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Abstract
Objective: The aim of this study was to apply an innovative 
methodology to incident dark-field (IDF) imaging in coro-
nary artery bypass grafting (CABG) patients for the identifica-
tion and quantification of rolling leukocytes along the sub-
lingual microcirculatory endothelium. Methods: This study 
was a post hoc analysis of a prospective study that evaluated 
the perioperative course of the sublingual microcirculation 
in CABG patients. Video images were captured using IDF im-
aging following the induction of anesthesia (T0) and cardio-
pulmonary bypass (CPB) (T1) in 10 patients. Rolling leuko-
cytes were identified and quantified using frame averaging, 
which is a technique that was developed for correctly iden-
tifying leukocytes. Results: The number of rolling leukocytes 
increased significantly from T0 (7.5 [6.4–9.1] leukocytes/cap-
illary-postcapillary venule/4 s) to T1 (14.8 [13.2–15.5] leuko-
cytes/capillary-postcapillary venule/4 s) (p < 0.0001). A sig-
nificant increase in systemic leukocyte count was also de-

tected from 7.4 ± 0.9 × 109/L (preoperative) to 12.4 ± 4.4 × 
109/L (postoperative) (p < 0.01). Conclusion: The ability to 
directly visualize leukocyte-endothelium interaction using 
IDF imaging facilitates the diagnosis of a systemic inflamma-
tory response after CPB via the identification of rolling leu-
kocytes. Integration of the frame averaging algorithm into 
the software of handheld vital microscopes may enable the 
use of microcirculatory leukocyte count as a real-time pa-
rameter at the bedside. © 2019 The Author(s)

Published by S. Karger AG, Basel

Introduction

Cardiopulmonary bypass (CPB) has detrimental ef-
fects on the nature of the circulatory profile. Among oth-
ers, systemic inflammatory response is an important ad-
verse effect that cannot be ignored [1]. This syndrome 
results in the activation of the innate immune system, in 
which the leukocyte-endothelium interaction plays an 
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important role. The leukocyte-endothelium interaction is 
initiated by adhesion molecules to which leukocytes em-
bed themselves, thereby leading to leukocyte rolling, leu-
kocyte adhesion on the endothelium, and transmigration 
into tissues [2–4].

Monitoring the leukocyte-endothelium interaction in 
the microcirculation at the bedside is a main objective in 
the evaluation of inflammatory response and in its thera-
peutic management. The ability to directly visualize the 
microcirculation at the bedside via handheld vital mi-
croscopy (HVM) has substantially increased the need to 
monitor the microcirculatory alterations in critically ill 
patients [5]. Imaging techniques such as orthogonal po-
larization spectral imaging (OPS) imaging and side-
stream dark-field (SDF) or incident dark-field (IDF) im-
aging have been incorporated into HVM devices [6–8]. 
Via the application of HVM to the study of sublingual 
microcirculation, microcirculatory alterations have been 
identified in advance of alterations in systemic hemody-
namic variables in many clinical settings that are associ-
ated with cardiovascular compromise, such as cardiac 
surgery and sepsis [9–13].

Although HVM devices are noninvasive and are fea-
sible for bedside measurements, limited data are available 
on leukocyte counting and identifying the leukocyte-en-
dothelium interaction in the human microcirculation in 
cardiac surgery. Bauer et al. [14] were the first to identify 
rolling leukocytes using HVM and a conventional manu-
al methodology in sublingual recordings in cardiac sur-
gery patients. However, applying the conventional meth-
odology to OPS imaging, they were unable to distinguish 
between leukocytes and plasma gaps in the venules. The 
recent utilization of space-time diagram analysis for 
studying leukocyte kinetics in the sublingual microcircu-
lation initially overcame this dilemma [15]. However, 
space-time diagram analysis requires specialized software 
such as the AVA (MicroVision Medical, Amsterdam, The 
Netherlands) [16], which requires time-consuming, off
line processing with multiple steps. Thus, the space-time 
diagram method is not directly applicable for routine 
clinical use [17].

Recently, the method of frame averaging was proposed 
for differentiating between plasma gaps and leukocytes. 
This methodology was first applied to SDF imaging [18], 
and the results demonstrated the necessity of performing 
additional stabilization steps prior to its use. However, 
the clinical advantages of applying this methodology to 
IDF imaging have not been previously evaluated. The 
ability to directly visualize the kinetics of leukocyte-endo-
thelium interaction using IDF imaging, particularly in 

cardiac surgery patients, may facilitate the diagnosis of 
systemic inflammatory response after CPB by identifying 
rolling leukocytes. Therefore, in the current study we 
aimed to apply the method of frame averaging to IDF im-
aging during CPB in coronary artery bypass grafting 
(CABG) patients to identify and quantify rolling leuko-
cytes along the sublingual microcirculatory endothelium.

Methods

This study was a post hoc secondary analysis of a prospective 
observational study on the perioperative course of sublingual mi-
crocirculatory alterations in patients undergoing CABG. The data 
were obtained from 10 patients who received cold blood cardiople-
gia. This trial was conducted at Acıbadem Mehmet Ali Aydınlar 
University School of Medicine, Istanbul, Turkey.

Study Population
Eligible patients were adults who were undergoing on-pump 

CABG surgery. The exclusion criteria were withdrawal of consent, 
previous heart or oral surgery, emergency surgery, ejection frac-
tion < 30%, pregnancy, history of myocardial infarction, systemic 
inflammatory disease, a history of immunosuppressive drugs or 
steroids, age < 18 years, and vasculitis.

Clinical Practice
All surgeries were performed under general anesthesia. An

esthesia was induced using fentanyl (15–25 µg/kg), vecuronium 
(0.5 mg/kg), and propofol (1 mg/kg) and maintained via continu-
ous propofol infusion (200–400 mg/h). The ventilation parameters 
were as follows: 6–8 mL/kg tidal volume, 5% end-tidal CO2, 45% 
inspiratory O2, and a positive end-expiratory pressure of 5 cm 
H2O. After anesthesia induction, all patients received cefazolin 1 g 
as antibiotic prophylaxis and 2 g tranexamic acid as antifibrino
lytic therapy. CPB was initiated after heparin administration when 
the activated clotting time exceeded 480 s. CPB was performed 
with a standard roller pump using an S3 heart-lung machine 
(Stöckert Sorin Group Deutschland GmbH, Munich, Germany) 
combined with a heater-cooler device (3M Sarns TCM II, Michi-
gan, USA). The priming solution for CPB consisted of 1,100 mL 
Ringer lactate solution, 150 mL mannitol (20%), 60 mL sodium 
bicarbonate (8.4%), and 10,000 IU heparin. During CPB, moderate 
hypothermia (32–35   ° C) was used. Mean arterial pressure and 
nonpulsatile flow rate were maintained at 40–80 mm Hg and at 
2–2.5 L/min/m2, respectively. Myocardial viability was preserved 
via topical hypothermia and antegrade cold blood cardioplegia in-
cluding 120 mL ACDA, 20 mL potassium chloride (7.5%), 10 mL 
sodium bicarbonate (8.4%), 10 mL magnesium sulfate (15%), and 
80 mL dextrose (5%). Rewarming was initiated during left internal 
mammary artery grafting. When body temperature reached 37  ° C 
and the patient was hemodynamically stable, CPB was discontin-
ued and heparin was reversed with protamine sulfate.

Microcirculatory Measurements
Microcirculatory measurements were performed sublingually 

with a handheld IDF camera (CytoCam, Braedius Medical, Hui-
zen, The Netherlands). IDF imaging has been described extensive-
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ly elsewhere [6]. Briefly, the IDF imaging technique uses green 
light that is produced from a ring of tiny light-emitting diodes that 
are arranged around and optically isolated from a microscope 
tube. The green light is transmitted through nonkeratinized mu-
cosa and absorbed by hemoglobin; thus, red blood cells (RBCs) 
appear as dark globules. The captured videos provide sharp con-
tour visualization of the microcirculation and show flowing RBCs, 
plasma gaps, and leukocytes. The IDF handheld vital microscope 
captures images at a rate of 25 frames/s; 100 frames are recorded 
in each video clip.

Study Protocol
The probe was handheld during microcirculatory measure-

ments. Various precautions were taken and steps followed in line 
with international guidelines [19–21] to obtain images of ade-
quate quality and to ensure satisfactory reproducibility. First, fo-
cus and illumination were adjusted. At each time point, three 
steady images of 4 s were acquired and stored on a computer in 
accordance with the international guidelines on sublingual mi-
crocirculation [19–21]. The image clips were exported using the 
embedded CC-tools software (CytoCam, Braedius Medical). Im-
ages that were captured after the induction of anesthesia (T0) and 
after CPB (10 min after protamine administration) (T1) were 
used.

Image Acquisition
The complete data set of 60 videos was assessed according to 

the Microcirculation Image Quality Score [19] in line with inter-
national consensus [20, 21]. Sixteen videos were excluded from 
analysis due to unacceptable image quality. There was no loss of 
patients or time points, as these excluded videos were dispersed 
among patients and time points. The 44 sublingual video clips that 
showed at least one capillary-postcapillary venule (C-PCV) unit 
were included for further analysis. The selection criterion that was 
used to define a C-PCV vessel segment was as follows: a non-
branched capillary merges into a postcapillary venule (PCV) (a 
small venule that is distal to the capillary) with no branching ves-
sels present (Fig. 1). Study of the C-PCV unit enables tracking of 
white globules (leukocytes) from the capillary into the PCV along 
a single C-PCV segment. The use of the C-PCVs was described in 
detail previously [15]. The selected C-PCV units were excluded 
from the analysis if they were out of focus, if the video was unstable, 
or if no flow or intermittent flow that was induced by the iatro-
genic pressure appeared. After application of these exclusion cri-
teria, the video clips were analyzed via the method described be-
low.

Image Analysis
Video clips were analyzed using the method of frame averag-

ing. The analysis was conducted blindly by an experienced observ-
er, and the same video clips and the same C-PCVs were reviewed 
by a second observer to determine interrater agreement.

The method of frame averaging was developed as a technique 
for differentiating between plasma gaps and leukocytes [18]. In the 
conventional identification and manual counting process, leuko-
cytes and plasma gaps appear as moving white globules that are 
surrounded by dark RBCs. While leukocytes maintain their shape, 
plasma gaps change continuously in terms of shape and volume 
[15]. Figure 2 shows leukocytes rolling along the endothelium, 
thereby maintaining their distinctive form.

Fig.  1. Screenshot of the sublingual microcirculation video clip 
that was obtained via CytoCam-IDF imaging. Each of the two red 
circles contains a C-PCV unit. The units in the image exhibit a 
nonbranched aspect and are observed as a single unit. The selec-
tion of the C-PCV unit is important for the study of leukocyte ki-
netics as it enables the tracking of white globules (leukocytes) from 
the Cap into the PCV, where leukocyte velocity changes due to 
sticking and rolling. Cap, capillary; C-PCV, capillary-postcapillary 
venule; IDF, incident dark-field; PCV, postcapillary venule.

Fig.  2. Rolling leukocytes in the sublingual microcirculation. A 
screenshot of a sublingual microcirculation image that was ob-
tained via the CytoCam-IDF imaging is presented, which shows a 
superimposed image of a Cap that is merging into a PCV. The roll-
ing leukocytes are identified by black arrows. Cap, capillary; IDF, 
incident dark-field; PCV, postcapillary venule.
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As discussed above, the IDF camera captures images with a 
frame rate of 25 frames/s and an extremely short exposure time 
of 2 ms/frame. In the method of frame averaging, each video 
frame is composed of a weighted average of neighboring video 
frames in time, which effectively simulates an increased exposure 
time at each frame (Fig. 3). Then, the frame-averaged videos are 
slowed to 7, 9, or 12 frames/s to produce a third generation of 
video clips using a software that was developed by the authors 
(MATLAB; Mathworks, Natick, MA, USA). Slowing the video 
frame rate increased the visibility of the slowly-moving leuko-
cytes within the C-PCV units against blurred plasma gaps and 
RBCs. Finally, using the frame-averaged video clips, the rolling 
leukocytes were identified and counted based on their kinetics, 
and the number of leukocytes/C-PCV unit/4 s (L/C-PCV/4 s) was 
reported.

Statistical Analysis
Data were analyzed using GraphPad Prism 6.0 (GraphPad Soft-

ware, San Diego, CA, USA) by an independent researcher. All val-
ues are expressed as the mean ± standard deviation or median with 
interquartile range. The Shapiro-Wilk normality test was used to 
determine whether the data were distributed normally. As the da
ta of rolling microcirculatory leukocytes did not follow a normal 
distribution, a nonparametric test (the Wilcoxon matched-pair 
signed-rank test) was performed to analyze these data. After iden-
tifying a normal distribution, the paired t test was used to analyze 
the systemic leukocyte count, the percent change in leukocyte 
counts (rolling leukocytes vs. systemic leukocytes), and the ratio 

Table 1. Demographic data

Age, years 63.6±5.5
Sex ratio (male:female) 10:0
Body mass index 27.7±2.6
Cardiac surgery with CPB, % 100
Duration of CPB, min 85±21.3 
Duration of cross-clamping, min 44.1±13.3
Duration of surgery, min 230.5±49.2
Number of CABG patients 10
Number of grafts/patient 3.6±1.0

Values are presented as mean ± standard deviation. CABG, 
coronary artery bypass grafting; CPB, cardiopulmonary bypass.

Table 2. Hemodynamic parameters, body temperature, and labo-
ratory data

Parameters T0 T1

Heart rate, bpm 55±11.7 70.5±10.3**
Mean arterial pressure, mm Hg 86.8±15.6 67.7±11.7*
Body temperature, ° C 36.0±0.3 36.7±0.3**
Hemoglobin concentration, g/dL 12.7±0.8 9.6±0.9***
Lactate, mmol/L 1.2±0.5 1.5±0.3
pH 7.4±0.02 7.4±0.04
HCO3, mmol/L 24.6±1.2 23.8±1.7

Values are presented as mean ± standard deviation. Data were 
tested with paired Student t test. T0, after the induction of anesthe-
sia; T1, after cardiopulmonary bypass (10 min after protamine ad-
ministration). * p < 0.05, ** p < 0.001, *** p < 0.0001.
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Fig. 3. Method of frame averaging. The 
light gray boxes represent individual 
frames from the original video clips, which 
are also known as input frames and denot-
ed by I(n). The darker gray boxes represent 
the new frames that are created via averag-
ing and the output frame is denoted by J(n). 
J(n) can be calculated via the following for-
mula:

When k = 3, the weighted average of three 
consecutive frames was calculated, as 
shown in the figure. Similarly, when k = 7, 
the weighted average of seven consecutive 
frames was calculated. In each case, k must 
be an odd number. The weighted average 
was calculated using the Gaussian function 
h(n).
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between the microcirculatory rolling leukocyte count and the sys-
temic white blood cell (WBC) count. A p value < 0.05 was consid-
ered statistically significant. The interrater agreement was deter-
mined via Bland-Altman analysis.

Results

Patient characteristics are presented in Table 1. Intra-
operative hemodynamic parameters, body temperature, 
and arterial blood gas analysis are summarized in Table 2.

Figure 4a shows the numbers of rolling leukocytes in 
the sublingual microcirculation at T0 and T1 that were 
obtained from 10 on-pump CABG patients. According 
to image analysis, the number of rolling leukocytes in-
creased from T0 (7.5 [6.4–9.1] L/C-PCV/4 s) to T1 (14.8 
[13.2–15.5] L/C-PCV/4 s) (p < 0.01). The systemic leu-
kocyte count is plotted in Figure 4b. A significant in-

crease in the systemic leukocyte count from 7.4 ± 0.9 × 
109/L (preoperative) to 12.4 ± 4.4 × 109/L (postopera-
tive) (p < 0.01) was also detected. Figure 4c shows the 
percent changes in the microcirculatory and systemic 
leukocyte counts. The percent change in the leukocyte 
count was found to be higher in the sublingual micro-
circulation than systemically (p = 0.07). Figure 4d plots 
the ratio between the number of rolling leukocytes and 
systemic WBCs of each patient. An increase in the ratio 
of the rolling leukocyte count to the systemic WBC 
count was observed from pre-CPB to post-CPB (p = 
0.07).

Regarding the interrater variability of the method of 
frame averaging, according to Bland-Altman analysis, the 
interrater agreement between the observers was satisfac-
tory, with a mean difference of 0.5643 L/C-PCV/4 s  
and limits of agreement that ranged from –3.665 to 4.793 
L/C-PCV/4 s.
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Fig. 4. Microcirculatory and systemic leukocyte values. a Median 
number (interquartile range) of rolling leukocytes within the sub-
lingual microcirculation of 10 CABG patients at two time points. 
The median number (interquartile range) of rolling leukocytes is 
significantly increased from T0 (7.5 [6.4–9.1] L/C-PCV/4 s) to T1 
(14.8 [13.2–15.5] L/C-PCV/4 s). b Systemic leukocyte count: num-
ber of systemic leukocytes was increased from 7.4 ± 0.9 × 109/L 
preoperatively (Pre-OP) to 12.4 ± 4.4 × 109/L postoperative (Post-
OP). c Percent changes in leukocyte counts: the rolling microcir-
culatory leukocytes (from T0 to T1) versus the systemic leukocytes 

(from the preoperative to the postoperative state). d Ratio of the 
rolling leukocyte count to the systemic leukocyte count. The ratio 
is shown as an individual line for each patient, with an overall in-
crease from pre-CPB to post-CPB (p = 0.07). The data were evalu-
ated with the Wilcoxon matched-pair signed-rank test and the 
paired t test for a and b–d, respectively. CABG, coronary artery 
bypass grafting; CPB, cardiopulmonary bypass; L/C-PCV/4 s, 
number of leukocytes/capillary-postcapillary venule unit/4 s; T0, 
after the induction of anesthesia; T1, after cardiopulmonary bypass 
(10 min after protamine administration).
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Discussion

In the current study, we visualized the leukocyte-en-
dothelium interaction in the sublingual microcirculation 
of CABG patients by applying the method of frame aver-
aging to IDF imaging for the first time. The application 
of this methodology to IDF imaging enabled the identifi-
cation and quantification of rolling leukocytes by provid-
ing a technique for differentiating between plasma gaps 
and leukocytes.

Although HVM devices offer a noninvasive method 
for observing the microcirculation and are feasible for 
bedside measurements, limited data are available on leu-
kocyte counting and identifying the leukocyte-endothe-
lium interaction in the human microcirculation during 
cardiac surgery. Bauer et al. [14] were the first to identify 
rolling leukocytes using HVM and a conventional man-
ual methodology in sublingual recordings in cardiac sur-
gery patients. Via visual inspection, they identified the 
leukocytes as a void in the erythrocyte column that 
showed slow pattern of movement along the vessel wall. 
The authors quantitatively assessed the number of roll-
ing leukocytes by subdividing the screen of a high-reso-
lution monitor into nine rectangles. In 8 patients, they 
counted the numbers of PCVs and capillaries in each 
square and the number of rolling leukocytes that could 
be identified in each PCV, which was expressed in terms 
of rolling leukocytes/20 s. The authors demonstrated a 
higher increase in microcirculatory rolling leukocytes 
compared to the systemic leukocyte count, which is in 
accordance with the results of the current study. The 
main challenge in identifying leukocytes using HVM is 
distinguishing leukocytes from plasma gaps. This is be-
cause HVM uses green light to identify RBCs (green light 
is absorbed by hemoglobin), which appear as dark glob-
ules, but lacks optical contrast for leukocytes and plasma 
gaps, which appear as white structures against a white 
background. Applying the conventional methodology to 
OPS imaging, which has a lower resolution than the IDF 
technique that was used in the present study [6, 8], Bau-
er et al. [14] were unable to distinguish between leuko-
cytes and plasma gaps in the venules. According to the 
authors, plasma gaps may be falsely identified as leuko-
cytes or may contain leukocytes that are not detected 
since no erythrocytes are present to provide the neces-
sary contrast. Moreover, microvascular hematocrit and 
blood flow, which changes during CPB, may affect the 
visualization of leukocytes.

Recently, our group proposed a space-time diagram 
analysis method to study leukocyte kinetics and functions 

in the microcirculation [15]. The space-time diagram 
analysis method realized higher reproducibility than con-
ventional counting. This methodology enabled the iden-
tification of rolling and nonrolling leukocytes in the sub-
lingual microcirculation and the quantitative measure-
ment of leukocyte velocity. However, a limitation of 
space-time diagram analysis in microvascular image 
analysis software (AVA) is the necessity of performing 
the labor-intensive manual steps (velocity estimations, 
manual vessel drawing, and detected vessel selection) in 
which the space-time diagrams are generated. Currently, 
only by using the original version of AVA (AVA 3.2), 
which is based on the paper of Dobbe et al. [16], is it pos-
sible to generate the space-time diagrams.

The method of frame averaging was developed as a 
technique for differentiating between plasma gaps and 
leukocytes [18]. This methodology was first applied to 
SDF imaging in sepsis patients [18]. Fabian-Jessing et al. 
[18] identified higher numbers of rolling and adhered 
leukocytes in patients with septic shock compared to 
noninfected controls and an increased number of ad-
hered leukocytes in nonsurvivors. However, the authors 
failed to consider the systemic WBC count.

The significant increase in the number of rolling leu-
kocytes detected in the current study supports the occur-
rence of a systemic inflammatory reaction during CPB. 
This is corroborated by the increased systemic leukocyte 
counts in these patients which were measured before and 
after the operation. Additionally, the percent change in 
leukocyte count was found to be higher in the sublingual 
microcirculation, while the ratio between the microcircu-
latory activated leukocytes and systemic WBC count in-
creased from pre-CPB to post-CPB. This ratio was used 
by the authors to evaluate whether the increased number 
of microcirculatory activated leukocytes is caused by en-
dothelial activation due to systemic inflammatory re-
sponse that is independent of the increase in the overall 
number of circulating WBCs.

Degradation of the endothelial glycocalyx precedes the 
expression of endothelial adhesion molecules that are at-
tached to the endothelial surface, which enables sticking 
and rolling of leukocytes and, in turn, precedes paracel-
lular and transcellular diapedesis [22]. Thus, the detec-
tion of rolling leukocytes on the endothelial surface is an 
indirect demonstration of a compromised glycocalyx as 
part of the innate immune response and, hence, consti-
tutes an important clinical observation of the presence of 
a (micro)vascular pathology [23].

Few bedside methodologies other than the use of bio-
markers can detect these events at the cellular level. The 
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IDF device consists of a computer-controlled, high-res-
olution image sensor which, in combination with a spe-
cially designed microscope lens, produces high-resolu-
tion images in which 30% more sublingual capillaries 
can be detected compared to the previous-generation 
devices [6]. The ability to directly visualize the kinetics 
of the leukocyte-endothelium interaction using IDF im-
aging, particularly in cardiac surgery patients, may fa-
cilitate the diagnosis of systemic inflammatory response 
after CPB by identifying rolling leukocytes along the mi-
crocirculatory endothelium, and may provide impor-
tant clinical feedback regarding treatment efficacy by 
demonstrating its resolution following treatment strate-
gies and facilitating the determination of an optimal 
therapeutic dose.

A limitation of the current study concerns the small 
number of patients in a single center. Nevertheless, our 
study demonstrates that the number of rolling leukocytes 
was significantly increased after discontinuation of CPB. 
However, nonrolling leukocytes could not be counted. 
This is a shortcoming of the frame averaging method in 
contrast to the space-time diagram methodology [15], 
which enables the counting of rolling and nonrolling leu-
kocytes and the determination of their velocities. In addi-
tion, no additional inflammatory biomarkers and no mi-
crocirculatory parameters were studied to validate our 
measurements. Moreover, the observed drop in hemo-
globin concentration could have affected the image con-
trast between RBCs and leukocytes. We expect that this 
methodology can be refined to overcome these shortcom-
ings.

Conclusion

The ability to directly visualize the kinetics of the leu-
kocyte-endothelium interaction using IDF imaging facil-
itates the diagnosis of systemic inflammatory response 
syndrome after CPB via identification of rolling leuko-
cytes. Integration of the frame averaging algorithm into 
the future software developments of handheld vital mi-
croscopes may enable the use of microcirculatory leuko-
cyte count as real-time clinical parameter at the bedside.
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