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Abstract: In this work we present an extention of the well-known Approximated Gradient Projection (AGP) [8]
property from the scalar problem with equality and inequality constraints to multiobjective problems. We prove that
the condition called Multiobjective Approximate Gradient Projection (MAGP), is necessary for a point to be a local
weak Pareto point and we study, under convex assumptions, sufficient conditions.
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1 INTRODUCTION

We will consider the multiobjective optimization problem (MOP) of the form:

Minimize F (x) subject to x ∈ Ω (1)

where Ω = {x ∈ Rn : h(x) = 0, g(x) ≤ 0} and F : Rn → Rr, h : Rn → Rm, g : Rn → Rp are
continuously differentiable functions and F (x) = (f1(x), . . . , fr(x)).

In [8] the authors introduce a sequential optimality condition, for the scalar optimization problem (r =
1), called Approximate Gradient Projection (AGP). It is proved that the AGP property is satisfied by local
minimizers of constrained optimization problems independently of constraint qualification.

One of the attractiveness of AGP is that it does not involve Lagrange multipliers estimates. AGP is also
the natural optimality condition that fits a stopping criteria for algorithms based on inexact restoration, and
it is strictly stronger than the usual AKKT condition [7]. Consequently, the stopping criteria based on AGP
is more reliable that those based on AKKT.

In this paper, we will extend the AGP condition to multiobjective problems, in the same way as the
AKKT condition [7] has been extended recently in [5] for multiobjective problems.

Given the multiobjective optimization problem in the form (1), a point x∗ ∈ Ω is said to be a Pareto
optimal solution [9] or an efficient solution if there is no x ∈ Ω such that F (x) ≤ F (x∗) and F (x) 6=
F (x∗). A point x∗ ∈ Ω is said to be a weak Pareto optimal solution of (1) if there is no x ∈ Ω such that
F (x) < F (x∗). A point x∗ is a local weak Pareto optimal solution if there exists a neighbourhood N ∩ Ω
of x∗ such that there is no x ∈ N with F (x) < F (x∗). In this paper we are interested in the Fritz-John
necessary condition for weak Pareto optimality stated in the following theorem:

Theorem 1 [4] A necessary condition for x∗ ∈ Ω to be a local weak Pareto optimal solution is that there
exist vectors θ ∈ Rr, λ ∈ Rm, µ ∈ Rp such that θ > 0, µ > 0 and

r∑
l=1

θl∇fl(x∗) +

m∑
i=1

λi∇hi(x∗) +

p∑
j=1

µj∇gj(x∗) = 0, (2)

µjgj(x
∗) = 0, j = 1, . . . , p, (3)

(θ, λ, µ) 6= (0, 0, 0). (4)

The non-zero vector (θ, λ, µ) satisfying (2)-(4) is known as the Fritz-John multiplier vector.
Following the classification in [2], given x∗ ∈ Ω we say that x∗ is weak- regular if there exists (θ, λ, µ)

satisfying (2)-(4) with θ 6= 0. Observe that a weak-regular point is a Karush-Kuhn-Tucker point when r = 1.
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2 APPROXIMATE GRADIENT PROPERTY FOR MULTIOBJECTIVE PROBLEMS

In this section we will extend rigorously the AGP condition for multiobjective problems and we will
analyze its properties.

Definition 1 Given γ ∈ [−∞, 0]. We say that x∗ ∈ Ω satisfies the Multiobjective Approximate Gradient
Projection (MAGP (γ)) condition, if and only if, there exist sequences {θk} ⊂ Rr, {xk} such that θk > 0,
r∑
l=1

θkl = 1, xk → x∗ and

d(xk,γ) = PΩ(xk,γ)(x
k −

r∑
l=1

θkl ∇fl(xk))− xk → 0

where PΩ(xk,γ) is the orthogonal projection and Ω(x, γ) is the polyhedron defined by the points z ∈ Rn
such that:

1. gj(x) +∇gj(x)T (z − x) 6 0 if γ < gj(x) < 0,

2. ∇gj(x)T (z − x) 6 0 if gj(x) > 0,

3. ∇hi(x)T (z − x) = 0 for i = 1, . . . ,m.

Observe that Ω(x, 0) = {z ∈ Rn|∇h(x)T (z−x) = 0,∇gj(x)T (z−x) 6 0 if gj(x) > 0, j = 1, . . . , p}.
In order to establish necessary optimality conditions for problem (1) we are going to scalarize it. For this
aim, we consider the non-smooth function φ : Rr → R defined by

φ(y) = max
1≤l≤r

{yl}.

As φ is a non-smooth function we introduce the so-called Clarke subdifferential of ψ (see [3]): The upper
Clarke directional derivative of a locally Lipschitz function ψ : Rn → R at x ∈ Rn in the direction d ∈ Rn
is

ψo(x, d) = lim sup
y→x,t↓0

ψ(y + td)− ψ(y)

t

and the Clarke subdifferential of ψ at x is given by

∂Cψ(x) = {ξ ∈ Rn : 〈ξ, d〉 6 ψo(x, d)∀d ∈ Rn},

where 〈·, ·〉 stands for the Euclidean scalar product.

Lemma 1 If x∗ is a local weak Pareto optimal point of (1), then x∗ is a local minimizer of the problem
Minimize φ(F (x)− F (x∗)) subject to x ∈ Ω.

The following result says that, every local weak Pareto solution of (1) satisfies theMAGP (γ) condition.

Theorem 2 If x∗ ∈ Ω is a local weak Pareto solution of problem (1), then x∗ satisfies the MAGP (γ)
condition.

Proof. Let ε, δ > 0, and ρ ∈ (0, δ). By assumption and Lemma 1 we can conclude that x∗ is a global
minimizer of φ(F (x)−F (x∗)) on Ω∩B(x∗, ρ). In consequence, we may suppose that for δ small enough,
x∗ is the unique solution of problem

Minimize φ(F (x)− F (x∗)) +
ε

2ρ
‖x− x∗‖2, subject to x ∈ Ω, ‖x− x∗‖ ≤ ρ.



We define, for each k ∈ N,

ψk(x) = φ(F (x)− F (x∗)) +
ε

2ρ
‖x− x∗‖2 +

m∑
i=1

khi(x)2 +

p∑
j=1

kgj(x)2
+,

and let xk be the solution of the problem

Minimize ψk(x), subject to ‖x− x∗‖ ≤ ρ. (5)

By using the theory of external penalty, see for example [5, 6, 8], we have that ‖xk − x∗‖ < δ for all k
sufficiently large, xk → x∗ and xk is a solution of problem (5) and it is an interior point of the feasible set,
for k large enough. From Proposition 2.1 (ii) of [5] it follows that 0 ∈ ∂Cψk(xk). By applying Proposition
2.1 of [5], parts (i) and (iii), we have

0 ∈ co
( ⋃

1≤l≤r
{∇fl(xk)}

)
+
ε

ρ
(xk − x∗) +

m∑
i=1

khi(x
k)∇hi(xk) +

p∑
j=1

kgj(x
k)+∇gj(xk),

where co
( ⋃

1≤l≤r
{∇fl(xk)}

)
denote the convex hull. Hence, there exist θkl ≥ 0, l = 1, . . . , r such that

r∑
l=1

θkl = 1 and

r∑
l=1

θkl ∇fl(xk) + k

( m∑
i=1

hi(x
k)∇hi(xk) +

p∑
j=1

gj(x
k)+∇gj(xk)

)
=
ε

ρ
(x∗ − xk).

Then, since ‖x∗ − xk‖ < ρ < δ,∥∥∥∥ r∑
l=1

θkl ∇fl(xk) + k

( m∑
i=1

hi(x
k)∇hi(xk) +

p∑
j=1

gj(x
k)+∇gj(xk)

)∥∥∥∥ ≤ ε.
So, ∥∥∥∥[xk − r∑

l=1

θl∇fl(xk)
]
−
[
xk + k

( m∑
i=1

hi(x
k)∇hi(xk) +

p∑
j=1

gj(x
k)+∇gj(xk)

)∥∥∥∥ ≤ ε.
This implies, taking projections onto Ω(xk, γ), that

∥∥∥∥PΩ(xk,γ)

(
xk−

r∑
l=1

θl∇fl(xk)
)
−PΩ(xk,γ)

(
xk+k

( m∑
i=1

hi(x
k)∇hi(xk)+

p∑
j=1

gj(x
k)+∇gj(xk)

))∥∥∥∥ ≤ ε.
It remains to prove that PΩ(xk,γ)

(
xk + k

( m∑
i=1

hi(x
k)∇hi(xk) +

p∑
j=1

gj(x
k)+∇gj(xk)

))
= xk.

To see that , we consider the Karush-Kuhn-Tucker conditions of the subproblem with linear constraints

Minimize y

∥∥∥∥y − [xk + k

( m∑
i=1

hi(x
k)∇hi(xk) +

p∑
j=1

gj(x
k)+∇gj(xk)

)]∥∥∥∥2

subject to y ∈ Ω(xk, γ)



and observe that y = xk satisfies the KKT optimality conditions with multipliers λi = khi(x
k) and µj =

kgj(x
k) with µj = 0 when gj(xk) ≥ 0. So,

∥∥∥∥PΩ(xk,γ)

(
xk −

r∑
l=1

θkl ∇fl(xk)
)
− xk

∥∥∥∥ ≤ ε as we wanted to

prove. �

Note that, from Theorem 2, we can ensure thatMAGP (γ) is a necessary sequential optimality condition
for any local weak Pareto solution.

In the following theorem we establish that, under the Cone-Continuity Property (CCP), the MAGP con-
dition implies weak-regularity.

Given x∗ ∈ Rn such that h(x∗) = 0, g(x∗) ≤ 0, we consider the closed convex cone defined as

K(x) =

{ m∑
i=1

λi∇hi(x) +
∑

j∈A(x∗)

µj∇gj(x) : λi ∈ R, µj ∈ R, µj > 0

}
where A(x∗) = {j = 1, . . . , p : gj(x

∗) = 0} is the set of active inequality constraints at x∗.
Given a set-valued mapping (multifunction) F : Rs ⇒ Rd, the outer limit of F (z) as z → z∗ is denoted

by
lim sup
z→z∗

F (z) = {w∗ ∈ Rd : ∃ (zk, wk)→ (z∗, w∗) with wk ∈ F (zk)}.

Then, the multifunction F is said to be outer semicontinuous at z∗ if lim sup
z→z∗

F (z) ⊂ F (z∗).

Definition 2 [1] We say that x∗ ∈ Rn such that h(x∗) = 0, g(x∗) ≤ 0 satisfies the Cone-Continuity
Property (CCP) if the multifunction x⇒ K(x) is outer semicontinuous at x∗, that is

lim sup
x→x∗

K(x) ⊂ K(x∗).

Theorem 3 Let x∗ be a feasible point and γ ∈ [−∞, 0]. Assuming that the MAGP (γ) condition holds at
x∗, and furthermore, suppose that x∗ satisfies CCP. Then, x∗ is a weak-regular point of the problem (1).

In [8] it is proved that AGP is a sufficient condition for the scalar problem. In the following theorem we
extend the same result in the multiobjective case.

Theorem 4 Suppose that, in the multiobjective optimization problem (1), fl, l = 1, . . . , r and gi i =
1, . . . , p are convex and h is an affine function. Let γ ∈ [−∞, 0]. Suppose that x∗ ∈ Ω, {xk} ⊂ Rn and

{θk} ⊂ Rr are such that
r∑
l=1

θkl = 1, θkl > 0, xk → x∗, h(xk) = 0 for all k = 0, 1, 2, . . . and d(xk, γ) = 0.

Then, x∗ is a weak Pareto solution of (1).
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