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I review different approaches to the construction of vortex and instanton solutions in noncommutative field 
theories.

1 Introduction
The development of Noncommutative Quantum Field Theo
ries has a long story that starts with Heisenberg observation 
(in a letter he wrote to Peierls in the late 1930 [1]) on the pos
sibility of introducing uncertainty relations for coordinates, 
as a way to avoid singularities of the electron self-energy. 
Peierls eventually made use of these ideas in work related 
to the Landau level problem. Heisenberg also commented 
on this posibility to Pauli who, in turn, involved Oppenhei
mer in the discussion [2], It was finally Hartland Snyder, 
an student of Openheimer, who published the first paper on 
Quantized Space Time [3], Almost immediately C.N. Yang 
reacted to this paper publishing a letter to the Editor of the 
Physical Review [4] where he extended Snyder treatment to 
the case of curved space (in particular de Sitter space). In 
1948 Moyal addressed to the problem using Wigner phase
space distribution functions and he introduced what is now 
known as the Moyal star product, a noncommutative associ
ative product, in order to discuss the mathematical structure 
of quantum mechanics [5],

The contemporary success of the renormalization pro
gram shadowed these ideas for a while. But mathematici
ans, Connes and collaborators in particular, made important 
advances in the 1980, in a field today known as noncommu
tative geometry [6], The physical applications of these ideas 
were mainly centered in problems related to the standard 
model until Connes, Douglas and Schwartz observed that 
noncommutative geometry arises as a possible scenario for 
certain low energy limits of string theory and M-theory [7], 
Afterwards, Seiberg and Witten [8] identified limits in which 
the entire string dynamics can be described in terms of non
commutative (Moyal deformed) Yang-Mills theory. Since 
then, 1300 papers (not including the present one) appeared 
in the arXiv dealing with different applications of noncom
mutative theories in physical problems.

Many of these recent developments, including Seiberg- 
Witten work, were triggered in part by the construction of 
noncommutative instantons [9] and solitons [10], solutions 
to the classical equations of motion or BPS equations of 
noncommutative theories. The present talk deals, precisely, 

with the construction of vortex solutions for the noncommu
tative version of the Abelian Higgs model and of instanton 
solutions for noncommutative Yang-Mills theory. It covers 
work done in collaboration with D.H. Correa, G.S. Lozano, 
E.F. Moreno and M.J. Rodriguez.

The plan of the talk is the following. In the next section 
I describe the construction of noncommutative field theories 
using the Moyal star product and how this can be connec
ted, in the case of even dimensional spaces, with a Fock 
space formulation. The approach will allow to turn the more 
involved non-linear equations of motion (or BPS equations) 
in noncommutative space into algebraic equations which are 
simpler to analyze. The application of this technique to 
the construction of vortex solutions in the noncommutative 
Abelian Higgs model is presented and finally, in the last sec
tion, instanton solutions to the self-dual equation for a U(2) 
noncommutative gauge theory are discussed.

2 The connection between Moyal pro
duct of fields and operator product 
in Fock space

Let us call x'1. p = 1,2, ...d the coordinates of d- 
dimensional space-time. Given fi(x) and %(x), two ordinary 
functions in Rd, their Moyal product is defined as [5]

exp fitxffy')fi(x') * %(x)
y=x

=

-^/j.cfupdijdcMxWvdjxi.x) + . .(1)

with 9^ a constant antisymmetric matrix of rank 2r < d 
and dimensions of (length)2. One can easily see that (1) 
defines a noncommutative but associative product,

* (x(x) * = (<Xa?) * x(x)) * (2) 
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Under certain conditions, integration over Rd of Moyal pro
ducts has all the properties of the the trace (Tr) in matrix 
calculus,

Indeed, identity (3) holds when derivatives of fields vanish 
sufficiently rapidly at infinity, since

<^(x) * %(x) = <^(x)x(x) + ^d^x^xix) -

/d,a

=

One has also in this case cyclic property of the star product,

(4)

Finally, Leibnitz rule holds

dp. Wx) * X(^)) = dfj.Hx') * %(x) + (5)

The *-commutator, denoted with [, ],

[<A %] = * x(x) - x(x) * <Xa?) (6)

is usually called a Moyal bracket. If one considers the case 
in which o and % correspond to space-time coordinates .X' 
and xf one has, from eq.(l),

[xbi,xl'] = idbil' (7)

This justifies the terminology “noncommutative space-time” 
although in the Moyal product approach to noncommutative 
field theories one takes space as the ordinary one and it is th
rough the star multiplication of fields that noncommutativity 
enters into play. For example, the action for a massive self
interacting scalar field takes, in the noncommutative case, 
the form

Note that due to eq.(3), the quadratic part of the action coin
cides with the ordinary one (and hence Feynman propaga
tors are the same for commutative and noncommutative the
ories). It is through interactions that differences arise.

We are interested in coupling scalars to gauge fields. 
Given a gauge connection and a gauge group element 
g e G, the gauge connection should transform, under a 
gauge rotation as

A^tx) = 9(F) *44^) *9 i(x') + ^9 (9)

Note that even in the (7(1) case, due to noncommutative 
multiplication, the second term in the r.h.s. has to be pre
sent in order to have a consistent definition of the curvature. 

Also, the expression for g(x) as an exponential should be 
understood as

g(x) = exp* (ie(x)) = 1 + ie(x') — -e(x) * e(x) + . .. (10)

Accordingly, even in the (7(1) case the curvature F^ neces
sarily implies a gauge field commutator,

F^ = - dyA^ - ie (AM * (11)

and then, as it happens for non Abelian gauge theories in 
ordinary space, the field strength F^ is not gauge invariant 
but gauge covariant,

F^ g'1 * F^v * g (12)

However, due to the trace property of the integral, the 
Maxwell action is gauge invariant,

S^j'd'xlf^-I-1' (13)

As for matter fields, one can write

lf,o = + iA^ * f “fundamental”

but also

lf,o = dp — if * “anti — fundamental”

Dadf = d^f - ie(AM * f - f * “adjoint”

(14)

Extending non-Abelian gauge theories with generators 
ta to the noncommutative case is problematic. Consider for 
example the case of G = SU(N). In the commutative case 
one has

r4 4 1 _ 4“ Ab+a+b _ Ab Aa1-b1-a

= Aa Al (tatb - tbta) (15)
'-------V------- '

fabate

so that the commutator, and a fortiori the field strength, take 
values, as the gauge field itself, in the Lie algebra of the 
gauge group. In contrast, in the noncommutative case the 
presence of the star product prevents to arrange the commu
tator as above,

Af = A“ * Abtatb - Ab * A®tbta

Using
tatb = 2ifabctc + ~^SabI + 2dabctc (17)

we see that
=WF^ta +^F^I (18)

and hence F^ f SU(N). One should instead choose U(N) 
as gauge group since, in that case, no problem of this kind 
arises.
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3 Noncommutative solitons
In order to understand the difficulties and richness one en
counters when searching for noncommutative solitons, let 
us disregard the kinetic energy term in action (8) and just 
consider the scalar potential,

V[<(> * 0] = —m2<(> * 0 — — 0 *0*0*0

The equation for its extrema is

m2<^> — X0 * 0 * 0 = 0

or, with the shift 0 (m,/

* <^(x) * <^(x) = <^(x)

(19)

(20)

(21)

To find a solution, consider a function oJ.x) such that 

0o(%) * 0o(x) = 0o(x) (22)

which evidently satisfies (21). Although simpler than (21), 
(22) implies, through Moyal star products, derivatives of all 
orders as it was the case for the original equation. Only some 
solutions can be found straightforwardly or with some little 
work. For example, in d = 2 dimensions one finds

0o = 0
<fy> = 1
0o = -|=exp (—x2/d) J(2)(x) (23)

v 9

Already a solution like (23) shows that nontrivial regular so
lutions, which were excluded in the commutative space due 
to Derrick theorem, can be found in noncommutative space. 
The the reason for this is clear: the presence of the parame
ter 9 carrying dimensions of length2, prevents the Derrick 
scaling analysis leading to the negative results in ordinary 
space.

Finding more general solutions needs new angles of at
tack. A very fruitful approach was developed in [10] by 
exploiting an isomorphism between the algebra of functions 
with the noncommutative Moyal product and the algebra of 
operators on some Hilbert space. We shall describe this pro
cedure below in a simple two-dimensional example (but any 
even dimensional space can be treated identically).

We then start with two-dimensional space with complex 
coordinates

z = -^(x1 + ix2), z = -^(x1 — ix2) (24) 
i/2 i/2

Changing the coordinate normalization,

a = .(x1 + ix2), 00 = .(x1 — ix2) (25)
i/29 i/29

one ends with noncommutative coordinates satisfying

[x1, x2] = i9 —> [a, = 1 (26)

Then a and a0 satisfy the algebra of annihilation and crea
tion operators. One then considers a Fock space with a basis 

|n) provided by the eigenfunctions of the number operator 
N,

N = a0a 7V|n) = n\n) (27)

Note that one can establish a connection between n and the 
radial variable,

N = a0a « ¿(x2 +y2) = T— , 9^0 (28)

Configuration space at infinity then corresponds to n oo 
in Fock space. Now, it is very easy to write projectors Pn in 
Fock space,

Pn = \n/n\, P2 = l (29)

so that
Pn = Pn (30)

which is nothing but the configuration space equation (21) 
for the minimum of the potential, but written in Fock space. 
So, we can say that we know a solution to (21) in operator 
form,

C>0 = |n)(n| (31)

Now, how does one pass from this solution in Fock space 
to the corresponding solution in configuration space? The 
answer is to use the Weyl connection which can be summa
rized as follows: given a field 0(z,z) in configuration space, 
take its Fourier transform

with variables defined as before,

z = (x1 + ix2) k = (kl + ik2)
i/2 ' ’ 1/2P- ’

¿From it, define the associated operator

(33)

Then, one can prove that

operator product

(35)

Hence, the complicated star product of fields in configura
tion space becomes just a simple operator product in Fock 
space. As an example of how this connection can be used, 
consider the expression for Pn (that can be found in any 
textbook on second quantization)

In) (n| =: —-a0n exy>(—a0a0an : (36)
ml

(Here means normal ordering) Then, Weyl connection 
implies

: —-a.t" exp(—a^a)an :
ml

= / ^0no{k,k) i e-^a+k^ i
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or, anti-transforming (and using Rodrigues formula)

¿o(k,k) = 2tt exp(—/c2/‘2')Ln(k2/2) (37)

where Ln is the Laguerre polynomial of order n. Finally, 
Fourier transforming this expression, one can write in confi
guration space

^z,z) = 2(—l)"exp (^) Ln (38)

In this way, any operator solution in Fock space can be 
connected with the corresponding solution in configuration 
space where fields are multiplied using the star product. In 
particular, a general solution for the minimum of the poten
tial equation

(39)

in d = 2 space is then,

in Fock space : Aw|n)(n|

in configuration space : <j) = A„o'' i-'Q

(40)

with A„ = 0, ±1 and <^q given by (38).
Now, we want more than solving equations for the ex

trema of potentials. We then have to be able to write kinetic 
energy terms in Fock space. To this end, observe that

[a\ an] =—na"^1 (41)

We then see that we can identify

= (42)

so that derivatives of fields <j> become, in operator language, 

dz4>^ 'M^-^=[a,O0] (43)

and the Lagrangian associated to action (8) can be written in 
the form

L = 2 (K °0]2)---- + 4^

A last useful formula for the connection relates integration 
in configuration space with trace of operators in Fock space:

y dxdy<j>(x,y~) => 27rdTrO0 (45)

¿From here on we shall abandon the notation O,, for opera
tors and just write <j> both in configuration and Fock space.

4 Noncommutative vortices
The noncommutative version of the Abelian Higgs Lagran
gian (in the fundamental representation) reads

L = !Fo - |(<W - t?2)2 (46)

Let us briefly review how vortex solutions were found in 
such a model in ordinary space [11]-[13], The energy for 
static, z-independent configurations is, for the commutative 
version of the theory,

e = |f;2. + :d^p^ + |(|< -¿)2 (47)

Here i = 1,2 so one can consider the model in two dimen
sional Euclidean space with

Di4> = di - iAi4>, <(> = + i4>2 (48)

The Nielsen-Olesen strategy to find topologically non trivial 
regular solutions to the equations of motion of this model 
in ordinary space can be summarized in the following steps 
going from the trivial to the vortex solution:

1. Trivial solution

\4>\=^ Ai = 0 (49)

2. Topologically non-trivial but singular solution (flu- 
xon)

<j> = r/exp{incf>) , Ai = ndi<p (50)

with

y d^xeijFij = 27m

but

SijFij = 27rnJ('2^(x)

(51)

(52)

3. Regular Nielsen-Olesen vortex solution

<t> = exp(in^p) , Ai = a(r)di<p (53)

with boundary conditions:

/(0) = a(0) = 0 , /(oo) = rj , a(oo) = n (54)

4. Bogomol’nyi bound

if A = 2 , E > 27m (55)

whenever the following first order “Bogomol’nyi” 
equations hold

Fzz = rj2 - <M>
Dz4> = 0
Selfdual

-Fzz = rj2 -<M>
Dz<f> = 0

Antiselfdual (56)
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Exact solutions of these equations can be easily construc
ted. Let us describe as an example the noncommutative self
dual case. One just copies the commutative strategy, starting 
from the “trivial” solution that we found in terms of projec
tors

|<^==2? =>
trivial

%
|^>| = 7?exp(^) = 7?— =^>
'------ v------ ' Vl

singular

|<(>| = /(r)exp(M = /X => 
'---------- v---------- ' \z\

regular

</> = -n'^2 M Ml
0,±l

i> = ?? ^2 MM Ml®

</> = MIX (m\a

(57)

Note that in the second and third lines we have used the iden
tification z (1/ M)a. The difference between these two 
formularis that in the second the coefficients are fm = ±1 
while in the third one the should be adjusted using the 
eqs. of motion and boundary conditions.

Of course (57) should be accompanied by a consistent 
ansatz for the gauge field,

x = ix <m (58)

Differential equations (eqs. of motion or Bogomol’nyi eqs.) 
become algebraic recurrence relations which can be easily 
solved. For example, in the selfdual case one has from Bo- 
gomol’nyi equations

\/(n + 2)(/n+i — /n) — en/n+i = 0

2 \/ (tt + l)en_i — e^l_i — 2\/ (tt + 2)en — e2

= -WX-i)

The appropriate condition at infinity (|zM oo) was, in con
figuration space /(|z|) 1. It translates to fn 1 for
n oo. Then, using /0 as a shooting parameter, one deter
mines fi, fa, ■ ■ ■ and from them one computes the magnetic 
field, the flux, the energy, from the expressions

B(r) = 2t?2 y}-l)" (X “ fn} exP (

$ = 27r#TrB = 27t

E = 2tt7?2 (59)

For small 0 one re-obtains the Nielsen-Olesen regular vortex 
solution. Exploring the whole range of 9rp, the dimension
less parameter governing noncommutativity, one finds that 
the vortex solution with +1 units of magnetic flux exists in 
all the 9 range. As an example, we show in Figure 1 the 
magnetic field of a self-dual vortex with N = 1 units of 
magnetic flux, for different values of 9. We see that the so
lution approaches smoothly the commutative (9 = 0) limit.

Figure 1. Magnetic field of a self-dual vortex as a function of the 
radial coordinate (in units of 77) for different values of the anti com
muting parameter 9 (in units of if). The curve for 9 = 0 coincides 
with that of the Nielsen-Olesen vortex in ordinary space.

In the commutative case, anti-selfdual solutions can be 
trivially obtained from selfdual ones by making B —> —B, 
p <j). Now, the presence of the noncommutative para
meter 9, breaks parity and the moduli space for positive and 
negative magnetic flux vortices differs drastically. One has 
then to carefully study this issue in all regimes, not only 
for A = Xbps but also for A p Xbps, when Bogomol’nyi 
equations do not hold and the second order equations of mo
tion should be analyzed. A summary of results which are 
obtained is (see details in ([18],[19],[22]):

• Positive flux

1. There are BPS and non-BPS solutions in the 
whole range of rq29. Their energy and magne
tic flux are:
For BPS solutions

Ebps = JprpN , $ = 2pN
N = 1,2,... (60)

For non-BPS solutions,

Enon-bps > Jprj2 N , $ = 2pN
N = 1,2,... (61)

2. For if 9 —> 0 solutions become, smoothly, 
the known regular solutions of the commutative 
case.

3. In the non-BPS case, the energy of an N = 2 
vortex compared to that of two N = 1 vortices 
is a function of 9.

As in the commutative case, if one compares the 
energy of an N = 2 vortex to that of two N = 1 vor
tices as a function of A one finds that for A > Xbps 
N > 1 vortices are unstable (vortices repel) while for 
A < Xbps they attract.
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• Negative flux

1. BPS solutions only exist in a finite range:

0 < rpd < 1

Their energy and magnetic flux are:

Ebps = , ^> = 2pN
N = 1,2,... (62)

2. When rp9 = 1 the BPS solution becomes a flu
xon, a configuration which is regular only in the 
noncommutative case. The magnetic field of a 
typical fluxon solution takes the form

B~^exp(r2/d) J(2)(x) (63)

3. There exist non-BPS solutions in the whole 
range of 9 but
(a) Only for 9 < 1 they are smooth deformati

ons of the commutative ones.
(b) For 9 —> 1 they tend to the fluxon BPS so

lution.
(c) For 9 > 1 they coincide with the non-BPS 

fluxon solution. 

and the Fock vacuum will be denoted as |00). Concerning 
projectors the connection with configuration space takes the 
form

|n1n2)(n1n2| => exp (-r2/di - r|/d2) Lni (2r2/di) x

L„2 (2r|/d2) (66)

Finally, note that the gauge group SU(2) (for which ordi
nary instantons were originally constructed) should be re
placed by (7(2) so that

A^ = ■'/> W + ^2 (67)

Let us now analyze how the different ansatz leading to 
ordinary instantons can be adapted to the noncommutative 
case.

1- (Commutative) 4 Hooft multi-instanton ansatz (1976)

£<aid,v i 
dap, i

/'■'7 / I
v = 4
/j, = 4

5 Noncommutative instantons
The well-honored instanton equation

F^ = ±F^ (64)

was studied in the noncommutative case by Nekrasov and 
Schwarz [9] who showed that even in the (7(1) case one can 
find nontrivial instantons. The approach followed in that 
work was the extension of the ADHM construction, succes
sfully applied to the systematic construction of instantons in 
ordinary space, to the noncommutative case. This and other 
approaches were discussed in [29]-[38]. Here we shall des
cribe the methods developed in [31],[35],

We work in four dimensional space where one can 
always choose

$12 = - $21 = $1 

$34 = — $43 = $2 

all other 9's = 0

We define dual tensors as

F^i/ (65)

with g the determinant of the metric.
In order to work in Fock space as we did in the case of 

noncommutative vortices, we now need two pairs of creation 
annihilation operators,

x1 ± ix2 => ai,
Q I . 4 ZX A fx ± ix => a-2,

Here aa are the Pauli matrices (’t Hooft ansatz corresponds
to an SU(2) gauge theory), 
selfdual equation becomes

With this ansatz, the instanton

F^ = F^ =4> J-V</> = 0
c

(68)

with

N A2
^-1+E(a;_Cî)2 ’

TV
w = J2<5(4)(x - c4

i=l

(69)

The solution corresponds to a regular instanton of topologi
cal charge Q = N.

2- Noncommutative version of’t Hooft ansatz

The natural way of extending’t Hooft ansatz is to pro
ceed with the changes

jy = => = rfU2 * dv4> + dv4> * rfU2

= = (70)

=-i (rfr1 * 9^0 - 9^0 * (p1) (71)

With this we see that the Poisson equation (69) for ordinary 
instantons changes according to

— V<)> = 0 => * V<)> * = 0
4>

= V4> =100><00| (72)
#1 #2
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One then gets, for the field strengths,

F = F+ |00X001 (73)

We see that the self-dual equation is not exactly satisfied: 
the 100) (00 term, the analogous to the delta function in the 
ordinary case, is not cancelled as it happened with the delta 
function source for the Poisson equation (68) in the commu
tative case.

3- Noncommutative BPST (Q = 1) ansatz (1975)

The pioneering Belavin, Polyakov, Schwarz and Tyup- 
kin ansatz [39] leading to the first Q = 1 instanton solution 
was similar to the’t Hooft ansatz except that was used 
instead of its dual SMJ/. Its noncommutative extension can 
be envisaged as

where jv is defined as in the previous ansatz. Concerning 
A^ the consistent ansatz changes due to the use of ins
tead of its dual as in the’t Hooft ansatz. One needs now, 
instead of (71),

A4 = «(75)

With this, one finally has

F^ = F^, Q = S = 1 (76)

but, due to the necessity of the consistent ansatz for the A2. 
component, one can see that

F^ (77)

and hence the price one is paying in order to have a selfdual 
field strength is its non-hermiticity. Note however that the 
action and the topological charge are real.

4- (Commutative) Witten ansatz (1977)

The clue in this ansatz [40] is to reduce the four di
mensional problem to a two dimensional one through an 
axially symmetric N-instanton ansatz. That is, one passes 
from 4 dimensional Euclidan space to 2 dimensional space, 
(x1, x2, x3, x4 r, t) but this last with a nontrivial metric 
X2=r2<FX = 1,2.

The axially symmetric ansatz for the gauge field compo
nents is

Ar = Ar (r, tp)

At =
X =

+ (1 + Q(t9, p) A p)
t)dv£l(p&, p)

+ (l + XMJ^t’M A (78)

with

(79)(
sint9cos<£> \ 
sin f) sin p 

cos ■& /
With this ansatz, the selfduality instanton equation (64) 

becomes a pair of BPS equations for vortices in curved space

( A^Fzz = H2 - 1J Fa m (80)I To 0 V ’FtlV = Ftiv

where </> = </>i + and z = t + ir. Solving these 
BPS vortex equations then reduces to finding the solution 
of a Liouville equation. In this way an exact axially sym
metry N-instanton solution was constructed in [40] for the 
(commutative)^(2) theory.

4-Noncommutative version of Witten ansatz

To proceed, one needs a noncommutative setting for cur
ved 2-dimensional space, where d can in principle depend 
on x,

[xi,x:>] = eij)x) (81)

Now, handling such a commutator is not trivial since not all 
functions fkj(x) will guarantee a noncommutative but asso
ciative product.

One can see, however, that associativity can be achieved 
whenever

V#4 = 0 (82)

In the present 2 dimensional case, these equations have 
as solution

Oij = do 4^ (83)
v9

with d0 a constant. Then, given the metric in which the 
instanton problem with axial symmetry reduces to a vortex 
problem we see that an associative noncommutative product 
should take the form

[r, t\ = r2do ; a,ll other [.,.] = 0 (84)

with now r and t defining the two dimensional variables in 
curved space. A further simplification occurs after the ob
servation that

9 1 1r*t— t*r = r0o =4- t*------- *t = 0o (85)

Then, calling y1 = t and y2 = 1/rwe have instead of 
(84) the usual flat space Moyal product and the Bogomol’nyi 
equations take the form

(1 - |(z + z)2) Dz<)>

iFzz

iFzz

^1 + -(z + z)2^ Dz(^>6)

(87)

(88)

with z = y1 + iy2. We can at this point apply the Fock space 
method detailed above for constructing vortex solutions. In 
the present case, consistency of eqs.(86)-(88) imply

(89) 
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and hence the only kind of nontrivial ansatz should lead, in 
Fock space, to a scalar field of the form

= + (90)
n=0

where q is some fixed positive integer. With this, it is easy 
now to construct a class of solutions analogous to those pre
viously found for vortices in flat space. It takes the form

n=0

■ 9-1

Az = —JS <Vn+x) In + H + V n=0

* J T)=/7

V« + 1) \n + l)(n|+

(91)

One can trivially verify that configurations (91) satisfy 
eqs.(86)-(88) provided do = 2. In particular, both the l.h.s. 
and r.h.s of eq.(86) vanish separately. The field strength as
sociated to our solution reads, in Fock space,

iFzZ = —- (|0> <0| + . .. + \q — 1) (q — 1|) = B (92)

or, in the original spherical coordinates

B(r)Q
B(r) sinriQ
B(r)
B(r) sin ri (93)

As before, starting from (92) for B in Fock space, we can 
obtain the explicit form of B(r) in configuration space in 
terms of Laguerre polynomials, using eq. (66). Concerning 
the topological charge, it is then given by

Q = -¿2tr / dixEfJ-,'al3F^Fa/3

Ftu —

F&tp

F4 =r tu
774 __
"dtp

du j dll'2 = 2TrB2 = (94)

We thus see that Q can be in principle integer or semi
integer, and this for an ansatz which is formally the same as 
that proposed in [40] for ordinary space and which yielded in 
that case to an integer. The origin of this difference between 
the commutative and the noncommutative cases can be tra
ced back to the fact that in the former case, boundary con
ditions were imposed on the half-plane and forced the so
lution to have an associated integer number. In fact, if one 
plots Witten’s vortex solution in ordinary space in the whole 
(r, i) plane, the magnetic flux has two peaks and the corres
ponding vortex number is even. Then, in order to parallel 
this treatment in the noncommutative case one should im
pose the condition q = 2N.
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