⟨
•

u,
◦

u⟩ in (unpack fetch[wb] b to ⟨
•

v,
◦

v⟩ in (box◦
u·

◦
v

•

u
•

v))

Here the expression fetch[wa] a is operationally interpreted as a remote call to compute the value of a (a mobile unit) at
wa and then return it to the current world. Note that a and b occur free in this expression. Since b is a non-local resource
it cannot be bound straightforwardly by prefixing the above term with λb. Rather, the code first must be moved from the
current world w to wb; similarly for a:

λa.fetch[wb] (λb.fetch[w]M)

The next example is a function that builds a certified mobile ‘‘plus k’’ function. It receives a mobile unit for computing a
natural number, unpacks it in order to obtain the code

•

u and the certificate
◦

u and then builds a new mobile unit. This new
mobile unit has a function as code. This function, when given a natural number b, adds the value of

•

u. The certificate for this
function is built out of the certificate

◦

u.

λa.unpack a to ⟨
•

u,
◦

u⟩ in box
λb:Nat.plus(b,

◦
u)

λb : Nat.(b+
•

u)

8. Related work

There are many foundational calculi for concurrent and distributed programming. Since the focus of this work is on
logically motivated such calculi we comment on related work from this viewpoint. To the best of our knowledge, the
extant literature does not address calculi for bothmobility/concurrency and code certification in a unified theory. Regarding
mobility, however, a number of ideas have been put forward. The closest to this article is the work of Moody [15], that of
Murphy et al. [19,17,18] and that of Jia andWalker [14]. Moody suggests an operational reading of proofs in an intuitionistic
fragment of S4 also based on a judgemental analysis of this logic [11]. It takes a step further in terms of obtaining a
practical programming language for mobility in that it addresses effectful computation (references and reference update).
Also, the diamond connective is considered. Worlds are deliberately left implicit. The author argues this ‘‘encourages the
programmer to work locally’’. Murphy et al. also introduce a mobility inspired operational interpretation of a Natural
Deduction presentation of propositional modal logic, although S5 is considered in there work (both intuitionistic [19] and
classical [17]). They also introduce explicit reference to worlds in their programmingmodel. Operational semantics in terms
of abstract machines is considered [19,17] and also a big-step semantics on terms [16]. Both necessity and possibility
modalities are considered. Finally, they explore a type preserving compiler for a prototype language for client/server
applications based on their programmingmodel [18]. Jia andWalker [14] also present a term assignment for a hybridmodal
logic close to S5. They argue that the hybrid approach gives the programmer a tighter control over code distribution. Finally,
Borghuis and Feijs [9] introduce a calculus of stationary services and mobile values whose type system is based on modal
logic. Mobility however may not be internalized as a proposition. For example, ✷o(A ⊃ B) is the type of a service located
at o that computes values of B given one of type A. None of the cited works incorporate the notion of certificate in their
systems. A different direction in terms of the computational interpretation of JL is pursued in [7] where a history-aware
lambda calculus is studied.

9. Conclusion

We present a Curry–de Bruijn–Howard analysis of an intuitionistic fragment (IJL) of Justification Logic JL. We start from
a Natural Deduction presentation for IJL and associate propositions and proofs of this system to types and terms of a mobile
calculus λCert

✷ . Themodal type constructor [s]A is interpreted as the type ofmobile units, expressions composed of a code and
certificate component. λCert

✷ has thus language constructs for both code and certificates. Its type system is a unified theory in
which both code and certificate construction are verified. Indeed, whenmobile units are constructed from the code of other
mobile units, the type system verifies not only that the former is mobile in nature (i.e. depends on no local resources) but
also that the certificate for this new mobile unit is correctly assembled from the certificates of the latter.

We deal exclusively with the necessity modality given that JL does not treat ✸ (since it is based on classical logic and
hence does not need to). However, in an intuitionistic setting the interpretation of ✸ in possible world semantics is not as
uncontroversial as that of the necessity modality [21, Chapter 3]. Nevertheless, it would be quite straightforward to add
inference schemes for a possibility modality in the line of related literature (cf. Section 8). A term of type ✸A is generally
interpreted to denote a value of a term at a remote location. Although this breaks the connection with JL it would make
sense from the programming languages perspective.

AlthoughλCert
✷ ismeant to be concept-of-proof language, it clearly does not provide the features needed to build extensive

examples. Two basic additions that should be considered are references (and computation with effects) and recursion.
Another one is polymorphism over proof variables. The first example in Section 7, rather than have type [s](A ⊃ B) ⊃

E. Bonelli, F. Feller / Annals of Pure and Applied Logic 163 (2012) 935–950 949

[t]A ⊃ [s · t]B should have type ∀α.∀β.[α](A ⊃ B) ⊃ [β]A ⊃ [α · β]B, where α and β are variables ranging over arbitrary
certificates.

JL includes a proof term constructor ‘‘+’’ called plus. A proof term of the form s + t is interpreted as the juxtaposition
of (the interpretation of) s and (the interpretation of) t in provability semantics [2]. Plus is necessary for all S4 theorems to
be realized in JL. As a consequence it would be necessary to include it in λCert

✷ . As a motivating example, consider the power
function from [12] wheremodal necessity operators have been decoratedwith ‘‘?i’’, i ∈ 1..3, meaning that these proof terms
that have not yet been determined:

fix (λp : Nat → [?1](Nat → Nat).λn : Nat.M) (2)

where

M def
= case n of

z −→ box?2 (λx : Nat.s z)
� sm −→ unpack pm to ⟨

•

u,
◦

u⟩ in box?3 (λx : Nat.x ∗ (
•

u x))

Here Nat denotes the base type of natural numbers, z and s are the constructors and case is the elimination scheme. The
corresponding typing schemes are (we omit the typing scheme for the product operation ‘‘∗’ over natural numbers):

∆; Γ ✄ z : Nat | zero

∆; Γ ✄ M : Nat | s

∆; Γ ✄ sM : Nat | suc(s)

∆; Γ ✄ M : Nat | r ∆; Γ ✄ P : A | s ∆; Γ , x : Nat ✄ Q : A | t

∆; Γ ✄ case M of z −→ P � s x −→ Q : A | case(r, s, [x : Nat]t)

First let us concentrate on M . Clearly ?2 and ?3 shall be different proof terms, namely λx : Nat.suc(zero) and λx : Nat.times
(x,

◦

u · x), respectively. The type of the term on the right of the arrow (case sm) will therefore have type λx : Nat.times
(x, ?1 · x). Finally, M will need to type with type [λx : Nat.suc(zero) + λx : Nat.times(x, ?1 · x)](Nat → Nat).

Inclusion of an inference scheme for introducing plus (together with the above mentioned schemes for constructors and
case elimination of natural numbers) would allowM to be typed. However, if we nowwant to type the whole term (2), then
additional considerations arise. In particular, in order to type thewhole term including the fixpoint operatorwe are required
to solve recursive equation on proof terms. In our example, we must solve the equation:

?1 = λx : Nat.suc(zero) + λx : Nat.times(x, ?1 · x)

The reason is the context sensitive nature of the typing scheme for fix: in the judgement of the hypothesis both the type of
x and the type ofM are required to be identical:

∆; Γ , x : A ✄ M : A | s

∆; Γ ✄ fix (λx : A.M) : A | fix(s)

These are a selection of the issues that are the focus of our current efforts in developing a toy programming language
based on λCert

✷ .

References

[1] Carlos Areces, Balder ten Cate, Hybrid logics, in: P. Blackburn, F. Wolter, J. van Benthem (Eds.), Handbook of Modal Logics, Elsevier, 2006.
[2] Sergei N. Artëmov, Logic of proofs, Ann. Pure Appl. Logic 67 (1–3) (1994) 29–59.
[3] Sergei Artëmov, Operational modal logic. Technical Report MSI 95-29, Cornell University, 1995.
[4] Sergei Artëmov, Unified semantics of modality and λ-terms via proof polynomials, in: Algebras, Diagrams and Decisions in Language, Logic and

Computation, 2001, pp. 89–118.
[5] Sergei Artëmov, Leo Beklemishev, Provability logic, in: D. Gabbay, F. Guenthner (Eds.), Handbook of Philosophical Logic, vol. 13, 2nd ed., Kluwer, 2004,

pp. 229–403.
[6] Sergei N. Artëmov, Eduardo Bonelli, The intensional lambda calculus, in: Sergei N. Artëmov, Anil Nerode (Eds.), LFCS, in: Lecture Notes in Computer

Science, vol. 4514, Springer, 2007, pp. 12–25.
[7] Francisco Bavera, Eduardo Bonelli, Justification logic and history based computation, in: Ana Cavalcanti, David Déharbe, Marie-Claude Gaudel,

Jim Woodcock (Eds.), ICTAC, in: Lecture Notes in Computer Science, vol. 6255, Springer, 2010, pp. 337–351.
[8] Eduardo Bonelli, Federico Feller, The logic of proofs as a foundation for certifying mobile computation, in: Sergei N. Artëmov, Anil Nerode (Eds.), LFCS,

in: Lecture Notes in Computer Science, vol. 5407, Springer, 2009, pp. 76–91.
[9] Tijn Borghuis, Loe M.G. Feijs, A constructive logic for services and information flow in computer networks, Comput. J. 43 (4) (2000) 274–289.

[10] Pierre-Louis Curien, Hugo Herbelin, The duality of computation, in: ICFP, 2000, pp. 233–243.
[11] Rowan Davies, Frank Pfenning, A judgmental reconstruction of modal logic, Math. Structures Comput. Sci. 11 (2001) 511–540.
[12] Rowan Davies, Frank Pfenning, A modal analysis of staged computation, J. ACM 48 (3) (2001) 555–604.
[13] Hugo Herbelin, A lambda-calculus structure isomorphic to gentzen-style sequent calculus structure, in: Leszek Pacholski, Jerzy Tiuryn (Eds.), CSL,

in: Lecture Notes in Computer Science, vol. 933, Springer, 1994, pp. 61–75.
[14] Limin Jia, David Walker, Modal proofs as distributed programs (extended abstract), in: David A. Schmidt (Ed.), ESOP, in: Lecture Notes in Computer

Science, vol. 2986, Springer, 2004, pp. 219–233.

950 E. Bonelli, F. Feller / Annals of Pure and Applied Logic 163 (2012) 935–950

[15] Jonathan Moody, Logical mobility and locality types, in: Sandro Etalle (Ed.), LOPSTR, in: Lecture Notes in Computer Science, vol. 3573, Springer, 2004,
pp. 69–84.

[16] Tom Murphy VII., Modal types for mobile code. Ph.D. Thesis, Carnegie Mellon, January 2008 (draft).
[17] Tom Murphy VII, Karl Crary, Robert Harper, Distributed control flow with classical modal logic, in: C.-H. Luke Ong (Ed.), CSL, in: Lecture Notes in

Computer Science, vol. 3634, Springer, 2005, pp. 51–69.
[18] Tom Murphy VII, Karl Crary, Robert Harper, Type-safe distributed programming with ml5, in: Gilles Barthe, Cédric Fournet (Eds.), TGC, in: Lecture

Notes in Computer Science, vol. 4912, Springer, 2007, pp. 108–123.
[19] Tom Murphy VII, Karl Crary, Robert Harper, Frank Pfenning, A symmetric modal lambda calculus for distributed computing, in: LICS, IEEE Computer

Society, 2004, pp. 286–295.
[20] Benjamin C. Pierce, Types and Programming Languages, MIT Press, 2002.
[21] Alex Simpson, The proof theory and semantics of intuitionistic modal logic. Ph.D. Thesis, University of Edinburgh, 1994.
[22] Walid Taha, Tim Sheard, Multi-stage programming, in: ICFP, 1997, p. 321.
[23] Philip Wickline, Peter Lee, Frank Pfenning, Rowan Davies, Modal types as staging specifications for run-time code generation, ACM Comput. Surveys

30 (3es) (1998) 8.

	Justification Logic as a foundation for certifying mobile computation
	Introduction
	Natural deduction for IJL
	Term assignment
	Operational semantics
	Type soundness
	Strong normalization
	From machine reduction in λCert to lambda reduction in λCert
	From lambda reduction in λCert to reduction in λ1,rightarrow
	Combining the results

	Examples
	Related work
	Conclusion
	References

