
ELSEVIER

Available online at www.seieneedirect.com

Electronic Notes in
Theoretical Computer
Science

Electronic Notes in Theoretical Computer Science 138 (2005) 3-22 :
www.elsevier.com/locate/entcs

Typechecking Safe Process Synchronization

Eduardo Bonelli1,3
Stevens Institute of Technology and LIFIA 1 2 3 4 5 6

1 Supported in part by NSF Grant No. CCR-0220286 ITR:Secure Electronic Transactions.
2 Supported in part by the ARO under Award No. DAAD-19-01-1-0473.
3 Email:ebonelli<Jcs. stevens-tech. edu
4 Email:abc@cs. stevens-tech. edu
5 Email:egunter@cs. uiuc. edu
6 Faculty of Informatics, University of La Plata, La Plata, Argentina

1571-0661 © 2005 Elsevier B.V. Open access under CC BY-NC-ND license.
doi:10.1016/j.entcs.2005.05.002

Adriana Compagnoni1,4
Stevens Institute of Technology

Elsa Gunter1,2,5
University of Illinois at Urbana - Champaign

Abstract

Session types describe the interactions between two parties within multi-party communications.
They constitute a communication protocol in the sense that the order and type of interactions
between two parties are specified. For their part, correspondence assertions provide a mechanism
for synchronization. When session types and correspondence assertions are combined, they are
able to describe synchronization across different communication sessions, yielding a rich language
for imposing expressive interaction patterns in multi-party communications.
This paper studies the typechecking problem for Iris, a typed 7r-calculus that combines session types
and correspondence assertions. We define a typechecking algorithm and prove that it is sound and
complete with respect to the typing rules. Furthermore, we show that the typing system satisfies
the minimum effects property. Although session types have been extensively studied in the past
few years, to our knowledge this is the li rsl proof of decidability of typechecking for a type system
with session types.
Keywords'. Concurrency, 7r-calculus, type systems, typechecking.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/237111006?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
irect.com
http://www.elsevier.com/locate/entcs

4 E. Bonelli et al. /Electronic Notes in Theoretical Computer Science 138 (2005) 3—22

1 Introduction

Increasingly in our society we are coming to depend upon processors for mon
itoring and controlling devices in almost all aspects of our lives. In many
instances the behavior of these processors is governed by communication with
other processors, which may be other components of the same system or may
be remotely located. Examples where such communication is critical can be
found in space exploration, air traffic control, medical devices, banking, and
electronic commerce. It is of great importance to have high assurance that the
software governing these communications and resulting decisions is correct.

The approach presented in this work applies to any situation where there
is communication between multiple parties that can be factored into one-to-
one communications. Session types [17,18] allow one to describe the exchange
of information between two parties. They describe the information being
exchanged, in which order it is exchanged, what party sends it, what party
receives it, and the type of the information. However, session types alone fall
short in restricting process interaction. For example, a small system involving
processes Client, ATM and Bank is developed in [1,4], It illustrates situations
which cannot be captured by session types, including:

• When Client requests a deposit operation from ATM, ATM may redirect
some of the funds to a different account without violating the session-type
based protocol description.

• ATM may forward an amount which does not coincide with the one it read
in from Client.

• ATM may receive a deposit from Client and never contact Bank.

Combining session types with correspondence assertions [23,12,14] increases
considerably the expressiveness of the interaction patterns that may be im
posed on processes. Examples of properties that may now be addressed
are [1,4]:

• the balance that Client receives always conies from Bank, and the amount
to be deposited received by Bank always conies from Client.

• ATM should behave as a forwarder that does not alter the data received
from Bank or Client.

• we can detect that ATM is attempting a deposit not instructed by Client or
tries to deposit a smaller amount than the one specified by Client.

Iris, a statically typed language based on the 7r-calculus that extends [18]
with correspondence assertions [11,14], was first introduced in [1], There it
was shown that the type system allows us to detect irregularities in concurrent

E. Bonelli et al. / Electronic Notes in Theoretical Computer Science 138 (2005) 3—22 5

communications such as the unauthorized modification of data, missing or
avoided communications, and extra unintended communications. In this paper
we continue the study of Iris by showing that typechecking is decidable.

Related work. Regarding session types, they have attracted considerable
attention in the past decade motivated by the benefits that such type systems
provide for the analysis of protocols. The initial proposal for session types
was by K. Honda et al. [17]. Natural extensions of this work that have been
studied include subtypes [8] and bounded polymorphism [16]. They have also
been studied in the context of component-based software development [22] and
reformulated in the A-calculus with input/output operations [9]. Regarding
type-checking and inference, in [7] a sort inference algorithm for the polyadic
7r-calculus is given. B. Pierce and D. Turner define a type checking and type
inference algorithm for PICT, a concurrent programming language based on a
polymorphic version of the 7r-calculus. The Cryptic Project, a joint project be
tween A. Gordon and A. Jeffrey, includes an implementation of a type-checker
for the language they developed in [12,11,14,13] that includes correspondence
assertions and public and private data. Regarding the processes as models
paradigm introduced by Chaki et al. in [6] there is also an implementation of
a type-checker (called Piper) for their language. Typechecking for the common
part of the generic type system in [19,20] is discussed in that paper. Recently,
a type-inference system called TyPiCal has been developed by N. Kobayashi
that permits lock-freeclom analysis, deadlock-freedom analysis, useless-code
elimination, and information flow analysis [21],

2 The Iris-Calculus

2.1 Syntax

We assume given a set of names x, y,z,... We distinguish two distinct kinds of
names: expression names, written a, b, c,... (which range over sessions and in
tegers); and channel names, written k, h, k',... We also have integer constants
..., — 1, 0,1,... and (branching) labels 1,1',... A value is an expression name
or an integer constant and is denoted with letters v, v',... Assertion labels,
written L,L',..., are tuples of values and are written (ty,..., ry). Process
expressions, denoted with P, Q,..., are defined as follows"

In our technical report [3] we also deal with a process declaration construct def D in P

where D takes the form Ah[ai : p] = Pi and... and A"„[a„ : Tn] = P„ and a process call
construct A"[v]. These have been omitted due to space restrictions.

6 E. Bonelli et al. /Electronic Notes in Theoretical Computer Science 138 (2005) 3—22

P ::= request a(fc) in P | accept a(fc) in P | fe?(;r) in P | fe![r]; P |
throw fejfeffP | catch k(k') in P | (ya : T)P | (ok : -L{a,cj})P |
k <¡ I; P | fc > {/i : Pid : P„} | stop | P | Q |
begin L; P | end L; P

Remark 2.1 Parentheses are binding constructs. Two process expressions
which differ only in the names of their bound names are called «-equivalent
and shall be considered equal. We use the notation P{a — u} for the result of
substituting all free occurrences of a in P by u, and similarly for P{k *— k'}.
The set of free names of a process expression, written fn(P), and that of an
assertion label, likewise written fn(e), are defined in the standard manner (see
[2] for details).

The request primitive requests a session on name a. When this session is
established, the fresh private channel k shall be used for message interchange.
The accept receives a request on the same name a and generates a new pri
vate channel for message interchange to be used once the session is established.
The request and accept constructs each bind all free occurrences of the im
mediately following channel variable, k, in the subsequent process, P. The
synchronous sending and receiving of messages is achieved with fc![u];Q and
k?(x) in P respectively, although, as in [18], a translation to an asynchronous
calculus with branching is possible. Controlled side-stepping of linearity con
straints on channel usage is achieved by means of the channel delegation con
structs throw P and catch k(k') in Q. Mechanisms for selection of a
label and branching are available as k < Z; P and k \> {Zi : PjD ... □ l„ : Pn}.
The notation P | Q stands for the concurrent execution of P and Q; we also
use stop for inaction. We write (ua : T)P or (yk : A{Qyr}.)P for the usual
constructs for name hiding, where the former is for expression names and the
latter for channel names. T denotes a type expression (Def. 2.2) and Ap-} is
the “complete” channel type with communication protocol given by the chan
nel type a. Note that -L{Q,a} = -L{o,o}- The begin and end assertions shall
be used as type directives in the type system for Iris (Sect. 2.2.1): begin L; P
simply asserts begin L and then behaves as P; likewise end L; P asserts end L
and then behaves as P. The operational semantics of Iris in the form of a re
duction relation on processes is given in Fig. 1. As usual, it relies on the
notion of structural congruence whose definition in Iris is standard.

2.2 The Type Discipline

2.2.1 Session types and effects
The type system assigns an effect to a process under a given set of type
assumptions. The effect of a process reflects its pending obligations. An

E. Bonelli et al. /Electronic Notes in Theoretical Computer Science 138 (2005) 3—22 7

(accept a(fc) in Fi)| (request a(fc) in F2)--- • fok : ±{«,«-})(Fi| F2) Trans Link
(fe![ì’j; Fi)| (fe?(a) in F2) ----FJ F2{a — r}
(fe < ly F)| (fe > {Zi : FiD : Fn}) —> F| F, if i e l..n
(throw fc[fc']; F)| (catch k(k") in F2) —> F| F2{fe" — k'}
begin L; P — > P
end L; F —> F
F —> F =S- (yx : F)F —> (yx : U)F
F^F =i- P\Q^P’\Q
P = P', P' ~^Q',Q' = Q => P — Q

Trans Comm
Trans Brnch
Trans Catch
Trans Begin
Trans End
Trans Res
Trans Par
Trans =

Fig. 1. Unlabelled Reduction Semantics for Iris

assertion of the form begin L reduces these obligations by withdrawing the
assertion label L from the current effect; likewise end L augments the current
effect with L. Thus effects determine lower-bouncls of the number of begin
assertions that must be present. If the process has an empty effect, then all
end assertions correspond to a matching begin assertion.

As explained above, effects also have to be attached to channel types in
order for two or more processes to share information on their pending or latent
effects. Effects added to channels are thus called latent effects.

Definition 2.2 [Types with Effects] Assertion labels, effects and types are
given by the following grammar:

Plain Type T ::= Int | <r(a)
Channel Type a./J ::= j. [a : T]e;a | f [a : T]e;a | j. [a]e;d

| t [a]e; f3 | ■ ai, ■ ■ ■ ,ln ■ a„}e
I : Ql.... Tn : CW}c I 1 I T j,, ,, if

Effect e,e' ::= (]Li,.. . ,L„ |)
Assertion Label L, Lt ::= (i>i,. .. , vn)

A type is either a plain type or a channel type; we use U, U, to range over
types. The set of free names of a type U, written fn(C7), is defined as usual
(see [2]). The base type Int is the type of integer constants. Session types are
represented as a (a) and may informally be seen to denote a pair consisting of
a channel type a- and its dual a:

The types a and a shall be assigned to the two endpoints of a commu
nication session. Note that is not defined. A channel type consists of
a sequence of input/output types of values or channels, or branch/selection
types; the sequence is assumed to terminate with the channel type terminator
1. Each of these is accompanied by a latent effect. An effect is a multi-set of
assertion labels; we use (|... |) for the multi-set constructor. Multiset subtrac

E. Bonelli et al. /Electronic Notes in Theoretical Computer Science 138 (2005) 3—22

tion is defined as e \ e', the smallest multiset e" such that e < e' + e", where
“+” is multiset union. Multiset join is defined as e V e', the smallest multiset
e" such that e < e" and e' < e". The special channel type -L{o>a} models a
channel that has not yet been opened and shared between two subprocesses
of the current process.

2.2.2 Typing Rules
An environment. T is a set of type assumptions ;zy : U\ ■ ... ■ xn : Un where
;zy,..., xn are distinct names. We use letters T, A,... for environments. The
domain of T, written dom(T), is the set {;zy,..., xn}, and the range of T, written
ran(T), is the set {U\,... ,Un}. Also, we write domCh(T) for the subset of
names to which T assigns channel types and domPl(T) for the subset of names
to which T assigns plain types. The free names of T, written fn(T), is the set of
names occurring either in the domain of T, or free in a type in the range of T,
i.e. fn(T) = dom(T)U|Jreran(r) fn(C7). In an assumption x : U, x is called the
subject; if the type assigned to the subject is a plain type then the assumption
is said to be a plain assumption, otherwise it is a channel assumption. We
write T • x : U for the environment resulting from extending T with the type
assumption x : U for x dom(T). The notation T \ x : U stands for the
environment resulting from dropping the assumption x : U from T, assuming
it exists. Since there is a unique U such that x : U G T for any x G dom(T),
we may sometimes abbreviate T \ x : U by T \ x. For any x G dom(T), we will
use T(;r) for the unique type such that (x : T(;r)) G T.

Definition 2.3 [Depends on] xt : Ut depends directly on x3 : U3 in T (written
By : Up <—(xt : U-N, if x3 G fn([/,■). We say x, : U, depends on x3 : U3 in T
if x, : U, x3 : U3, where > denotes the transitive closure of

An environment is well-formed if it satisfies the following three conditions:

Cl. For each x G domPl(r), x is an expression name, and for each y G
domCh(r), y is a channel name.

C2. For each i G l..n, fn([Z;) C dom(r) \
C3. The relation r— is irreflexive, that is, xt : U(xt : Ut for all xt : U, G T.

The first condition, Cl, requires that only channel types be assigned to
channel names, and only plain types be assigned to expression names. Condi
tion C2 requires that all free names in types assigned by T must be declared
within T. Note that since channel names may not appear in assertion labels,
and hence not in f n(Ut), types may only depend on names which are assigned
plain types. Since interaction through channel names is restricted by linearity
conditions in the sense of linear logic [10] (see explanation of Type Par rule

E. Bonelli et al. / Electronic Notes in Theoretical Computer Science 138 (2005) 3—22 9

below), this restriction states that we clo not allow types depending on linear
assumptions; we do however allow types depending on shared assumptions,
that is, those of plain types. The intended application of our type discipline
is not disturbed by such a restriction, and it is not clear whether the technical
complications of the meta-theory resulting from lifting it outweigh its benefits.
In fact this restriction already appears in other settings in which linear and
intuitionistic assumptions coexist, such as the linear logical framework of [5].
The last condition, C3, requires that T have no cyclic dependencies. This is
usually guaranteed by the representation of environments as sequences of type
assumptions, in which an assumption x : U depends only on those appearing
to its left. Such a representation seems unfit in a setting where channel types
are present, since basic results on admissibility of structural rules fail [3].

The Iris type system consists of the following judgements'.

T H o well-formecl environment T

r v ■. T well-typecl value v of type T

ITP: e well-typecl process P with effect e

The typing rules of Iris are presented in Fig. 2. The rules Type Acpt and
Type Requ introduce a new channel name in the environment, thus guaran
teeing that a private channel is being used for the session. Note that dual
channel types are used for the requesting and accepting parties. Type Bgn
and Type End affect process effects by eliminating or adding a new assertion
label. The rules Type Snd and Type Rev allow the typing of the communica
tion primitives for sending and receiving data. Note that data is sent and
received over channels only. Also, note that the type of k in the upper right
hand judgement of Type Snd is a{a «— u}, reflecting the fact that the “rest”
of the channel type, namely a, may depend on the output value v. In the
Type Snd rule, the latent effect associated to the ouput type of k becomes a
credit. In other words, it becomes a “payment” obligation that must be met
by some prior begin assertion or some prior receive operation. Similar com
ments apply to the Type Rev rule. Note, however, that this time the latent
effect of the type of the parameter of the input (i.e. “ft”) becomes a debit or
payment. Type Brnch and Type Sei type the branching and selection primi
tives, respectively; if pending effects are seen as credits, then it is clear that
the effects of each branch in Type Brnch must be joined. Channel delegation
is achieved by means of the throw and catch primitives, which are typed by
means of Type Thr and Type Cat. The rule Type Thr is subject to the restric
tion that p yt 1; this restricts delegation of channels to those through which

10 E. Bonelli et al. /Electronic Notes in Theoretical Computer Science 138 (2005) 3—22

communication is possible, i.e. no “dead” channels8 . Channel and name re
striction (for non-channel names) are typed as expected. Type Stop types the
inaction stop; it requires all communication through channel names to have
been completed. The Type Subs rule allows increasing the required assertion
obligations of a process term.

8 Technically, this allows us to correct a problem present in [18], namely the failure of
Subject Congruence.

The Type Par rule types the parallel execution of two processes. A channel
may be used by one of the two processes P or Q. The only exception to this
rule is when both P and Q use a channel k of dual types. Since channel usage
must be restricted in order to guarantee such linear usage, the environments
T and T' are required to be compatible (Fig. 4). Note that the notion of
compatibility makes sense for two sets of assumptions that do not necessarily
constitute well-formed environments. Once this notion of compatibility is in
place we may define how two environments are combined through environment
composition (Fig. 4). The subscript of -L{Q,a} in the second clause of the
definition of composition of environments (Fig. 4) records the dual channel
types from which it arises, and hence the name dependencies of those dual
channel types.

3 Typechecking

We define a typechecking function Ch(T, P), where T is an environment and
P is a process. The function Ch(T, P) is defined by recursion over the length
of P, and will either return fail or the minimum possible effect for P. We use
two auxiliary functions:

• ChEnoN), which checks the well-formation of contexts returning true if
and only if T F o,

• ChTy(T,v,T") which checks the types of values returning true if and only
if T F v : T.

ChEnv(E) checks that the environment T is well-formed. This requires
checking conditions Cl, C2, and C3. To check C3, we construct the directed
graph with edges pointing from names in domain of the environment to each of
the free names in the type the environment associates with it. (In the process,
we can easily check conditions Cl and C2.) Once we have constructed the
graph, we apply any standard algorithm to check that it is cycle free. If v is
a numerical constant, ChTy(V, v,T) checks if T = Int; otherwise it checks if
v : T is in the environment T, and then calls ChEnv(V').

E. Bonelli et al. /Electronic Notes in Theoretical Computer Science 138 (2005) 3—22 11

T • a : <r(a) ■ k' : a\~ P{k <— k'} : e k' dom(T)
--Type Acpt

T • a : <r(a) I- accept a(fc) in P : e

T • a : cr(a) ■ k' : a I- P{k k'} : e k' dom(T)
-- Type Requ

T • a : <r(a) I- request a(k) in P : e

T I- P : e fn(L) Ç dom(r) T E P : e fn(L) Ç dom(r)
-- Type Bgn --- Type End
T E- begin L;P:e\(|L|) TH end L; P : e + (| L D

T E- v : T fn(e') \ {«} Ç dom(T) T ■ k : — >'} H’
-- Type Snd

r • fe :î [fl : T]e'; a E fe![t>]; P : e + e'{a

T • c : T ■ k : — c|F P{b <— c} : e
fn(ez) \ {«} Ç dom(r) c fn(e \ e'{a e- c}) U fn(T)

-- Type Rev
T • k :J, [a : T]e'; a k7(b) in P : e \ e'{a c}

T • fe : ai E Pi : ei ... T • k : an E Pn : en fn(ez) Ç dom(T)
 Type Brnch
T • k : &{Zi : an}e' E- k > {Zi : Pi,..., ln :FJ:(V«.>U'

n
r • k : otj E- P : e (1 < j < ri) fn(e') U fn(a) Ç dom(T)

--—-------------------------- Type Sei
T • k : ®{Zi : «1,..., ln : a„}e' E- k <1 lj-,P : e + e'

T • k : a E P : e f n(/3) U in(ez) Ç dom(T) ß ß 1
--Type Thr

T • k' : ß • k :"[[ß]e'; a E throw fe[fe/]; P : e + e'

r • k" : ß • k : aE P{k' <— k"} : e fn(ez) 6 dom(T) k" dom(T)
-- Type Cat

T • k 4 [ß]e'; a E catch k(k') in P : e\e'

T • k' : E P{k k'} : e k' $ dom(T)
--- Type CRes

r E (Ek : ±{ajâ})P : e

T • b : T E- P{a <— b} : e b fn(T) U fn(e)
--- Type NRes

T E (va : T)P : e

T E- O ranCh(r) Ç {1, TEP :e e < e' fn(e') Ç dom(T)
 Type Stop Type Subs

TH stop: (ID-- ri-P:e'

rhP :e r'FQ :e' T x T'
--- Type Par

Top EP|Q : e + e'

Fig. 2. Well-typed process expressions

12 E. Bonelli et al. /Electronic Notes in Theoretical Computer Science 138 (2005) 3—22

T • a : T F O
------------------------Wf Val EName
T • a : T E a : T

r E o n e z
---------------------WfVal Int

T E n : Int

Fig. 3. Well-typed values

i) I1.
li) r x P implies (ü:

(a) r • a : T x P • a : T dii’
(b) r • k : a xT' • k :a y111,

(c) r • k : a x P, if k dom(P) (iv

(d) r x P • k : a, if k dom(r) (v:

(T • a : T) o (P • a : T) = (T o P) • a : T

(r • k : a) o (P • k : a) = (T o P) • k : -L{ajâ}

(r • k : a) o (P) = (r o P) • k : a, if k dom(P)

r o (P • k : a) = (r o P) • k : a, if k dom(r)

Fig. 4. Compatible environments and composition of environments

When defining the clause of Ch for parallel composition, it will be useful
to have a few special-purpose definitions.

Definition 3.1 Extended environments extend plain environments by allow
ing channel names to be associated with plain types of the form a(ct) (session
types). Given an extended environment T, let:

domChoice(r) = {k E domCh(r) | V(k) = a(ct) for some channel type ct}.

We will call a regular environment T' a specialization of an extended envi
ronment T if dom(r') = dom(r), and for all x E dom(r) \ domChoice(r) we
have r'(x) = T(x), and for all k E domChoice(r), if T(k) = a(ct), then either
C(k') = ct or r'(fc) = a. Let:

S(fo) = {r' | T' is a specialization of fo}.

Definition 3.2 Let P and Q be processes and T be an environment. We
define the split of T with respect to P and Q by:

• If fn(P) U fn(Q) dom(r), then split(V, P, Q) = fail.
• If there exists k E fn(P) G fn(Q) such that r(fc) -Lp,a} for any ct, then

split(T, P, Q) = fail.
• Otherwise, split(T, P,Q) = (fo, T2) where Ti and r2 are extended environ

ments defined by the following:
• dom(ri) C dom(r) and dom(r2) C dom(r).
• For all a E domPl(r), a E dom(Li) 0 dom(r2) and T^u) = r2(a) = r(a).
• For k E fn(P) G fn(Q) and V(k') = _L{Q)a}, Fi(fc) = r2(fc) = cr(ct).
• For all k E fn(P) but k fn(Q), k dom(r2) and Ti(A;) = r(fc).
• For all k E fn(Q) but k Pn(P\ k domQG) and r2(fc) = r(fc).
• For all k E dom(r) \ (fn(P) U fn(Q)), we will (arbitrarily) assign Ti(A;) =

r(fc), and have k dom(r2).

E. Bonelli et al. / Electronic Notes in Theoretical Computer Science 138 (2005) 3—22 13

These definitions are used in the clause defining ChfiT, P\Q). The function
split is used to divide the environment T into two extended environments, Ti
and T2, such that for appropriate Tj G S(Ti) and T2 G S(T2), T = Tj o r2.
The difficulty is that when T(A~) = we may need to send k : a- to one
side and k : a to the other, but we do not know which side is going to get
which. The sets S(Ti) and S(T2), where (Ti,T2) = split(T, P,Qfi allow us to
enumerate a sufficient set of possibilities for Tj and T'2.

There were several arbitrary choices macle in the definition of split. First,
we could have sent k : T(fc) to T2 for any or all of the k G dom(T) \ (fn(P) U
fn(Q)). Secondly, if T(fc) = Tpj}, then we had an additional option of
assigning k : 1 to each of fo and T2. The use of these arbitrary choices in the
definition of T is justified by the fact that they do not alter the result of the
type checking function Ch (see [3] for a proof of this fact).

3.1 Defining the Typechecking Function Ch

We define ChfiT, P) by induction on the length of P. To ensure well-clefineclness,
we assume that all classes of names are totally ordered and that when choosing
a fresh name we choose the least fresh name.

If fn(P) dom(T), then ChfiT, P) is defined to return fail. In all subse
quent cases we will assume that fn(P) C dom(T). In most cases the def
inition of Ch can be reacl-off from the type rules. For example, if P is
request a(k) in Q, then we let k' be a fresh channel variable not present
in dom(r) and define ChfiT, request a(k) in P) as:

• ChfiT ■ k' : a, P{k «— A7}) if r(a) = a(a), and
• fail, otherwise.

The exception is the case of parallel composition, which requires further
attention. If split(T, P, Q) returns fail, then ChfiT, P\ Q) is defined to return
fail too. Otherwise, iisplit(V, P, Q) fail, let (Ti, T2) = split(T, P, Q). Notice
that domChoice(Fi) = domChoice(r2) for the extended environments fo and
r2 defined above. Also notice that the number of regular environments that
are a specialization of a given extended environment fo is 2|domCholce(I <
2|domch(r!)| define ChfiT, P\ Q) as:

• ChfiTfi P) + C/z(r'2, Q), if there exists Tj G S(Ti) and r2 G S(T2) such that
ChfiTfiP') fail and ChfiTfiQ') fail and for all k G domChoice(r1) =
domChoice(r2), = r2(fc), and

• fail, otherwise.

Note that there is at most one specialization Tj G S^) and at most one
specialization r2 G S(T2) such that ChfiTfi P) fail and C7?.(r2, Cfi) fail.

14 E. Bonelli et al. /Electronic Notes in Theoretical Computer Science 138 (2005) 3—22

3.2 Propertie.s of Ch

There are several points in the definition oi Ch where one of two kinds of
choices are made: The first is the choice of fresh names and the second appears
in the case of parallel composition Q| R, where we “split” our environment T
into two extended environments Ti and T2, and then choose specializations
Tj and T'2 respectively, such that Ch(T,i,Q') yt fail and Ch(C2,R') yt fail.
Nonetheless, the following result holds.

Proposition 3.3 (Well-definedness of Ch) Ch is a total function.

Proof. This relies on two main lemmas. The first one states the choice of
fresh name does not affect the output oi Ch. The second one states that if the
aforementioned specializations r(and T'2 exist, then they are unique. Finally,
it is noted that the size of the third argument (process P) decreases in every
recursive call. □

For the proof of completeness we may assume that the type derivation of
T F P : e does not include applications of Type Subs. This follows from the
observation that if T F P : e, then for some e' < e, T F P : e' is derivable
without using Type Subs.

Proposition 3.4 (Completeness) If T F P : e, then Ch(T,P} yt fail a,nd,
Ch(T,P) < e.

Proof. By induction on the derivation of T F P : e. All cases follow from
standard lemmas except for the parallel composition case. This case requires
the following result whose proof is simple but tedious.

Lemma 3.5 Let Ti and T2 be environments such that Ti x T2, and let
r = Ti o r2. Suppose that Ch(Ti,P) y^ fail and CP(r2,g) yt fail and
splitfT, P, Q) y^ fail for some processes P and Q. Let (Hi, II2) = split(T, P, Q).
Then there exist G 2(11!) andT'2 G S(II2) such thatT^ x T2 andT = r^oT^
and ChfN, P) = Ch(I\, P) and Ch(T'2, Q) = ChfT?, Q).

The proof of the parallel composition case proceeds as follows: Suppose
Type Par was the last rule to be applied. Then P = Q\R and there exist
environments Ti and T2 and effects ei and e2 such that Ti F Q : ei and
r2 F R : e2 and Ti x T2 and T = Ti o T2 and e = ei + e2. By the inductive
hypothesis, we have that Ch(I\,Q') y^ fail, Ch(Ti,Q) < ei, CP(r2,P) y^ fail,
and C/i(r2, R) < e2.

Since Ch(T\,Q) y^ fail and CP(r2,P) y^ fail, we have fn(Q) C dom(Fi)
and fn(P) C dom(r2). Also, since T = Ti o T2, we have that fn(Q) U
fn(P) C dom(r) and for each k G fn(Q) Fl fn(P) there exists an a such that

E. Bonelli et al. / Electronic Notes in Theoretical Computer Science 138 (2005) 3—22 15

r(A") = Therefore splitp, Q, N is defined and we may take (III, II2) =
split(P,Q, Rf. By Lemma 3.5 there exist T^ G 2(11!) and r2 G S(II2) such
that Ti x r'2 and ChflpQ) = Ch(Pi,Q) and ChflpR') = Chp2,R'). Since
Ti x r'2, we have that T^A") = T2(A~) for all k G domChoice(ri). Therefore,
by the definition of Ch we have that Ch(T, Q| Rf fail and

CA(T,Q|B) = C/i(r,1,Q) + C/i(T',B) = C/i(T!,Q) + C/i(r2,B) < ei + e2 =e
□

Proposition 3.6 (Soundness) If Chp, P) yt fail, then T F P : C/?.(T, P).

Proof. By induction on the definition of C/?.(T,P). We show two sample
cases.

• accept u(A") in P: By the definition of Ch, C7?.(T, accept u(A") in P) =
Chip ■ k! : a, P{k «— A7}), where k' dom(T) and T(u) = a(a-). By the
induction hypothesis, V ■ k ' : a P{k «— k'} : Chp ■ k' : a,P{k <—
AV}). By the definition of Ch, and applying Type Acpt, T • a : cr(a) F
accept u(A") in P : Chp, accept u(A") in P).

• P| Q : By the definition of Ch, Chp, P\ Q) = C/i/Ti, P) + Chp'2, Q), for
some Ti and T2. By construction of T^ and T2, it follows that T^ x r2
and T = Ti o r2, and by the induction hypothesis, T^ HP: Chp^, P) and
T2 F Q : C/?.(T2, Q). Finally, by the rule Type Par, the result follows.

□

Corollary 3.7 (Minimum Effects) If T F P : e, then T F P : C/?(T, P)
a,nd Chp, P) < e.

Proof. The result holds immediately from Soundness (Proposition 3.6) and
Completeness (Proposition 3.4). □

We can now state our main result.

Corollary 3.8 (Decidability of Typechecking) Given T, 0, P and e it
is decidable 'whether IT P : e.

Proof. We first call Chp, P) that always terminates, by Proposition 3.3. If
Chp, P) = fail, by Completeness (Proposition 3.4), r F P : e is not derivable.
If Chp, P) fail, we check the multiset inclusion Chp, P) < e which is also
decidable. If Chp,P) < e holds, then by Soundness (Proposition 3.6) and
Type Subs, T F P : e. If Chp,P) e, by Completeness (Proposition 3.4),
r F P : e is not derivable. □

16 E. Bonelli et al. /Electronic Notes in Theoretical Computer Science 138 (2005) 3—22

4 Conclusions and Future Work

A session type describes the interactions between two parties within multi
party communications. It is a communication protocol describing the order
and type of interactions between two parties. Iris is a typed 7r-calculus re
sulting from a combination of session types with correspondence assertions
that takes session types a step further. Iris allows the description of the ex
change protocol, and also the synchronization between parties that may not
participate in the same session.

This paper studies the typechecking problem for Iris. We define a type
checking algorithm Ch(T, P) that checks whether process P is typable under
the typing assumptions in T. If P is typable under T, it returns the least
effect for P, and otherwise it returns fail. Although session types have been
extensively studied in the past few years, to our knowledge this is the first
proof of decidability of typechecking for a type system with session types. A
related open problem that we are currently investigating is the decidability of
type inference, where type unification has to be considered in the presence of
equations such as those defining the dual of a channel type.

I ris allows us to express the relationship between the information being sent
at its origin and the information being received at the intended destination. If
we stay within a decidable fragment, such as linear arithmetic, we can capture
a considerable family of communication and data exchange patterns: in a large
percentage of the cases where data is transferred, we are interested in seeing
the exact same data at both ends, and many other cases involve very simple
linear arithmetic transformations. For example, frequently an ATM is allowed
to charge a processing fee for a transaction, and then the relation between
the amount entered by the Client and that received by the Bank will not be
identical, but will satisfy a simple linear arithmetic equation. To address this
issue we are considering the extension of Iris with arithmetic.

If we allow general arithmetic, which is not decidable, we can expect to
define a sound semi-clecision procedure: An algorithm without false positives
or false negatives. If the algorithm says yes, then all information can be traced
back to its sources. If the algorithm says no, the algorithm will exhibit a path
showing that the data is not coming from the intended origin. If the algorithm
fails to terminate, then we cannot deduce any information.

Future work also includes developing the formal theory of this calculus in
HOL [15] and using the development to encode and reason about security and
networking protocols.

E. Bonelli et al. /Electronic Notes in Theoretical Computer Science 138 (2005) 3—22 17

Acknowledgement

We are grateful to the LSS group at Stevens for interesting discussions. We
also thank Georgi Babayan, Pablo Garralda, Healfdene Goguen and Ricardo
Medel for comments and suggestions.

References

[1] Bonelli, E., A. Compagnoni and E. Gunter, Correspondence assertions for process
synchronization in concurrent communications, in: A. Brogi, J.-M. Jacquet and E. Pimentel,
editors, FOCLASA 2003. 2nd International Workshop on Foundations of Coordination
Languages and Software Architectures, Electronic Notes in Theoretical Computer Science 97
(2003), pp. 175-195.

[2] Bonelli, E., A. Compagnoni and E. Gunter, Correspondence assertions for process
synchronization in concurrent comm,unications, Technical Report 2003-8, Department of
Computer Science, Stevens Institute of Technology (2003).

[3] Bonelli, E., A. Compagnoni and E. Gunter, Typechecking safe process synchronization,
Technical Report 2004-3, Department of Computer Science, Stevens Institute of Technology
(2004).

[4] Bonelli, E., A. Compagnoni and E. Gunter, Correspondence assertions for process
synchronization in concurrent communications, Journal of Functional Programming, Special
issue on Language-Based Security 15 (2005).

[5] Cervesato, I. and F. Pfenning, A linear logical framework, Information and Computation 179
(2002), pp. 19-75.

[6] Chaki, S., S. Rajamani and J. Rehof, Types as models: Model checking message-passing
programs, in: Proceedings of the 29th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (2002), pp. 45-57.

[7] Gay, S., A sort inference algorithm, for the polyadic pi-calculus, in: Proc, of the 20th ACM
SIGACT/SIGPLAN Symposium on Principles of Programming Languages (1993), pp. 429-
438.

[8] Gay, S. and M. Hole, Types and subtypes for client-server interactions, in: Proceedings of the
European Symposium on Programming Languages and System,s, number 1576 in LNCS (1999),
pp. 74-90.

[9] Gay, S., V. Vasconcelos and A. Ravara, Session, types for inter-process communication,
Technical Report TR-2003-133, Department of Computing Science, University of Glasgow
(2003).

[10] Girard, J.-Y., Linear Logic, Theoretical Computer Science (1987), pp. 1-102.

[11] Gordon, A. and A. Jeffrey, Authenticity by typing for security protocols, in: lfth IEEE
Computer Security Foundations Workshop (2001), pp. 145-159.

[12] Gordon, A. and A. Jeffrey, Typing correspondence assertions for communication protocols, in:
Seventeenth Conference on the Mathematical Foundations of Programming Semantics (MFPS
2001), number 45 in ENTCS (2001).

[13] Gordon, A. and A. Jeffrey, Authenticity by typing for security protocols, Journal of Computer
Security 11 (2003), pp. 451-521.

[14] Gordon, A. and A. Jeffrey, Typing correspondence assertions for communication protocols,
Theoretical Computer Science 300 (2003), pp. 379-409.

18 E. Bonelli et al. /Electronic Notes in Theoretical Computer Science 138 (2005) 3—22

[15] Gordon, M. J. and T. F. Melham, “Introduction to HOL: A theorem proving environment for
higher-order logic,” CLIP, Cambridge, 1993.

[16] Hole, M. and S. Gay, Bounded polymorphism in session types, Technical Report TR-2003-132,
Department of Computing Science, LTniversity of Glasgow (2003).

[17] Honda, K., M. Kubo and K. Takeuchi, An interaction-based language and its typing system,
in: Proceedings of PARLE’9f, number 817 in LNCS (1994), pp. 398-413.

[18] Honda, K., V. Vasconcelos and M. Kubo, Language primitives and type discipline for structured
communication-based programming, in: Proceedings of ESOP’98, LNCS (1998), pp. 122-138.

[19] Igarashi, A. and N. Kobayashi, A generic type system for the pi-calculus, in: Proceedings of the
28th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (2001),
pp. pp.128-141.

[20] Igarashi, A. and N. Kobayashi, A generic type system for the pi-calculus, Theoretical Computer
Science 311 (2004), pp. 121-163.

[21] Kobayashi, N., Type-based analyzer for the pi-calculus, posted on MOCA mailing list (23 of
July, 2004).

[22] Vallecillo. A., V. Vasconcelos and A. Ravara, Typing the behavior of objects and component
using session types, Electronic Notes in Theoretical Computer Science 68 (2003).

[23] Woo, T. and S. Lam, A semantic model for authentication protocols, in: Proceedings of the
IEEE Symposium on Security and Privacy, 1993, pp. 178-194.

A An Example in Iris

The example in this section (Fig. A.l) models a simplified electronic auction
system in Iris. The three main principals of the system are: Auctioneer, Seller
and Buyer. In a normal processing cycle Seller contacts Auctioneer informing of
the product and initial bidding price desired. Auctioneer then waits to receive
biddings from interested buyers. After some fixed amount of time, Auctioneer
determines that the bidding process is over and assigns the product to the
highest bidder.

Two additional processes participate in the system: SellerManager and
BuyerManager. Once Auctioneer has received notification of a seller, including
product and price information, she delegates all further interaction with it
to the SellerManager process. Thus she becomes free to receive requests from
buyers or new sellers. Likewise, once Auctioneer receives notification from a
buyer, including product of interest and bid, she delegates all further interac
tion with the buyer to the BuyerManager. Auctioneer thus becomes available
for interaction with other buyers and sellers.

In order to keep the example simple we assume that Auctioneer can handle
at most one seller at a time and that at least one buyer shall make a bid.
For the same reason, we do not take into account error capture and recovery,
such as when a bidder attempts to make a bid for an item which has not been
placed for selling. In order to begin operating we assume that an initial seller
and buyer have been placed, namely dummy Seller and dummy Buy er. For this

E. Bonelli et al. /Electronic Notes in Theoretical Computer Science 138 (2005) 3—22 19

example we use a version of Iris extended with booleans and if-then-else,
such extensions being straightforward to accomodate.

In what follows we describe the full set of principals:

Auctioneer. Auctioneer waits to receive requests for one of three operations:
• sell: This is invoked by a seller. It reads the seller’s product and initial

base price together with a session name sSELL to be used for further
contact with the seller. Since the auctioneer can handle at most one
seller, it lets the seller manager know that it must cancel the previous
seller - in turn the seller manager shall contact this seller to let her/him
know. It also passes on sSELL to the SellerManager. After that, it informs
the BuyerManager that a new product and base price is in effect.

• bid: This is invoked by a buyer. Auctioneer reads in product, bid and
contact information from the buyer. Then it informs the buyer manager
BuyerManager that a new bidder has arrived and passes on the bidder and
the other data that was input to this manager.

• timeout: This operation is invoked when no further bidding time is left
and hence the current highest bidder has successfully acquired the item
sold. It informs the seller manager SellerManager and the buyer manager
BuyerManager of this situation.

SellerManager. The seller manager acts as an accumulator which holds a
session name to interact with the current seller that Auctioneer is dealing
with. Auctioneer instructs it to do two possible things:
• sold: tell the seller that her item has been sold, or
• cancel: tell the seller that the auction has been canceled due to the arrival

of a new seller and read in the new seller.
BuyerManager. The buyer manager acts as an accumulator which holds a

session name to interact with the current buyer that has placed the highest
bid. It waits to receive one of the following selections:
• newProduct: this is selected by Auctioneer and informs that a new seller

has arrived and passes on the product and base price of this product.
• newBidder: selected by Auctioneer when a new bidder has arrived. Buyer-

Manager reads in the bid and compares it to its current highest bid: if
the former is greater than the latter then it informs the current highest
bidder (i.e. currBuyer) that it has been outbidded and recursively calls
itself with the new bidder as a parameter; otherwise the new bidder is
informed that her bid is too low and BuyerManager recursively calls itself
with the current highest bidder as the highest bidder for the call.

• bought, selected by Auctioneer to inform the buyer manager that the
current highest bidder has successfully acquired the product.

20 E. Bonelli et al. /Electronic Notes in Theoretical Computer Science 138 (2005) 3—22

Auctioneer(sAuc, sBM, sSM) =
accept sAuc(k) in
k > {sell: kl(prod, basePrice, sSELL~) in request sSM(h)in h<\ cancel;

hl(sSELL); request sBM(h) in h<\ newProduct;
hl(prod, basePrice); Auctioneer[sAuc, sBM, sSAf],

□ bid: kl(prod, bid, sBUY) in request sBM(h)in h<\ newBidder;
hl(prod, bid, sBUY); Auctioneer[sAuc, sBM, sSAf],

□ timeout: request sSM(h)in h<\ sold; request sBM(h) in bought;
Auct\oneer]sAuc, sBM, sSM] }

SellerManager(sSAf, curr Seller) =
accept sSM(h) in
h > {sold: request currSeller(fc)in k<\ sold;

SellerManager[sSAf, dummySeller],
□ cancel: request currSeller(k) in k<\ cancel; hl (new Seller) in

SellerManager[sSAf, newSeller] }

BuyerManager(sBAf, prod, currBid, currBwyer) =
accept sBM(h) in
h > {newProduct: hl (prod,basePrice)',

BuyerManager[sBAf, prod, basePrice, dummy Buyer],
□ newBidder: hl (prod, bid, newBuyer) in
if bid > currBid

then request currBuyer(k)in k<\ outBidded;
BuyerManager[sBAf,prod, bid, newBuyer]

else request newBuyer(k)in tooLow;
BuyerManager[sBAf,prod, currBid, currBuyer]

□ bought: request currBuyer(k)in /. < l bought:
BuyerManager[sBAf, dummyProd, 0, dummyBuyer] }

Se\\er(sAuc, sSell,prod,price) = request sAuc(k) in k<\ sell; k\\prod,price, sSell];
accept sSell(k) in k > {sold: stop,

□ cancel: stop}

Buyer(sAuc, sBuy,prod,price) = request sAuc(k) in fe<bid; k\[prod,price, sBuy];
accept sBuy(k) in k > {outBidded: stop,

bought: stop,
tooLow: stop}

Fig. A.l. Full code for the auction example.

Seller. This process defines the behavior of a seller. She requests a session
with Auctioneer and lets her know that she is willing to sell a product prod
at price price. Also, she lets Auctioneer know how she may be reached for
further interaction. She then waits to be informed whether her product was
sold or the auction was canceled due to the arrival of some new seller.

Buyer. The buyer requests a session with Auctioneer and selects a bidding
operation. She then sends the product she is interested in and the price she
is willing to pay. Also, coordinates for further interaction are provided to
Auctioneer. She then awaits one of three possible replies:
• outBidded: In some later cycle a new bidder has outbidded her.
• bought: She has successfully bought the product.
• tooLow: Her initial bid was too low and thus rejected.

The full system is depicted as follows

E. Bonelli et al. /Electronic Notes in Theoretical Computer Science 138 (2005) 3—22 21

Auctioneer[sA«c, sBM, sSAf]| BuyerManager|.s/'A/. 0, 0, dummyBuyer] |
SellerManager|.s.S'A/. dummy Seller] | Buyer [slue, sBuy ,prod, bid] | Seller [sAuc, sSell,prod,price]

ancl is well-typed in the pure theory of session types [18] under the following
type assumptions:

r = sAuc : cr(a), sBM : er(/3), sSM : cfo),
dummyBuyer : <r(®{outBidded : 1,bought : l,tooLow : 1}),
durrwnj/S'e/Ze?’: <r(©{sold: 1,cancel: 1}), where the
sBuy : <r(&{outBidded : 1,bought : l,tooLow : 1}),
sSell : <z(&{sold : 1, cancel : 1}), prod : Int, bid : Int,price : Int

channel types a, 0 and 7 are:
a = &{sell :1 [Int, Int, <z(&{sold : 1, cancel : 1})]; 1,

bid :J. [Int, Int, <r(&{outBidded : 1,bought : l,tooLow : 1})]; 1,
timeout : 1}

[3 = &{newProduct :J. [Int, Int]; 1,
newBidder :J. [Int, Int, <r(©{outBidded : 1,bought : l,tooLow : 1})]; 1,
bought : 1}

= &{sold : 1, cancel p [o'(©{sold : 1, cancel : 1})]; 1}

Note that the auction example is also typable in the type system introduced
in Section 2 if we assume that all effects are empty (| |).

We provide an informal explanation of the type assigned to the session
name sAuc. This session name is used by Auctioneer. The type a(a) is a
session type and is an abstraction of a pair of dual channel types, namely
a- and a. One endpoint of the communication is assumed to abide to the
interaction pattern specified by a, while the other endpoint is assumed to
abide to that specified by its dual. The type constructor indicates that
Auctioneer must accept three operations: sell, bid and timeout. If the first of
these operations is invoked, then Auctioneer must read in a triple consisting of
an integer, another integer and a session name of type a(&{sold : 1, cancel :
1}). Similar comments apply to the bid operation. In the case of the timeout
operation, no further interaction is expected on this channel.

Session types such as those of sAuc, sBM and sSM express how these long
term communication abstractions behave independently of each other, even
though they all belong to a common specification, namely that of the protocol
specifying how Auctioneer, SellerManager, and the other parties should interact
in order to carry out a specific operation (such as placing a bid). This fact
may be witnessed as follows. Consider replacing the code for the bid operation
of Auctioneer by:

Example A.l [Changing bids]

bid: k?(prod, bid, sBUY) in
request sBM(h)in ho newBidder;

TI E. Bonelli et al. /Electronic Notes in Theoretical Computer Science 138 (2005) 3—22

h\(prod, bid — 10, sBUYf, AuctioneerfsAw.c, sBM, sSM],

This version of the bid operation places a smaller bi cl than the one orig
inally communicated to the auctioneer by the bidder. Unfortunately, the
resulting electronic auction system is declared typable by the pure theory
of session types, under the same typing assumptions as the original system.
Other examples of the lack of expressiveness of the pure theory of session types
are described in [1],

The type system for Iris detects such badly behaved variants of the honest
auctioneer by introducing correspondence assertions and applying the type
checking algorithm described in this article. Indeed, in [1] a notion of safe
process is P introduced following [12,11,14,13]. Informally, it states that all
end L assertions are corresponded by a begin L assertion, in every possible
execution of P. Also, it is shown [1] that all processes which are typable with
the empty effect (| |) are safe. Example A.l may thus be addressed by the
insertion of appropriate effects and then showing that the resulting code does
not typecheck with the empty effect. Briefly, this is achieved by first inserting
a begin assertion with label {prod, price, sBuy) in Buyer just before its data on
k is sent. Then, an end assertion with label {prod, bid, newBuyer) is placed in
the newBidder operation of the BuyerManager, just after these names are read
in. Finally, we augment the channel types a- and /.? with appropriate effects:
a = &{sell :J. [Int, Int,o'(&{sold : 1, cancel : 1})]; 1,

bid :J. [;r : Int,j/ : Int,c : o'(&{outBidded : 1,bought : l,tooLow : 1})](] (x,y,z) |); 1,
timeout : 1}

[3 = &{newProduct :J. [Int, Int]; 1,
newBidder :J. [;r : Int, y : Int, z : ^(©{outBidded : 1, bought : 1, tooLow : 1})] (] (x, y,z) |); 1,
bought : 1}

