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The objective of the article was to perform a predic
tive analysis, based on quantitative structure-prop
erty relationships, of the dissociation constants 
(pKa) of different medicinal compounds (e.g., sali
cylic acid, salbutamol, lidocaine). Given the impor
tance of this property in medicinal chemistry, it is 
of interest to develop theoretical methods for its 
prediction. The descriptors selection from a pool 
containing more than a thousand geometrical, topo
logical, quantum-mechanical, and electronic types 
of descriptors was performed using the enhanced 
replacement method. Genetic algorithm and the 
replacement method (RM) techniques were used as 
reference points. A new methodology for the selec
tion of the optimal number of descriptors to include 
in a model was presented and successfully used, 
showing that the best model should contain four 
descriptors. The best quantitative structure-prop
erty relationships linear model constructed using 62 
molecular structures not previously used in this type 
of quantitative structure-property study showed 
good predictive attributes. The root mean squared 
error of the 26 molecules test set was 0.5600. The 
analysis of the quantitative structure-property 
relationships model suggests that the dissociation 
constants depend significantly on the number of 
acceptor atoms for H-bonds and on the number of 
carboxylic acids present in the molecules.
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Knowledge of the physicochemical properties of a drug compound, 
e.g., its acid-base properties, is important in the optimization 
stage of a drug development project (1). The dissociation constant 
(pKa) is a measure of the tendency of a molecule or ion to keep 
a proton at its ionization center(s) (2). In biological terms, pKa is 
important in determining whether a molecule will be taken up by 
aqueous tissue components or lipid membranes and is related to 
log/3 (the partition coefficient) (3). Because most drugs are ionized 
in physiological conditions, pKa is particularly relevant to medicinal 
chemistry because it is major factor in the pharmacokinetics of 
drugs (3,4). Commonly, dissociation constants of drug compounds 
are determined by techniques such as titration by potentiometry 
and UV-Vis spectrometry (1). Although highly useful, these tech
niques typically need sample amounts in the order of a few mg 
for analysis (1). Moreover, with these techniques, there is no dif
ferentiation in analytical response between the analyte of interest 
and any analog impurity (1).

Therefore, it is of great interest to be able to predict the pKa of 
compounds that have not yet been tested experimentally, as well as 
attempting to determine which structural parameters have an effect 
on the pKa values. A generally accepted remedy for the lack of exper
imental data in complex chemical phenomena is the analysis based 
on quantitative structure-property relationships (QSPR) (5).

The ultimate role of the different formulations of the QSPR theory 
is to suggest mathematical models for estimating relevant proper
ties of interest, especially when they cannot be experimentally 
determined for some reason. These studies simply rely on the 
assumption that the physicochemical properties of a compound are 
determined solely by its molecular structure. The molecular struc
ture is therefore translated into the so-called molecular descriptors 
through mathematical formulae obtained from several theories, such 
as chemical graph theory, information theory, and quantum mechan
ics (6,7). Currently, there are thousands of theoretical descriptors 
available in the literature, and one usually faces the problem of 
selecting those which are the most representative of the property 
under consideration (8).

The main objective of the research presented in this paper was to 
develop a model for the prediction of the dissociation constants 
(pKa} of 88 (62 training set and 26 test set) drug compounds (e.g., 
salicylic acid, salbutamol, lidocaine) whose experimental data were 
collected from the literature and were not used in a predictive 
study before. Furthermore, a recently developed methodology for 
the determination of the optimal number of descriptors will be pre
sented and applied.
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Materials and Methods

Data Set
In this study, we used a training set of 62 compounds and a test 
set of 26 compounds with known dissociation constants (pK.a} mea
sured in zero ionic strength aqueous solutions (1,9-17). The training 
set was selected with the purpose of having a distribution of data 
as normal as possible. The test molecules were chosen randomly 
taking care that their experimental pKa values were sufficiently 
representative of the whole span. This was achieved by taking a 
random selection of the test set and afterward checking that the 
selection was spread over the experimental values; if the selection 
was not properly dispersed, the process was repeated. Table 1 
shows the compound names and their experimental pKa values.

Molecular Descriptors
The structures of the compounds were firstly pre-optimized with the 
molecular mechanics force field (MM+) procedure included in the 
Hyperchem 6.03 package3, and the resulting geometries were fur
ther refined by means of the semiempirical method PM3 (parametric 
method-3) using the Polak-Ribiere algorithm and a gradient norm 
limit of 0.01 kcal A-1. We computed the molecular descriptors by 
means of the software Dragon 5.0b, including parameters of all 
types: Constitutional, Topological, Geometrical, Charge, GETAWAY 
(Geometry, Topology, and Atoms-Weighted AssemblY), WHIM 
(Weighted Holistic Invariant Molecular descriptors), 3D-MoRSE 
(3D-Molecular Representation of Structure based on Electron 
diffraction), Molecular Walk Counts, BCUT descriptors, 2D-Autocor- 
relations, Aromaticity Indices, Randic Molecular Profiles, Radial 
Distribution Functions, Functional Groups, and Atom-Centered 
Fragments (8). Additionally, four quantum-chemical descriptors 
(molecular dipole moments, total energies, H0M0-LUM0 energies), 
which are not provided by the program Dragon, were added to the 
pool so the selection methodology was able to chose the most 
suitable descriptors form a pool with higher diversity. The resulting 
pool contained D = 1294 descriptors.

Model Search
In our calculations, we employ the computer system Matlab 5.0.c It 
is our purpose to search the set D of D descriptors, for an optimal 
subset d of d « D ones with minimum standard deviation S,

N

s2 (/V-rf- i)^res^ (1)

by means of the multivariable linear regression (MLR) technique. 
In this equation, l\l is the number of molecules in the training 
set, and res( the residual for molecule /, the difference between 
the experimental property (p) and predicted one (ppredl More 
precisely, we want to obtain the global minimum of S (d), 
where d is a point in a space of D[/[d[(D-d)I] ones. Each point 
is a possible model of d descriptors as discussed below. Taking 
into account that a full search (FS) of optimal variables is 
impractical because it requires D\/[d\(D-d)I] linear regressions, 
some time ago, we proposed the replacement method (RM) (18— 
21), and later the enhanced replacement method (ERM) (22), that 

produce linear regression QSPR models that are quite close the 
FS ones with much less computational work. These alternative 
techniques approach the minimum of S by judiciously taking into 
account the relative errors of the coefficients of the least
squares model given by a set of d descriptors d = {X^X^-.-.X^. 
The RM gives models with better statistical parameters than the 
forward stepwise regression procedure (23) and variants of the 
more elaborated genetic algorithms (24) The ERM leads to even 
better statistical parameters with slightly more computational 
work (22).

A GA is a search technique based on natural evolution where vari
ables play the role of genes (in this case, a set of descriptors) in 
an individual of the species. An initial group of random individuals 
(population) evolves according to a fitness function (in this case, 
the standard deviation) that determines the survival of the individu
als. The GAs offer a combination of hill-climbing ability (natural 
selection) and a stochastic method (crossover and mutation) and 
explore many solutions in parallel, processing information in a very 
efficient manner. The practical application of GAs requires the tun
ing of some parameters such as population size, generation gap, 
crossover rate, and mutation rate. These parameters typically inter
act among themselves nonlinearly and cannot be optimized one at 
a time. There is considerable discussion about parameter settings 
and approaches to parameter adaptation in the evolutionary compu
tation literature; however, there does not seem to be conclusive 
results on which may be the best (25).

The GA parameter optimization required several runs, leading to the 
following results: number of individuals = 250; generation gap = 0.9; 
single point crossover probability = 0.6; mutation probability = 
0.7/d. The implementation of GA was performed stopping each run 
when one individual occupied more than 90% of the population or 
when the number of generations reached 1500.

The Kubinyi function {FIT) (26,27) is a statistical parameter that clo
sely relates to the Fisher ratio (A), but avoids the main disadvan
tage of the latter that is too sensitive to changes in small o'values 
and poorly sensitive to changes in large d values. The FIT (d) crite
rion has a low sensitivity to changes in small d values and a sub
stantially increasing sensitivity for large d values. The greater the 
FIT value the better the linear equation. It is given by the following 
expression:

R?(N - d - 1) 
(W+ cP)(1 - 7??)

(2)

where R is the correlation coefficient, N is the number of molecules 
in the training set, and d is the number of descriptors included in 
the model. It is expected that a plot of FIT vs. d presents a maxi
mum from which it is possible to calculate the optimal number of 
molecular descriptors (dopt) to be included in the linear regression 
model. There are many occasions when the maximum is not 
reached after adding a reasonable number of descriptors in the 
model. For this reason, we recently proposed a variable FIT equa
tion or VFIT that depends on an adjustable parameter k that gives 
more weight to d in the numerator of the FIT equation (28). It 
reads:
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Table 1: Experimental and pre
dicted (eqn 4) dissociation constants 
(pIQ and residuals

Number Name of molecules CAS pKa exp. pKs. pred. Residual

Training set

1 Oxprenolol 6452-71-7 9.3 9.20 0.10
2 Protriptyline 438-60-8 10.7 10.22 0.48
3 Trimipramine 739-71-9 9.4 9.71 -0.31
4 Quinine 130-95-0 9.7 8.90 0.80
5 Salbutamol 34391-04-3 10.3 9.66 0.64
6 Tulobuterol 41570-61-0 10.4 9.53 0.87
7 Procainamide 51-06-9 9.2 9.13 0.07
8 Morphine 57-27-2 9.9 8.52 1.38
9 Codeine 76-57-3 8.2 8.27 -0.07

10 Lidocaine 137-58-6 7.9 8.89 -0.99
11 Sumatriptan 103628-46-2 9.6 8.30 1.30
12 Buspirone 36505-84-7 7.2 7.20 0.00
13 Bufuralol 57704-16-2 9 9.60 -0.60
14 Bupivacaine 2180-92-9 8.1 9.60 -1.50
15 Mepivacaine 22801-44-1 7.7 8.95 -1.25
16 Prilocaine 721-50-6 7.9 9.25 -1.35
17 Ketamine 6740-88-1 7.5 8.94 -1.44
18 Acetaminophen 103-90-2 9.5 8.07 1.43
19 Phenylpropanolamine 14838-15-4 9.44 9.51 -0.07
20 4-Aminophenol 123-30-8 10.46 8.78 1.68
21 Verapamil 52-53-9 9.04 9.36 -0.32
22 Norverapamil 67018-85-3 9.87 9.59 0.28
23 D-617 Ref. (14) 10.35 9.34 1.01
24 Phenobarbital 50-06-6 7.41 7.41 0.00
25 Barbital 57-44-3 7.91 7.09 0.82
26 Amobarbital 57-43-2 7.94 7.77 0.17
27 Diltiazem 42399-41-7 7.75 7.60 0.15
28 Rifampicin 13292-46-1 7.58 8.34 -0.76
29 Promazine 58-40-2 9.09 9.09 0.00
30 Indapamide 26807-65-8 9.16 7.81 1.35
31 Desipramine 50-47-5 10.28 9.71 0.57
32 Triflupromazine 146-54-3 8.56 7.26 1.30
33 Diazepam 3900-31-0 7.63 7.81 -0.18
34 Acetylsalicylic acid 50-78-2 3.74 3.85 -0.11
35 Benzoic acid 65-85-0 4.17 4.72 -0.55
36 4-Hydroxybenzaldehyde 123-08-0 7.58 7.86 -0.28
37 4-Hydroxybenzoic acid 99-96-7 4.44 4.60 -0.16
38 Nicotinic acid 59-67-6 4.84 3.06 1.78
39 Pyridine 110-86-1 5.27 7.80 -2.53
40 Salicylic acid 69-72-7 3.07 4.60 -1.53
41 Alminoprofen 39718-89-3 5.02 5.05 -0.03
42 Carprofen 53716-49-7 4.36 4.51 -0.15
43 Fenoprofen 31879-05-7 5.7 4.49 1.21
44 Flurbiprofen 5104-49-4 4.2 4.31 -0.11
45 Indoprofen 31842-01-0 4.25 4.00 0.26
46 Naproxen 22204-53-1 4.2 4.29 -0.09
47 Pirprofen 31793-07-4 4.64 4.31 0.33
48 Suprofen 40828-46-4 4.11 4.26 -0.15
49 Tiaprofenic acid 33005-95-7 3.8 4.22 -0.42
50 Imazapyr 81334-34-1 1.9 3.02 -1.12
51 Acif luorfen 62476-59-9 3.8 1.45 2.35
52 Imazethapyr 81385-77-5 2.1 3.43 -1.33
53 Nicosulfuron 1 1 1991-09-4 4.6 4.19 0.41
54 Thifensulfuron-methyl 79277-27-3 4 4.10 -0.10
55 Metsulfuron-methyl 74223-64-6 3.3 4.39 -1.09
56 Triasulfuron 82097-50-5 4.6 4.78 -0.18
57 Chlorsulfuron 64902-72-3 3.6 5.09 -1.49
58 Bensulfuron-methyl 83055-99-6 5.2 4.06 1.14
59 Flumetsulam 98967-40-9 4.6 4.33 0.27
60 Metosulam 139528-85-1 4.8 5.43 -0.63
61 Fomesafen 72178-02-0 2.7 3.78 -1.08
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Table 1: [Continued]
Number Name of molecules CAS pKa exp. pKa. pred. Residual

62 Diclofop 40843-25-2 3.4 3.58 -0.18
Test set

63 Acebutolol 37517-30-9 9.2 8.91 0.29
64 Procaine 59-46-1 8.9 8.63 0.27
65 Phenylephrine 59-42-7 8.9 8.90 0.00
66 Chlorpheniramine 132-22-9 9.14 8.94 0.20
67 Gallopamil 16662-46-7 9.01 9.19 -0.18
68 D-620 Ref. (14) 9.84 9.62 0.22
69 D-702 Ref. (14) 10.32 9.61 0.71
70 D-703 Ref. (14) 9.15 9.61 -0.46
71 D-715 Ref. (14) 9.88 9.86 0.02
72 Chlorpromazine 50-53-3 9.21 8.91 0.30
73 Levomepromazine 7104-38-3 9.15 8.92 0.23
74 Thioridazine 50-52-2 9.5 9.76 -0.26
75 Propericiazine 2622-26-6 8.1 9.18 -1.08
76 Secobarbital 76-73-3 7.92 7.93 -0.01
77 Bupropion 34841-39-9 8.3 9.16 -0.86
78 Diphenhydramine 58-73-1 9.12 9.34 -0.22
79 Propranolol 318-98-9 9.55 9.52 0.03
80 Doxepin 1229-29-4 9.16 9.22 -0.06
81 Omeprazole 73590-58-6 6.15 7.06 -0.91
82 Alprenolol 13655-52-2 9.38 9.73 -0.35
83 Atenolol 29122-68-7 9.42 9.27 0.15
84 Metoprolol 51384-51-1 9.44 9.25 0.19
85 Ibuprofen 15687-27-1 4.55 5.15 -0.60
86 Ketoprofen 22071-15-4 4.18 4.51 -0.33
87 Fluazifop 83066-88-0 3.2 1.37 1.83
88 Imazaquin 81335-37-7 3.8 3.42 0.38

R2(N - kd - 1) 
(N • tf)(1 - R2)

(3)

Using this equation, it is possible to obtain dopt as the number of 
descriptors that yields a maximum (o'max) value in a VFIT vs. d plot. 
A new technique to determine the parameter k is presented in this 
work; the procedure consists of taking incremental values of 0.5 in 
k until the maximum remains unchanged for two increments and 
complies with the rule of thumb that at least five data points 
should be present for each fitting parameter (29).

As a theoretical validation of all the models, we choose the well- 
known leave-one-out [loo] and the leave-more-out cross-validation 
procedures (/-n%-o) (30), where n% represents the percentage of 
molecules removed from the training set. We generated 5 000 000 
cases of random data removal for l-n%-o, where n% = 11% (seven 
compounds). In addition, with the purpose of demonstrating that 
the best model found does not result from happenstance, we 
resorted to a widely used approach to establish the model robust
ness: the so-called /-randomization (31). It consists in scrambling 
the experimental property p in such a way that the property value 
and the compound do not match; 5 000 000 cases of random 
scrambling were generated.

Results and Discussion

To determine the optimal number of descriptors, we calculated dif
ferent predictive relationships with the ability to link the molecular 

structure of the drug compounds with the dissociation constants 
[pKa], by means of linear regression models with 1-12 para
meters (o') that were selected by ERM from the pool of D = 1294 
descriptors.

As can be seen in Table 2, as k in VFIT is increased a first maxi
mum appears at d = 8 (k= 3.5) that remains for one increment, a 
second one d = 6 (k= 4.5), a third one at d = 5 (k= 5), afterward a 
maximum at d = 4 (k= 5.5) that remains for six more increments 
(k= 6, 6.5, 7, 7.5, 8, 8.5) and complies with the above-mentioned 
practical rule (29).

Thus, the resulting VFITwith k= 5.5 increases with o' up to a maxi
mum value d = dmax = 4 shown in Figure 1. We assume that this is 
the optimal value of descriptors in the model. Figure 1 also shows 
that FIT does not present a maximum in the interval of d between

Table 2: Incremental values of k and the resulting number of 
descriptors (o') that present a maximum in VFIT

k d (max. in VFIT] k d (max. in VFIT]

1.5 - 5.5 4
2 - 6 4
2.5 - 6.5 4
3 - 7 4
3.5 8 7.5 4
4 8 8 4
4.5 6 8.5 4
5 5 9 3
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Figure 1: VFIT and FIT as functions of the number of descriptors 
for the training set.

1 and 12. We thus conclude that the best QSPR model according to
ERM is

pKa = 7.4368(±0.4) + 5.854(±0.7) ■ RDFOIOm

- 4.0272(±0.3) ■ nCOOH - 3.1513(±0.5) ■ nCOOHPh (4)

- 0.5444(±0.04) ■ nHAcc

N = 02,R = 0.9301, S = 0.9865, FIT = 4.685, p<10~7

R/oo — 0.91 OB, S/oo - 1.1144, fl/-;; %-0 — 0.8433, Si-n%-0 — 1.4781

Rts = 09B57, RMSEts = 0.5600

Here, the absolute errors of the regression coefficients are given in 
parentheses; p is the significance of the model, FIT the Kubinyi

Table 3: Linear QSPR models for the training set with N = 62. 
The best relationship appears in boldface

Model Descriptors used R S RMSEts

M1 MATSIm 0.7360 1.7728 1.4574
M2 Me, nCOOH 0.8523 1.3814 0.8563
M3 nDB, nCOOH, nCOOHPh 0.9029 1.1449 0.6678
M4 RDFOIOm, nCOOH, 

nCOOHPh, nHAcc (eqn 4)
0.9301 0.9865 0.5600

M5 nDB, RDFOWe, H6m, 

nOHPh, 0-057

0.9444 0.8914 0.5891

function, loo and 1-11 %-o stand for the leave-one-out and leave- 
more-out cross-validation techniques, respectively, RMSE stands for 
root mean squared errors, and TS stands for test set.

Following the same strategy, the RM yields the same model found 
by ERM. We also tried the GA on the same problem, the best four 
descriptors model obtained after twenty runs using the previously 
mentioned optimized parameters was also the model in eqn (4) 
found by ERM.

Table 3 shows a summary of the linear models with 1 to dopt+ 1 
parameters for ERM. As can be seen that the training set statistical 
parameters of the models improve through d = 5 nevertheless 
RMSE of the test set only improves trough d = 4. This indicates 
that that the optimal number of descriptors is (7=4, corroborating 
the results obtained using the above-mentioned VFIT methodology, 
and that the model with o' = 5 is possibly over fitted. Table 4 dis
plays the details of the molecular descriptors of Table 3.

After analyzing 5 000 000 cases of y-randomization on eqn (4), the 
smallest S value obtained was 2.0508 is considerably larger than 
the one found in the true calibration (S = 0.9865). In this way, the 
robustness of the model could be further proved, showing that the 
calibration resulted in a true structure-property relationship and 
was not a fortuitous correlation.

The plot of predicted vs. experimental pKa shown in Figure 2 sug
gests that the 62 training and 26 test set compounds approximately 
follow a straight line. Table 1 also includes the predicted dissocia
tion constants (pKa} obtained via eqn (4) for the training and test 
sets and the corresponding residuals. Figure 3 shows that the 
behavior of the residuals in terms of the predictions follows a nor
mal distribution. No molecule in the set exhibits a residual larger 
than 3S that can be considered as an outlier.

The correlation matrix shown in Table 5 reveals that the descriptors 
of the linear model are not seriously inter-correlated (fl,/ < 0.3842) 
and therefore, all the descriptors contain structural information that 
is not overlapped with any of the rest of the descriptors in the 
model, which justifies the appearance of all those parameters in 
the equation. The predictive power of the linear model is satisfac
tory as revealed by its stability upon the inclusion or exclusion of 
compounds, measured by the statistical parameters Ri00 = 0.9106

Table 4: Meaning of the symbols for the molecular descriptors appearing in the different models

Molecular descriptor Type Description

MATSIm 2D Autocorrelations Moran autocorrelation - lag 1/weighted by atomic masses
Me Constitutional Mean atomic Sanderson electronegativity (scaled on Carbon atom)
nCOOH Constitutional Number of carboxylic acids (aliphatic)
nDB Constitutional Number of double bonds
nCOOHPh Constitutional Number of carboxylic acids (aromatic)
RDFOIOm Radial Distribution Function Radial Distribution Function - 1.0/weighted by atomic masses
nHAcc Constitutional Number of acceptor atoms for H-bonds (N 0 F)
RDFOWe Radial Distribution Function Radial Distribution Function - 1.0/weighted by atomic Sanderson electronegativities
HGm GETAWAY H autocorrelation of lag 6/weighted by atomic masses
nOHPh Constitutional Number of phenols
0-057 Atom-Centered Fragments Phenol/enol/carboxyl OH
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Figure 2: Experimental pKa versus calculated pKa using eqn (4) 
for the training set (rhombus) and test set (triangles).

Figure 3: Dispersion plot of the residuals for the training (rhom
bus) and test sets (triangles) according to eqn (4).

and fl/.;;%.0 = 0.8433. According to the literature, Rcn%-o must be 
greater than 0.71 to have a validated model (32).

An adequate contrast of the presented model with previously 
reported ones is not feasible because they are based on sets of 
molecules of different nature and size. Nevertheless, a few exam
ples are presented as a reference points: Jover et al. (33) con
structed QSPR model based on the nonlinear more sophisticated 
neural network arriving to a model that showed an RMSE of the 
test set of 0.95; Lee and Crippen (4) have compiled many models in 
a recent review from which the only comparable model in the train
ing set size is a linear free energy relationship found by Dixon and 
Jurs(34) that presented a RMSE of 0.471 on the test set, using 
a one family set of molecules in contrast to the broader set used 
in the present work; Elarding et al. (2) presented several models 
based on a quantum topological molecular similarity (QTMS) study,

Table 5: Correlation matrix for the descriptors in eqn (4) 
(A/ = 62) The highest correlation appears in boldface

RDFOIOm nCOOH nCOOHPh nHAcc

RDFOIOm 1 0.1769 0.2903 0.3842
nCOOH 1 0.1526 0.2005
nCOOHPh 1 0.0602
nHAcc 1

nevertheless no external validation was reported. Hence, as men
tioned, an appropriate contrast is not possible; nonetheless, the 
presented model contrasts well with previously reported work using 
a data set with a high diversity of structures.

The molecular descriptors appearing in the linear eqn (4) combine 
different dimensional aspects of the molecular structure and can be 
classified as follows: (i) a radial distribution function: RDFIOm, 
weighted by atomic masses; and three constitutional descriptors: 
nCOOH, number of aliphatic carboxylic acids, nCOOHPh, number of 
aromatic carboxylic acids, ana nHAcc, number of acceptor atoms for 
H-bonds (N 0 F). The combination of the four selected descriptors 
is the best one for predicting the property under study (pK.a}, lead
ing to a model with standard deviation S that is lower than that 
achieved by any other 4-descriptors equation obtained from the 
pool D.

A radial distribution function (RDF) (35) of an ensemble of atoms 
can be interpreted as the probability distribution of finding an atom 
in a spherical volume of certain radius, also incorporating different 
atomic properties to differentiate the contribution of each atom to 
the property under study. For the case of RDFOIOm, the sphere 
radius is of 10.0 A and atomic masses are employed to distinguish 
their nature.

Constitutional descriptors are OD-descriptors, independent from 
molecular connectivity and conformations (8). The descriptor nCOOH 
is determined by counting the number of aliphatic carboxylic acids 
present in a molecule. The descriptor nCOOHPh is determined by 
counting the number carboxylic acids in an aromatic ring present in 
a molecule. The descriptor nHAcc is determined by counting the 
number of acceptor atoms for H-bonds (with N, 0, and F) (36).

The standardization of the regression coefficients of eqn (4) (23) 
allows assigning a greater importance to the molecular descriptors 
that exhibit larger absolute standardized coefficients. The descriptor 
order according to the standardized coefficients shown between 
parentheses is:

nE4cc(0.6642) >nCOCW(0.6364) > ADA01 0m(0.4594)

> nCOOHPh(0.333'\)

The first descriptor depends on the number of H-bond acceptors 
present in different functional groups; the second depends on 
importance and an additional descriptor depends on the number of 
carboxylic acid groups, this suggests that the dissociation constants 
(pKa} have a significant dependence on the number of carboxyl acid 
present in the molecule which may not be surprising.
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Conclusions

In this paper, we constructed a predictive QSPR model for dissoci
ation constants (pK.a}, an important parameter in the optimization 
stage of a drug development project, from 62 different medicinal 
compounds using four molecular descriptors that take into account 
2D- and 3D-aspects of the molecular structure. The model showed 
good predictive ability established by the theoretical and test set 
validations. We presented a successful strategy to determine the 
optimal number of descriptors in a QSPR model. Our results 
showed that in this case, the ERM gives identical results as GA 
and RM. The analysis of the QSPR model suggests that the disso
ciation constants depend significantly on the number of acceptor 
atoms for H-bonds and on the number of carboxylic acids present 
in the molecules.

We expect the presented model to be a useful tool in the prediction 
of pKa, in a fast and costless manner, for any future studies 
that may require an estimation of this important physicochemical 
property.
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