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Let 3 be a separable Banach ideal in the space of bounded operators acting in a Hilbert space 7T and T the set of partial isometries in 7T. Fix v g T. In this paper we study metric properties of the 3-Stiefel manifold associated to v, namelyStj(v) = {v0 eZ: v - v0 e 3, j(vqV0, v*v) =0),
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(u, w) • Vo = uvow*. u, w 6 Uj(7i) and Vo 6 Stj(v). We endow 5tj(v) with a quotient Finsler metric by means of the Banach quotient norm of the Lie algebra ofi/jCH) zT/jCH) by the Lie algebra of the isotropy group. We give a characterization of the rectifiable distance induced by this metric. In fact, we show that the rectifiable distance coincides with the quotient distance of ¿Yj(7T) z i/jfH) by the isotropy group. Hence this metric defines the quotient topology in Stj(v).The other results concern with minimal curves in 3-Stiefel manifolds when the ideal 3 is fixed as the compact operators in 7T. The initial value problem is solved when the partial isometry v has finite rank. In addition, we use a length-reducing map into the Grassmannian to find some special partial isometries that can be joined with a curve of minimal length. © 2009 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we study the rectifiable distance and minimal curves in infinite dimensional Stiefel manifolds endowed with a quotient metric. Let H be an infinite dimensional separable Hilbert space and Z3(7Y) the space of bounded linear operators acting in H. We will denote by ||.|| the spectral norm of operators. By a Banach ideal we mean a two-sided ideal 3 of BCH) equipped with a norm ||.|| i satisfying ||x|| C ||x||^ = ||x*|| j and ||axb|| j C ||a|| ||x|| 3 ||i>|| whenever a, b e BCH). In the sequel, 3 stands for a separable Banach ideal.Let I denote the set of partial isometries. Fix v el. The J-Stiefel manifold associated with v is defined by
Sfg(v) = {v0 el: v - v0 e 3, j(vqV0, v*v) = 0},where j(.) is the index of a pair of orthogonal projections. The index of a pair of orthogonal projections (p,q) is the Fredholm index of qp : p(7Y) —> qCH), when this operator is Fredholm (see for instance [5]). In a former article [7] the author has established the geometric facts of the 3-Stiefel manifolds mentioned below.
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Denote by Z/(7Y) the group of unitary operators in Tl, and Z/jfH) the group of unitaries which are perturbations of the identity by an operator in 2f, i.e.
UZl(H) = {ueUCK}: u - 1 g 3).It is a real Banach-Lie group with the topology defined by the metric (iii,u2) >-» ||ui — u2||j (see [6]). We point out that x acts transitively on Stj(v). The action is giving by moving the initial and final subspace of the isometries,(u, w) • vo = uvow*, where u, w g Z/jCH), vo G Stj(v). Also recall that the map7rVo : Z/g(7Y) x (7Y) —> Sfg(v), 7r,,0l ((u, w>) = uvow*is a real analytic submersion. Moreover, Stj(v) is a real analytic submanifold of v + 3 and a homogeneous reductive space of Z/j(7Y) x Z/j(7Y) (see [13]). Therefore the tangent space (TStj(v))Vo at vo G Stj(v) can be identified with(rSfg(v))VQ ={xv0- voy: mgW,where ?iaf, is the Lie algebra of Z/j(7Y) giving by the skew-adjoint elements of 3. The isotropy group at vo G Stj(v) of the above action can be computedGVo = {(u, w) g Z/g(7Y) x Z/g(7Y): uvo = vow}.The Lie algebra of GVo is
GVo = {(a.b) g Jah x 3«/,: av0 = vo^}-By means of the quotient Banach norm of (3aft x '3ah)/Qv one can define a Finsler metric on Stj(v). Indeed, for xvo — voy G (TSta(v))Vo,||xv0 - Voyllvo =inf{||(x + a. y + b)||: (a.b)eGv0)- (1-1)Here the norm of a pair is ||(x + a, y + b)|| = <£( ||x + a||j, ||y + b||j), where is any symmetric norming function. A standard computation shows that this metric is invariant under the action. We can define the rectifiable distance induced by this metric in the usual fashion, i.e.d(v0, vi) = inf| y ||y(t)||y(t)dt: ycStj(v), y(O) = vo, y(l) = vi! (1.2)owhere the curves y considered are piecewise smooth.Metric geometry in homogeneous spaces in the setting of operator theory is an area of current research. The met­ric (1.1) was introduced in the remarkable work [9] of C. Duran, L. Mata Lorenzo and L. Recht, where they studied minimal curves with the quotient metric induced by the operator norm homogeneous spaces of the unitary group of C’-algebras. When the quotient metric is induced by the p-norms, several interesting metric properties of abstract homogeneous spaces of the p-Schatten unitary groups were proved in [3], On the other hand, we can cite the ar­ticles [4,11,14] and the references therein concerning geometrical and topological properties of partial isometries. In addition, we mention that background information on Finsler structures on Banach manifolds can be found in the book [18],The contents of the paper are the following. In Section 2 we show that the rectifiable distance metricates the quotient topology of groups in (Z/j(7Y) x Z/j(7Y))/Gv = Stj(v). This fact is proved by giving an alternative description of the rectifi­able distance in terms of the metric distance of the quotient of groups. In Section 3 we fix the ideal 7C(7Y) of the compact operators. We focus on the study of minimal curves in the /C(7Y)-Stiefel manifold which we denote by Stc(v). The initial value problem is solved when v is a partial isometry of finite rank. This means that for vo g Stc(v) and a tangent vec­tor xvo — voy given, there exists a curve 3 in Stc(v) satisfying 3(0) = vo, 3(0) = xvo — voy and being of minimal length up to a critical value of t. Then we prove that Stc(v) can be mapped into a product of Grassmannians with a length­reducing map. As a corollary of this simple fact some specials isometries in Stc(v) can be joined by curves of minimal length.

2. The rectifiable distance in St~i (v)In this section we give a characterization of the rectifiable distance in Stj(v) as a quotient distance of groups. First we need to set some definitions and notations about Z/j(7Y) x Z/j(7Y). We endow Z/j(7Y) with the ambient Finsler metric which is defined by ||(x, y)|| = <i(||x|h. ||y||a) for (x, y) g iii3afl x u2~iah = (T(UzCH'i x Z/a(7Y)))lU1.U2). The function is a symmetric norming function in R2. This means that it is invariant under permutations, only depends on the absolute values of the coordinates and satisfies (1, 0) = 1. We measure the length of a piecewise C1 curve F(t) = (/3(t), r2(t)), t G [0,1],
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as follows 1 k(H = f ||(ô ô)|| dt.

0Therefore UyifH) x Lh(TC) has a rectifiable distance defined bydû((uo.wo).(ui.w1))=inf{£û(F): rcM3(H)xM3(H). F(0) = (u0. w0). F(l) = (U1, W1)}.On the other hand, the length of a C1 curve y(t), t e [0,1], in Stj(v) with the metric (1.1) is denoted by1
L^ = l llÿwlU)dt-0The rectifiable distance d is defined accordingly as Eq. (1.2) shows. Actually this provides a pseudo distance in general. However it is easy to show that this is in fact a distance in Stj(v) (see [7]). Also dj is a distance in ZLj(TL) x ZLj(TL) by the estimates of Lemma 2.4.The following result proved that the rectifiable metric in Stj(v) can be approximated by lifting curves to the product group Z/j(7Y) x Z/j(7Y). It is adapted from [2] with the difference that we use any Banach norm and the assumption that the quotient metric is attained is dropped here.

Lemma 2.1. Let vo, vi g Stj(v). Thend(v0.v1) = inf{L0(F): F c U3 (W x U3 (7Y). ttVo (F(0)) = v0. 7rVo (^(1)) = Vi}. 
where the curves r considered are continuous and piecewise C1.
Proof. Consider any piecewise C1 curve F in ZLj(TL) x ZLj(TL) satisfying ttVo(F(O)) = vo and 7rVo(F( 1)) = Vi. Let us point out that since the map7TVo : (7Y) xZ/gCH)----> Stg(v). ttVo((u, w)) = UV0W*is a real analytic submersion there exists such kind of curves. Then, note that the above map reduces length of curves with the previously defined metrics on each space. Since the action is isometric, it suffices to check that the differential map at the identity

SVo : 3ah X 3ah —> (rSfg(v))Vo. 3Vo((x. y)) = XV0 - voyis contractive. But this follows trivially by the definition of the quotient metric in Stj(v). Hence we have d(vo.vi) C L(7TVo(F))CL3(F).To finish, we must prove that given y in Stj(v) one can approximate L(y) with lengths of curves in ZLj(TL) x ZLj(TL) joining the fibres of vo and vi. Fix c > 0. Let 0 = to < ti <•••< tn = 1 be a uniform partition of [0,1] (At, = tj —ti_i = 1/n) such that the following hold:1. IIP (s) - y(s')Ik < e/4 if s, s' he in the same interval [t,_i, £].2. iLCyj-E^o’llyitiWfc^trRe/z.On the other hand, for each i = 0, ...,n — 1, there exist x^y, g ?iaf, such that 8]/(ti)((Xi, y,)) = y(ti) and ||(X), yi)II C IIY (£) II y (t, > + f/2.Consider the following curve F in ZLj(TL) x ZF(7T):
F(t) = t G [0. ti). 

t G [tl, t2).
e(t2-tl WlgtlXO, e(t-tn-l>yn-l . . . e( t-2 -tl Al gtlVO f g [fn l, 1]Then F is continuous and piecewise smooth, F(0) = (1, 1) and

n—1 n—1= 5211K < 52II IIy(ti)Ati + f/2 LG) +

i=0 i=0
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We claim that 7rVo(r(l)) lies close to vo. Note that if we denote by a(t) =jrVo(etx°,etyo) — y(t), then a(0) = 0, and using the mean value theorem in Banach spaces,||7rVo(etlX°,e,,yo) - y(ti)||a = ||a(ti) -a(0)||a < ||d'(si)||:jzlti,for some si e [0, iq]. Explicitly,||7rVo x°,etiyo) - y (ti) || -, < ||eS1X°l3Vo((xo,yo))e_'13'0 - y(si)||azlti.Note that 8Vo((xo, y0)) = y (0), and that||eS1X°y(0)e_S13'0 - y (si) || ^ < ||es’X(>y(0)e-s’^ - y (0) || -? + ||y(0) - y(si)||TThe second summand is bounded by e/4. The first summand can be bounded as follows||es’X0y(0)e^* w - y (0) || _ = ||(es’x° - l)y(0) - y(0)(e 5l-l'° - 1)||3< ||y(O)|a||(es’Xo - l,e-S|J'° - 1)||where M :=maxtc[o.i] ||/(t)|h. Thus,||7rVo (et,x°, etiy°) - y (tr) H-? < (MzAtr + 6/4)^.Next we estimate ||jTv,,((e1'2 '|)x'e'1 A’fl. e1'2 '' '-v 1 e'1 -Vtl)) — y(t2)||a which is less or equal thane(t2-ti)xietixOvoe-t1yoe-(t2-ti)yi _ ||_ + ||efc-ti)xi _y(t2)||3The first summand can be bounded by||e(t2-tiWi(erixoVoe-riyo _ y(fl))e-<f2-ti>yi||3 = ||efi*oVoe-tiyo _ y (fl) || _. < (MAtt + e/4)zlfi.The second difference can be treated analogously as the first difference above,lle^-bwiy^e-awim _ y(t2)||q < (MAt2 + c/4)At2 = (M/n + e/4)/n.Hence we obtain||^v0(^(t2)) - y to) IIa 2(M/n + c/4)/n.Then by induction we have that||7TVo(F(fn_i)) — Vi 11-, <M/n + e/4< e/2,choosing n big enough. The proof follows since the map ttVo has local continuous cross sections, then one can connect r(tn_i) with the fibre of V] by a curve of arbitrary small length. □We shall need the following result about metric groups from Takesaki’s book [17, p. 109],
Lemma 2.2. Let H be a metrizable topological group, and G be a closed subgroup. Ifd is a complete distance function on H inducing 
the topology of H, and ifd is invariant under right translation by G, i.e. d(xg, yg) = d(x, yi for any x, y e H and g e G, then the left 
coset space H/G = {xG: x e H} is a complete metric space under the metric d given by

d(xG, yG) = inf [d(xgi, yg2): gi,g2 eGj.
Actually, the distance d metricates the quotient topology of groups. Let us observe how Lemma 2.2 applies to our situa­tion. We shall take G = Gv, H = iLc(7f) x UcCH), and d2 the rectifiable distance in Z/C(7Y) x Z/C(7Y).

Remark2.3. Te exponential map exp : ?iaf, —> Z/jCH), exp(z) =ez is surjective. Moreover, we have thatexp({ze J„fl: ||z|| < nJ) = Z/q CH).Briefly we include an argument to prove our affirmation. Let u eZ/jCH), then there is a well-known fact that using the Borel functional calculus is possible to find x = x* such that ||x|| < tt and e'x = u. Any two-sided ideal is contained in the ideal /C(H) of compact operators, then e,x = 1 +a, a e J C ZCCH). Note that x e 7C( 7Y) because ix = log( 1 + a) = , y, so
x is the norm limit of compact operators. Therefore the spectrum of x consists of countable many nonzero eigenvalues of finite multiplicity and zero.
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On the other hand, we have the elementary estimate,/ 7T2\1/2

V I2) |f|i le" ]l- (2-nfor f e [—tt , ?r]. Since the functional calculus is positive, we have
/ 7r2\^2 1
V I2) |x|^le 1l-Therefore, if Sj(.) denotes the singular values of an operator, we obtain the corresponding inequality for the singular values(1 — ■y^-)1'/2Sj(x) < Sj(e'x — 1), for j e IT. By the dominance property (see [10, p. 82]), and the fact that elx — 1 e 3, we can conclude x e 3.

Lemma 2.4. Let uq, ui, wq, wj g then

n2 \1/2— I dg((u0.ui). (w0. Wi)) </’(||u0 - wo lb. ||U1 - Wilb) < d3((u0, Ui). (wo. W1)).
In particular, (Z/j(7£) x Z/j(7£), dj) is a complete metric space and Gv is a dj-closed subgroup.

Proof. We can suppose that u0 = u, = 1 since multiplication is isometric for each metric. Given c > 0, there exists r = 
(To, ) C IL-fiTO xlljlH) such that F(0) = (1,1) and F(1) = (wq, Wi ) and£g(F)<dg((l.l).(Wo.Wi)) + 6.Then, since straight are shortest curves in any vectorial space, we have

‘/’(111 - Wolb. Ill - Wilb)
1

< [*(llAlb,0 II A lb) df = L:, (r) < do ((1. 1). (Wo. W1)) + 6.
The inequality follows since < is arbitrary. In order to prove the reversed inequality, consider xo.xi g 3flfi with ||Xj|| < tt satisfying ex° = wo and eX: = wi. Note that this is possible by Remark 2.3. The curve F(t) = (etx°,etXj), t g [0, 1], joins (1, 1) and (wq, wi). Then,dg((l, 1), (wo. W1)) < £g(F) =‘/’(Ibolb. Ibilb)-Now applying the estimate in (2.1), and passing to the corresponding inequality of the singular values we have 

do((l.l). (Wo. Wi)) < ‘/’(Ibolb. Ibllb) % -1/2
‘/’(111 - Wolb. Ill - Wi|b).which gives the desired inequality.The completeness of (Z/j(7£) xZ/j(7£),dj) follows easy from the estimates. In fact, if (un,wn)n is a Cauchy sequence with the distance dj, it is also a Cauchy sequence with <£(||.|b, ||-lb). Since Z/j(7£) is complete with the norm ||.|b, then there exist uo,wo eZ/j(7£) such that ||un — tiolb ■ 0 and l|wn — wolb — 0- H ¡s apparent from the estimates above that (no, wo) is the limit of (un, wn}n with the distance dj.Finally, the fact that the isotropy group Gv is dj-closed follows from the estimates and from Gv being a closed subgroup in the ideal norm.We give the main result of this section. Recall that the completeness of the metric space (Stj(v),d) was proved in [7] by different methods. Also it is worthwhile noting that a similar statement was proved in [1] for homogeneous spaces in finite von Neumann algebras with the p-norm induced by the trace.

Theorem 2.5. Let v be a partial isometry, tio, wo, uj, wj g Z/j(7£), and letd~ (lloV Wq.Ui vwj) = inf{d~ ((Uo. Wo). (UiU, WjWl): (u, w) g Gv}.
Then dj = d, where d is the rectifiable distance in St^(v). In particular, (Sty(v), d) is a complete metric space and d metricates the 
quotient topology.
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Proof. The quotient distance d~ is well defined because Gv is dj-closed in UyCH) xUyCH). Moreover, since multiplying by unitaries is isometric, it can be computed asdg (uov w^, ui v w-J) = inf{d,-| ((uo. wo), (uiu, wi w)): (u, w) g Cv ).In order to prove the equality between the distances fix e > 0. By Lemma 2.1 there exists a curve r in ZYC(7Y) x Z/cCH) satisfying1. F(0) = (u0, w0), F(l) = (mu, wiw), with (u, w) g Gv.
2. Lyir} < d(uovwg, m vwj) + e.Therefore,d~ (uoVWq, UiVWj) < d~ ((Uo. Wo). (UlU, W1 W)) < Lj (T) < d(uoVWg, UjVWj) + e.Since e > 0 is arbitrary, we have one inequality.To prove the reversed inequality note that for any e > 0, there exists (u, w) g Gv satisfying dj((uo, wo), (uiu, wjw)) < djluovwg, ui vwj) + e. Then there is a curve r c ZFjCH) x UyCH} such that F(0) = (uo, wo), F(l) = (mm wiw) and Lq(F) < dj((uo, wo), (uiu, wiw)) + c. Therefore we haved(uovwQ, UjVWj) < L~ (F) < d~ ((uo. wo), (uiu, wiw)) + e < d,XJ(uovwQ, uivwj) + 2e.Hence the equality d~, =d holds. The completeness of (Stj(v),d) and the fact that d metricates the quotient topology are consequences of Lemma 2.2. □

3. Minimal curves in the K.(fH)-Stiefel manifoldThe problem of finding minimal curves in the J-Stiefel manifold clearly depends on the norm of the ideal 3. The initial value problem was solved in [3] in the general setting of homogeneous spaces of the p-Schatten (p even integer) unitary groups. Since the Stiefel manifolds associated to the p-Schatten unitary groups fit in the context of those homogeneous spaces, we have that the initial value problem is already understood. Among of all the possible problems concerning minimal curves with the different available norms that remain unsolved, in this section we are interested in minimal curves in the ZC(7£)-Stiefel manifold, where 7C(7Y) is the ideal of compact operators. We denote the AS(7Y)-Stiefel manifold associated to a partial isometry v by Stc(v). Recall from the Introduction thatSfc(v) = |voel: v - v0 e /C(2f), j(vovo. v*v) = 0}.The isotropy group at Vo G Stc(v) and its Lie algebra QVo are computed in the Introduction for any Banach ideal, in particular for the ideal of compact operators. The quotient Finsler metric of a tangent vector xvo — voy G (TStc(v))Vo is given by||xv0 - voy||Vo =inf{||(x + a. y + b)||: avo = vob. a.b g 7C(7Y)a/l}.Here we take as product norm ||(x, y)|| = max{||x||, ||y||}, where ||.|| is the operator norm. Recall that Stc(v) is a real analytic submanifold of v + fCCH.'i and a homogeneous space of the product of the unitary Fredholm group, which is denoted byZ/cCH)= (ug«(H): u-1 g7C(7Y)}.We refer the reader to [2] for the metric properties of this group. The length of a curve F(t), t g [0, 1], in Z/cCH) is measured with the Finsler metric given by the operator norm as follows1U(F) = J ||r(f)|| dt. oThe curves F(t) = uetz, where u g ¿Yc(7Y) and z g KXH)ah such that |z|| < tt are geodesics of minimal length along their paths. We put in ZYC(7Y) x Z/cCH) the product metric induced by the product operator norm: ||(Xo,Xi)|| = max{||xo||, ||xi||}, for (xo.xi) g Uo)CCH)ah x iii/ClTY)^. The length functional in UcCH) xUcCH) of a curve r = (Ti, r2) is also denoted by LK,(F) since by the context no confusion will arise with the length functional defined in UC(H). Then we note that if F, F2 are minimal geodesics in Z/cCH), it is apparent that F = (F,F2) is a geodesic of minimal length in ZYC(7Y) xZ/cCH), when one measures lengths with the product metric. The corresponding rectifiable distances in ZYC(7Y) and ZYC(7Y) x ¿YC(7Y) are both denoted by dK).
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3.1. The initial value problemIn [9] the initial value problem for homogeneous spaces of the unitary group with the quotient metric is solved in the category of unital von Neumann algebras. In our case, we cannot apply the same techniques since Qv does not consist in general of skew-adjoint operators of a unital von Neumann algebra. The set of compact pairs (a, b) such that av = vb is neither self-adjoint nor closed in the weak operator topology. However, we can adapt the convexity argument given in [2] to find minimal curves when the partial isometry v has finite rank.Let v be a partial isometry and vo e Stc(v). Any pair (xi, y\) e KftHlah x WHlah, such that ||(xi, y i) || = ||xvo — voy ||v0 is called a minimal lifting for the tangent vector xvo — voy. We will show that minimal liftings are relevant because they give minimal curves. The next result proves the existence of minimal liftings when v has finite rank.
Proposition 3.1. Let vo e Stc(v) with v a partial isometry of finite rank. Letx, y e KftHlah- then there exists (a, b) e QVo satisfying l|xvo-voy||vo = ||(x + a, y + b)||.
Proof. Since the action of Z/C(7Y) xlftCH) is isometric we can assume that v = vo. We can argue as in Theorem 6.1 in [9] to find a sequence ((an, bn))n in <fv such that (an, bn) - • (a, b) in the weak operator topology and ||(x + a, y + b)|| = ||xv — vy||v. Note that a, b e L3(Ti'iah and av = vb, but a, b may fail to be compact operators.We denote the final projection of v by p = vv* and q = v*v the initial projection of v. In order to obtain compact operators attaining the quotient norm, note that av = vb if and only if ap = pa, bq =qb and qbq = v*av. Therefore the pair (a,b) can be written as follows
Here the subscripts p = vv* and q = v*v indicate that the matrices are regarded with respect to these projections and will be omitted from now on.Recall Krein’s solution to the extension problem for a self-adjoint operator (see [12]): Given an incomplete 2x2 self- adjoint block operator matrix of the form

(* nfind a self-adjoint operator Z in order that the complete matrix has minimal norm. Krein proved that there is always a solution, and that it may not be unique. More recently, Davis, Kahan and Weinberger [8] gave explicit formulas for Z. In particular, they showed that if the incomplete matrix has compact blocks, then there exists a compact solution Z.Since v has finite rank, the operator an also has finite rank. Therefore, according to the extension problem, we can add a compact antihermitic operator a22 : p(7Y)± —> p(7Y)± such that/xn+aii Xu \ < /xn+aii Xu \\ —x12 X22 + a22 .) \ ~x12 *22 + fl22 JWe repeat this argument to find a compact antihermitic operator b'22 : q(7Y)± —> q(7Y)± satisfying( yn + v *anv yn \ < / yn + v*anv yn \
1

-yb ^22 + b'22 / y22 + b22 7Let us set
Then it follows that|| (x + a', y + b') || < || (x + a, y + b) || xv - vy ||v.Hence, we finally obtain ||(x + a', y + b')|| = ||xv — vy ||v, with (a', b') e Qv. □Our solution to the initial value problem relies on the following result about the convexity of the rectifiable distance in
UfiHi.

Lemma 3.2. (Theorem 2.7 in [2].) Let u e ILC(TL), fl : [0, 1] —> a geodesic such that d-J.u.fl} < tt/2. Then g(s) =
dc^(u, flis'i'i, s e [0, 1] is a convex function.We shall use it with a minor change. We need to state a version for Z/C(7Y) x Z/C(7Y).
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Lemma 3.3. Letu, w eUciTi), p : [0,1] —> ZLC(7L) x UciTf) a geodesic with dK,iiu, w), P) < tt/2. Then gis) = dl>2iiu,w), Pis)), 
s e [0,1] is a convex function.

Proof. We know the minimal curves of Z/C(7Y), then we can construct p = iPt, p2) a geodesic of minimal length in Z/C(7Y) x Z/C(7Y). It also has minimal length in Z/C(7Y®7Y), namely the unitary Fredholm group of L3(7L®7L). Therefore given iu,, w,) e 
Licifi) xUciTl), i = 1, 2, we have that the rectifiable distance dK,((tii, wi), (u2, w2)) in Z/C(7Y) x Z+, ( 7+ ) equals the rectifiable distance dK1((ui, W]), iu2, w2)) in UC(H ® Tl). Hence our lemma follows applying Lemma 3.2 to Uc(Ti ® Tl). □Now we state the main result of this section.
Theorem 3.4. Let v be a partial isometry with finite rank, vo e Stc( v) and xvo — voye (TStc(v))Vo such that ||xvo — voy ||Vo < tt/2. 
If (zi, z2) is a minimal lifting of xvo — voy, then the curve Sit} = etZ1 ve ,z> has minimal length up to |t| < 1.
Proof. Clearly we may assume vo = v. By Lemma 2.1 it suffices to compare the lengths of zi(t) = (etZ1, etZ2) and r, where 
r is a piecewise smooth curve in ¿+(7+) x ZLC(7L) joining (1,1) and a unitary in the fibre 3(1). Observe that A lifts 8 and satisfies

L00(D = L(8)= ||(z1,z2)|| <tt/2.If LKj(+) tt/2 there is nothing to prove. Otherwise, we have f(l) = (e01, e“2), with ai, a2 e /CCH)^ and ||(ai, a2)|| < tt/2. Note that r and A may have different endpoints, however they satisfy
e‘!,ve 112 = eZlve Zy.Therefore, we obtain ea‘ = ez‘ebi, i = 1, 2, where (bj, b2) e Gv. Since we suppose ||(aj, a2)|| < tt/2 and ||(zi,z2)|| < tt/2, it is apparent that ||(bi, b2)|| tt. Hence the curve Pit) = (eZ}etb}, eZ2eti)2) is a geodesic of minimal length joining (eZ1, eZ2) and (e171, e°2). Consider the following function
f (t) = cU ((1.1). p(t)) = || (log(eZ1 elbi). log(eZ2 etb2)) ||. t e [-1.1 ].

Claim, f has a minimum att = 0.Since we now that f is convex by Lemma 3.3, it suffices to analyze the lateral derivatives at this point. We may sup­pose ||(zi,z2)|| = ||zj ||. By continuity we have || log(eZ1eti’1 )|| > || log(eZ2etb2 )|| for t small. Therefore to compute the right derivative 3+f(0) of f at t = 0 it suffices to considerflim |{||log(ez’etf”)||-Hzill).
By the Baker-Campbell-Hausdorff formula we have the following linear approximationlog(ez’eti’1) =zj ®fbi + fl(zi,tbi),where hm( o = o. Then,||zi +tbill - 11^(21,^1)11 < ||log(ez‘etb‘) || < ||zt + tb, || + ||^i(zi,tbi)||-For t > 0, we have|{l|zi +tbil| - llzill) - |||fl(zi,tbi)|| < |{||log(eZ1etf’’)|| - ||zi||)

< |{||Z1 +tbil| - llzill) + y ||7?(Z1, tbi)||.
If we take limit t — 0+, we obtain3+f(0) = lim ^-{||zi +fbi|| - ||zi||).i -n fNote that the above right derivative exists due to the convexity of the norm (see [15] for instance). Since (zi,z2) is a minimal lifting, it follows || zi +tbi || > ||zi ||, for t small enough, then d+ f (0) > 0. Analogously one proves the corresponding statement for the left derivative, i.e. 3_f(0) < 0. Hence our claim follows.Thus f (0) < fit), for all t e [0,1], In particular,
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Remark 3.5. The proof only uses the assumption on the range of v to guarantee the existence of minimal liftings. We do not know if there exist minimal liftings when the partial isometry has no restrictions on its range. A positive answer to this problem would lead to a general solution of the initial value problem.
Remark 3.6. Let v be an isometry. The orbit given by left multiplication by unitaries of Z3(7Y), i.e. {uv: u eU(H)} is a homogeneous space of Z/(7Y). In [4] the initial value problem was solved without restrictions on the range of v using different techniques. Recall that in the paper [7] the structure of homogeneous space of {uv: u eUcCHf} was studied. The tangent space at uv is {xv: x g /CCHla/J. The quotient metric takes the form||xv||v = inf{||x + a||: av = 0, a e JCCH)ah].Note that xv = 0 if and only if xvv* = 0. As we mention in the proof of Proposition 3.1 Davis et al. in [8] proved that the operator x: vv*(7Y) —> Ti. has a compact extension z satisfying ||zv|| = ||z||. Hence the existence of minimal liftings is guaranteed in this case. Then the initial value problem of {uv: u g Z/C(7Y)} can be solved with the same techniques that we use for Stc(v) and without restrictions on the range of v.
3.2. Some special tangent directionsThroughout this section no assumption on the rank of v is required. We shall give particular curves in Stc(v) that remain of minimal length along their paths. We need some facts about the orbit O., of a projection p by the natural action of Z/C(7Y) on the set of projections, i.e.

Op = (upu*: u e ZYC(7Y)}.The tangent space at po e Op is given by(TOpjPo = {xpo - Pox: x g K(.H)ah) •It is a real analytic submanifold of p + /C(7Y) and a homogeneous space of Z/C(7Y). The Lie algebra of the isotropy group at 
Po e Op is5Po = {xe)C(H)ah- xpo = pox|.One can define a quotient metric ||.||Po using the Banach quotient norm of 7C(7Y)a/i/£?p0,||xp0-Pox||po = inf{||x + a||: aegPo).In this homogeneous space, the quotient metric can be computed. Given a projection p a 2 x 2 operator matrix x is co­diagonal if pxp = (1 — p)x( 1 — p) = 0. It is a well-know fact that a co-diagonal matrix with respect to a projection has minimal operator norm. Thus the quotient norm equals the operator norm of each tangent vector, i.e. ||xpo — Pox||po = llxpo — Pox||. Then one measures the length of a piecewise smooth curve y in Op by1L(y) = y (t)|| di.oIt was proved in the article [16] that the curves 3(t) = e!xpre !x, ||x|| <tt/2 and x co-diagonal with respect to po are geodesics of minimal length joining their endpoints in the unitary orbit of a projection in an arbitrary C*-algebra. Since Opo is contained in the unitary orbit of po in £>(7Y), the curves 3(t) = e!xpre !x, ||x|| <tt/2, x compact and x co-diagonal with respect to po have minimal length in Opo.Given fixed projections p, q, we can consider the product manifold Op x Oq. It is a homogeneous space of the group Z/C(7Y) xZ/c(7Y) and a real analytic submanifold of (p, q) + 7C( 7Y) x/C(7f). We endow it with the product metric (or quotient metric) given by|| (xp0 - Pox. qoy - yqo) || = max{||xp0 - pox||, || yq0 - <?oy|| )■where po e Op, qo g Oq and x, y g KXHlah- Since it will be clear by the context we shall use the same notation Uy) for the length of a curve y in Op x Oq. The following result is now apparent.
Lemma 3.7. Letx, y g Kj(H)ah such that ||(x, y)|| < tt/2. Suppose thatx is co-diagonal with respect to po g O., and y is co-diagonal 
with respect to qo g Oq. Then 8(t) = le!xpre !x. e’"qne > has minimal length among all piecewise smooth curves in Op x Oq 
joining the same endpoints.
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We denote p = vv* and q = v*v as in Section 3.1. Consider the following map
tp : 5tc(v) —> Op x Oq, <p(uvw*) = (upu*. wqw*\It is easy to check that -p is well defined and smooth. The differential of /p at Vo e Stc(v) is given byW)v0 : (rSfc(v))Vo —> (TC>)p0 X (rO)q0. (d<p) vo(xvo - voy) = (xpo - Pox. yqo - qoy).In the next lemma we prove that this map reduces lengths when one endows Stj(v) with the quotient metric and Op x Oq with product metric given by the spectral norm.

Lemma 3.8. Let Vo e Stc( v) and x, y e /C(7~()ah. Then

(dtp) vo(xvo — voy)|| ||xv0 — voy||vo-
In particular, if y is a curve in Stc(v), then L(<py) L(y).

Proof. Note that <p is equivariant for the corresponding actions of Z/C(7Y) xZ/c(7Y) over Stj(v) and O,: x Oq. Moreover, both actions are isometric with respect to the metrics. Therefore it suffices to prove our statement for vo = v, po = p and qo =q.Recall that av = vb if and only if ap = pa, bq = qb and qbq = v*av. Then, we haveW)Vo (xv0 - voy) | = | (xp - px. qy - yq) ||= inf{|| (x + a, y + b) || : ap = pa, qb = bq and a, b g 7C(7Y)ah )< inf{j| (x + a, y + b)|| : av = vb, a,b e /C(7~i)ati] = l|xv - vy||v,so our result is proved. The assertion about the curves now follows easily.
Remark3.9. The above inequality is sharp. If x, y e KXHlah such that x is co-diagonal with respect to p and y is co-diagonal with respect to q, then it is plain that both quotient metrics attain the infimum at (a, b) = (0, 0). Then,|| (xp - px. qy - yq) || = ||xv — vy||v.In particular, this implies that the curve <S(t) = e'xve ,y satisfies L(<3) = L(<p8).
Proposition 3.10. Let Vo e Stc( v) and x, y e 1CCH.)aq such that ||(x, y)|| < tt/2. Suppose thatx is co-diagonal with respect to po = voVq and y is co-diagonal with respect to qo = VqVo. Then the curve 8(t) = e’f:vne !i'. t e [0,1], has minimal length among all 
piecewise smooth curves in Stc ( v ) joining the same endpoints.

Proof. Let y be a curve in Stc(v) joining vo and e*voe \ Observe that the curves ipy and ip8 join the same points in 
Op x Oq. Hence by Lemma 3.7 we have L(ipy} L(y). Then, by Lemma 3.8 and Remark 3.9 we obtain

L(5) = L(tp8) L(<py) L(y),and our statement holds. □
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