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Epidemiological, Clinical and 
Genetic Study of Hypophosphatasia 
in A Spanish Population: 
Identification of Two Novel 
Mutations in The Alpl Gene
Cristina García-Fontana1,2, Juan M. Villa-Suárez3,4, Francisco Andújar-Vera1,2,  
Sheila González-Salvatierra1,2,4, Gonzalo Martínez-Navajas5,6, Pedro J. Real   5,6, 
José M. Gómez Vida7, Tomás de Haro3, Beatriz García-Fontana1,8 & Manuel Muñoz-Torres1,4,8,9

Hypophosphatasia (HPP) is a genetic disease caused by one or several mutations in ALPL gene 
encoding the tissue-nonspecific alkaline phosphatase affecting the mineralization process. Due to 
its low prevalence and lack of recognition, this metabolic disorder is generally confused with other 
more frequent bone disorders. An assessment of serum total alkaline phosphatase (ALP) levels 
was performed in 78,590 subjects. Pyridoxal-5′-phosphate (PLP) concentrations were determined 
and ALPL gene was sequenced in patients potentially affected by HPP. Functional validation of the 
novel mutations found was performed using a cell-based assay. Our results showed persistently low 
serum ALP levels in 0.12% of subjects. Among the studied subjects, 40% presented with HPP-related 
symptoms. Nine of them (~28%) had a history of fractures, 5 (~16%) subjects showed chondrocalcinosis 
and 4 (~13%) subjects presented with dental abnormalities. Eleven subjects showed increased PLP 
concentrations. Seven of them showed ALPL gene mutations (2 of the mutations corresponded to novel 
genetic variants). In summary, we identified two novel ALPL gene mutations associated with adult 
HPP. Using this protocol, almost half of the studied patients were diagnosed with HPP. Based on these 
results, the estimated prevalence of mild HPP in Spain could be up to double than previously reported.

Hypophosphatasia (HPP) is a rare disorder. The estimated prevalence of HPP in the European population is 
between 1/100,000 and 1/300,000 for severe forms and 1/6,370 for moderate forms1. However, no epidemiological 
studies on the prevalence of HPP in the Spanish population are available to date. The HPP is caused by one or sev-
eral mutations in the ALPL gene encoding for the tissue-nonspecific alkaline phosphatase protein (TNSALP). This 
enzyme is involved in the dephosphorylation of a wide range of substrates, including inorganic pyrophosphate 
(PPi), phosphatidylethanolamine (PEA) and pyridoxal-5′-phosphate (PLP). A total of 388 mutations associated 
with HPP have been described to date2. The variety of mutations results in a highly variable clinical manifesta-
tions of HPP. Mild HPP is caused by a functional loss of one of the copies of the ALPL gene, leading to autosomal 
dominant inheritance, whereas, both alleles of the ALPL gene are affected in severe HPP3. The severe form of this 
disorder could be explained by autosomal recessive inheritance or by a dominant negative effect on an autosomal 
dominant mutation, where the gene product from one allele interferes with the monomer-monomer interaction4. 
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The degree of hypophosphatasemia and TNSALP substrate accumulation reflect the severity of HPP5. Low lev-
els of serum total alkaline phosphatase (ALP), in conjunction with the accumulation of natural substrates from 
TNSALP and with the clinical and radiographic findings are the hallmark for the diagnosis of HPP.

This disorder has been categorized in seven clinical forms including perinatal, infantile, childhood, adult, 
odonto-HPP, pseudo-HPP and benign prenatal HPP. The clinical manifestations of HPP can vary from severe 
(mainly in perinatal and infantile HPP) to moderate or mild (in adults)6.

The HPP in adults is typically detected during middle age7–9. The clinical manifestation of HPP in adults 
include loss of mineralization leading to recurrent metatarsal stress fractures, femoral pseudofractures (usually 
showing a delayed consolidation), history of rickets in childhood, musculoskeletal and joint pain6. This hypomin-
eralization is caused by PPi accumulation in the extracellular matrix, which inhibits the formation of hydroxyapa-
tite crystals10. This hypomineralization affects also the acellular cementum that covers the tooth root. For this 
reason, premature loss of deciduous or permanent dentition is another clinical manifestation of HPP11. Moreover, 
the increase of endogenous levels of PPi produce calcium pyrophosphate dihydrate crystal deposits in articular 
cartilage causing PPi arthropathy (including pseudogout), chondrocalcinosis and enthesopathy12–14 leading to 
musculoskeletal pain in HPP adult patients6.

In the pediatric population, clinical manifestations are more severe than in adults, being perinatal HPP the 
most severe. This form is manifested in utero with profound skeletal hypomineralization10, usually causing death 
after few days of life, due to defects in thorax and hypoplastic lungs leading to asphyxia15. In infantile and child-
hood HPP, clinical manifestations include defects in bone mineralization and bone deformities. Premature bony 
fusion of cranial sutures can lead to high intracranial pressure and cerebral damage16. In infantile HPP, the skel-
etal disease can lead eventually to respiratory complications17,18. Moreover, PLP accumulation is associated with 
convulsions in children because the phosphate group of this substrate prevents its translocation through the 
blood-brain barrier. This fact limit the bioavailability of PLP as a cofactor for many enzymatic reactions, such as 
the synthesis of neurotransmitters19. Premature loss of deciduous teeth is typical in childhood HPP20.

Due to the characteristic hypomineralization of this disease, HPP is often misdiagnosed as osteoporosis and 
treated with antiresorptive drugs, such as bisphosphonates. These drugs worsen the prognosis of HPP. For this 
reason, implementing a protocol in clinical practice to prevent the underdiagnosis of HPP and to treat adequately 
this disease is essential. In this context, the aim of this study was to assess the persistent low serum ALP levels, 
excluding secondary HPP causes due to another disorders13,21 or hypophophatasemia caused by some treatments 
such as glucocorticoids, chemotherapy or chlofibrate22,23, in order to design an useful protocol to detect positive 
cases of underdiagnosed HPP.

Results
Biochemical and clinical features in adults.  The database of the Clinical Analysis Unit of the University 
Hospital San Cecilio of Granada recorded ~130,000 ALP analyses corresponding to 78,590 subjects (76,083 adults 
and 2,507 children) between the 1st of January and the 31st of December, 2016.

Among the adult population, we identified 1,907 subjects with ALP levels below the lower limit of the reference 
range (40 U/L). To reduce false positives, 1,551 subjects having only one ALP assessment were excluded. Among the 
remaining 365 subjects showing two or more ALP assessment ≤ 40 U/L, 65 subjects with at least one ALP assessment 
≤ 30 U/L were selected. After reviewing the clinical records, 9 subjects were excluded because of secondary HPP 
causes (multiple myeloma (n = 1), milk-alkali syndrome (n = 1), malnutrition (n = 1) or because of death (n = 6)). 
Among the remaining 56 subjects, 16 subjects (50 ± 16 years, 81% women) agreed to participate in the study (Fig. 1).

Most of the 16 subjects were asymptomatic for HPP or had mild symptoms. None of them had been previously 
diagnosed with HPP. The main diagnosis of each patient is described in Table 1, including some diagnoses related 

Figure 1.  Flow chart of the recruitment of potential HPP patients from an adult population.
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to HPP, such as osteoarthritis (n = 2), inflammatory rheumatic disease (n = 1), osteoporosis (n = 3) and fibromy-
algia (n = 1). However, most of the 16 subjects presented with other diagnoses non-related to HPP. None of them 
had a family history of HPP or rickets in childhood. None of them has been treated with bisphosphonates. Eight 
out of the 16 patients (7 of them females) had prevalent fractures (metatarsus, humerus, tibia, ankle, wrist, fibula 
or hip). Six out of the 16 patients (5 females and 1 male) had symptomatic chondrocalcinosis. Five out of the 16 
patients reported dental abnormalities. Regarding biochemical determinations, 10 adults showed decreased ALP 
and increased PLP levels compared to the reference values. Seven out of these 10 patients presented with ALPL 
gene mutations. Two of these identified mutations corresponded to new variants not previously described.

Genetic results in adults.  Five out of 7 patients showing a positive genetic test (i.e., a mutation in the ALPL 
gene) presented with a history of fractures, one of them presented with chondrocalcinosis, and two of them 
reported dental abnormalities (Table 1).

Among the subjects studied, we found that patients with a positive genetic test showed significantly lower lev-
els of ALP and higher levels of PLP (Fig. 2). In addition, patients with fractures showed higher levels of PLP than 
those patients without fractures, although without reaching statistical significance (Fig. 3).

Two patients (patients 9 and 13, Table 1) presented with an ALPL mutation in exon 6 in heterozygosis, 
c.558G > A; p.Trp186*. Whereas another two patients (patients 14 and 15, Table 1) presented with an ALPL 
mutation in exon 12 in heterozygosis, c.1327G > A; p. Ala443Thr. These two mutations are new genetic variants, 
not previously described. The other three patients showed previously described ALPL mutations. One of them 
(patient 5, Table 1), presented with a mutation in exon 6 in heterozygosis, in the splicing canonical acceptor 
region (c.473-2A > G), leading an alteration in mRNA processing24. Another subject (patient 1, Table 1) pre-
sented with a mutation in exon 7 in heterozygosis (c.659G > T; p.Gly220Val25). The remaining subject (patient 
3, Table 1) presented with a mutation in exon 12 in heterozygosis (c.1366G > A; p.Gly456Arg) finding a similar 
variant in previous studies26.

Genetic results, biochemical and clinical features in the pediatric population.  In the pediatric popu-
lation, 2,003 out of 2,507 subjects with only one ALP assessment performed were excluded and 504 subjects showing 
ALP levels below 150 U/L were selected. Among the latter, those subjects presenting with some ALP assessment 
with serum levels above the reference limits were excluded (472 subjects). At this point, we classified the pediatric 
population into two groups based on age and ALP reference values (from 0 to 12 years and from 13 to 19 years). 
Therefore, 7 and 25 subjects with at least one determination below the threshold of 100 U/L or 50 U/L, respectively, 
were selected. After reviewing the clinical records, 4 children belonging to the first group and 5 from the second one, 
were excluded because of having secondary HPP causes [hypothyroidism (n = 3), malnutrition (n = 4) and leukemia 

N° Age Sex History of fractures Chondrocalcinosis
Dental 
abnormalities Main Diagnosis

ALP 
(U/L) PLP (ng/mL) Genetic study

1 50 F 1 (metatarsal) No No Multiple sclerosis 25 58.76* c.659G > T; 
p.Gly220Val

2 53 M No No No Polycythemia vera, atrial 
fibrillation 30 13.95 (−)

3 69 F 1 (wrist) No No Osteoarthritis 17 55.74* c.1366G > A; 
p.Gly456Arg

4 27 F No No Yes Thiemann’s disease, ulcerative 
colitis 25 12.17 (−)

5 53 M 2 (metatarsal, ankle) No No Dermatitis 26 22.99* c.473-2A > G

6 43 F No Yes No Myasthenia gravis, 
hyperthyroidism 25 23.90* (−)

7 48 F 1 (ankle) Yes No Systemic sclerosis, osteoporosis 29 8.98 (−)

8 45 F No Yes No Lupus, colon cancer 30 12.02 (−)

9 34 F 3 (metatarsal, wrist, 
hip) No No Idiopathic thrombocytopenic 

purpura 19 24.12* c.558G > A; 
p.Trp186a

10 45 F 2 (tibia, fibula) No Yes Ankle fracture 30 9.41 (−)

11 60 M No Yes No
Acute pancreatitis, granular 
lymphocytic leukemia, 
cholelithiasis

20 19.66* (−)

12 38 F 2 (metatarsal, ankle) Yes Yes Ulcerative colitis 28 37.41* (−)

13 30 F No No Yes Ankylosing spondylitis 22 19.48* c.558G > A; 
p.Trp186a

14 65 F No Yes Yes Fibromyalgia, osteoarthritis, 
osteoporosis 18 62.26* c.1327G > A; 

p. Ala443Thrb

15 70 F 1 (humerus) No No Osteoporosis, breast cancer 21 37.25* c.1327G > A; 
p. Ala443Thrb

16 36 F No No No Chronic inflammatory arthritis, 
fibromyalgia, lupus 26 9.47 (−)

Table 1.  Clinical features, ALP levels, PLP levels and genetic study in the adult population. *PLP levels higher 
than interval reference values. aFirst genetic variant found. bSecond genetic variant found. (−) denotes a 
negative result.
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or undergoing chemotherapy (n = 2)]. Finally, only 8 subjects belonging to the group from 13 to 19 years (18 ± 1 
years, 87.5% females) accepted to participate in the study (Fig. 4). None of them had a family history of HPP or rick-
ets. One of these 8 subjects had a history of fractures (femur, tibia, fibula and radius) by polytrauma. Only one of the 
8 subjects had a diagnosis related to HPP (arthralgia), presenting most of them with other pathologies non-related 
to HPP (Table 2). Despite 2 out of the 8 subjects presented with low levels of ALP and a high level of PLP compared 
to the reference intervals, no mutations in the ALPL gene were found for none of them.

Functional validation of two new mutations using a cell-based assay.  The ALP activity was meas-
ured in HEK293T cells transfected with plasmids containing the wild-type (WT) ALPL or the ALPL mutants. The 
truncated mutant (p.Trp186*) showed a dramatic ALP activity decrease comparable to both, the non-transfected 
cells or the cells transfected with empty vector (Fig. 5). The second mutant (p.Ala443Thr) also showed a signifi-
cant reduction in ALP activity, although the ALP activity was higher than in the truncated mutant, suggesting that 
the second mutation has a lower impact in TNSALP 3D structure.

The transfection and expression studies performed to verify the validity of the experiment have demonstrated 
that the ALPL transcriptional expression was similar in cells transfected with plasmids containing the WT or the 
ALPL mutants. A higher expression of ALPL gene was found in WT ALPL cells or ALPL mutant cells compared 
to cells transfected with the empty vector. The empty vector was used as a negative control to assess the contribu-
tion of endogenous expression of ALPL gene in HEK293T cells (Fig. S1).

Effect of new mutations based on a 3D model of the TNSALP structure.  In order to predict the effect 
of these two newly identified mutations on the TNSALP structure, a 3D model based on the sequence homology 
between TNSALP and the placental isozyme was obtained using the web-server SWISS MODEL. Although both 
protein sequences share only a 57% of identity27, the structure of both molecules is highly conserved (Fig. S2). The 
first new mutation identified (c.558G > A; p.Trp186*) produces a truncated TNSALP protein which conserves only 
1/3 of its sequence, affecting this to the loss of the main part of its structure (Fig. 6A,C). Bioinformatics analysis 
of the second new mutation identified (c.1327G > A; p. Ala443Thr) revealed that even maintaining a very similar 
backbone 3D structure, the p.Ala443Thr mutant showed relevant modifications in the general polarity of the whole 
molecule, increasing the hydrophobic surface clusters (Fig. 6B,D) which may affects to its function.

Figure 2.  Serum ALP and PLP levels in the presence or absence of mutations in the ALPL gene. Panel A shows 
serum ALP levels and panel B shows serum PLP levels.

Figure 3.  Serum ALP and PLP levels in the presence or absence of fractures. Panel A shows serum ALP levels 
and panel B shows serum PLP levels.
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Discussion
Our study shows that HPP is an underdiagnosed disease. An appropriate protocol to detect HPP in a clinical 
setting in tertiary care hospitals is required.

Figure 4.  Flow chart of the recruitment of potential HPP patients from a pediatric population.

N° Age Sex
History of 
fractures Chondrocalcinosis

Dental 
abnormalities Main Diagnosis

ALP 
(U/L) PLP (ng/mL)

Genetic 
study

1 18 F No No No Hearing loss 37 11.25 (−)

2 20 F No No No Multiple sclerosis 50 9.72 (−)

3 20 F No No No Lupus 40 10.05 (−)

4 19 F No No No Migraine 49 32.68* (−)

5 20 F No No No Arthralgia 42 23.92* (−)

6 19 M 4 (femur, tibia, 
fibula, radius) No No Polytrauma 46 11.98 (−)

7 20 F No No No Asthma 40 9.77 (−)

8 19 F No No No Gastrointestinal infection 43 18.43 (−)

Table 2.  Clinical features, ALP levels, PLP levels and genetic study in the pediatric population. *PLP levels 
higher than interval reference values. (−) denotes a negative result.

Figure 5.  Cell based-assay to determine the ALP activity in transfected and non-transfected HEK293T 
cells. Panel A shows the qualitative results of ALP activity in HEK293T cells in the following conditions: 
non-transfected cells, cells transfected with pCDNA 3.1, cells transfected with pCDNA 3.1-ALPL WT, cells 
transfected with pCDNA 3.1-ALPL c.558G > A mutant (p.Trp168*), cells transfected with pCDNA 3.1-ALPL 
c.1327G > A mutant (p.Ala443Thr) in lines 1, 2, 3, 4 and 5 respectively. Panel B shows the quantitative results 
of the ALP assay expressed as absorbance at 450 nm. The results are expressed as means and standard error, 
derived from three independent experiments.
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We found that 0.12% of the subjects undergoing ALP assessments in 2016 at the University Hospital San 
Cecilio of Granada had persistently low serum ALP levels, although not all subjects were affected by HPP. This 
disorder is often overlooked in clinical practice because low serum ALP levels do not capture the attention of 
clinicians, in contrast to the finding of elevated serum ALP levels. This is a current problem limiting the HPP 
diagnosis. The finding of low serum ALP level is not synonymous of suffering HPP. Accordingly, a recent study 
showed that only half of the patients between 20 and 77 years old presenting with unexplained low ALP levels had 
a mutation in the ALPL gene24. Furthermore, some clinical conditions can also be associated with a reduction or 
increase in the levels of circulating ALP (such as pregnancy, several hepatobiliary diseases, orthopedic surgery 
and/or recent fractures)28–30, which could mask the diagnosis of HPP. All these conditions must be considered to 
interpret properly any altered level of total ALP. Therefore, our results showed a decrease in serum ALP levels and 
an increase in serum PLP levels in patients presenting with some mutation in ALPL gene. However, this relation 
does not occur between serum ALP levels and the presence of fractures. We found increased serum PLP levels 
close to significance in patients with fractures. In this context, an accumulation of natural substrates for TNSALP 
and clinical and radiographic findings should be considered, in conjunction with low total serum ALP level, in 
order to establish a correct diagnosis of HPP.

Our study found 7 out of 16 adult patients with a positive genetic test for HPP. In consistency with the propor-
tion reported by McKiernan study30, we found 5 subjects (4 females and 1 male) that presented with all the clin-
ical hallmarks of HPP (low total serum ALP level, high PLP levels and a history of prevalent fractures) (patients 
1,2,5,9 and 15, Table 1). In addition, we identified two females with positive genetic test, low serum ALP level and 
high PLP levels31 but without history of prevalent fractures (patients 13 and 14, Table 1). However, both of these 
patients showed dental abnormalities, one of them presenting with chondrocalcinosis too. This symptomatology 
could fit with adult HPP or odonto-HPP5.

Additionally, two patients (both females) presented with serum ALP and PLP levels consistent with HPP 
diagnosis. However, despite the genetic test was negative, both patients could be affected by HPP, since the bio-
chemical and clinical manifestations were associated with common HPP-related symptoms (patients 11 and 12, 
Table 1). This inconsistency could be explained by additional factors that can influence the clinical expression of 
HPP. The negative results in the genetic test could be explained because there could be some proteins or transcrip-
tion factors indirectly related to TNSALP regulation, such as transcription factor RUNX2, leading to the char-
acteristic low serum levels of ALP found in HPP in the absence of the mutation in the ALPL gene32. Moreover, 
the regulation of extracellular PPi levels, responsible for some HPP symptoms, is complex and it involves several 
genes in addition to ALPL33. Furthermore, mutations in some non-coding regions, such as promoter or intergenic 

Figure 6.  3D modeling of WT and both new mutants of TNSALP. The structure modeling is based on the 
sequence homology between TNSALP and the placental isozyme (PDB ID: 1E2W). Panels A and C show the 3D 
structure as a ribbon representation of WT TNSALP and the truncated mutant, respectively. The two monomers 
of the protein are colored in red and blue. Panels B and D show the 3D structure as a hydrophobic surface 
representation of WT TNSALP and the second mutant (p.Ala443Thr). The color of the molecular surface 
by amino acid hydrophobicity has been used as follows: from dodger blue for the most hydrophilic residues, 
changing to white, to orange red for the most hydrophobic residues. The most hydrophilic changes introduced 
in the mutant compared to the WT are delimited with black circles and the most hydrophobic changes, with red 
circles. The crown domain is delimited with a rectangle.
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regions of the ALPL gene, which are undetected by conventional sequencing could explain the negative results of 
the genetic test similarly to previously reported results of other studies34.

Patients 9 and 13 (Table 1) presented with a novel mutation (c.558G > A; p.Trp186*) leading to an amino acid 
change, generating a shorter version of the TNSALP protein by introducing a stop codon at position 186. The 
functional validation using a cell-based assay performed for this mutation showed a dramatic decrease in the 
ALP activity (Fig. 5). This high decrease could be explained because this mutation generates a TNSALP truncated 
version that has missed almost 2/3 of its sequence (Fig. 6A,C). This fact implies that the truncated protein has 
lost some important structural determinants, such as an active site at the 110 position, some metal binding sites 
and the cysteine 139 involved in disulfide bond formation35. Some structural studies confirm that the metal in the 
metal-binding site is a calcium ion, which could play a critical role in the TNSALP function27. Mutations affecting 
these structural determinants could explain the drastic loss of activity in this protein.

However, the clinical phenotype associated with the c.558G > A; p.Trp186* mutation is not specific, since one 
of these patients showed fractures at several locations and the second patient presented with dental abnormalities. 
This difficulty in linking genotype with phenotype can be explained by the influence of other genetic, epigenetic 
or non-genetic factors in this disorder36. The symptomatology associated with this genetic variant could corre-
spond to adult HPP.

Patients 14 and 15 (Table 1), showed another novel ALPL mutation involving an amino acid replacement at 
the position 443 of the protein (c.1327G > A; p. Ala443Thr). The results of site-directed mutagenesis performed 
to validate this mutation showed a strong reduction in the ALP activity (Fig. 5). The replaced amino acid is 
located at 443 position, next to the crown domain of the protein27 (Fig. 6B,D). This domain contains the colla-
gen binding site, which has been identified as important for the TNSALP function37 and also is involved in the 
monomer-monomer interaction27. This mutation implies the appearance of several hydrophobic clusters, all over 
the dimer surface (Fig. 6B,D). This alteration could affect the dimerization of protein, and collagen binding. Both 
processes are essential to the TNSALP function and could explain the decreased ALP activity found in the in vitro 
assays. Surprisingly, this mutation affected significantly the general hydrophobicity of the protein, while keeping 
the secondary, tertiary and quaternary structures almost identical (Fig. 6B,D). Although this mutation had not 
been previously described, two different variants at the same position has been reported by other groups (p.Ala-
443Val26 and p.Ala443Glu7), showing both variants symptomatology related to adult HPP. In addition, mutations 
located at crown domain have been related to severe or moderate HPP depending on location and homozygous 
or heterozygous genotype, reinforcing the important role of this domain in the ALP activity27.

In our study, the clinical features of this mutation seem to be associated with a low bone mineral density in 
both affected patients, who have been diagnosed with osteoporosis.

Mild symptoms associated to these novel mutations could be explained by the heterozygosity of both muta-
tions. Both new genetic variants have been annotated in The Tissue Nonspecific Alkaline Phosphatase Gene 
Mutations Database on the 27 of October, 20182.

Patients 1, 3 and 5 (Table 1) showed the above described ALPL gene mutations and all of them seem to be 
related to adult HPP, since all affected patients reported a history of fractures at several locations (Table 1). In 
previous studies, the mutation found in patient 3, which leads to an amino acid replacement in position 456 
was associated with adult HPP with mild symptoms26. Likewise, the mutation found in patient 1 (Table 1) was 
described in odonto-HPP form by Taillander et al.25. Mutation in patient 5 (Table 1) was found in an intergenic 
region which affects mRNA processing. This mutation was associated with an asymptomatic HPP form and with 
very mild form in other studies24. In consistency with this observation, we found two fractures (in metatarsus and 
ankle) in the affected patient, with no additional symptoms related to HPP. Based on these results, all the genetic 
mutations found in our study subjects seem to be related with adult HPP with very mild symptoms.

The bioinformatics pathogenic prediction tools suggest that all the mutations found in our study, including 
the two new genetic variants identified, are pathogenic according to the classification criteria of the American 
College of Medical Genetics and Genomics (ACMG)38. According to Varsome database classification39, the first 
novel mutation, (c.558G > A; p.Trp186*) found in patients 9 and 13 (Table 1), is classified as pathogenic (class 5), 
whereas the second mutation, (c.1327G > A; p. Ala443Thr), found in patients 14 and 15 (Table 1), is classified as 
likely pathogenic (class 4).

Regarding the pediatric population, we did not find any patient with positive results in the genetic test. In 
addition, none of the 8 children evaluated presented with chondrocalcinosis or dental abnormalities. Only one 
of them had a history of prevalent fractures in several locations (patient 6, Table 2), although this patient did not 
present with PLP levels higher than the reference interval. However, two children, both females (patients 4 and 5, 
Table 2) were found with ALP and PLP levels consistent with the common reference intervals for HPP. Despite no 
history of prevalent fractures nor dental abnormalities were found for these two children, abnormal ALP or PLP 
levels should be considered for further studies to evaluate the presence of a likely asymptomatic or moderate HPP 
in the absence of genetic mutations, as argued above.

Similarly to other studies30,40, we found a higher proportion of females (n = 6, 86% approximately) than males 
(n = 1, 14% approximately) diagnosed with HPP (with positive genetic test) in our final adult cohort. Despite no 
significant sex differences were found in our initial adult cohort with persistent low serum levels of ALP (54% 
females, 46% males), we cannot affirm that HPP is more prevalent in females than in males in our study pop-
ulation. This is because most subjects with low ALP levels refusing to participate in our study or that were not 
available were males, which led to a final cohort with higher proportion of females than males (81% females vs 
19% males approximately, n = 16). The higher prevalence of females among subjects affected by HPP found in the 
present study and in other studies could be explained because bone-related disorders are found more frequently 
in women (such as postmenopausal osteoporosis), which finally are affected by HPP. In addition, more awareness 
about bone-health is found in women than in men, which leads to a higher participation of females than males 
in this type of study.
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In summary, we can conclude that HPP is an underdiagnosed disease showing a higher proportion of affected 
patients in a tertiary care hospital than previously estimated. Following the protocol described in the present 
work, we found 7 affected adult patients, without previous diagnosis of HPP, out of the 16 subjects studied. This 
data indicates that almost half of the population studied (~44%) was not well identified in routine clinical prac-
tice. If we extrapolate this data to the current population of Spain, this could mean 4,000 potential cases of HPP 
currently not diagnosed. Considering the proportion of potential HPP patients who did not participate in this 
study for different causes (71%, Fig. 1), and according to our results, the current estimate of potential undiag-
nosed HPP cases in Spain could reach up to 15,000 cases. This implies that the estimated prevalence of mild HPP 
in our country would be double than the previously published for Europe1 (1/3,100 vs 1/6,370). Among the 7 
subjects affected by HPP, we found two new ALPL mutations not previously described. Both mutations have been 
annotated in The Tissue Nonspecific Alkaline Phosphatase Gene Mutations Database. Both genetic variants are 
related to the adult HPP clinical form.

In addition, we found 4 more patients with negative results for the genetic test (2 adults and 2 children) but 
presenting with the typical HPP symptomatology. Further studies are required to verify if these subjects are also 
affected by HPP.

Because of its clinical features, HPP could be wrongly mistaken for osteoporosis or other bone-related dis-
eases. The treatment of these patients with antiresorptive drugs is frequent in tertiary care hospitals, leading to 
the worsening of their prognosis. Therefore, it is important to establish a correct clinical assessment to perform an 
adequate diagnosis of this disorder, and therefore, to provide the appropriate management of the affected patients.

Methods
Study population.  A total of 78,590 subjects were included in this retrospective study. These subjects had 
undergone a previous ALP assessment between the 1st of January and the 31st of December, 2016. The subjects 
included were evaluated at the Clinical Analysis Unit of the University Hospital San Cecilio of Granada. The data-
base was divided into adult (76,083 subjects) and pediatric population (2,507 subjects).

Among the adult population, subjects who showed ALP levels below the lower limit of the reference range 
(40 U/L) in at least two assessments were recruited. To increase the specificity, those selected subjects presenting 
ALP levels ≤ 30 U/L in at least one assessment were recruited. Among the pediatric population, subjects who 
showed ALP levels below 150 U/L in at least two assessments were recruited. Selected subjects were classified 
into two groups based on age and ALP reference values: a threshold of 100 U/L was chosen for the group with 
ages from 0 to 12 years old and a threshold of 50 U/L was chosen for the group with ages from 13 to 19 years old. 
Pediatric subjects with ALP levels below these thresholds were included in the present study.

The clinical records of selected subjects were reviewed to exclude those subjects with low ALP levels caused 
by secondary HPP13,21. Subjects selected to participate in the study were contacted to sign an informed consent. 
In the case of subjects under the age of 18 years, informed consent was signed by a parent and/or legal guardian 
for study participation. An individualized and personal interview about potentially related HPP symptoms was 
conducted to perform a structured clinical evaluation.

Two venous blood samples were collected from each participant at the Clinical Analysis Unit for PLP deter-
mination and for the genetic study.

The present study was approved by the ethics committee of the University Hospital San Cecilio of Granada in 
accordance with the principles of the World Medical Association Declaration of Helsinki (Project ID: 0768-N-17. 
Research Ethics Committee of Granada Center (CEI-Granada) on 5 September 2017).

Biochemical analyses.  The ALP levels were measured in blood samples by a colorimetric method in an 
AU5800 analyzer (Beckman Coulter, California, EEUU). The method based on the recommendations of the 
“International Federation for Clinical Chemistry” (IFCC) was used for this purpose. The ALP activity was deter-
mined by measuring the rate of conversion of p-nitrophenyl phosphate (pNPP) to p-nitrophenol (pNP) in the 
presence of magnesium and zinc ions and of 2-amino-2-methyl-1-propanol (AMP) as a phosphate acceptor 
at pH 10.4. The rate of change in absorbance due to the formation of pNP was measured bichromatically at 
410/480 nm and this rate is a direct function of the ALP activity in the sample (reference range in adult popula-
tion: 40–120 U/L). The reference ranges for the pediatric population are shown in Table 3. According to these val-
ues, we established 100 U/L as threshold for the pediatric group from 0 to 12 years old and 50 U/L for the pediatric 
group from 13 to 19 years old to design our protocol.

Plasma PLP concentrations, as an indicator of vitamin B6 adequacy, were determined by high perfor-
mance liquid chromatography (HPLC) at the Clinical Analysis Unit of University Children Hospital Niño Jesús 
(Madrid). The chromatographic measurement was performed on an isocratic HPLC system with a fluorescence 
detector. The excitation and emission wavelengths for the detector were 320 nm and 415 nm, respectively. The 
reference range was 6.4–18.5 ng/mL.

Sequencing of ALPL gene.  Extraction of DNA from peripheral blood lymphocytes was performed. 
Amplification was performed by PCR. Subsequent sequencing of the coding regions and exon-intron junctions 
of the ALPL gene was carried out using as reference the truncated sequence NM_000478.4 at the INGEMM 
(Instituto de Genética Médica y Molecular) of the University Children Hospital Niño Jesús (Madrid), according 
to the methodology described by Riancho et al., 201624.

Transfection studies.  The pcDNA3.1+ vector containing the full-length wild type (WT) ALPL gene was 
obtained from GenScript company (Clone ID: OHu23066). The two new mutations identified in the present study 
were obtained by site-directed mutagenesis and they were introduced in OHu23066 clone using the HindIII and 
BamHI restriction sites. The mutated cDNAs were fully sequenced to demonstrate that the target mutation was 
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inserted. Mutated and WT plasmids were transiently transfected into HEK293T cells for 48 hours. Transfections 
were performed by the lipofection method with LipoD293 DNA In Vitro Transfection Reagent (SignaGen 
Laboratories) following the manufacturer’s instructions. RT-qPCR experiments were performed to control trans-
fection and ALPL exogenous expression. The total RNA was isolated from each transfected culture and from 
the non-transfected control using a manual homogenizer and Trizol Reagent (Ambion). RNA was treated with 
DNAse (Qiagen), then, cDNA was synthesized from 600 ng of RNA using the iScript cDNA synthesis kit (BioRad) 
following the manufacturers’ instructions. Quantitative PCR was performed using the PowerUp SYBR Green 
Master Mix (Thermo Fisher Scientific) in a CFX96 Real Time thermocycler (BioRad). The set of primers designed 
to amplify a 121 bp fragment of the ALPL gene from both WT and mutant plasmids are the following: ALPL-F: 
5′-TGGCACCTGCCTTACTAACT-3′ and ALPL-R: 5′-CACGTTGGTGTTGAGCTTCT-3′. Gene expression 
data were normalized to the expression of the reference gene Ribosomal Protein L13 (RPL13) and reported as 
normalized ALPL expression. The following set of primers was used to amplify the reference gene: RPL13-F: 
5′-CGTAAGATCCGCAGACGTAAGGC-3′ and RPL13-R: 5′-GGACTTGTTCCGCCTCCTCGGAT-3′.

ALP activity in transfected cells.  The ALP activity was determined using Alkaline Phosphatase Detection 
Kit (Merck Millipore) following the methodology recommended by the manufacturer. The enzyme activity of 
ALP was measured with a spectrophotometer (Dynex Technologies) at 450 nm to detect the chromogenic product 
as a result of the ALP activity.

The pcDNA3.1 vector contains a CMV promoter. Consequently, the endogenous ALP activity in HEK293T 
cells has a low contribution to the total ALP activity in transfected cells. In order to assess the actual contribu-
tion of these mutants to ALP activity, the endogenous ALP activity determined in HEK293T cells transfected 
with pcDNA3.1 was subtracted to the results of the ALP activity determined in HEK293T cells transfected with 
pcDNA3.1 containing WT or ALPL mutants. The results were expressed as ALP activity based on absorbance at 
450 nm measured in each condition. The results are represented as means with standard error, derived from three 
independent experiments.

3D structural modeling.  To check the effect of both new mutations identified in this study, the 3D modeling 
of WT and TNSALP mutants was completed using SWISS MODEL (https://swissmodel.expasy.org/). The struc-
ture modeling is based on the sequence homology between TNSALP and the placental isozyme (PDB ID: 1EW2). 
The new pdb files for WT, p.Trp168* and p.Ala443Thr TNSALP are available upon request. Ribbon representa-
tions and hydrophobic surface representations were obtained using UCSF Chimera software41. Mutation-related 
residues in the present study were positioned using the open source https://swissmodel.expasy.org/repository/
uniprot//P05186.35.

Statistical analyses.  Kolmogorov-Smirnov test was used to assess the normality of distribution of contin-
uous variables. Comparisons of continuous variables among groups were performed using unpaired Student’s 
t test. The ALP measure was calculated based on absorbance at 450 nm in three independent experiments in 
transfected cells, and Shapiro-Wilk test was used to study the distribution of this variable. Log 10 transformation 
was performed to normalize these data and ANOVA was performed to compare the differences between groups. 
Statistical significance was set at p < 0.05 (two-tailed). Statistical analysis was performed with specific software, 
SPSS version 22.0.
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