-

View metadata, citation and similar papers at core.ac.uk brought to you by .. CORE

provided by Servicio de Difusion de la Creacién Intelectual

Science of Computer Programming 78 (2012) 65-92

El
cience of Computer
rogramming

Contents lists available at SciVerse ScienceDirect

Science of Computer Programming

journal homepage: www.elsevier.com/locate/scico

Expressing aspectual interactions in requirements engineering:
Experiences, problems and solutions

Arturo Zambrano **, Johan Fabry b1 Silvia Gordillo®¢

2 LIFIA, Facultad de Informdtica, Universidad Nacional de La Plata, La Plata, Argentina
b PLEIAD Laboratory, Computer Science Department (DCC), University of Chile, Santiago, Chile
€ CIC, Pcia. de Buenos Aires, Argentina

ARTICLE INFO ABSTRACT
Articl_e history: Aspect Oriented Requirements Engineering (AORE) provides support for modularizing
Received 5 January 2011 crosscutting requirements. In the context of an industrial project in the domain of Slot

Received in revised form 7 December 2011
Accepted 8 December 2011
Available online 27 December 2011

Machines we needed to perform AORE, with a special emphasis on dependencies and
interactions among concerns. We were however unable to find any report of large-scale
industrial applications of AORE approaches that treat dependencies and interactions. We
therefore evaluated two AORE approaches: Theme/Doc and MDSOCRE, to establish their

Keywords: . el . h ..

Aspect oriented requirement engineering applicability in our setting. In this paper we report on the llmltat!ons of both approa;hes
Aspect dependences and interactions we encountered and propose extensions that allow them to cope with concern interactions.
Industrial case study We also show how these extensions provide the needed expressiveness by applying them

to our industrial case study.
© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Aspect-Oriented Requirements Engineering (AORE) addresses the requirements engineering problem that some
requirements are hard, if not impossible, to isolate into separate modules. Also known as Early Aspects, AORE performs
first-class modeling of these crosscutting concerns as aspects, identifying and characterizing their influence on other
requirements in the system [20,24]. These models enable to better identify and manage requirements conflicts, irrespective
of the crosscutting nature of the requirement. Ideally, the result of this phase is to have an as consistent as possible model
of the system early in the software development life-cycle. As a result the system can be designed and built correctly,
considering the needs of the various stakeholders.

In the context of an industrial project we have been re-implementing the software that runs on the casino gambling
device best known as a slot machine (SM). Our previous experience with this software has taught us that there is a significant
amount of crosscutting concerns in these applications. Furthermore these concerns depend on, and interact with each other
as well as with the modularized concerns. We therefore have opted to use Aspect-Oriented Software Development in this
implementation, taking special care of dependencies and interactions between the different aspects and modules.

Being aware of the critical importance of interactions in this domain, we have focused early in the development cycle on
interaction modeling. This was motivated by the argument of Liu et al. [19] that most feature interactions can be detected
in early stages of the software development cycle, by reasoning on the causes of interactions and building models of them.

* Corresponding author. Tel.: +54 221 4228252,
E-mail address: arturo.zambrano@lifia.info.unlp.edu.ar (A. Zambrano).
1 Johan Fabry is partially funded by the FONDECYT project 1090083. This article extends the article “Expressing aspectual interactions in requirements
engineering: experiences in the slot machine domain” (Zambrano et al. 2010 [35]) that appeared in the Proceedings of the 2010 ACM Symposium on
Applied Computing (SAC 2010). doi:10.1145/1774088.1774545.

0167-6423/$ - see front matter © 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.scico.2011.12.004

https://core.ac.uk/display/237111983?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.scico.2011.12.004
http://www.elsevier.com/locate/scico
http://www.elsevier.com/locate/scico
mailto:arturo.zambrano@lifia.info.unlp.edu.ar
http://doi.acm.org/10.1145/1774088.1774545
http://dx.doi.org/10.1016/j.scico.2011.12.004

66 A. Zambrano et al. / Science of Computer Programming 78 (2012) 65-92

The objective of this detection is to document as many interactions as possible so that this information can be used later in
the design and implementation phases. The result of the modeling process should therefore be an, as consistent as possible,
model of the requirements. As complete consistency is not possible in the presence of certain conflicts, in those cases we
want to document them to defer their resolution to later development phases. Hence to accomplish this objective, it is
necessary to be able to rely on expressive mechanisms in the selected modeling technique for this phase.

To the best of our knowledge there is however no previous work detailing experiences with AORE approaches and their
interaction support in a large-scale industrial case. We therefore opted to perform an in-depth study of two approaches to
evaluate their applicability in the slot machine domain.

In the requirements engineering community, interactions between requirements are a well-known (intra) traceability
problem [23]. In the AOSD community, and hence when applying AORE techniques, this problem maps to what is known
as dependencies and interactions with aspects [8]. Dependency and interaction support is still an open issue for the AOSD
community. Therefore, the focus of this work lies on assessing the support for expressing interactions between aspects or
concerns, which, depending on the point of view, can be considered either a requirements traceability problem or a problem
of dependencies and interactions with aspects.

We elected to perform requirements engineering using both the Theme/Doc approach [3] and Multidimensional
Separation of Concerns for Requirements Engineering (MDSOCRE) [20], focusing on how these allow us to express and
document aspectual dependencies and interactions. The choice of these two approaches was based on our perception of
their maturity and of their acceptance in the AORE community, the latter as reflected by publication record. Due to the
complexity of the domain and the time that the application of each approach requires, we were unable to perform the same
experiment on other approaches such as AORA [6], AOSD/UC [18], or AOREC [17].

More concretely, Theme/Doc was selected because a book is available that describes at a detailed level its application
to a arguably complex example (which also demonstrates some degree of scalability) [14]. Moreover, it also discusses later
phases of development, for example how to deal with conflicts in design documents when using Theme/UML. MDSOCRE was
selected because it claims to explicitly support conflict resolution and because of its flexibility due to the action/operator
approach (discussed in Section 3.4.1) that allows us to express more than just crosscutting relationships.

Both of the approaches we evaluated enable us to partially express the requirements, but neither of them was entirely
satisfactory. Theme/Doc lacks support for the kind of interactions we want to model, e.g. conflicts between aspects,
and needs a finer granularity for expressing crosscutting relationships. MDSOCRE lacks explicit support for expressing
interactions between concerns when they do not cross-cut each other. In this paper, in addition to describing these
drawbacks in more details, we also elaborate and validate extensions that address these issues. For example we propose
new kind of relationships to Theme/Doc for documenting interactions, and add new interaction information in MDSOCRE.

We consider that this experience report is of use to the AORE community, as it evaluates representative approaches in
an industrial setting and also proposes and validates enhancements to existing work. This experience is also useful for those
who want to perform AORE in domains where interactions are present, to know which support is currently available and
how the lack of some features may be addressed.

This paper is organized as follows: Section 2 is a brief introduction to the slot machine domain: it presents a
decomposition of the application in different concerns and the interactions we need to model using AORE. The evaluated
AORE approaches and the output the evaluation are presented in Section 3, including the limitations found for each approach.
In Section 4 we propose extensions to the original approaches in order to cope with the limitations found. Section 5 describes
a user study carried out in order to validate the expressiveness of the extensions performed to MDSOCRE. We present related
work in Section 6 and Section 7 concludes. Two appendixes (Appendix A and Appendix B) contain the complete models we
produced, showing the results of applying the extensions to our setting.

2. Concerns in the slot machine domain

A slot machine (SM) is a gambling device. It has five reels which spin when a play button is pressed. An SM includes some
means for entering money, which is mapped to credits. The player bets an amount of credits on each play, the SM randomly
selects the displayed symbol for each reel, and pays the corresponding prize, if any. Credits can be extracted (called cashout)
by different mechanisms such as coins, tickets or electronic transfers.

The SM game concept is developed by the game designers while its implementation must obey a set of regulations that
control both hardware and software. As a game concept can vary from SM to SM, in this paper we only focus on the legal
regulations, and we furthermore restrict ourselves to regulations for software. These can be divided in three main groups:

Government regulations Government regulations cover a broad spectrum of characteristics of gambling devices: payout,
randomness, connectivity, shared prizes, and so on. One example of these are the Nevada Regulations [21].

Standards To ensure proper behavior of SMs, there are certification institutes that perform severals tests and quality
checks on the SMs. The expected behavior of an SM is defined in documents called standards, for example the
GLI standard [15].

Technical specifications Some requirements are related to the SM’s connectivity with reporting systems (RS) and the
underlying communication protocol. This is the case, for example, of the G2S [16] (Game to Server) protocol, an
open standard for communication of an SM with a back-end.

A. Zambrano et al. / Science of Computer Programming 78 (2012) 65-92 67

Requirements for the SM domain are therefore defined in different documents (regulations, standards, protocol
specifications), written by different stakeholders, with diverse interests and backgrounds. This results in a sizable set of
documents using multiple terms for describing the same object, action or event. (We count approximately 150 pages
of pure requirement specifications, while the complete documents that include clarifying text, examples and notes are
approximately 2000 pages in size.) Furthermore, in some cases it is necessary to complement and normalize different
sources referring to the same topic. For instance, consider the case of Error Conditions, which are treated by both the Nevada
regulations [21] and the GLI standard [15]; some of the conditions specified by the regulations match, but others are defined
by only one of them. Note that the final SM, if needs to be installed in Nevada, must comply with the error conditions defined
in both documents.

Lastly, an important characteristic of communication protocol requirements (e.g. in G2S) is that they are divided in topics
and that not all the topics are required for certain deployments. As a result, part of the communication functionality is
optional, which has an impact on requirements modeling.

2.1. Concern organization

In AORE, concerns refer to a coherent set of requirements that allude to a property or feature that the system must
provide [7]. Based on our experience in the domain and the set of legal requirements that apply, we organize the
requirements in the following concerns:

Game This is the basic logic of a gambling device. The user can enter credits into the machine, and then play. The output
is determined randomly and when the player wins, he is awarded an amount of credits.

Meters This refers to a set of counters that are used to audit the activity of the game. For instance, there are meters that
count the number of plays, the total amount bet, total won, error condition occurrences, and so on.

Program interruption and resumption Requirements in this concern determine how the machine should behave after a
power outage, specifying which data and state need to be recovered.

Game recall This refers to the information that must be available about the current and previous plays, in order to solve
any dispute with players.

Error conditions Under certain circumstances, the game should detect error conditions and behave accordingly. This
concern defines what are considered error conditions and how the game must react to them.

Communications The SM is connected to a reporting system (RS) in the casino. This concern defines the kinds of data, the
format and when data must be exchanged between the SM and RS. Several communication protocols exist, each
with their own specification that states what data needs to be persistent, which meters are necessary, and so on.
For our work, we consider either using G2S or a proprietary protocol. In the remainder of this text we will refer to
the generic communication concern or, when appropriate, we will specify which protocol we are considering.

Demo The demo concern contains the requirements specifying how the game behaves in this mode. Playing the game
in demo mode makes it is possible to test how hardware and software work, simulating events such as entering
money or winning a prize.> Note that any meter or data changed due to operation in demo mode should not be
persisted or reported, as it is simulated behavior.

As the domain is complex, there may be other possible concern decompositions. We choose this one because, based on
our experience, it properly modularizes the different required features of slot machines and show the interactions that are
at the core of this evaluation.

We expect some of the selected concerns to become components and others aspects. Different instantiations of the SM
software will include different implementations or compositions of components or aspects to comply with the regulations
of each scenario.

2.2. Selected requirements

Due to the large number of requirements of our case (around 600), we only show here a small subset of requirements
that illustrate the main concerns for the SM domain and the four important types of interactions discussed later: conflict,
dependency, mutex and reinforcement.

The requirements we present here are a slightly simplified and summarized version taken from the different
original sources (regulations, standards and protocol specifications). These documents are produced by the corresponding
organizations: certification laboratories, protocol steering committees, and institutions that regulate the gaming industry. It
is important to note the particular nature of these requirements: as these are legal requirements, all of them must be fulfilled
in the resulting application. Moreover, all of them are known and present at the start of the development process. Part of
the formal certification process of the software that is installed in the SMs is ensuring that all these legal requirements are
met. Also, the requirements we discuss here change at a slow pace (which can be measured in years) when compared with

2 sMs present in casinos do not have the demo feature active, obviously.

68 A. Zambrano et al. / Science of Computer Programming 78 (2012) 65-92

Table 1
Requirements for SM domain concerns 2.

Game

R-SM-1 Slot machines have 5 reels. R-SM-4 A slot machine has one or more devices for
entering money.

R-SM-2 Reels spin when play button is pressed. R-SM-5 As money is inserted credits are “assigned” to
the player.

R-SM-3 Prizes are awarded according to a pay table. R-SM-6 A slot machine must provide some means for
cashing the credits out. It could be a ticket
printer, a coin hopper.

Game recall

R-GR-1 Information on at least the last ten (10) games R-GR-2 Last play information shall provide all informa-

is to be always retrievable on the operation of a tion required to fully reconstruct the last ten
suitable external key-switch, or another secure (10) plays. All values shall be displayed; includ-
method that is not available to the player. ing the initial credits, credits bet, and credits

won, payline symbol combinations and credits
paid whether the outcome resulted in a win or
loss [...]. This information should include the fi-
nal game outcome, including all player choices
and bonus features.

Program interruption and resumption

R-PR-1 After a program interruption (e.g. processor R-PR-3 An SM must store all meter information in
reset), the software shall be able to recover to persistent memory.
the state it was in immediately prior to the
interruption occurring.

R-PR-2 Restoring Power. If a gaming device is powered
down while in an error condition, then upon
restoring power, the specific error message
shall still be displayed and the gaming device
shall remain locked-up [. . .].

Demo mode

R-DM-1 The Slot Machine must permit a test, diagnostic =~ R-DM-5 Specific meters are permissible for these types
or demo mode, which permits a gaming device of modes provided the meters indicate as such.
(e.g. a hopper) to be tested. The test shall be
completed on resumption of normal operation.

R-DM-2 If the gaming device is in a test, diagnosticor R-DM-6 Test/diagnostics mode may be entered, via

demo mode, any test that incorporates credits an appropriate instruction, from an attendant
entering or leaving the gaming device (e.g., a during an audit mode access. These modes
hopper test) shall be completed on resumption should not be accessible to the player.

of normal operation.
R-DM-3 There shall not be any mode other than normal ~ R-DM-7 When exiting from test-diagnostic mode, the

operation (ready for play) that increments any game shall return to the original state it was in
of the electronic meters. when the test mode was entered.

R-DM-4 Any credits on the gaming device that were = R-DM-8 Test Games. If the device is in a game test mode,
added during the test, diagnostic or demo the machine shall clearly indicate that it is in a
mode shall be automatically cleared before the test mode, not normal play.

mode is exited.

the time taken by the development of a SM game. This is due to the nature of the source organizations that produce the legal
requirement documents.

We have grouped the requirements according to the concerns presented in Section 2.1 to favor the understanding of
the different interactions which are the core of this work. In Tables 1 and 2 we summarize some requirements by concern,
grouped by concern and not by the document where they are defined. For a complete listing of them we refer to the various
requirements documents [15,16,21].

2.3. Interactions

Aspectual interactions have been studied by several authors. We based our investigation, and therefore this discussion,
on the AOSD-Europe technical report that gives an overview on aspect interactions [28]. In this report, the authors classify
aspect interactions into dependency, conflict, mutex and reinforcement, as follows:

Dependency In this case one aspect explicitly needs another to work correctly.
Conlflict A conflict between two aspects happens when they work correctly in isolation, but the presence of both at the
same time negatively influences the behavior of the system.

A. Zambrano et al. / Science of Computer Programming 78 (2012) 65-92 69

Table 2
Requirements for SM domain concerns.

Meters

R-M-1 Credit meter: shall at all times indicate all R-M-3 Accounting Meters: Coin In: [...] a meter
credits or cash available for the player to wager that accumulates the total value of all wagers
or cashout. [...]. Games-played: accumulates the number

of games played; since power reset, since door
close and since game initialization.

R-M-2 Credit Meter Incrementing: The value of every = R-M-4 Meters should be updated upon occurrence of
prize (at the end of a game) shall be added to any event that must be counted, including:
the player’s credit meter [. . ..]. The credit meter play, cashout, bill in, coin in.
shall also increment with the value of all valid
coins, tokens, bills, Ticket/Vouchers, coupons
or other approved notes accepted.

R-M-5 G2S meters are: gamesSincelnitCn Number of

games since initialization. WonCnt: Number of
primary games won by the player. LostCnt:
Number of primary games lost by the player.

Communications: G2S

R-G2S-1 The G2S protocol is designed to communicate ~ R-G2S-4 The device can generate an event in a unso-
information between an SM, and one or more licited manner or in response to a host com-
host systems. mand

R-G2S-2 Meter information can be queries by a host R-G2S-5 Current timestamp can be set by the host.
in real-time or a host may set a periodic
subscription to cause the SM to send selected
meters at predetermined intervals.

R-G2S-3 Information provided by the SM is used for R-G2S-6 Command GetGameRecallLog is used by a host
audit purposes. to request the contents of a transaction log of

last plays from a SM.

Communications: proprietary comm. protocol (PCP)

R-PCP-1 The PCP communicates a SM with a host R-PCP-2 The PCP must report meters of a SM when
system. required by the host.

R-PCP-3 Configuration settings such as current times-
tamp are configured from the host.

Error conditions

R-EC-1 Gaming devices shall be capable of detecting R-EC-5 Error conditions shall be communicated to an
and displaying error conditions and illuminate on-line monitoring and control system when
the tower light for each or sound an audible this is available.
alarm.

R-EC-2 Error conditions should cause the gaming de- R-EC-6 An event represents an occurrence of an
vice to lock up and require attendant interven- incident detected by a device in an EGM.

tion. Error conditions shall be cleared either by
an attendant or upon initiation of a new play
sequence after the error has cleared except for
those deemed as a critical error.
R-EC-3 Error conditions are: coin jam, reverse coin in, = R-EC-7 Important events must be reported in real-
stacker full, bill jam, external doors open. time, including: error conditions, tickets in-
serted, ticket printed.
R-EC-4 Video based games shall display meaningful
text as to the error conditions.

Mutex A mutual exclusion occurs when two aspects implement the same functionality, but only one of them can be used
at a time.

Reinforcement This is a positive interaction where an aspect influences the correct working of another, allowing it to
provide extended functionality.

Based on our previous experience implementing software for SM, we observed the existence of these aspect interactions
between the concerns identified in our domain. For example, there is a conflict between the Demo and Meters concerns,
since Meters works correctly without Demo, but if Demo mode is active, activity in the machine must not be counted by
Meters. An example of mutex is in the communication protocols: it is forbidden to have two protocols providing the same
functionality at the same time. A dependency example is the relationship between Communications and Meters; the protocol
needs to communicate the status of the SM, which is in part represented by the meters. Finally, a reinforcement is present
between Error Conditions and Communications. The existence of error condition detection enables communication protocols
to provide “extra” functionality, in this case real time error condition reporting.

70 A. Zambrano et al. / Science of Computer Programming 78 (2012) 65-92

9 <<conflict>> G2s
SSllTTTTTTTTmEE T - <<reinforcement>>
~ -

<<c:)%ﬁi?:t>> . ~i1‘
) R h .~
Prog. Resumption R4 h
4 e <<ml'1tex>>
2 10° :
<<deprendency>> ,'12
P
.

Game

10
Recall 4 Meters 29 @
2

3 6

Game

Fig. 1. Concern interactions in an ad-hoc notation. Regular arrows indicate crosscutting, dashed arrows indicate interactions between concerns, tagged
with UML-like stereotypes.

Understanding how concerns interact with each other is key information that needs to be passed to designers and
programmers. For example, in the case of a dependency the dependent concern will be affected by design decisions on
the other. On the other hand, if there is a mutex relationship, architectural mechanisms should be provided to ensure that
both concerns (or some requirements of them) will not be active at the same time.

Considering the concern division and the associated requirements, we have deduced the relationships between different
concerns and identified their interactions. A representative selection of these is shown in Fig. 1, which uses ad-hoc notation
where Game is the base concern (represented by a square) and crosscutting concerns are represented by ovals. Different
arrows are used to indicate crosscutting and interaction relationships. More in detail, the crosscutting relationships are as
follows:

1. Demo to Game: The demo requirements affect many of the definitions of the original requirements of Game, in order to
alter the Game’s behavior for testing purposes.

2. Game Recall to Game: Game Recall requirements affect many aspects of the Game’s behavior, its requirements call for
recording pieces of information regarding game play.

3. Meters to Game: Meters count activities of many functions defined in Game’s requirements, for instance: game play, bill
in, cashout, etc.

4, Program resumption to Game, Game Recall, G2S and Meters: Program resumption is analogous to persistence. It crosscuts
all the places where important data, which needs to be restored, is changed. Note that it also crosscuts PCP, but we did
not include this here to avoid clutter.

5. G2S to Game: this concern cut across many Game’s requirements, since several events in Game need to be reported,

monitored and communicated to the reporting system.

. PCP to Game: This refers to another protocol used for the same purpose as G2S, that is to monitor the game’s behavior.

. Error Conditions to Game: The behavior associated to error conditions need to be woven into the game behavior.

Requirements in Game that could raise an error condition vary: from a bill inserted to a door opened.

N

The different interactions are the following:

8. Conflict between Demo and Program Resumption: The demo mode fires fake events that must not be counted nor restored
after program interruption.

9. Conflict between Demo and G2S: both concerns cannot be active at the same time, because demo fires fake events that
must not be reported to the RS.

10. Dependency of G2S and PCP on Meters: Some data reported to the RS is stored or can be derived from meters. Hence,
communication protocols need the meters to be up to date in order to accomplish their purpose.

11. Reinforcement of G2S with Error Conditions: As we mentioned in Section 2, some parts of the G2S protocol are not
mandatory for specific instances. When error conditions are tracked in the game, additional behavior is made available
in G2S, such as real time event reporting.

12. Mutex between G2S and PCP: There is overlapping functionality defined in the requirements of both protocols. For
example, both of them are used keep the time in sync between the SM and the RS. Having both protocols active, with
RSs out of sync, would render the time of the SM inconsistent. Therefore they cannot be active at the same time.

As said above, this is only a selection of some representative interactions. There are many more that we do not include
in Fig. 1 to avoid cluttering of the graphic. For example: G2S and PCP depend on GameRecall as both protocols require to
retrieve information of the last plays, and Program Resumption crosscuts PCP, for the same reason as it crosscuts G2S.

The interactions of these concerns need to be taken into account at design time. Therefore this must be clearly reflected
in the model resulting from the Requirements Engineering phase. We evaluated two AORE approaches to establish whether
they provide the necessary expressiveness for our needs. In the next section we discuss Theme/Doc [3] and Multidimensional
Separation of Concerns for Requirements Engineering [20], showing if and how they make it possible to express and
document aspectual interactions.

A. Zambrano et al. / Science of Computer Programming 78 (2012) 65-92 71

EC-1

Fig. 2. Game, Meters, G2S and Error Conditions concerns expressed using the Theme/Doc notation.

3. Evaluation of AORE approaches

3.1. Theme/Doc

Theme/Doc is an AORE methodology that, apart from being mature and accepted in the AORE community, is part of a
more comprehensive approach called Theme [3,14], which also treats aspectual design (Theme/UML).

We selected Theme/Doc because it explicitly supports passing information from the requirements analysis to the design
phase, which could include interactions. Besides this, the Theme book [14] mentions conflict resolution as a feature of the
Theme approach, which is one interaction type we are interested in. Also, in terms of scalability, it was applied to a non-
trivial example in the book, which makes it an interesting candidate for evaluation.

3.1.1. Brief overview of Theme/Doc

Theme/Doc [2] is the requirement analysis part of the Theme approach [3,14]. In Theme/Doc, requirements are organized
into concerns, called themes. Themes can be defined through an initial set of domain specific actions or concepts, others may
be recurring typical concerns: persistence, logging, and so on.

In Theme/Doc a requirement is attached to a theme if the name of the theme appears in the requirement. In other words,
Theme/Doc relies on the name-based analysis of actions in requirements to relate them to themes. In our study we did not
strictly follow this rule. Instead we use the concerns we identified in Section 2.1 as themes. We will detail our motivation
for this in Sections 3.3.3 and 3.3.4.

Ideally, each requirement should belong to one theme, but chances are that some of them are shared among
themes, i.e., crosscutting. In Theme/Doc, a shared requirement is considered crosscutting if the following four conditions
are satisfied [14]:

1. The requirement cannot be split in order to avoid tangling.

2. One of the themes dominates the requirement: it has a stronger belonging relationship with one of the themes.

3. The dominant theme is triggered by events in the base theme: the behavior described by the dominant theme is fired as
aresult of the execution of some behavior from the base theme.

4. The triggered theme is fired in multiple situations: the crosscutting behavior must be executed in several cases, not just
one.

An important feature of Theme/Doc is its visual support through diagrams, which helps in the understanding of the
requirements model the system to be. In Theme/Doc views, requirements are represented by rounded boxes, and they are
organized around themes, which are depicted by diamonds. When a crosscutting theme exists, a gray arrow is drawn from
the theme that crosscuts, i.e., the aspect, to the theme that is being cut across, i.e., the base. Consider for example Fig. 2,
where Game, Meters, Error Conditions and G2S concerns are represented along with their requirements and crosscutting
relationships.

The Theme book [14] claims that Theme/Doc has tool support through a web application.? Unfortunately, this software
was not available at the time of our experiments. To the best of our knowledge, there are no other tools with direct support
for Theme/Doc. We therefore followed the notation from the book to build our diagrams by hand.

3 Stated to be available at: http://www.thethemeapproach.com:8081.

http://www.thethemeapproach.com:8081
http://www.thethemeapproach.com:8081
http://www.thethemeapproach.com:8081
http://www.thethemeapproach.com:8081
http://www.thethemeapproach.com:8081

72 A. Zambrano et al. / Science of Computer Programming 78 (2012) 65-92

Program
Resumptiop
Error
Conditions

Fig. 3. Crosscutting relationships between themes using the Theme/Doc graphical notation.

3.2. Use of Theme/Doc

As shown in Fig. 2, the graphical approach of Theme/Doc makes it easy to read the relationships between requirements
and themes. Each theme can be easily identified along with its associated requirements. The four steps to check for
crosscutting helped us to correctly establish which are the crosscutting concerns. In the resulting diagrams, the crosscutting
relationships are clear, enabling us to easily identify which concern is playing the base and/or the aspectual role.

Fig. 3 shows crosscutting among the themes presented in Section 2.3. For clarity, here we just present the crosscutting
relationships between the themes and without including the requirements. The diagrams showing all the above concerns
with their more significant requirements are included in Appendix A. Note that in contrast with Fig. 1 (which uses an ad-hoc
notation for showing crosscutting and interaction relationships) in this case only the crosscutting information is present due
to the limitations of Theme/Doc, which are analyzed in the following sections.

3.3. Limitations of Theme/Doc

In our evaluation, we encountered the following limitations of Theme/Doc.

3.3.1. Granularity

As explained before, gray arrows denote crosscutting. As each concern potentially contains many requirements, it is
difficult to discern which specific requirement of the crosscutting theme affects which requirements on the base theme.
Consider for example Fig. 2 and the crosscutting relationship between Meters and Game; here it is not possible to know
which requirement in Meters is crosscutting. Furthermore, it is not possible to know which specific requirements in Game
are affected as the result of the crosscutting. Where possible, it is desirable to pass that information to the design phase,
so that base and aspectual components can be properly designed. In fact, this information is available during the analysis
phase - in the identification of crosscutting themes - of Theme/Doc, but it is not made explicit.

3.3.2. Expressing interactions

In Fig. 1 we show different examples of interactions between aspectual concerns for requirements. If we consider Fig. 2
we can however see that these interactions are missing. This is because Theme/Doc lacks support for expressing interactions.
For instance, missing in Fig. 2 is a dependency of G2S on Meters. This information is however crucial: Multiple perspectives
of a system (themes in this case) need to be combined to form a system [30]. We require the dependency information to
select a sound set of themes for a system. For example, it is not possible to build an SM with G2S support but lacking Meters.
This is because G2S requires the existence of Meters to provide its own functionality. The same happens with conflicts, for
instance, between Demo and Meters. It is critical to know that architectural or design mechanisms need to be included to
avoid the activation of both concerns at the same time. Developing the system without this information would entail costly
fixes in the future, when the interaction is encountered. The reinforcement from Error Conditions to G2S is also missing.
Documenting it signals that an optional part of G2S is active when Error Conditions are available.

3.3.3. Implicit requirements

As a consequence of performing a domain knowledge based analysis of our requirements and concerns we also were
confronted with the fact that the information contained in the original requirements, in some cases, needs to be combined
with domain knowledge. This in order to generate new requirements that are more suitable for understanding concern
relationships. This is similar to the approach proposed by Bar-On et al. [5], where implied actions are used to generate new
derived requirements.

For example, during interaction analysis it is possible that new requirements arise because of interactions that need to
be resolved. Consider the following example:

G2S provides time and date configuration for slot machines. A proprietary protocol also provides the same
configuration. A SM can be connected using both protocols at the same time.

A. Zambrano et al. / Science of Computer Programming 78 (2012) 65-92 73

In this case there is an implicit mutex relationship present. The machine can take the time and date from any of the
protocols, but not from both of them at the same time. This would lead to erratic behavior in case that both times do not
exactly match. Hence, the following issue arises: Which time and date source should the SM take when both protocols
are active? A decision must be made in the requirements analysis, for example stating that G2S is preferable over any other
source of time and date. This decision helps to resolve the interaction problem by defining part of the behavior of the system,
and must be recorded.

3.3.4. Ambiguity of the requirements

An ideal requirements specification should be complete, unambiguous, verifiable, consistent, modifiable and
traceable [1]. Under these assumptions Theme/Doc should work smoothly. Unfortunately, in our particular case there is
no single requirements specification unifying all the sources and we are faced with significant ambiguity. The variety of
sources first results in synonyms being used in different documents. Second, and more importantly, there are complete key
ideas, concepts or interactions that are expressed using different vocabulary and style. Although we might consider our case
as being exceptional, we consider it worthwhile to examine the impact this has on Theme/Doc.

The ambiguity we face affects the mechanism proposed in Theme/Doc to assign requirements to themes, and to identify
potential crosscutting themes. For example, consider the case of attaching requirements to themes, where it is necessary
to look for a theme’s name in the requirements. In our case, sometimes the theme’s name is represented by a phrase or an
adjective, which gives the analyst an indication to attach it to the theme. In the worst case however the requirement and
the theme could be related by implicit actions, as outlined above. Furthermore, the same issue is present when crosscutting
relationships are identified. According to Theme/Doc, shared requirements are potential indicators of crosscutting. Having a
shared requirement means that two concerns are present in the text [14]. This suffers from the same drawback of requiring
unambiguity.

Baniassad and Clarke [3] have shown how Theme/Doc analysis of actions helps to solve some ambiguities and how a
synonym dictionary helps in the case of multiple terms referring to the same concept. In our experience, the problem goes
deeper than the use of synonyms: we not only have some words that are written in different way, sometimes ideas are
equivalent but explained differently. Put differently, the name-based approach proposed originally by Theme does not work
in our setting due to the nature of the requirements sources. Having several large documents which present not only words
but key ideas using a different vocabulary prevents the use of the name-based approach of Theme/Doc.

Considering the kind of requirements we face, we consider two options to resolve ambiguities. The first one is to rewrite
all the requirements, normalizing them to use the same vocabulary; the second one is to use domain knowledge to associate
requirements to the corresponding themes directly. Due to the large number of requirements (approximately 600) and
presence of multiple sources the first option is not feasible, we therefore opt for the second. Note that grouping requirements
into concerns based on domain knowledge is not new [20,4]. Our experience is that the resulting concerns are useful as they
can be easily discussed with domain experts.

3.4. MDSOCRE

MDSOCRE (Multidimensional Separation of Concerns in Requirements Engineering) is the evolution of a line of AORE
approaches such as PreView [29] and ARCaDe [25]. As it arguably provides the most expressive and flexible constructs for
binding crosscutting concerns to base concerns, we chose it as the second case in our study.

3.4.1. Brief overview of MDSOCRE

Multidimensional Separation of Concerns in Requirement Engineering (MDSOCRE) [20], is a refinement of the ARCaDe
approach [25]. MDSOCRE treats the concerns in a uniform fashion, regardless of the nature of the requirement (functional
or non-functional). It makes it possible for the requirement engineer to choose a subset of requirements to observe the
influences on each other and to analyze crosscutting behavior. In contrast to Theme, it does not provide a graphic notation,
instead it uses XML to express requirements and composition rules.

MDSOCRE aims to eliminate conflicts, which are the result of contradictory concerns. These are detected and handled
using contribution matrices. In such a matrix rows and columns identify concerns and the cells denote how the concerns
contribute to the other (negative contributions denote conflicts). These matrices help in the decision process of which (parts
of) features will be implemented. Conflicts in MDSOCRE differ slightly from our definition in Section 2.3 (taken from the
AOSD-Europe study of interaction issues [28]). In our case, concerns are not a subject of negotiation, as all are required by
some standard or regulation. We must however check that at run-time conflicting concerns are not simultaneously active.

MDSOCRE also provides support for meta concerns: generic concerns that are instantiated for specific systems. The most
important feature of meta concerns for us is their capability for expressing commonly related concerns. We will use this to
express interactions in Section 3.6.

MDSOCRE is supported by the EA-Miner tool [26]. This tool is an Eclipse plugin® that needs the requirements to be entered
in plain text format. As part of its processing, EA-Miner uses a web service to parse natural language. Unfortunately, this
service was not working at the time of our experiments, and we were not able to use the tool.

4 Downloadable from http://www.aosd-europe.net/deliverables/d 108EAMinerVersion2.zip.

http://www.aosd-europe.net/deliverables/d108EAMinerVersion2.zip
http://www.aosd-europe.net/deliverables/d108EAMinerVersion2.zip
http://www.aosd-europe.net/deliverables/d108EAMinerVersion2.zip
http://www.aosd-europe.net/deliverables/d108EAMinerVersion2.zip
http://www.aosd-europe.net/deliverables/d108EAMinerVersion2.zip
http://www.aosd-europe.net/deliverables/d108EAMinerVersion2.zip
http://www.aosd-europe.net/deliverables/d108EAMinerVersion2.zip

74

A. Zambrano et al. / Science of Computer Programming 78 (2012) 65-92

3.5. Use of MDSOCRE

We were able to build a complete requirements model of the SM application using MDSOCRE. Listing 1 shows how
some of the concrete concerns of our domain are expressed in this approach. The Concern tag is composed of several
requirements which are surrounded by the Requirement tag. A requirement can be referenced by its identifier (id) and can
contain nested sub-requirements. We do not include the detailed listing of all concerns here and instead refer to Appendix B.

Listing 1. Game and Meter concerns expressed using MDSOCRE.

1
2
3
4
5
6
7

<Concern name="Game">

<Requirement id="1"> A slot machines have 5 reels.

</Requirement >

<Requirement id="2"> Reels spin when play button is

pressed.</Requirement >

<Requirement id="3"> Prizes are awarded according to a pay table. </Requirement>

<Requirement id="4"> A slot machine has one or more devices for entering money.
</Requirement >

<Requirement id="5"> As money is inserted credits are "assigned" to the player.
</Requirement >

<Requirement id="6"> A slot machine must provide means for cashing the credits out. It
could be a ticket printer, a coin hopper.

</Requirement >
</Concern>

<Concern name="Meters">

<Requirement id="1"> Credit meter: shall at all times indicate all credits or cash
available for the player to wager or cashout (GLI 11 4.10.1)

</Requirement >

<Requirement id="2"> Credit Meter Incrementing: The value of every prize (at the end of a
game) shall be added to the player’s credit meter. The credit meter shall also
increment with the value of all valid coins, tokens, bills, Ticket/Vouchers, coupons or

other approved notes accepted. (GLI 11 4.10.5)

</Requirement>

<Requirement id="3"> Accounting Meters (GLI 11 4.10.9): Coin In: a meter that accumulates
the total value of all wagers [...]. Games-played: accumulates

</Requirement>

<Requirement id="4"> Meters should be updated upon occurrence of any event that must be
counted, including: play, cashout, bill in, coin in.

</Requirement>

24 </Concern>

Composition rules are used to express crosscutting relationships. Listing 2 shows composition rules, consisting of a
Constraint tag that defines how the base requirements are constrained by aspectual requirements. The Constraint
tag has actions, operators and outcome elements, used to express in detail how the base is affected. The action and operator
tags informally describe how the base concern is constrained, imposing conditions in the composition. The operators express
temporal intervals, temporal points or restrictions between sets of concerns. The outcome tags (satisfied and fulfilled) define
the result of a composition. Fulfilled is used to denote that composition constraints have been imposed. Satisfied takes other
requirement IDs as parameters and indicates that those requirements have been satisfied as a consequence of the imposed
constraint [20].

Listing 2. A composition rule for Meters and Game using MDSOCRE.

© NV s W N =

<Composition>

<Requirement concern="Meters" id="4">
<Constraint action="enforce" operator="on">
<Requirement concern="Game" id="3" />
</Constraint>
<Outcome action="fulfilled"/>
</Requirement >

</Composition>
<Composition>

<Requirement concern="Error Condition " id="3">
<Constraint action="enforce" operator="on">
<Requirement concern="Game" id="2" />
</Constraint>
<Outcome action="satisfied">
<Requirement concern=" Error Condition" id="2"/>
</Outcome>
</Requirement >

</Composition>

A. Zambrano et al. / Science of Computer Programming 78 (2012) 65-92 75

Table 3
Expressing interaction types in MDSOCRE.
Action Operator
Dependency Ensure with
Reinforcement Provide for
Mutex Enforce xor
Conflict Enforce xor

The first composition rule of Listing 2 shows how the Meters concern crosscuts the Game concern. In this example we have
used the outcome action “fulfilled”, because there is no other set of requirements to be satisfied. Otherwise the action value
should have been “satisfied” and the set of requirements that are satisfied. This is the case of the Error Condition composition,
because when such a condition is detected an action must be taken, i.e.,, an additional requirement has to be satisfied after
the constraints have been applied. A concrete example of this is the door open error condition: it has to be reported after it
has been detected and the SM should lock up until the condition is resolved.

The granularity of the approach is adequate for our case study, since it is possible to clearly state which requirements are
affected. The flexibility provided by the parameterized constraint tag helps to express different variants of crosscutting
relationships even though MDSOCRE does not natively support this. We were able to combine actions and operators to
document the interactions, as shown in Table 3.

We used the action ensure and the operator with to represent a Dependency interaction. This follows the informal
definition by Moreira et al. [20], that says that a certain condition for a requirement that is needed actually exists. We used the
action provide and the operator for for Reinforcement, as it specifies additional features to a set of concern requirements. For
Mutex the combination is the action enforce, to impose additional conditions with the operator xor, as we want to prevent
the simultaneous activation of two implementations of the same functionality. Finally, note that for Conflict we used the
same combination, since operationally the desired effect is to satisfy one just one of the requirements sets involved (similar
to Mutex). The downside of using this notation is that both interactions are documented in the same way, even though their
semantics is clearly different.

3.6. Limitations of MDSOCRE

Although we were able to completely model the SM application, we were faced with two limitations of MDSOCRE which
resulted in models that are sub-optimal. Firstly there is no explicit interaction relationship, and secondly there is no support
for unifying disparate requirements. We discuss these limitations next.

3.6.1. Lack of interaction relationships

The actions and operators included in the composition rules only describe relationships between the crosscutting
concern and the selected base concern. As we explained in Section 2.3, interactions occur even between concerns without
a crosscutting relationship. In our case we need to express that G2S depends on the existence of Meters to report this
information and also that having Error Conditions could reinforce the functionality of G2S enabling it to report a new set
of events: error events. These interactions as well as mutex (see Section 2.3) are not explicitly supported by this approach.

As a workaround we have combined pairs of actions and operators, as shown in Table 3. This solution however has three
downsides:

1. It forces the use of composition rules even when no crosscutting is present, which seems contradictory with the original
purpose of composition rules expressed by the authors: “they describe how a concern cuts across other concerns. . .” [20].

2. The expressiveness of our combinations is not optimal, as it is not easy to map the different interaction types with pairs
of actions and operator. Consider for instance provide for compared to the word “reinforce”. Reinforce makes it explicit
that the interaction is a positive influence to the other aspect, but we have to use provide for which is only a way to try
to represent this idea.

3. Using the semantics provided for actions and operators we could not find a way for expressing conflicts. This is probably
due to the approach being focused on removing conflicts, hence no conflicts should need to be documented.

We consider the second downside to be a key factor. The mapping from Table 3 needs to be used to interpret implicit
information that instead should be explicit. This makes such interpretation in this approach error prone, as we will show in
Section 5.

An alternative would be the use of meta concerns, which seem to be a natural place to store information regarding
interactions. Extending MDSOCRE in this way implies adding information regarding the interaction type and the interacting
concern. This could be done in a number of ways using XML, for example by adding a tag parameterized with two attributes:
the interaction type and the name of the interacting concern. Meta concerns are not exactly aimed at this purpose, but with
this small extension they can support the different kinds of interactions. The drawback here is a conceptual mismatch: meta
concerns were designed to document generic concerns, but in our case interactions are manifest in concrete concerns. We
therefore did not use this alternative.

76 A. Zambrano et al. / Science of Computer Programming 78 (2012) 65-92

[ccc-req-IDs:bc-req-IDs] Base

Concern

rosscuttin
Concern

Fig. 4. Quantification label applied to a crosscutting relationship.

3.6.2. No support for unification

As in Theme, the ambiguity of requirements in the slot machine domain again impacts the process. Recall that in
Section 3.3.4 we discussed the impact of having multiple and ambiguous requirement documents. For example, we may have
different documents that list the meters or counters that must be provided by the SM, and furthermore in one document
meters can be defined in multiple requirements. In other words the requirements of meters are scattered over multiple
documents. It is however necessary to group all this information at design time to correctly design the meters concern.

One possibility here is to rewrite requirements so that meters listing is done just once, containing meter definition
from all the sources. However such a rewriting effort is only feasible when considering a small number of requirements.
Furthermore, a downside of creating a unified list is that after requirements fusion it is hard to update these once (one of)
the sources evolves.

Alternatively, we can keep requirements organized as in the originating document, removing the need for unification as
well as the issue of requirements changes. However, it is desirable to have some kind of link between them, as these different
requirements complement each other, e.g. they jointly form the list of all meters. This allows the engineer to analyze all the
requirements defining the same concept. XML permits doing this as it is possible to add cross-references between different
elements in the tree. However MDSOCRE lacks a facility for describing such cross-references.

4. Extensions of the existing approaches

4.1. Extensions to Theme/Doc: Theme/Doc-i

We now present some enhancements to Theme/Doc and give examples in the SM domain. These allow us to deal with
the issues expressed in the previous section, as we will demonstrate in Section 4.1.4.

4.1.1. Granularity

In order to improve the information of requirements implicated in a crosscutting relationship, we added quantification
labels to the existing gray arrows of Theme/Doc. Quantification labels allow us to specify which requirements are involved
in a given crosscutting relationship, from both sides: the crosscutting concern and the base concern.

As shown in Fig. 4, a quantification label has two parts separated by a colon:

Crosscutting requirements IDs this a list, a range, or the keyword all that indicates which requirements are crosscutting
in the concern where the arrow has its origin.

Base concern requirements IDs this a list, a range, or the keyword all that indicates which requirements are the
requirements affected by the crosscutting (the destination of the arrow).

Before deciding in favor of quantification labels, we evaluated the use of graphical elements to indicate affected
requirements. We considered, for example, adding arrows from affecting to affected requirements. We discarded such
graphical approaches as we found that they add a large amount of clutter to the diagrams, making comprehension more
difficult.

In summary, quantification labels allows us to express fine grained information that otherwise would be missed using the
original Theme/Doc. This information can be used in later phases to take special care of the design and the implementation
of the requirements involved in such relationships. For example, quantification labels used in the base side of a crosscutting
relationship can help in the definition of pointcuts during design.

4.1.2. Expressing interactions

As outlined in Section 3.3.2, we also need to model interactions between themes, since multiple themes need to be
combined to form a system. As interactions are a new type of relationship between concerns, we decided for a notation that
is consistent with the Theme/Doc notation that relates concerns. We propose to document interactions using dashed lines
or dashed arrows, depending on whether the interaction is directional or not. To this line or arrow a text label is attached,
indicating which type of interaction is represented (mutex, conflict, reinforcement or dependency).

The choice of a line or an arrow depends on the type of the interaction. For some interactions, such as mutex and conflict,
there is no direction, since they are symmetric relationships, hence no arrow is needed. However, in the case of reinforcement
and dependency, it is important to specify the direction of the relationship in order to understand which concern is reinforcing
the other concern, or which concern depends on the other. Hence for those interactions arrows are used. The different kinds
of interaction notations are shown in Fig. 5.

Interaction arrows can be combined with quantification labels in order to document which specific requirements are
involved in the relation. Examples of these combinations are shown in Section 4.1.4.

A. Zambrano et al. / Science of Computer Programming 78 (2012) 65-92 77

Conflict
------------------ Concern B

Dependency
__________________ Concern B
Reinforcement
.................. Concern B

Fig. 7. Conflict between Demo and G2S concerns.

4.1.3. Implicit requirements, ambiguity of requirements

Both issues of implicit requirements and the ambiguity of requirements benefit from the intervention of a domain
expert. On the one hand this will make explicit the requirements that are implicit, and on the other hand this allows the
requirements documents to be disambiguated. This implies adding some specific task in the process of Theme, probably
during the requirements processing (where requirements are split, removed or added).

Considering the example of the implicit, derived requirement we presented in Section 3.3.3, we propose to add such
requirements to the affected interaction itself. Fig. 6 shows how a derived time data source requirement is attached to the
mutex interaction.

4.1.4. Theme/Doc-i applied

Using our extensions, we were able to explicitly specify all the interactions in the case study. In this section we provide
examples for the different types of interactions we have modeled. We refer to Appendix A for the full requirements model.

In Fig. 6 we have seen how a mutex interaction is represented. Fig. 7 shows how a conflict (explained in Section 2.3) is
documented using the proposed extensions. Note that besides the interaction type, the requirements involved are specified
using quantification labels.

Fig. 8 shows a reinforcement between Error Conditions and G2S. In this case, it is important to specify the direction of
the relationship, since it should be clear which concern is reinforcing which other concern. Again, quantification labels have

78 A. Zambrano et al. / Science of Computer Programming 78 (2012) 65-92

Fig. 9. G2S concern depends on Meters concern.

been used to identify requirements. From Fig. 8 it is clear that requirement 5 of Error Conditions enables extra behavior in
the G2S concern, specifically it enables requirement 4, (Devices can generate an event in unsolicited manner . . .).

G2S (and any protocol that needs to report the SM state) depends on Meters to provide the required information. This
situation is documented in Fig. 9, which shows that in order to satisfy requirement 2 of G2S first requirements 4 and 5 from
the Meters concern need to be satisfied.

4.2. Extensions to MDSOCRE: MDSOCRE-i

Considering the shortcomings of MDSOCRE outlined above, we propose an extension to MDSOCRE, called MDSOCRE-i. It
consists of two parts: explicit interaction relations to address the need for clear notation of interactions, and cross-references
to allow unification of scattered requirements into one complete set of requirements for a concept.

4.2.1. Explicit interaction relations

Unfortunately, MDSOCRE does not natively support the notion of interactions. Although they can be expressed using a
combination of actions and operators, as in Table 3, we do not consider this a clean solution. This is because interactions
are not documented in a way that makes it easy to differentiate the different types of interactions (as confirmed by
experimental results in Section 5). Note that in our requirements engineering we were forced to disregard parts of the
MDSOCRE methodology: originally conflicts are not supposed to be expressed in the resulting models as they should have
been removed as part of the requirements engineering process. Instead we need these conflicts to be explicitly present.

An alternative to our workaround is the use of the meta concern facility to store information regarding interactions.
However there is a conceptual mismatch here as it means storing concrete information in an artifact that is aimed at
expressing generic information regarding concerns.

We assert that a new relationship between concerns, aimed at documenting interactions, is needed. This new relationship
would enable us to express interactions between concrete concerns, as well as between meta concerns when necessary. We
propose an extension for MDSOCRE to effectively document interactions and call this extension MDSOCRE-i.

Before deciding for the extension presented here we evaluated different solutions. For example, having new actions
or operators was considered as a possible solution. We however discarded this because some combinations of existing
actions and operators with new actions or operators would not make any sense. Another possibility we evaluated was
to replace the Composition XML tag by an Interaction tag, which would be a much more intrusive change to the
MDSOCRE specification. Moreover, interactions form part of the information of a composition, and therefore this option
was also discarded.

We propose to extend the Composition XML element of MDSOCRE, allowing it not only to express crosscutting
relationships but also interactions. In listing 3, we show a new Interaction XML element that can be parameterized
with the interaction type. We do not pose any restriction on this type, and here simply specify the interaction types as used
in the previous sections of the text. Note that we only apply this extension at the base level, but it can also be extended to
apply at the meta concern level.

The interaction element is always contained in a requirement element and nests a second requirement element. The
containing requirement element affects the nested requirement element as specified by the type of the interaction element.
In other words, the direction of the interaction relationship (when relevant) is from the outer requirement to the inner one.
Consider for example Listing 3 that describes the dependency between G2S (requirement 6) and Game Recall (requirements
1 and 2). As we explained in Section 2.3, G2S depends on Game Recall, as it needs the information captured by Game Recall
in order to communicate it to the on-line monitoring systems when needed.

A. Zambrano et al. / Science of Computer Programming 78 (2012) 65-92 79

Listing 3. The Interaction element instantiated for a dependency

1 <Composition>

2 <Requirement concern="G28" id="6">

3 <Interaction type="dependency">

4 <Requirement concern="GameRecall" id="1,2"/>
5 </Interaction>

6 </Requirement>

7 </Composition>

Note that the Requirement tag has not been modified with respect to the original MDSOCRE specification as it already
allows to specify which requirements participate in a composition.
Listing 4 shows examples for the other three interactions (reinforcement, mutex and conflict).

Listing 4. Reinforcement, conflict and mutex interactions

1 <Composition>

2 <Requirement concern="Meters" id="2,3">

3 <Interaction type="reinforcement" >

4 <Requirement concern="Proprietary Communication Protocol" id="4"/>
5 </Interaction>

6 </Requirement>

7 </Composition>

8
9

<Composition>
10 <Requirement concern="Demo Mode" id="1,4">
11 <Interaction type="conflicts" >
12 <Requirement concern="Game Recall" id="1,2"/>
13 </Interaction>
14 </Requirement>
15 </Composition>
16
17 <Composition>
18 <Requirement concern="Demo Mode" id="9">

19 <Interaction type="mutualExclusion" >
20 <Requirement concern="Game" id="3"/>
21 </Interaction>

22 </Requirement>
23 </Composition>

Note that in the case of mutex and conflict interactions the relationships are symmetrical, so the order of the requirements
may vary with no impact: It is equivalent to say that Game Recall conflicts with Demo or Demo conflicts with Game Recall.
In the case of mutex, the symmetrical nature of the relationship is more obvious as it is used to document two (or more)
instances of a given functionality. For example, Listing 4 documents the mutual exclusion between two requirements, one
of the Game concern and one of Demo concern. The mutual exclusion is required because both of them determine a different
way of generating the outcome for a play.

4.2.2. Cross-references for unification

As indicated in Section 3.6.2, in the SM domain requirements coming from different sources describe the same
concepts. These different sources need to be unified to eliminate ambiguities and to ensure that the requirements model
is complete. This is because requirements may complement each other while originating from different documents, or
from different parts of the same document. Furthermore changes in a requirement may impact all the requirements that it
complements, in the same document as well as in other documents. To allow such unification and a more straightforward
assessment of the impact of changing a requirement, MDSOCRE-i contains a second extension: adding cross-references to a
requirement.

The cross-reference extension is meant to be used inside of a single concern to link requirements describing
different perspectives of the same concept. Our extension consists of a seeAlso attribute that lists the identifiers of
related requirements, i.e., specifying a cross-reference. When adding complementary requirements to an existing set of
requirements, the requirement engineer adds this attribute to the requirement tags. This attribute is added both in the
existing set of requirements, referring to the newly added requirement that complements them, as well as to the new
requirement, referencing the old requirements that are being complemented.

In Listing 5 we show an example of how a requirement defining some meters, taken from the G2S documentation refers
(using the seeAlso attribute) to requirements 1, 3 and 4 of the same concern, defined in the GLI documentation that contain
complementary information.

80 A. Zambrano et al. / Science of Computer Programming 78 (2012) 65-92

Table 4
Limitation of Theme/Doc and proposed extensions.
Limitation in Theme/Doc Extension in Theme/Doc-i
Granularity (Section 3.3.1) Quantification labels (Section 4.1.1)
Expressing interactions (Section 3.3.2) New arrow notation combined with quantification labels
(Section 4.1.2)
Ambiguous and implicit requirements (Sections 3.3.3 and 3.3.4) Disambiguation, derived requirements (Section 4.1.3)
Table 5
Limitation of MDSOCRE and proposed extensions.
Limitation in MDSOCRE Extension in MDSOCRE-i

Lack of explicit interaction relationships (Section 3.6.1) New tags and attributes to describe interacting concerns
and requirements (Section 4.2.1)

No support for unification (Section 3.6.2) New tag and attribute to document relationships
between requirements describing closely related topics.
(Section 4.2.2)

Listing 5. See also extension

1 <Concern name="Meters">

2 <!-- From GLI 11 -->

3 <Requirement id="1" seeAlso0="3,4,5"> Credit meter: shall at all times indicate all credits
or cash available for the player to wager or cashout.

4 </Requirement>

5 <Requirement id="2"> Credit Meter Incrementing: The value of every prize (at the end of a
game) shall be added to the player’s credit meter. The credit meter shall also increment

with the value of all valid coins, tokens, bills, Ticket/Vouchers, coupons or other

approved notes accepted.

6 </Requirement>

7 <Requirement id="3" seeAlso="1,4,5"> Accounting Meters: Coin In: a meter that accumulates
the total value of all wagers [...]. Games-played: accumulates the number of games
played; since power reset, since door close and since game initialisation.

8 </Requirement>

9 <Requirement id="4" seeAlso="1,3,5"> Meters should be updated upon occurrence of any event
that must be counted, including: play, cashout, bill in, coin in.

10 </Requirement>

11 <!-- From G2S Docs-->

12 <Requirement id="5" seeAlso="1,3,4"> Some G2S meters are: gamesSinceInitCn Number of games
since initialisation. WonCnt: Number of primary games won by the player. LostCnt: Number

of primary games lost by the player.
13 </Requirement>
14 </Concern>

4.2.3. Applying MDSOCRE-i

We successfully used MDSOCRE-i to build a complete requirements model of the SM application. We were able to
model all interactions present in the requirements, and to use cross-references to build complete sets of requirements
for all concepts that are defined in a scattered form. Considering the size of the specification documents, we found that
MDSOCRE-i yielded slightly shorter documents: 228 lines versus 236 lines for MDSOCRE. This even though extra cross-
reference information is available. The full model is included in Appendix B.

4.3. Summary of extensions

In this section we have proposed a number of extensions to both Theme/Doc and MDSOCRE to address the weaknesses
we encountered when performing requirements analysis. The Tables 4 and 5 summarize the weaknesses of the approaches
we studied and the extensions we made to address them.

The extensions to Theme/Doc we propose allow us to express information that otherwise would not be present in
the requirements specifications we produce. Our extensions to MDSOCRE that yield MDSOCRE-i however do not add new
expressive capabilities for interactions to the methodology. Instead they aim at helping the requirements engineer to easily
understand interactions as contained in the requirements specifications we produce. In order to validate this hypothesis,
we performed a user study that is presented next.

5. User study: MDSOCRE, MDSOCRE* and MDSOCRE-i

As we have discussed above, both MDSOCRE and MDSOCRE-i are sufficient to be able to model interactions thanks to
the use of the mappings specified in Table 3. We call the variant of MDSOCRE that includes these mappings MDSOCRE*.

A. Zambrano et al. / Science of Computer Programming 78 (2012) 65-92 81

The aim of MDSOCRE-i however goes beyond MDSOCRE*: it also aims to achieve a conceptually cleaner fashion to model
interactions, leading to a modeling phase that is faster and a model that is more complete and less error-prone to interpret.
We have performed an additional comparison between MDSOCRE (including MDSOCRE*) and MDSOCRE-i to verify whether
this is indeed the case, in the form of a restricted user study.

In our user study we compared interaction support of the two approaches in terms of accuracy and speed by means of
two experiments. In other words, we compared legibility of the explicitly labeled interactions versus the action-operator
pairs we used in Section 3.6.1. In the first experiment we established if the action-operator pair notation has legibility issues,
by evaluating the advantages of using Table 3 (i.e., using MDSOCRE*) in the requirements interpretation process. We found
that the use of Table 3 significantly improves legibility of the requirements model. In the second experiment, we therefore
compared MDSOCRE-i against MDSOCRE®, to see if MDSOCRE-i outperforms this setup. We found that indeed even in this
case MDSOCRE-i is a significant improvement.

In each of the two experiments we tested legibility of the four interaction types as follows: In a first phase we established
legibility of the first notation, and in a second phase of the second notation. Each phase consisted of four tasks, covering the
four interaction types. In each task two concerns were presented with their interaction described in the corresponding
notation. Then, a multiple choice of three different interactions between the two concerns was presented. The subject had
to select which of the options was correct, yielding a measure of accuracy. The time needed to solve each task was also
measured, in order to establish which approach delivers faster results while working with interactions. For both experiments
all the subjects were in the same room. A single clock was available so that the subjects could take note of the current time for
each individually finished task. The final times taken for each task was calculated by taking the difference between the time
of the current and the previous task. Lastly, in order to evaluate the subjective preference for each approach, after executing
each experiment a survey was completed by the subjects. It inquired as to their preference of notation per interaction type,
graded on a five-point Likert scale.

The details of each case study are described in the following sections.

5.1. Case study 1: MDSOCRE versus MDSOCRE*

The first experiment we performed aimed to evaluate the original MDSOCRE, without knowledge of the semantics of
the operator-action pair notation given in Table 3, versus MDSOCRE where this semantics is explicitly defined, which we
call MDSOCRE*. Note that MDSOCRE" does not make any modifications to the MDSOCRE notation, the only difference is the
semantics that is explicitly defined in Table 3.

Evaluators. The subjects of the study were 7 experienced IT professionals, but not knowledgeable in the SM domain. Each
of them at least worked for 4 years using requirements, most of them in the role of requirements analyst. The group has an
average experience of 11.5 years working on commercial IT projects.

Activities. The requirement interpretation tasks presented to the subjects were not taken from the SM domain, to avoid con-
fusion because of unknown terminology. Instead, generic requirements were generated for their interpretation. For example,
Listing 6 shows the requirement specification testing Dependency, in the second phase of the experiment treating MDSOCRE*.
The multiple-choice options given to the subject for this task were the following (the correct answer is the third option):

1. User history features can be used without the availability of storage facilities.
2. User history benefits from the availability of storage facilities when available.
3. User history features depend on the availability of storage facilities.

Listing 6. Task evaluating Dependency in MDSOCRE*

1 <Concern name="Context-awareness">
2 <Requirement id="1">Context-monitoring is the repeated observation of an entity’s context
through an input mechanism.
</Requirement >
<Requirement id="2"> User history is tracked through an input mechanism, and it has to be
retrieved afterward.
</Requirement >
</Concern>

NI

<Concern name="Persistence">

<Requirement id="1">State-encoding is the conversion of application data to a format more
suitable for storage in a database management system.

10 </Requirement>

11 </Concern>

© N w!m

13 <Composition>

14 <Requirement concern="Persistence" id="1">

15 <Constraint action="ensure" operator="with">

16 <Requirement concern="Context-awareness" id="2"/>

82 A. Zambrano et al. / Science of Computer Programming 78 (2012) 65-92

17 </Constraint>

18 <Outcome action="fulfilled"/>
19 </Requirement>

20 </Composition>

Table 6
Results of case study 1: MDSOCRE (M) versus MDSOCRE* (M-*), and statistical analysis of population
independence of subjective evaluation.

Interaction Correctness Time Subjective evaluation

M%) M-*(%) M M-* UseM UseM-* p-value
Dependency 85.71 71.42 3m43s 2m34s 2.28 4.14 0.006
Reinforcement 57.14 71.42 3m 3mO09s 22 4 0.011
Conflict 57.14 85.71 3m51s 3m 1.8 4.14 0.002
Mutex 71.42 100 2m26s 1m43s 2 428 0.002
Global 64.28 85.71 13 m 10m26s 2.10 414

The overall organization of the experiment was as follows:

. The four types of interactions were presented.

. The MDSOCRE approach was explained, including usage examples.

. The first set of tasks was given to the subjects for resolution.

. After all the users finished solving the first set, the mappings for interactions, i.e., MDSOCRE*, was explained.
. A second set of tasks was given for resolution.

U A WK =

Survey. After all tasks were completed, study subjects were presented a questionnaire. It asked, for each interaction type,
whether they would use a specific notation in the future to document this kind of interaction, graded on a five point Likert
scale. Sentences followed the pattern below:

[would use MDSOCRE to express dependency—reinforcement—mutex—conflict interactions in the future.
[would use MDSOCRE* to express dependency—reinforcement—mutex—conflict interactions in the future.

Results. The results of the experiment regarding accuracy, time and subjective preference are presented in Table 6. Global
results show that MDSOCRE* is amply more accurate (85.71% against 64.28%) for the whole experiment. Broken down by
interaction type, MDSOCRE* is more accurate for Reinforcement, Conflict and Mutex interactions but slightly less accurate for
Dependency. Regarding the time taken, MDSOCRE* provided significantly faster results, except for Reinforcement, where the
time taken was slightly more than MDSOCRE. Overall time taken shows that MDSOCRE* is 24% faster than MDSOCRE. In the
subjective preference score we see a strong bias toward MDSOCRE*, both per interaction type as globally. Moreover, statisti-
cal analysis reveals that the difference between the opinions for both notations is highly significant. We performed a popula-
tion independence test® to establish this for each interaction type. The p-values for the tests show that with a 98% confidence
level we can say that the opinion of the test subjects for MDSOCRE is different than for MDSOCRE*. Lastly, overall results
show that the study subjects would use MDSOCRE* in the future, while they do not agree to use MDSOCRE in the future.

To conclude, the experiment shows that interpreting interactions in a requirement model written in MDSOCRE* is not
only preferred by the users, but also significantly faster and also more accurate than when written in MDSOCRE.

5.2. Case study 2: MDSOCRE* versus MDSOCRE-i

The second experiment we performed evaluated the advantages of our extension to unmodified MDSOCRE. As the
previous experiment showed that MDSOCRE* performs better than MDSOCRE, we chose to compare MDSOCRE* with
MDSOCRE-i.

Evaluators. To avoid learning effects from the first experiment influencing the results of this experiment, a different group
of test subjects was used. The group for this experiment consisted of 8 persons with industrial experience in the SM domain.
All of them have worked for a company developing and testing SM software during an average of 4 years. They occupied
different positions, e.g. testers, architects, developers. For this experiment we therefore used concerns and interactions taken
from our SM requirement models written in MDSOCRE and MDSOCRE-i (included in Appendix B).

Activities. The experiment was organized as follows:

1. The four types of interactions were presented.

2. MDSOCRE approach was explained, including usage examples.
3. The mappings of MDSOCRE* for interactions were introduced.
4. MDSOCRE-i was introduced, including usage examples.

5. The two sets of tasks were delivered for their resolution.

5 Atwo independent sample Wilcoxon rank sum test.

A. Zambrano et al. / Science of Computer Programming 78 (2012) 65-92 83

Table 7
Results of case study 2: MDSOCRE* (M-*) versus MDSOCRE-i (M-i), and analysis of population
independence of subjective evaluation.

Interaction Correctness Time Subjective evaluation

M-*(%) M-i(%) M-* M-i UseM* UseM-i p-value
Dependency 75 87.5 4m 4m24s 25 35 0.36
Reinforcement 75 100 5m28s 2m23s 2.25 35 0.46
Conflict 87.5 100 2m22s 2m35s 2.5 3.87 0.007
Mutex 87.5 87.5 1mb54s 1m59s 225 3.87 0.005
Global 81.25 93.75 13m44s 10m21s 2.37 3.68

Survey. After the tasks were completed, a similar survey as in the first experiment was handed to the subjects (substituting
MDSOCRE-i for MDSOCRE in the questions). This survey also included the following questions, allowing a response of either
MDSOCRE* or MDSOCRE-i:

Which notation makes interactions more evident?
Which notation describes the interactions more clearly?

Results. The results for the second case study are presented in Table 7. Correctness is shown in the two first columns.
Globally, MDSOCRE-i results in a higher accuracy than MDSOCRE*. Considering the interaction type, for Dependency,
Reinforcement and Conflict MDSOCRE-i performed better while for Mutex the correctness results are the same. With respect
to time, MDSOCRE-i was notably faster for Reinforcement, while for the other interactions the results are equivalent. In the
overall time measure MDSOCRE-i was 32% faster than MDSOCRE*. Regarding subjective preference, users mildly agree to
use MDSOCRE-i in the future while mildly disagreeing to use MDSOCRE* in the future. With less pronounced differences
between the opinions of both notations, statistical analysis reveals that the difference between the opinions for both
notations still is significant. The p-values for the tests show that with a 95% confidence level we can say that the opinion of
the test subjects for MDSOCRE" is different than for MDSOCRE-i.

Finally, for the last two questions of the questionnaire: which tool makes interaction more evident and which tool
describes interactions more clearly, on both questions MDSOCRE-i got 87.5% of preference compared to 12.5% obtained
by MDSOCRE.

From the second experiment, we can conclude that MDSOCRE-i is preferred by the users, while being somewhat more
accurate and significantly faster than MDSOCRE*.

Overall, considering the time and accuracy measurements of both experiments we can therefore conclude that for the
interpretation of interactions in a requirements model MDSOCRE-i is significantly more accurate than MDSOCRE while also
being much faster. Finally, from the subjective evaluation of MDSOCRE* being better than MDSOCRE, and of MDSOCRE-
i being better than MDSOCRE®, we can infer that users largely prefer MDSOCRE-i over unmodified MDSOCRE (which
includes MDSOCRE™).

Time taken. Using our extensions implies that more time needs to be invested in the explanation on how to use these new
constructs. Even though we did not accurately measure the time needed for this teaching part of the experiment, we do
have some observations in this regard. After the engineers were exposed to the limitations of the original approach and our
workaround, they welcomed our extensions and quickly understood how to use them. Roughly speaking, the explanation
of the extensions took one third of the time needed for the original introduction of the approach (which includes the
workaround). Lastly, compared to the time to explain the extensions, the explanation of the workaround took more time,
in addition to being more cumbersome and more error prone.

5.2.1. Study validity: strong and weak points

Strong point: industrial profile. Because the MDSOCRE-i extension has been inspired by industrial experience in a complex
domain, having the proposed extension validated by people in industry is fundamental. The strongest point of our study is
therefore the industrial profile of the subjects.

In both cases the subjects had considerable experience in the industry. In the case of the first experiment, the test subjects
belong to a company which develops mainly for the enterprise domain. They were accustomed to cope with interactions of
requirements, frequently present in enterprise applications.

For the second case study, the subjects were experts for the particular domain of SMs. Moreover, they occupied different
positions in the company, which reinforces the hypothesis about the ability of MDSOCRE-i to improve comprehension, not
only for requirement engineers, but also for testers, developers and other profiles.

Weak point: small scale. The main weakness of both our studies is that they were performed with a small group of test
subjects (7 and 8 respectively). Given the industrial setting we were unable to locate a larger group of people for both tests.
Moreover for the second test the use of domain experts further restricted the set of possible test subjects.

However we do consider the study to be relevant because we see that the results are very consistent. Our assessment is
confirmed at least regarding the user preference since the statistical analysis of the subjective evaluation returns highly

84 A. Zambrano et al. / Science of Computer Programming 78 (2012) 65-92

significant results. In other words, we can conclude that with a bigger sample size it is extremely likely that the user
preferences would also be in favor of MDSOCRE-i.

In conclusion we state that despite the small number of subjects the results regarding time, accuracy and subjective
evaluation demonstrate that MDSOCRE-i significantly outperforms MDSOCRE with respect to the comprehension of
interactions in requirement models.

6. Related work

We have encountered two other comparative studies for AORE approaches but these however do not consider aspectual
interactions. Sampaio et al. [27] analyze the speed of the requirement analysis process and the quality of the output. Their
real world example: 19 pages of requirements specification, is considerably smaller than ours of about 150 pages [15,16,21].
Chitchyan et. al. [10] use several comparison criteria (identification of concerns, composability, decision support, traceability,
evolvability and scalability). This work is more conceptual, as it compares the approaches without applying them to a
concrete example, instead it considers the mechanisms provided by each approach in light of the criteria mentioned before.

AORE approaches that consider conflict resolution as part of their methodology [7,25] help stakeholders decide on which
concern to implement. In our case however all conflicting concerns must be implemented. Conflicts need to be documented
so that interactions are considered at design time.

In [33] Whittle et al. present an approach called MATA, based on model transformation where weaving is viewed as a
special case of graph transformation. MATA provides support for conflict and dependency detection, based on critical pair
analysis. The objective of this detection phase is to order composition. More recent work, by Chitchyan et al. [9] moves
the focus toward a semantic analysis of requirements. Here requirements are annotated and then composition rules can be
expressed using semantic queries. This approach enables to automatically detect certain conflicts, with the aim of removing
them. As we stated before, we need to document the interactions, not remove (all of) them.

In this work our focus lies on interactions between aspects, and capturing them at requirement level. Multiple approaches
for capturing requirements using aspects exist that however do not provide support for interactions [3,18,32] we therefore
did not include them in our case study. Some other approaches, such as AORA [6] provide documentation of dependencies,
but nothing is said regarding mutex or reinforcement interactions.

Goal oriented requirement engineering, e.g. [22,31,34], deals with conflicts between goals (specially soft goals). Yu
et al. [34], propose a systematic process to discover aspects from a goal model containing functional and non-functional
goals. In this case conflicts arise during the iterative process of refining a goal graph, and they are solved by removing
relationships that lead to a conflict. Related to this is the research on non-functional requirements (NFRs). NFRs cannot
be fully satisfied, instead they can be “sufficiently” satisfied [12]. That is, non-functional goals can only be satisfied
within acceptable limits [11]. The NFR framework establishes different types of contributions between goals. Goals and
contributions are associated to labels indicating the degree of satisfaction or denial. These labels are propagated to determine
the effect of different design decisions [13]. The engineer can then use this information to make design decisions reflecting
the best trade-off for NFR.

In our domain, all of the requirements need to be fulfilled (none can be discarded), and their fulfillment is verified during
a certification process carried out by specialized organizations (known as certification laboratories). Instead of removing
requirements, we need to deal with conflicts by not allowing the activation or execution of conflicting features during a
single system run. To illustrate this, consider the example in Section 2.3 regarding the conflicts originated by the activation
of the Demo concern.

In relation to the ambiguity problem present in the SM domain it is worthwhile to mention the EA-Miner tool from Sam-
paio et al. [26]. This tool uses natural language processing techniques for partial automation of the identification of elements
in the requirements, which leads to early aspect identification. This tool is intended to be of use for any AORE approach. This
as it produces an output that can be consumed by other tools, for example ARCADE (which assists in the detection and resolu-
tion of conflicts) [25]. EA-Miner uses semantic tags to avoid the ambiguity problem. Nonetheless, it requires some interaction
with the requirements engineer, especially in the presence of (noun-)phrases. In our case however, ambiguities come not
only from the use of synonyms and (noun-)phrases, but also as full sentences that express similar ideas but in different forms.

7. Conclusions and future work

This paper presents our study of applicability of two AORE approaches: Theme/Doc [2] and MDSOCRE [20], in the
Slot Machine Domain. We focused mainly on the expressiveness of these approaches in terms of interactions between
requirements. We found that both approaches lacked comprehensive support for our case, and proposed and validated
extensions to both approaches to address this issue.

From our analysis we conclude that, considering both approaches without our extensions, MDSOCRE performs better than
Theme/Doc. This because it allows to specify the composition of concerns in detail. We also noticed a considerable difference
in the process for attaching requirements to their concerns. Theme/Doc relies on the analysis of the text of requirements,
searching for the concern name, while MDSOCRE relies on the analyst’s domain knowledge. As we have different sources
with different terminology, we found the MDSOCRE approach more suitable for our needs.

The first limitation of Theme/Doc is the lack of detailed information regarding the requirements participating in
crosscutting relationships. To address this we added quantification labels that allow the analyst to provide more detail

A. Zambrano et al. / Science of Computer Programming 78 (2012) 65-92 85

to concern relationships. A second issue is the lack of support for expressing interactions between concerns. In order to
solve this we introduced a new kind of interaction relationship that permits to express a conflict, mutex, dependency or
reinforcement between two concerns, information that otherwise would be lost. This new interaction relationship can be
combined with quantification labels to accurately document the requirements involved in the interaction.

For MDSOCRE, we were able to model interactions between two concerns using specific combinations of action and
operator attributes in constraint specifications. As these combinations can be ambiguous and seemed not to be intuitive, we
extended MDSOCRE with explicit support for interactions, called MDSOCRE-i. We then performed a user study to establish
this ambiguity and to validate that MDSOCRE-i delivers faster results and aids in the understanding of interactions.

A first avenue of future work would be a study of the impact of our extensions to evolution of requirements. Second, the
size of our requirements base and the fact that these come from different sources with their own formats, makes it desirable
to automatize how the modeled version of the requirements is obtained and evolved from one version to another. We believe
that extra information represented by the interactions can help to better track the impact of changes, but this needs to be
corroborated.

Although we were able to improve the expressiveness of Theme/Doc, a detailed experiment could be useful to compare
it with the results obtained in Section 4.1 for MDSOCRE-I. Also, the deployment of our extensions in the industry will help
to analyze other issues such as scalability or requirement evolution.

A last path of future work consists of using the information regarding concern interactions - that now can be accurately
recorded during the requirement engineering phase - in the design phase of the application. We expect that this information
will aid in the development of the architectural and design artifacts that will allow the produced application to correctly
address interactions between concerns.

Appendix A. Theme/doc diagrams

See Figs. A.10 and A.11.

PR-2
Prog.
Resumption
PR-1

EC-4 EC-6
Error
Conditions q EC-7
eCs
EC-2
GR-1
Game
Recall
GR-2

Fig. A.10. Theme/Doc approach applied to the selected requirements and concerns.

86

A. Zambrano et al. / Science of Computer Programming 78 (2012) 65-92

Dependency,"
[G25-1,G25-2: M-3],“
.

TimeDateSource

[M-4:GM-2..GM-6]

[PR-3:M-2..M5]

Prop. Comm
Protocol

== =~ [G25-5:PCP-3]

' [G25-4:GM-2]
PR-3:G25-2, ! .
1

G25-3,G25-6] ' Conflict < GM-3
| [all:all] .

[all:GM-2..GM-6]

Conflict _ =
=T [PR-3:DM-3,
DM-7] —
‘ GM-1
‘Reinforcement
+[EC-2,EC-3:G2S5-4]
[PR-3:EC-3,EC-7]
EC-6
EC-2: GM-2,GM-3,
GM-5,GM-6] [GR-2: GM-2]
e EC-7
EC-2
GR-1
Game
Recall
[PR-3:GR-1,GR-2] GR-2

Fig. A.11. Extensions to Theme/Doc applied.

Appendix B. MDSOCRE code listings

Listing 7. Concerns and crosscutting relationships for selected requirements

1
2
3
4
5
6
7
8
9

<?xml version="1.0" encoding="UTF-8"7>

<root>
<Concern name="Game">

<t--

<Requirement id="1"> A slot machines have 5 reels.

</Requirement >

<Requirement id="2"> Reels spin when play button is pressed.

</Requirement >

<Requirement id="3"> Prizes are awarded according to a pay table.

</Requirement >

<Requirement id="4"> A slot machine has one or more devices for entering money.

</Requirement >

<Requirement id="5"> As money is inserted credits are "assigned" to the player.

</Requirement >

<Requirement id="6"> A slot machine must provide means for cashing the credits out.
It could be a ticket printer, a coin hopper.

</Requirement >

</Concern>

<Concern name="Meters">
From GLI 11 -->

<Requirement id="1"> Credit meter: shall at all times indicate all credits or cash
available for the player to wager or cashout (GLI 11 4.10.1)

</Requirement >

<Requirement id="2"> Credit Meter Incrementing: The value of every prize (at the end
of a game) shall be added to the player’s credit meter. The credit meter shall
also increment with the value of all valid coins, tokens,bills, Ticket/Vouchers,
coupons or other approved notes accepted. (GLI 11 4.10.5)

23
24

25
26

27
28
29

30
31
32
33
34

35
36

37
38
39
40
41

42
43

45
46
47

48
49
50
51

52
53
54
55
56
57
58
59
60

61
62

63
64
65
66
67
68

69
70

71
72

A. Zambrano et al. / Science of Computer Programming 78 (2012) 65-92 87

</Requirement >

<Requirement id="3"> Accounting Meters (GLI 11 4.10.9): Coin In: a meter that
accumulates the total value of all wagers [...]. Games-played: accumulates the
number of games played; since power reset, since door close and since game
initialisation.

</Requirement >

<Requirement id="4"> Meters should be updated upon occurrence of any event that must
be counted, including: play, cashout, bill in, coin in.

</Requirement >

<!-- From G2S -->

<Requirement id="5" seeAlso="2,4"> Some G2S meters are: gamesSinceInitCn Number of
games since initialisation. WonCnt: Number of primary games won by the player.
LostCnt: Number of primary games lost by the player
</Requirement>
</Concern>

<Concern name="Game Recall">
<Requirement id="1"> Information on at least the last ten (10) games is to be always
retrievable on the operation of a suitable external key-switch, or another
secure method that is not available to the player.
</Requirement>
<Requirement id="2"> Last play information shall provide all information required to
fully reconstruct the last ten (10) plays. All values shall be displayed;
including the initial credits, credits bet, and credits won, payline symbol
combinations and credits paid whether the outcome resulted in a win or loss. This
information should include the final game outcome, including all player choices
and bonus features.
</Requirement >
</Concern>

<Concern name="G2S">
<Requirement id="1"> The G2S protocol is designed to communicate information between
a SM, and one or more host systems.
</Requirement>
<Requirement id="2"> Meter information can be queried by a host in real-time or a
host may set a periodic meter subscription to cause the EGM to send selected
meters at predetermined intervals.
</Requirement >
<Requirement id="3"> Information provided by the SM is used for audit purposes.
</Requirement >
<Requirement id="4"> The device can generate an event in an unsolicited manner or in
response to a host command.
</Requirement >
<Requirement id="5"> Current timestamp can be configured by the host.
</Requirement >
<Requirement id="6"> Command GetGameRecallLog is used by a host to request the contents of
a transaction log of last playsfrom a SM.
</Requirement >
</Concern>

<Concern name="Proprietary Communication Protocol">
<Requirement id="1"> The PCP communicates a SM with a host system.
</Requirement >
<Requirement id="2"> It must report all meters of a SM.
</Requirement >
<Requirement id="3">Configuration settings such as current timestamp are configured
from the host.
</Requirement >
<Requirement id="4"> If error conditions such as: door open, ticket inserted, paper
out, etc. can be detected they shall be informed to the host.
</Requirement>
</Concern>

<Concern name="Program Resumption">
<!--From Nevada regulation -->
<Requirement id="1" seeAlso="3"> After a program interruption (e.g., processor reset),
the software shall be able to recover to the state it was in immediately prior to the
interruption occurring.
</Requirement >
<Requirement id="2"> Restoring Power. If a gaming device is powered down while in an
error condition, then upon restoring power, the specific error message shall
still be displayed and the gaming device shall remain locked-up.
</Requirement >
<!-- From G2S 1.16 -->

88

80
81

82
83
84

85
86

87
88

89
90
91

92
93

100
101

102
103

104
105

106
107

108
109

110
111

112
113

114
115
116
117
118
119
120
121
122

A. Zambrano et al. / Science of Computer Programming 78 (2012) 65-92

<Requirement id="3" seeAlso="1"> A SM must store all meter information in persistent
memory .
</Requirement >

</Concern>

<Concern name="Error Conditions and Events">
<!--From Nevada regulation -->

<!

<Requirement id="1"> Gaming devices shall be capable of detecting and displaying
error conditions and illuminate the tower light for each or sound an audible
alarm.

</Requirement >

<Requirement id="2"> Error conditions should cause the gaming device to lock up and
require attendant intervention. Error conditions shall be cleared either by an
attendant or upon initiation of a new play sequence after the error has cleared
except for those deemed as a critical error.

</Requirement >

-- From GLI -->

<Requirement id="3"> Error conditions are: coin jam, reverse coin in, stacker full,
bill jam, external doors open.

</Requirement >

<Requirement id="4"> Video based games shall display meaningful text as to the error

conditions.

</Requirement >

<Requirement id="5"> Error conditions shall be communicated to an on-line monitoring
and control system when this is available.

</Requirement >

<!-- From g2s -->

<Requirement id="6" seeAlso="1"> An event represents an occurrence of an incident
detected by a device in an EGM

</Requirement >

<Requirement id="7"> Important events must be reported in real-time, including: error

conditions, tickets inserted, ticket printed.
</Requirement >

</Concern>

<Concern name="Demo Mode">

<!

-- From Nevada -->
<Requirement id="1"> The Slot Machine must permit a a test, diagnostic or demo mode,
which permits gaming device (e.g., a hopper test) shall be completed on

resumption of normal operation.

</Requirement >

<Requirement id="2"> If the gaming device is in a test, diagnostic or demo mode, any
test that incorporates credits entering or leaving the gaming device (e.g., a
hopper test) shall be completed on resumption of normal operation.

</Requirement >

<Requirement id="3"> There shall not be any mode other than normal operation (ready
for play) that increments any of the electronic meters.

</Requirement >

<Requirement id="4"> Any credits on the gaming device that were added during the
test, diagnostic or demo mode shall be automatically cleared before the mode is
exited. </Requirement>

<!-- From GLI 11 4.17 -->

<Requirement id="5"> Specific meters are permissible for these types of modes
provided the meters indicate as such

</Requirement >

<Requirement id="6"> The main cabinet door of the gaming device may automatically
place the gaming device in a service or test/diagnostic mode. Test/diagnostics
mode may also be entered, via an appropriate instruction, from an attendant
during an audit mode access. These modes should not be accessible to the player

</Requirement >

<Requirement id="7"> When exiting from test-diagnostic mode, the game shall return
to the original state it was in when the test mode was entered

</Requirement >

<Requirement id="8"> Test Games. If the device is in a game test mode, the machine
shall clearly indicate that it is in a test mode, not normal play.

</Requirement >

</Concern>

<t--

CROSSCUTTING RELATIONSHIPS -->

<Composition>

<Requirement concern="Demo Mode" id="all">
<Constraint action="enforce" operator="on">
<Requirement concern="Game" id="all" />

123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143

145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193

A. Zambrano et al. / Science of Computer Programming 78 (2012) 65-92

</Constraint>

<Constraint action="exclude" operator="on">
<Requirement concern="Game" id="1" />
<Requirement concern="Game" id="2" />

</Constraint>

<Outcome action="fulfilled"/>

</Requirement >
</Composition>

<Composition>
<Requirement concern="Game Recall" id="2">
<Constraint action="enforce" operator="on">
<Requirement concern="Game" id="2" />
</Constraint>
<Outcome action="fulfilled"/>
</Requirement >
</Composition>

<Composition>
<Requirement concern="Meters" id="4">
<Constraint action="enforce" operator="on">
<Requirement concern="Game" id="2,3,4,5,6" />
</Constraint>
<Outcome action="fulfilled"/>
</Requirement >

</Composition>

<Composition>
<Requirement concern="Program Resumption" id="1">
<Constraint action="enforce" operator="on">
<Requirement concern="Game" id="2" />
</Constraint>
<Outcome action="fulfilled"/>
</Requirement >
</Composition>

<Composition>
<Requirement concern="G2S" id="4">
<Constraint action="enforce" operator="on">
<Requirement concern="Game" id="2" />
</Constraint>
<Outcome action="fulfilled"/>
</Requirement >
</Composition>

<Composition>
<Requirement concern="Error Condition " id="3">
<Constraint action="enforce" operator="on">
<Requirement concern="Game" id="2,3,5,6" />
</Constraint>
<Outcome action="satisfied">
<Requirement concern=" Error Condition" id="2"/>
</0Outcome>
</Requirement >
</Composition>

<Composition>

<Requirement concern="Proprietary Communication Protocol" id="1,2">

<Constraint action="enforce" operator="on">
<Requirement concern="Game" id="2" />
</Constraint>
<Qutcome action="fulfilled"/>
</Requirement >
</Composition>

</root>

89

90

A. Zambrano et al. / Science of Computer Programming 78 (2012) 65-92

Listing 8. Interactions for the selected requirements expressed using MDSOCRE notation

1
2
3
4
5
6
7
8
9

11

<Composition>
<Requirement concern="Meters" id="3">
<Constraint action="ensure" operator="with">
<Requirement concern="G28" id="1,2"/>
</Constraint>
<Outcome action="fulfilled"/>
</Requirement >
</Composition>
<Composition>
<Requirement concern="Meters" id="3">
<Constraint action="ensure" operator="with">
<Requirement concern="PCP" id="1,2"/>
</Constraint>
<Outcome action="fulfilled"/>
</Requirement >
</Composition>
<Composition>
<Requirement concern="G28" id="7">
<Constraint action="enforce" operator="xor">

<Requirement concern="Proprietary Communication Protocol"

</Constraint>
<Qutcome action="fulfilled"/>
</Requirement >
</Composition>
<Composition>
<Requirement concern="Error Condition" id="2,3">
<Constraint action="provide" operator="for">
<Requirement concern="G28" id="4"/>
</Constraint>
<Outcome action="fulfilled"/>
</Requirement >
</Composition>
<Composition>
<Requirement concern="G2S" id="3">
<Constraint action="enforce" operator="xor">

<Requirement concern="Proprietary Communication Protocol"

</Constraint>
<Outcome action="fulfilled"/>
</Requirement >
</Composition>
<Composition>
<Requirement concern="GameRecall" id="1,2">
<Constraint action="ensure" operator="with">
<Requirement concern="G28" id="6"/>
</Constraint>
<Outcome action="fulfilled"/>
</Requirement >
</Composition>
<Composition>
<Requirement concern="PCP" id="all">
<Constraint action="enforce" operator="xor">
<Requirement concern="Demo" id="all"/>
</Constraint>
<Outcome action="fulfilled"/>
</Requirement >
</Composition>
<Composition>
<Requirement concern="G28" id="all">
<Constraint action="enforce" operator="xor">
<Requirement concern="Demo" id="all"/>
</Constraint>
<Outcome action="fulfilled"/>
</Requirement >
</Composition>

id="5"/>

id="4"/>

Listing 9. Interactions for the selected requirements expressed using MDSOCRE-i notation

1
2
3

<Composition>
<Requirement concern="G28" id="1,2">
<Interaction type="dependency">

A. Zambrano et al. / Science of Computer Programming 78 (2012) 65-92 91

4 <Requirement concern="Meters" id="3"/>

5 </Interaction>

6 </Requirement >

7 </Composition>

8 <Composition>

9 <Requirement concern="Proprietary Communication Protocol" id="1,2">

10 <Interaction type="dependency">
1 <Requirement concern="Meters" id="3"/>
12 </Interaction>
13 </Requirement >
14 </Composition>
15 <Composition>
16 <Requirement concern="Proprietary Communication Protocol" id="5">
17 <Interaction type="mutex">
18 <Requirement concern="G28" id="7" />
19 </Interaction>
20 </Requirement >
21 </Composition>
22 <Composition>
23 <Requirement concern="Error Condition" id="2,3">
24 <Interaction type="reinforcement" >
25 <Requirement concern="G2S" id="4"/>
26 </Interaction>
27 </Requirement >
28 </Composition>
29 <Composition>
30 <Requirement concern="Proprietary Communication Protocol" id="4">
31 <Interaction type="mutex" >
32 <Requirement concern="G28" id="3"/>
33 </Interaction>
34 </Requirement >
35 </Composition>
36 <Composition>
37 <Requirement concern="G2S" id="6">
38 <Interaction type="dependency">
39 <Requirement concern="GameRecall" id="1,2"/>
40 </Interaction>
41 </Requirement >
42 </Composition>
43 <Composition>
44 <Requirement concern="Proprietary Communication Protocol" id="all">
45 <Interaction type="conflict" >
46 <Requirement concern="Demo" id="all"/>
47 </Interaction>
48 </Requirement >
49 </Composition>
50 <Composition>
51 <Requirement concern="G2S" id="all">
52 <Interaction type="conflict" >
53 <Requirement concern="Demo" id="all"/>
54 </Interaction>
55 </Requirement >
56 </Composition>
References

[1] Recommended practice for software requirements specifications, IEEE Std 830-1998, 1998.

[2] Elisa Baniassad, Siobhan Clarke, Finding aspects in requirements with Theme/Doc, in: Early Aspects 2004: Aspect-Oriented Requirements Engineering
and Architecture Design, Workshop of the 3rd International Conference on Aspect-Oriented Software Development, March 2004.

[3] Elisa Baniassad, Siobhan Clarke, Theme: an approach for aspect-oriented analysis and design, in: ICSE'04: Proceedings of the 26th International
Conference on Software Engineering, Washington, DC, USA, IEEE Computer Society, 2004, pp. 158-167.

[4] Elisa Baniassad, Paul C. Clements, Joao Araujo, Ana Moreira, Awais Rashid, Bedir Tekinerdogan, Discovering early aspects, IEEE Softw. 23 (1) (2006)
61-70.

[5] David Bar-On, Shmuel Tyszberowicz, Derived requirements generation: the DRAS methodology, in: Software Science, Technology and Engineering,
IEEE International Conference on, 0, 2007, pp. 116-126.

[6] Isabel Brito, Ana Moreira, Integrating the NFR framework in a RE model, in: Early Aspects 2004: Aspect-Oriented Requirements Engineering and
Architecture Design, Workshop of the 3rd International Conference on Aspect-Oriented Software Development, 2004.

[7] Isabel Sofia Brito, Filipe Vieira, Ana Moreira, Rita Almeida Ribeiro, Handling conflicts in aspectual requirements compositions, Transactions in Aspect-
Oriented Software Development 3 (2007) 144-166.

[8] Ruzanna Chitchyan, Johan Fabry, Shmuel Katz, Arend Rensink, Editorial for special section on dependencies and interactions with aspects 5490 (2009)
133-134

[9] Ruzanna Chitchyan, Awais Rashid, Paul Rayson, Robert Waters, Semantics-based composition for aspect-oriented requirements engineering,
in: AOSD’07: Proceedings of the 6th International Conference on Aspect-Oriented Software Development, New York, NY, USA, ACM, 2007, pp. 36-48.

92 A. Zambrano et al. / Science of Computer Programming 78 (2012) 65-92

[10] Ruzanna Chitchyan, Awais Rashid, Peter Sawyer, Comparing requirement engineering approaches for handling crosscutting concerns, in: Jodo Aradjo,
Amador Duran Toro, Jodo Falcdo e Cunha (Eds.), 8th Workshop on Requirements Engineering held at CAiSE’05, 2005, pp. 1-12..

[11] Lawrence Chung, Brian A. Nixon, Dealing with non-functional requirements: three experimental studies of a process-oriented approach,
in: Proceedings of the 17th International Conference on Software Engineering, ICSE'95, New York, NY, USA, ACM, 1995, pp. 25-37.

[12] Lawrence Chung, Brian A. Nixon, Eric Yu, John Mylopoulos, Non-Functional Requirements in Software Engineering, in: International Series in Software
Engineering, vol. 5, Springer, 1999.

[13] Lawrence Chung, Julio Cesar Prado Leite, Conceptual modeling: Foundations and applications, in: Non-Functional Requirements in Software
Engineering, Springer-Verlag, Berlin, Heidelberg, 2009, pp. 363-379.

[14] Siobhan Clarke, Elisa Baniassad, Aspect-Oriented Analysis and Design. The Theme Approach, in: Object Technology Series, Addison-Wesley, Boston,
USA, 2005.

[15] Gaming Laboratories International, Gaming Devices in Casinos, 2007. Available at: http://www.gaminglabs.com/.

[16] Gaming Standard Association, Game to Server (G2S) Protocol Specification, 2008. Available at: http://www.gamingstandards.com/.

[17] John C. Grundy, Aspect-oriented requirements engineering for component-based software systems, in: RE'99: Proceedings of the 4th IEEE
International Symposium on Requirements Engineering, Washington, DC, USA, IEEE Computer Society, 1999, pp. 84-91.

[18] Ivar Jacobson, Pan-Wei Ng, Aspect-Oriented Software Development with Use Cases, in: Addison-Wesley Object Technology Series, Addison-Wesley
Professional, 2004.

[19] Jia Liu, Don S. Batory, Srinivas Nedunuri, Modeling interactions in feature oriented software designs, in: Feature Interactions in Telecommunications
and Software Systems VIII, 2005, pp. 178-197.

[20] A. Moreira, A. Rashid, J. Araujo, Multi-dimensional separation of concerns in requirements engineering, in: Proc. 13th IEEE International Conference
on Requirements Engineering, 29 Aug.-2 Sept. 2005, pp. 285-296.

[21] Nevada Gaming Commission, Technical Standards For Gaming Devices and On-Line Slot Systems, 2008. Available at:
http://gaming.nv.gov/stats_regs.htm.

[22] Nan Niu, Yijun Yu, Bruno Gonzélez-Baixauli, Neil A. Ernst, Julio Cesar Sampaio, do Prado Leite, John Mylopoulos, Aspects across software life cycle: a
goal-driven approach, T. Aspect-Oriented Software Development VI 6 (2009) 83-110.

[23] Balasubramaniam Ramesh, Matthias Jarke, Toward reference models for requirements traceability, IEEE Trans. Softw. Eng. 27 (2001) 58-93.

[24] Awais Rashid, Ana Moreira, Domain models are NOT aspect free, in: ACM/IEEE 9th International Conference on Model Driven Engineering Languages
and Systems, MODELSO6, in: Lecture Notes in Computer Science, vol. 4199, Springer Verlag, 2006, pp. 155-169.

[25] Awais Rashid, Ana Moreira, Joao Aratijo, Modularisation and composition of aspectual requirements, in: Proceedings of the 2nd International
Conference on Aspect-oriented Software Development, AOSD’03, New York, NY, USA, ACM, 2003, pp. 11-20.

[26] Americo Sampaio, Awais Rashid, Ruzanna Chitchyan, Paul Rayson, Ea-miner: towards automation in aspect-oriented requirements engineering,
in: Awais Rashid, Mehmet Aksit (Eds.), Transactions on Aspect-Oriented Software Development I, in: Lecture Notes in Computer Science, vol. 4620,
Springer, Berlin, Heidelberg, 2007, pp. 4-39.

[27] Americo Sampaio, Phil Greenwood, Alessandro F. Garcia, Awais Rashid, A comparative study of aspect-oriented requirements engineering approaches,
in: ESEM’07: Proceedings of the First International Symposium on Empirical Software Engineering and Measurement, Washington, DC, USA, IEEE
Computer Society, 2007, pp. 166-175.

[28] Frans Sanen, Eddy Truyen, Bart De Win, Wouter Joosen, Neil Loughran, Geoff Coulson, Awais Rashid, Andronikos Nedos, Andrew Jackson, Siobhan
Clarke, Study on interaction issues, Technical Report AOSD-Europe Deliverable D44, AOSD-Europe-KUL-7, Katholieke Universiteit Leuven, 28 February
2006.

[29] Ian Sommerville, lan Sommerville, Pete Sawyer, Pete Sawyer, Viewpoints: principles, problems and a practical approach to requirements engineering,
Annals of Software Engineering 3 (1997) 101-130.

[30] Peri Tarr, Harold Ossher, William Harrison Jr., Stanley M. Sutton, N degrees of separation: multi-dimensional separation of concerns, in: ICSE’99:
Proceedings of the 21st International Conference on Software Engineering, Los Alamitos, CA, USA, IEEE Computer Society Press, 1999, pp. 107-119.

[31] Axel Van Lamsweerde, Goal-oriented requirements engineering: A guided tour, in: Proceedings of the Fifth IEEE International Symposium on
Requirements Engineering, RE’01, Washington, DC, USA, IEEE Computer Society, 2001, p. 249.

[32] Jon Whittle, Jodo Aratjo, Scenario modelling with aspects, IEE Proceedings - Software 151 (4) (2004) 157-172.

[33] Jon Whittle, Praveen Jayaraman, MATA: A tool for aspect-oriented modeling based on graph transformation, in: Holger Giese (Ed.), Models in
Software Engineering: Workshops and Symposia at MoDELS 2007, in: Lecture Notes in Computer Science, vol. 5002, Springer, Berlin, Heidelberg,
2008, pp. 16-27.

[34] Yijun Yu, Julio Cesar, Sampaio do Prado Leite, John Mylopoulos, From goals to aspects: discovering aspects from requirements goal models,
in: Proceedings of the Requirements Engineering Conference, 12th IEEE International, Washington, DC, USA, IEEE Computer Society, 2004, pp. 38-47.

[35] Arturo Zambrano, Johan Fabry, Guillermo Jacobson, Silvia Gordillo, Expressing aspectual interactions in requirements engineering: experiences in the
slot machine domain, in: Proceedings of the 2010 ACM Symposium on Applied Computing, SAC 2010, ACM Press, 2010, pp. 2161-2168.

http://www.gaminglabs.com/
http://www.gamingstandards.com/
http://gaming.nv.gov/stats_regs.htm

	Expressing aspectual interactions in requirements engineering: Experiences, problems and solutions
	Introduction
	Concerns in the slot machine domain
	Concern organization
	Selected requirements
	Interactions

	Evaluation of AORE approaches
	Theme/Doc
	Brief overview of Theme/Doc

	Use of Theme/Doc
	Limitations of Theme/Doc
	Granularity
	Expressing interactions
	Implicit requirements
	Ambiguity of the requirements

	MDSOCRE
	Brief overview of MDSOCRE

	Use of MDSOCRE
	Limitations of MDSOCRE
	Lack of interaction relationships
	No support for unification

	Extensions of the existing approaches
	Extensions to Theme/Doc: Theme/Doc-i
	Granularity
	Expressing interactions
	Implicit requirements, ambiguity of requirements
	Theme/Doc-i applied

	Extensions to MDSOCRE: MDSOCRE-i
	Explicit interaction relations
	Cross-references for unification
	Applying MDSOCRE-i

	Summary of extensions

	User study: MDSOCRE, MDSOCRE* and MDSOCRE-i
	Case study 1: MDSOCRE versus MDSOCRE*
	Case study 2: MDSOCRE* versus MDSOCRE-i
	Study validity: strong and weak points

	Related work
	Conclusions and future work
	Theme/doc diagrams
	MDSOCRE code listings
	References

