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Abstract

In this paper, we propose a column generation approach for crew re-planning, i.e.,

the construction of new duties and rosters for the employees, given changes in the

timetable and rolling stock schedule. In the current practice, the feasibility of the

new rosters is ‘assured’ by allowing the new duties to deviate only slightly from the

original ones. In the Integrated Crew Re-Planning Problem (ICRPP), we loosen this

requirement and allow more flexibility: The ICRPP considers the re-scheduling of

crew for multiple days simultaneously, thereby explicitly taking the feasibility of the

rosters into account, and hence allowing arbitrary deviations from the original duties.

We propose a mathematical formulation for the ICRPP and develop a column gen-

eration approach to solve the problem. We apply our solution approach to practical

instances from NS, and show the benefit of integrating the re-scheduling process.

Keywords: Crew Re-Scheduling, Crew Rostering, Railway Optimization

1 Introduction

Large maintenance and construction projects are crucial for heavily used railway networks

to cope with the ever increasing demand. In 2019, for example, there were around 150

planned maintenance activities for the Dutch railway network that led to rerouting and/or

the necessity of buses as alternative mode of transport1. These activities are inconvenient

for the passengers and have a large impact on the crew schedules: Many crew members

traverse large parts of the railway network, and hence their duties (i.e., days of work)

1source (in Dutch): https://www.ns.nl/reisinformatie/werk-aan-het-spoor.
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become infeasible due to the maintenance activities. As a result, the crew schedule needs

to be updated, preferably with as few modifications as possible.

The crew duties have to satisfy numerous rules, expressing, for example, a maximum on

the length of the duty or the occurrence of a proper meal break. At NS, it is also required

that each duty starts and ends at the same crew base. Figure 1 gives an example of a

duty, passing the major stations The Hague (Gvc), Utrecht (Ut), and Zwolle (Zl). Note

that the duty starts and ends at The Hague. Furthermore, a proper meal break of half

an hour (indicated by a star) is specified, and the duty does not exceed 9.5 hours (which

is the maximum length for duties starting after 6 in the morning).

Gvc

Gd

Rtd

Wd Ut

Apn

Ledn Zl

Gn

6:00 8:00 10:00 12:00 14:00 16:00

?
UtGvc Gvc Ut Zl Ut Gvc

Figure 1: Schematic visualization of a part of the Dutch railway network and an example
of a duty traversing this network for an employee based at The Hague (Gvc). Each block
represents a trip. For each trip the departure station (top left) and/or arrival station (top
right) are shown. The star indicates a meal break. The dashed line indicates scheduled
maintenance between the two stations.

Besides rules on the duty level, the scheduled duties should also satisfy complex global

rules related to the distribution of work among the crew bases. These rules, known as

the ‘Sharing-Sweet-and-Sour’ rules (see Abbink et al. [2005]), assure that each crew base

gets roughly the same type of work, i.e., the work allocation is fair. This implies, for

example, that the duties for each crew base have roughly the same average length and the

same percentage of work on high-quality rolling stock. These rules also include spatial

variations: Trips marked as attractive are divided equally over all crew bases, to the

extent to which this is possible. As a result, the ‘Sharing-Sweet-and-Sour’ rules ‘enforce’

that a crew member traverses different parts of the railway network within each duty.

Hence, maintenance activities in a single part of the railway network can affect many

different duties.
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The impact of maintenance activities on the duties can be illustrated using the following

example. Suppose that a maintenance activity is scheduled between Gouda (Gd) and

Woerden (Wd), as indicated by the dashed line in Figure 1. This implies that the duty

shown in Figure 1 is no longer valid, due to the trips between The Hague and Utrecht

being canceled (as a result of the maintenance activities). As a consequence, the trip

between Utrecht and Zwolle, originally covered by this duty, now has to be covered by a

different (or even an additional) duty.

The problem of re-scheduling the crew has been formalized as the Crew Re-Scheduling

Problem (CRSP) in Huisman [2007]. The CRSP differs from the traditional Crew Schedul-

ing Problem (CSP) in the sense that the operational costs are of much less importance,

a consequence of the fact that the original duties, and hence the amount of crew needed,

are input to the CRSP. Instead, the CRSP aims at finding new duties for the already

scheduled crew members such that all tasks are covered. If necessary, additional duties

can be scheduled (i.e., an additional crew member will be asked to work) but this should

be avoided whenever possible.

The newly constructed duties should assure that the roster of each employee remains

feasible, implying that additional rules, such as a maximal workload and a minimum rest

time between duties, have to be taken into account. In the current practice, the feasibility

of the new rosters is ‘assured’ by allowing the new duties to deviate only slightly from the

original ones: At NS, for example, the newly constructed duties are not allowed to start

more than half an hour earlier than the original duties, or end more than half an hour

later. We refer to this as day-by-day re-scheduling, as it allows the re-scheduling problem

to be solved for each day separately.

It is clear that day-by-day re-scheduling limits the possible new duties that can be as-

signed, and hence a possible better solution, feasible with respect to the roster rules,

might not be found. In the Integrated Crew Re-Planning Problem (ICRPP) we aim at

capturing exactly this flexibility in start and end times: The ICRPP considers the re-

scheduling of crew for multiple days simultaneously, thereby allowing more flexibility in

the re-scheduling. The ICRPP further complicates the CRSP due to (i) the size of the

problem, as multiple days need to be re-scheduled at once, and (ii) the possibility of

larger shifts in start and end time, implying that the feasibility of the rosters should be

taken into account explicitly.

The contribution of this paper is twofold. Firstly, we propose a mathematical formulation

for the ICRPP and develop a column generation approach to solve the problem. Secondly,

we apply our solution approach to practical instances from NS, and show the benefit of

integrating the re-scheduling process. In particular, we show that the additional flexibility

in the start and end times of the re-scheduled duties allows for a reduction in the number

of additional duties compared to the day-by-day approach.
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The remainder of this paper is organized as follows. In Section 2, we formalize the ICRPP

and, in Section 3, we discuss related work. We then propose a mathematical formulation

for the ICRPP in Section 4, and propose a column generation based solution approach

in Section 5. In Section 6, we show the benefit of the newly developed solution approach

using practical instances from NS, and we conclude the paper in Section 7.

2 Problem Description

The timetable and the rolling stock schedule together specify the work for a given planning

day. The scheduled work is represented by tasks (i.e., indivisible blocks of work). Different

types of tasks exist, such as driving and passenger tasks (i.e., riding a train as a passenger),

but also operational tasks such as shunting and deadheading are specified in the plan.

Certain tasks must always be covered (e.g., trip tasks, shunting tasks) to assure a correct

execution of the plan, whereas other tasks are optional tasks (e.g., passenger tasks, taxi

trips), and are solely added to the plan for additional flexibility.

In the crew planning phase, the planned tasks are assigned to the employees in the form

of duties, i.e., sequences of tasks. Each duty has to satisfy certain rules, relating to

the transfer times between tasks, the possibility of a meal break, the duration of the

duty, among other things. These constraints follow from labor laws and the collective

labor agreement. Furthermore, each duty should start and end at the same crew base.

The duties are assigned to the crew members in the form of rosters: The roster of each

employee specifies which duties to perform on which day. Furthermore, the roster specifies

on which days the employee has a day-off. Similar to the duties, the rosters should satisfy

numerous rules as agreed upon in the collective labor agreement. Typical roster rules

include a minimum rest time between duties, a maximum workload over the week, and a

sufficient number of days-off. We refer to Abbink et al. [2005] and Hartog et al. [2009] for

an overview of the duty and roster rules at NS.

In crew re-planning the original duties and rosters are replaced by alternative duties and

rosters, such that all tasks are covered in the disrupted situation. This implies that,

after re-planning, each employee is assigned an alternative roster consisting of alternative

duties. The alternative duties and rosters have to satisfy a number of rules, yet the rules

in re-planning are generally less stringent than the rules for the initial planning phase.

The ‘Sharing-Sweet-and-Sour’ rules, for example, are not explicitly taken into account in

the re-planning process. The rules for the alternative duties are as follows.

• Connection Times. Between every two scheduled tasks there should be a sufficient

connection time. This connection time depends on whether or not both tasks are

on the same rolling stock unit. Furthermore, possible travel time (e.g., due to a

passenger task) should be taken into account.
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• Duty Length. A duty is not allowed to exceed a certain length. This maximum

length depends on the start and end time of the duty. The duty length rules are

specified by a start and/or end interval, and a maximum length for duties within

these intervals.

• Meal Break. Each duty should allow for a proper meal break after a given amount

of time. The meal break should always take place at one of the dedicated train

stations, generally the larger stations containing a canteen.

• Route and Rolling Stock Knowledge. A crew member is only allowed to perform a

certain trip if he or she has sufficient route knowledge. This knowledge is generally

regional, i.e., it is assumed to be equal for all crew belonging to the same crew base.

Furthermore, the alternative rosters have to satisfy the following roster rules.

• Rest Time. After completing a duty it is required that an employee has a certain

minimum time to rest. This implies that there should be a minimum amount of

time between the end of a duty and the start of the duty on the next day.

• Workload. The total workload of a roster is not allowed to exceed a given maximum

value. This maximum value depends on the work scheduled in the original roster:

Ideally, the workload in the alternative roster should not deviate too much from the

workload in the original roster.

Finally, each alternative duty has an associated cost. This cost can be decomposed

into two parts: a fixed cost and a cost based on each connection (i.e., follow-up of two

tasks). The fixed costs regulate the trade-off between different types of duties. Scheduling

an additional alternative duty (i.e., an additional crew member has to perform it) is

associated with a high fixed cost, as such a solution is costly and should be avoided.

On the other hand, it is desirable to give some employees a day-off if possible, as the

maintenance activities often mean that less tasks have to be covered. Hence, empty

duties (i.e., duties without any tasks) are associated with a low fixed cost. Furthermore,

there are costs associated with the connections, related to, for example, the actual cost

of the connection (e.g., the cost of a taxi trip).

The alternative rosters are linked to the original rosters by means of time windows, spec-

ifying for each alternative duty an interval in which the start and end time of the duty

must lie. The main purpose of the time windows is to assure that the newly constructed

rosters remain feasible with the work scheduled outside of the re-planning period. At NS,

for example, during re-planning a shift of at most half an hour in start and end time

is always considered feasible with respect to the roster rules. As a result, the start and

the end of the alternative roster can be at most half an hour earlier (respectively, later)

than the original roster. Within each roster, however, the time windows can be loosened,

by taking the roster rules into account explicitly. This is illustrated in Table 1, where

we compare the time windows for the day-by-day approach with a fully integrated ap-
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proach (i.e., allowing arbitrary shifts in start and end times). By varying the maximum

allowed shift, one can analyze the trade-off between the number of necessary duties and

the deviation from the original schedule.

Original Day-By-Day Integrated

Day 1 12:30 - 21:00 12:00 - 21:30 12:00 - 08:30

Day 2 11:15 - 20:30 10:45 - 21:00 04:00 - 21:00

Table 1: Allowed start and end times for a re-scheduling period of two days. At NS,
duties start after 04:00 and end the latest at 08:30 the next day. The column Original
shows the originally planned start and end time of each duty, i.e., the interval in which
the duty is scheduled. The column Day-by-Day shows the resulting interval according
to the day-by-day approach, i.e., the interval is extended by half an hour on both sides.
The column Integrated shows the possible additional flexibility: The first duty is allowed
to end at any time before 08:30 the next day, and, similarly, the second duty can start
already as early as 04:00. In this case, the rest time between the two duties should be
explicitly enforced.

The Integrated Crew Re-Planning Problem (abbreviated ICRPP) can now be stated as

follows: Given the original rosters, and the new set of tasks, determine an alternative

roster (consisting of alternative duties) for each employee such that all tasks are covered.

When necessary, additional duties can be scheduled, but at a high cost. The new rosters

should be feasible with respect to the duty and roster constraints, and the alternative

duties should respect the given time windows. The ICRPP aims at capturing the ad-

ditional flexibility in the start and end times of the alternative duties, by having much

looser requirements on the time windows compared to day-by-day rescheduling.

3 Literature Review

Crew planning is a well-established field of research in the Operations Research litera-

ture. In railway and mass transit optimization, the planning problem is generally decom-

posed into crew scheduling and crew rostering: Both crew scheduling (see, for example,

Desrochers and Soumis [1989], Hoffman and Padberg [1993], Kroon and Fischetti [2001],

Grötschel et al. [2003], and Abbink et al. [2005]) and crew rostering (see, e.g., Sodhi and

Norris [2004], Hartog et al. [2009], Mesquita et al. [2013], and Borndörfer et al. [2015])

are well-studied problems. We refer to Kohl and Karisch [2004], Huisman et al. [2005],

Caprara et al. [2007], Abbink et al. [2018], and Heil et al. [2019] for general overviews of

crew planning in railway and airline optimization.

Only little research considers the integration of crew scheduling and rostering in public

transport. Ernst et al. [2001] propose an integrated model able to construct both cyclic
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and acyclic rosters. The solution approach relies on the complete enumeration of all pos-

sible duties for each day. As noted by the authors, this is tractable for the considered

sparse railway network in Australia, but for larger railway networks (e.g., the Dutch rail-

way network) approaches such as column generation should be considered to deal with

the large number of possible duties. Mesquita et al. [2013] integrate the construction

of the vehicle and duty schedules with crew rostering, and propose a Benders decom-

position approach to solve the resulting problem. The benefit of the approach is shown

using practical instances based on the urban bus systems of Lisbon and Porto. Finally,

Borndörfer et al. [2017] consider the integration of crew scheduling and rostering. The

proposed mathematical formulation links the duties and rosters through duty templates:

coarse representations of duties expressing only the key characteristics (see Borndörfer

et al. [2013]). By picking suitable templates, the number of linking constraints can be

reduced drastically. The resulting model is solved using Benders decomposition, and it

is shown that substantially improved rosters can be constructed without increasing the

costs of the duty scheduling phase.

Railway re-scheduling and recovery has received considerable attention in recent years.

We refer to Cacchiani et al. [2014] for a detailed overview. Huisman [2007] considers

re-scheduling due to planned maintenance, similar to this work. Rezanova and Ryan

[2010], Potthoff et al. [2010], and Sato and Fukumura [2012], on the other hand, focus on

operational re-scheduling (or recovery), i.e., the re-scheduling of personnel during opera-

tions. Note that additional difficulties arise in this case, as crew members might already

have started their duties at the moment of re-scheduling. Another key difference is the

time available for re-scheduling: The re-scheduling due to planned maintenance is gener-

ally done numerous days in advance, and hence allows for multiple hours of computation

time, whereas in operational re-scheduling the new duties should be obtained in a few

minutes (or even seconds). Integrated approaches are proposed in Walker et al. [2005] and

Veelenturf et al. [2012], where (part of) the timetable can be modified when re-scheduling.

Finally, Veelenturf et al. [2014] propose a quasi-robust approach towards re-scheduling to

cope with the uncertain length of the disruption period. The proposed formulation as-

sures that a percentage of the re-scheduled duties should be recoverable. As a result, a

subset of tasks is guaranteed to be covered for every disruption scenario.

Research regarding re-scheduling in the field of airline optimization precedes railway re-

scheduling by numerous years (see, for example, Stojković et al. [1998], Lettovskỳ et al.

[2000], Stojković and Soumis [2001], Petersen et al. [2012], among others). Clausen et al.

[2010] gives a detailed overview of disruption management in airline optimization. The

focus in airline recovery is generally on the operational planning phase, i.e., only short

computation times are allowed. It is important to note that the railway and airline re-

scheduling problem fundamentally differ: The railway re-scheduling problem deals with a

single day in which many duties are to be re-scheduled, whereas the airline re-scheduling

deals with pairings (i.e., a sequence of duties spanning multiple days), implying that
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multiple days are to be taken into account. In airline optimization, the duties can generally

be enumerated (see, e.g., Lavoie et al. [1988], Stojković et al. [1998]), implying that all

rules related to the duties can be taken care of implicitly. The pairings should, however,

satisfy numerous rules regarding, e.g., rest times, making the problem more closely related

to the crew rostering problem.

In this paper, we add to the literature by integrating railway crew scheduling and roster-

ing in the re-planning phase, i.e., we simultaneously re-schedule the duties for multiple

days, thereby taking the feasibility of the individual rosters into account. This problem

extends the work on re-scheduling in railway optimization, where traditionally only one

day is considered. Furthermore, it differs from current research on the integration of crew

scheduling and rostering, as the original duties are considered input (similar to the way

crew re-scheduling differs from crew scheduling). The resulting problem resembles the

re-scheduling of crew pairings in airline optimization, yet differs fundamentally in the

sense that the number of possible duties per day is huge, and hence a different solution

approach is necessary.

4 Mathematical Formulation

We propose to formulate the ICRPP on the duty level, i.e., we propose a formulation in

which each variable indicates whether a possible alternative duty is selected or not. This

implies that the duty constraints are readily taken care of in the variable definitions (that

is, only feasible duties are considered). The roster constraints, on the other hand, need

to be modeled explicitly.

Let R denote the set of original rosters (one for each employee) and let T denote the set

of days in the re-planning period. The set Kt, for all t ∈ T , denotes the set of tasks that

need to be covered on day T . The set of alternative duties for day t ∈ T is denoted by

∆t, and the set of duties that can be assigned to roster r on day t is given by ∆r
t ⊆ ∆t.

The set ∆r
t directly incorporates the specified time window and restrictions due to route

knowledge. The binary parameter aδtk indicates whether the duty δ ∈ ∆t covers task

k ∈ Kt. The cost of assigning duty δ ∈ ∆r
t to roster r ∈ R is given by cδrt and the cost of

selecting δ ∈ ∆t as additional duty is given by f δt .

The rest time constraints are modeled using clique constraints, similar to Ernst et al.

[2001]. Let N denote the nights in the re-planning period, i.e., the transitions between

two consecutive days in T . For each roster r ∈ R and each night n ∈ N we consider a

bipartite graph where each edge represents a rest time violation between an end task at

the beginning of n and a start task at the end of n. Figure 2 shows such a graph for three

possible end tasks A1, A2, and A3, and three possible start tasks B1, B2, and B3 for a

given roster r. In this case, ending with A1 is incompatible with starting with B1 or B2,

and ending with A2 is incompatible with starting with B1.

8



A1

A2

A3

B1

B2

B3

Rest time graph

A1

A2

A3

B1

B2

B3

Maximal biclique 1

A1

A2

A3

B1

B2

B3

Maximal biclique 2

Figure 2: Example of rest time constraints. The dashed arcs indicate the maximal bi-
cliques: The first biclique involves tasks A1, A2, and B1, and the second biclique involves
tasks A1, B1, and B2.

The rest time constraints for roster r ∈ R and night n ∈ N are obtained from all maximal

bicliques (i.e., maximal complete bipartite subgraphs) in the bipartite graph, denoted by

Qrn. We introduce the binary parameter oδqrnt, indicating whether the begin or end task of

duty δ ∈ ∆r
t is part of the biclique q ∈ Qrn. In the first maximal biclique in Figure 2, for

example, the parameter will equal 1 for all duties on the first day ending with either task

A1 or A2 and all duties on the second day starting with B1. Note that, by definition, the

parameter oδqrnt is zero whenever t is not starting (or ending) before (or after) night n.

To model the workload constraints, let `δrt denote the length of duty δ ∈ ∆r
t and let wr

denote the maximum workload for roster R over the re-planning period T . We introduce

the following decision variables.

• xδrt for all r ∈ R, t ∈ T , and δ ∈ ∆r
t . The binary decision variables xδrt indicate

whether duty δ ∈ ∆r
t is assigned to roster R.

• yδt for all t ∈ T and δ ∈ ∆t. The binary decision variables yδt indicate whether duty

δ ∈ ∆t is scheduled as additional duty.

The ICRPP can now be formulated as follows.

min
∑
r∈R

∑
t∈T

∑
δ∈∆r

t

cδrtx
δ
rt +

∑
t∈T

∑
δ∈∆t

f δt y
δ
t (1)

s.t.
∑
r∈R

∑
δ∈∆r

t

aδtkx
δ
rt +

∑
δ∈∆t

aδtky
δ
t ≥ 1 ∀t ∈ T, k ∈ Kt (2)

∑
δ∈∆r

t

xδrt = 1 ∀r ∈ R, t ∈ T (3)

∑
t∈T

∑
δ∈∆r

t

oδqrntx
δ
rt ≤ 1 ∀r ∈ R,n ∈ N, q ∈ Qrn (4)

∑
t∈T

∑
δ∈∆r

t

`δrtx
δ
rt ≤ wr ∀r ∈ R (5)

xδrt ∈ B ∀r ∈ R, t ∈ T, δ ∈ ∆r
t (6)

yδt ∈ B ∀t ∈ T, δ ∈ ∆t. (7)
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The Objective (1) expresses that we minimize the cost of the selected duties, consisting

of the cost of the duties assigned to the rosters and the cost of the additional duties.

Constraints (2) and (3) assure that each task is covered and that each roster is assigned

exactly one duty for each day, respectively. Constraints (4) and (5) represent the roster

constraints: (4) assure the minimum rest time is respected, and (5) enforce a maximum

workload for each roster. Finally, the domains of the decision variables are specified in

(6) and (7).

5 Solution Approach

We propose a column generation approach to solve the ICRPP. This type of approach has

been succesfully applied to similar crew re-scheduling problems in railway optimization

(see, for example, Huisman [2007] and Potthoff et al. [2010]), and is generally consid-

ered a state-of-the-art solution approach (for detailed surveys, see Barnhart et al. [1998],

Lübbecke and Desrosiers [2005], Desaulniers et al. [2006] and Lübbecke [2011]). The main

idea behind column generation is to solve a linear program with a huge amount of columns

(i.e., variables) by only considering a subset of all possible columns. In each iteration, it

is checked if possible profitable, i.e., negative reduced cost, columns are present among

the columns not yet included. If this is the case, the procedure continues. Otherwise, the

found solution is optimal, and the algorithm terminates.

We propose a solution method in which we iteratively select alternative rosters for the

crew members. The algorithm continues until all employees are assigned an alternative

roster, and, when necessary, selects additional duties to cover the remaining tasks. To

select good alternative rosters, we base the selection of alternative rosters on the solution

to the linear relaxation of (1)–(7). In particular, we select the alternative rosters that

appear in the solution with a high (fractional) value. The linear relaxation is solved using

column generation.

The remainder of this section is structured as follows. In Section 5.1 we give a global

overview of the iterative selection procedure, and in Section 5.2, we discuss the selection

procedure for alternative rosters in detail. Then, in Section 5.3, we discuss the pricing

problem for alternative duties, which underlies the column generation algorithm. We

conclude in Section 5.4 with an overview of the acceleration strategies used to speed-up

the column generation procedure.

5.1 Iterative Selection Procedure

We obtain an integer solution for the ICRPP by iteratively selecting an alternative roster

for one of the crew members. This type of approach is generally referred to as a diving

heuristic, i.e., a depth-first search heuristic in the branching tree (see, for example, Joncour
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et al. [2010], and references therein). The iterative procedure is schematically visualized

in Figure 3.

Return solution

Initialization

Solve LP

All rosters

assigned?
Uncovered tasks?

Select alternative

roster, update available

original rosters and

uncovered tasks

Select additional duty,

update uncovered tasks

no no

yes

yes

Figure 3: Iterative selection procedure for the ICRPP, consisting of two phases: Firstly,
alternative rosters are selected for the crew members, and, secondly, additional duties are
selected to cover possibly still uncovered tasks.

The selection procedure consists of two phases: Firstly, alternative rosters are selected

for the crew members, and, secondly, additional duties are selected to cover possibly

still uncovered tasks. The main motivation of selecting complete rosters, as opposed to

separate duties, is to assure feasibility with respect to the roster rules. Note that the roster

rules do not apply to the additional duties. Each time an alternative roster or additional

duty is selected, the set of still available rosters (i.e., crew members) and uncovered tasks

is updated. Once all tasks are covered, the algorithm terminates and the found solution

is returned.

As is common for diving heuristics, both the alternative rosters and additional duties are

selected based on the highest value rule, i.e., all rosters or duties with integer value are

selected, together with one roster or duty assigned the highest (non-integer) value in the

fractional solution (the latter assuring that the solution to the linear relaxation changes).

Whereas defining the highest value is trivial for the additional duties (i.e., the value is

directly obtained from the corresponding variable), this is not the case for the alternative

rosters. In Section 5.2 we discuss the selection of alternative rosters in more detail.

5.2 Selecting Alternative Rosters

The roster rules imply that an arbitrary selection of alternative duties for an original roster

can lead to infeasible solutions. Consider, for example, the fractional solution depicted in
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Table 2. In this specific example, selecting one duty per day, based on the highest value

rule, will lead to an infeasibility: Selecting duties 2 and 3 will lead to an alternative roster

which violates the minimum rest time of 12 hours. Note that the fractional solution does

satisfy (4).

Day Start End Value

1 1 12:00 20:00 0.4

2 1 12:30 21:00 0.6

3 2 08:00 16:00 0.4

4 2 09:00 17:00 0.3

5 2 09:00 17:30 0.3

Table 2: Example of a fractional solution for a given original roster. Each row indicates
an alternative duty, and specifies the start and end time, and the (fractional) solution
value.

To assure the feasibility of the constructed rosters, even when multiple alternative duties

are selected in each iteration, we directly select all alternative duties for a single roster,

thereby taking the roster constraints directly into account. Consider again the example

of Table 2. The duties give rise to five alternative rosters: {1, 3}, {1, 4}, {1, 5}, {2, 4},
and {2, 5}. Note that the roster {2, 3} is not considered here, as it violates the rest

time constraint. The highest value rule is applied by taking the minimum over all

assigned alternative duties. That is, the value corresponding to, for example, roster

{1, 3} equals min{0.4, 0.4} = 0.4, and the value corresponding to roster {2, 4} equals

min{0.6, 0.3} = 0.3. In this specific example, the highest value rule would select roster

{1, 3}. For each original roster, the alternative roster with highest value can be determined

and the alternative with overall highest value can be added to the solution.

The above procedure can be formalized as follows. Let (x, y) be a solution to the linear

relaxation of (1)–(7). Given x, we determine the feasible alternative rosters Pr(x) for

each r ∈ R, consisting only of alternative duties with a non-zero solution value. This set

is determined by complete enumeration. For an alternative roster ρr ∈ Pr(x), let ρrt ∈ ∆r
t

denote the alternative duty assigned to day t ∈ T . The value π(x, ρr) for each ρr ∈ Pr(x)

is defined as

π(x, ρr) = min
t∈T
{xρrtrt } ,

i.e., the value of the alternative roster is based on the minimum taken over all assigned

alternative duties. In each iteration, we determine for each original roster r ∈ R a

candidate ρ?r maximizing π(x, ρr) and add all alternative rosters ρ?r for which π(x, ρ?r) = 1

to the solution, together with the alternative roster with highest non-integer value (i.e.,

the highest value below 1). The involved original rosters and tasks are removed from

the pool of available original rosters and uncovered tasks, respectively, and the algorithm
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continues.

5.3 Pricing Problem

The pricing of alternative and additional duties can be modeled as a series of Resource

Constrained Shortest Path Problems (RCSPPs) on suitably defined graphs. Let B denote

the set of crew bases. For every day t ∈ T and crew base b ∈ B, we consider a dedicated

digraph Gbt = (V b
t , A

b
t), referred to as a pricing graph, where the nodes correspond to the

tasks in Kt and the arcs represent feasible connections between tasks. The graph contains

an additional source and sink node, representing the departure and arrival at the crew

base.

s t

1

2

3

4

5

6

8

7

9

Figure 4: Pricing graph for alternative and additional duties. Each node corresponds to
a task and each arc represents a feasible connection between two tasks. In this graph, a
total of nine tasks are shown. Each path from the source s to the sink t corresponds to a
possible duty.

Figure 4 gives a stylized example of a pricing graph. Note that any passenger tasks and

taxi trips can be directly incorporated in the arc set. Furthermore, the route knowledge is

readily incorporated by adding a node to the graph only for those tasks compatible with

crew base b. Finally, the travel times from and to the crew base can be set accordingly

using the source and sink arcs.

Let Rb denote the original rosters corresponding to base b ∈ B. For each base b ∈ B

and day t ∈ T , we solve a pricing problem for each original roster r ∈ Rb to price out

any negative reduced cost alternative duties for r on day t, and, furthermore, we solve

one pricing problem to price out negative reduced cost additional duties for base b on

day t. Note that the time window specified for original roster r ∈ Rb on day t ∈ T can

be easily incorporated in the pricing graph Gbt by discarding all tasks which cannot be

covered within the specified time interval.

The reduced cost of the alternative and additional duties can be expressed as follows. Let

λtk denote that dual variables corresponding to the coverage constraints (2), µrt to the

assignment constraints (3), γqrn to the rest time constraints (4), and, finally, φr to the
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workload constraints (5). The reduced cost of xδrt is given by

cδrt −
∑
k∈Kt

λtka
δ
tk − µrt −

∑
n∈N

∑
q∈Qr

n

γqrno
δq
rnt − φr`δrt, (8)

and the reduced cost of yδt by

f δt −
∑
k∈Kt

λtka
δ
tk. (9)

As discussed in Section 2, the costs cδrt and f δt consist of a fixed cost and a cost per

connection, and can therefore readily be modeled using the arc costs. As a result, the

reduced cost can be modeled using appropriate arc costs, as well: The dual variables

regarding the coverage constraints can be modeled as arcs costs using the incoming arcs

of each task. Furthermore, the assignment constraint duals can be incorporated in the arc

costs of arcs leaving the source. For the rest time constraints, we observe that membership

of a biclique in the violation graph depends only on the start and end times of the

alternative duty: The duals corresponding to the rest time constraints can therefore be

readily modeled using arc costs on the arcs leaving and entering the source and sink,

respectively. Finally, the length of the alternative duty decomposes over the length of the

visited arcs and nodes, and hence can also be modeled using the arc costs.

The duty length and meal break rules are incorporated in the pricing problem in a similar

way as proposed in Huisman [2007]. Recall that the duty length rules are expressed by a

start and/or end interval, and a maximum length, e.g., a duty length rule could specify

that a duty starting between 05:00 and 06:00 or ending between 02:30 and 08:30 can have

a length of at most 8.5 hours, or could specify that a duty starting after 06:00 and ending

before 02:30 the next day can have a length of 9.5 hours. All these rules together can

be captured by a suitably picked maximum ending time for each possible start task (see

Figure 5). Hence, the pricing problem, given a pricing graph (either for an alternative

or an additional duty), can be modeled as a RCSPP for each start task, with a resource

related to the meal break constraint.

Solving the RCSPP for each possible start node allows to incorporate the duty length

constraint. This is done as follows: Given a start task s, we enforce the maximum duty

length constraint by allowing only those end tasks e such that the duty starting with

s and ending with e respects the maximum duty length constraint. This procedure is

illustrated in Figure 6. For task s1, starting at 05:15, we remove end tasks e3, e4, and e5

from the set of possible end task, as the length of the resulting duty would be too long.

For start task s2 all the end tasks except e5 are feasible.

We solve the RCSPP using a labeling algorithm incorporating completion bounds: lower

bounds on the minimum cost of completing a path to the sink node. The underestimation

follows from the fact that the lower bounds are based on the shortest path costs, i.e., the
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Figure 5: Duty length function, mapping each start time to the maximum end time.
Duties starting between 04:00 and 05:00 are at most 7 hours, those starting between
05:00 and 06:00 at most 8.5 hours, and those starting after 06:00 at most 9.5 hours.
Furthermore, duties ending after 02:30 in the night cannot exceed 8.5 hours.

meal break constraint is not taken into account. We solve the RCSPP heuristically by

using Breadth First Search (BFS), thereby limiting the label set to at most k labels,

based on the lowest estimated cost (i.e., the lowest lower bound). Note that this labeling

strategy considers at least the k shortest paths in the graph, which, as argued in Huisman

[2007], are often feasible for the meal break constraint and hence represent the set of most

negative reduced columns. Whenever optimality is required, we switch to a Depth First

Search (DFS) procedure (to limit the size of the label set), and terminate whenever either

the k most negative reduced cost paths are found, or we prove that no more negative

reduced cost paths are present.

5.4 Acceleration Strategies

The performance of column generation based algorithms depends heavily on the strategy

for pricing negative reduced columns and the precise interaction between the master and

pricing problems. This led to the development of acceleration strategies: strategies, often

specified for classes of problems, to improve the column generation procedure (see e.g.,

Desaulniers et al. [2002] for a detailed overview). We consider three acceleration strategies

for the ICRPP, generally referred to as pre-processing (i.e., reducing the number or size of

the RCSPPs that need to be solved), partial pricing (i.e., solving only a subset of pricing

problems) and the enforcement of task-disjoint columns.
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04:00 06:00 08:00 10:00 12:00 14:00 16:00

s1 s2 e1 e2 e3 e4 e5

Possible start and end times.

04:00 06:00 08:00 10:00 12:00 14:00 16:00

13:45

s1 s2 e1 e2

Pricing for s1.

04:00 06:00 08:00 10:00 12:00 14:00 16:00

14:30

s2 e1 e2 e3 e4

Pricing for s2.

Figure 6: Two pricing problems resulting from the start tasks s1 and s2. For a given start
task s, the duty length constraint is enforced by removing all start tasks before s and all
end tasks e such that the time between s and e violates the duty length constraint.

Pre-Processing Start Tasks

Firstly, we limit the number of RCSPPs to be solved for a given pricing graph, by avoiding

all ‘redundant’ start tasks, i.e., by avoiding all start tasks which can be skipped without

losing optimality. This can be done as follows. Firstly, we note that all tasks leading to

the same start time can be aggregated into one pricing problem: Since the decomposition

per start task functions to model the duty length constraint, this can be done while still

assuring exactness of the pricing problem. Secondly, we note that, in a similar fashion,

any two start tasks leading to the same set of end tasks can be aggregated into one

pricing problem. Here, the possible end tasks depend on (i) the duty length constraint

and (ii) the specified time window. Given these two rules, the possible start tasks can be

aggregated into pricing problems using a simple greedy procedure. In Section 6, we show

that this pre-processing framework greatly reduces the number of possible start tasks per

pricing graph, and hence the number of RCSPP that need to be solved.

Partial Pricing of Alternative Duties

Secondly, we consider a partial pricing strategy for the alternative duties: For each original

duty, we order the set of possible start tasks randomly, and restrict the generation of

alternative duties to only those pricing problems corresponding to one of the n first tasks

in this list, where n is an a priori set control parameter. Recall that, when solving the

pricing problem for start task s, we also allow start tasks starting later than s, i.e., in

Figure 6 task s2 is allowed as start task when pricing for task s1. This implies that many

start tasks are considered even if we price only for a small amount of start tasks, a desirable
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property when applying partial pricing. Note, however, that the duties generated for the

additional start tasks will be shorter than technically possible (since the duty length

constraint is based on an earlier start task), hence, it is still necessary to price for all start

tasks to assure no negative reduced columns exist.

The partial pricing strategy is applied in two ways: heuristically and exact. In heuristic

partial pricing, we stop solving pricing problems after the first n start tasks have been

considered. The found negative reduced cost columns are returned, and the column

generation algorithm continues. The advantage of heuristic partial pricing is that it

allows easy control of the time spent on pricing in each iteration. The major downside,

however, is that possibly not all negative reduced cost columns are found, i.e., the linear

relaxation will most likely not be solved to optimality. Exact partial pricing aims at

avoiding the latter: Whenever no negative reduced cost columns are found using heuristic

partial pricing, we continue iterating through the list of possible start tasks for each of

the original duties, until either the complete list has been considered, or a column with

negative reduced cost has been found. This assures that the linear relaxation will be

solved to optimality. In heuristic partial pricing, we solve the RCSPP using the heuristic

approach (as discussed in Section 5.3), wheres in exact partial pricing we also switch to

the exact approach for the RCSPP.

In the iterative selection procedure we apply both heuristic and exact partial pricing to

efficiently solve the ICRPP: Exact partial pricing is applied in the root node, to obtain

a good initial solution and valid lower bound, and heuristic partial pricing is used in the

remaining nodes of the tree, i.e., each time we select an alternative roster and the linear

relaxation is resolved. This avoids that we spend much time on exact partial pricing

throughout the diving procedure.

Selecting Task-Disjoint Columns

The third and final acceleration strategy focuses on the structure of the column pool.

For the ICRPP, and other set-covering type of problems, an optimal solution will most

likely have columns with little overlap, i.e., the columns have little tasks in common. By

enforcing the returned columns to have little overlap (referred to as being task-disjont

in Desaulniers et al. [2002]), the column pool will have an ‘optimal’ structure, without

flooding the master problem with a huge number of columns. The level of overlap al-

lowed controls the trade-off between the number of columns in the column pool and the

maximum overlap among columns.

Given a set of negative reduced columns, a close to task-disjoint subset is picked as

follows. For any two columns x1 and x2 a similarity score can be computed based on

the tasks covered: The similarity score of column x1 with column x2 is defined as the

number of tasks covered by both columns divided by the total number of tasks covered
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by x1. The higher this score, the more x1 is similar to (or contained in) x2. Given the

generated columns and an a priori set similarity threshold, we greedily obtain a subset

of columns based on most negative cost, whilst assuring that the similarity score with

the already selected columns does not exceed the similarity threshold. Note that this

procedure assures that the column with most negative reduced cost is always selected.

The resulting subset of columns will have little overlap.

6 Computational Experiments

To illustrate the benefit of the integrated approach, we apply our solution approach to

practical instances from NS. In Section 6.1, we give a detailed description of the case

study. In Sections 6.2 and 6.3 we analyze the computation results: In Section 6.2 we

analyze the effect of the acceleration strategies discussed in Section 5.4 and in Section 6.3

we discuss the results of the iterative selection procedure proposed in Section 5.2.

6.1 Case Study

We consider the re-scheduling of crew over a weekend (i.e., Saturday and Sunday), in

April 2019, when large-scale maintenance was scheduled around station Leiden (Ledn).

The situation is depicted in Figure 7. We construct different instances based on the crew

bases Amsterdam (Asd), Lelystad (Lls), The Hague (Gvc), and Rotterdam (Rtd), four

major crew bases for which many original rosters became infeasible due to the maintenance

activities.

We construct four re-planning instances, each corresponding to a re-planning problem for

three of the four crew bases. The characteristics of the four instances are shown in Table

3. The original duties and updated timetable are obtained from the second Saturday in

April 2019, a day in which the planned timetable was substantially altered: About 20

duties became infeasible at each of the four crew bases. We extend this to data to the

whole weekend by assuming the timetable and original duties for Sunday to be the same.

For each instance, we aim at covering all tasks in the (now infeasible) original duties which

are still in the plan. The result are four challenging instances, where more than 500 tasks

per day are to be covered. Furthermore, to assure sufficient flexibility, the remaining tasks

are also added to the problem. This implies that for each of the four instances, there are

2519 possible tasks (i.e., tasks that are not necessarily to be covered but can be used as

passenger tasks) and 87514 possible connections per day.

We construct original rosters covering all of the original duties. When constructing the

rosters, we assume that each employee works both days in the weekend. The rosters are

obtained by solving a stylized rostering problem, where we minimize the occurrence of

short rest times and high workload, while assuring that the roster rules (as discussed in
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Figure 7: Case study considering scheduled maintenance at Leiden (Ledn), shown together
with the crew bases located at The Hague (Gvc), Rotterdam (Rtd), Amsterdam (Asd),
and Lelystad (Lls). The black lines show the lines operated by NS.

Section 2) are satisfied. Furthermore, we assure that each roster remains feasible whenever

a duty is shifted by at most half an hour.

6.2 Analysis of Acceleration Strategies

The acceleration strategies discussed in Section 5.4 aim at (substantially) improving the

time spent in the column generation algorithm. In this section, we discuss the gain from

pre-processing the possible start tasks for each original duty, and we analyze the effect of

the three control parameters: the number of paths returned per RCSPP, the similarity

threshold, and the percentage of pricing problems solved in each iteration.

Table 4 shows the effect of the pre-processing discussed in Section 5.4, i.e., the removal

of all pricing problems corresponding to ‘redundant’ start tasks. For each instance and

each maximum allowed shift, Table 4 shows the average number of considered start tasks

(averaged over all original duties), and hence RCSPPs to be solved, without pre-processing

(Original) and the average number of start tasks with pre-processing, i.e., the average
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Instance Bases Rosters Tasks To Cover Per Day Tasks Per Day Connections Per Day

1 3 75 649 2519 87514
2 3 64 539 2519 87514
3 3 81 713 2519 87514
4 3 74 640 2519 87514

Table 3: Description of the four re-planning instances. For each instance, the number of
involved crew bases and rosters (i.e., employees) is shown. Furthermore, the total number
of tasks and possible connections per day are shown, together with the number of tasks
per day that need to be covered.

number of non-redundant start tasks (Reduced).

Instance 1 Instance 2 Instance 3 Instance 4

Shift Original Reduced Original Reduced Original Reduced Original Reduced

00:30 822.1 9.5 551.3 7.4 701.2 8.3 754.3 8.9
01:00 836.5 13.0 562.2 9.3 713.2 11.5 766.3 12.3
02:00 862.7 21.2 582.3 14.0 735.0 18.8 786.7 20.3
05:00 928.8 44.5 633.8 27.4 790.2 39.5 836.4 42.4

Table 4: The effect of pre-processing the possible start tasks. For each instance and each
shift, the average number of considered start tasks (averaged over the original duties)
before and after pre-processing are shown (indicated by Original and Reduced, respec-
tively).

The benefit of pre-processing is clearly visible from Table 4. For all instances and all

shift sizes, the reduction greatly reduces the number of start tasks: The reduction ranges

from about 95% to 99%. Hence, the number of pricing problems can be reduced by

more than a factor 20 if the start tasks are checked for redundancy a prori starting the

column generation procedure. For the larger shifts, the number of original start tasks

(and the number of start tasks after pre-processing) increases, as expected. As can be

seen from Table 4, the effectiveness of the pre-processing slowly decreases when the shift

size increases (from about 99% to 95%), which can most likely be explained by the fact

that redundancy of a start task is less likely when many different start and end tasks (and

hence start and end times) are possible.

We analyze the effect of the different acceleration strategies by considering the solution

time for the linear relaxation for different parameter configurations. We consider returning

10, 100, and 250 columns for each RCSPP, a similarity threshold of 25%, 50%, and 100%

and the percentage of pricing problems to be solved in partial pricing to be either 10%,

25%, 50%, or 100%. Furthermore, we average the results over three runs, each using a

different random seed. This leads to 432 experiments in total. For each individual run,

we limit the maximum computation time to 6 hours. Whenever a run exceeds 6 hours,

it is not taken into account when computing the average. The results are visualized in

Figure 8. For completeness, the full computational results are given in Appendix A.

Figure 8a clearly highlights the benefit of partial pricing: The shortest average compu-
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(a) Results grouped based on the percentage of pricing problems solved in partial pricing.
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(b) Results grouped based on the similarity threshold.
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(c) Results grouped based on the number of paths returned per RCSPP.

Figure 8: For each combination of parameters, the average computation time in minutes
and the average number of iterations are shown, taken over the four shift lengths (00:30,
01:00, 02:00, and 05:00) and three random seeds. Each subfigure groups the results based
on one of the parameters. Filled markers indicate parameters settings for which some
runs were not finished within the 6 hour time limit.
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tation times are all achieved for partial pricing parameters of 10% and 25%, and there

seems to be a clear increasing relation between the percentage of pricing problems solved

in each iteration and the average computation time. The gain of using task-disjointness to

select columns for the master problem is also visible in Figure 8b: The best performance

is achieved for parameter settings using a similarity threshold of less than 100%. Note

that a threshold of 100% implies that all generated columns are added to the master

problem. As a result, the size of the master problem grows quickly. Whenever the added

columns are ‘good’, the column generation algorithm terminates in only a few iterations.

Whenever the columns are ‘bad’, however, the time spent in the master problem grows

quickly. Following this reasoning, it is no surprise that each setting for which not all runs

terminated in time, used a similarity threshold of 100%. Figure 8b also seems to indicate

that a threshold of 50% outperforms a threshold of 25%. In this case, a 25% threshold

might be too strict, implying that too many generated (and useful) columns will not be

added to the master problem, and hence more column generation iterations are needed.

Finally, the effect of the (maximum) number of paths returned per RCSPP, shown in

Figure 8c, seems to be less clear, although returning 10 or 100 paths seems to outperform

returning 250 paths. Note, however, that the effect of this parameter is highly intertwined

with the other two parameters, e.g., returning 250 paths can perform well accompanied

with a low similarity threshold, but can also perform badly whenever accompanied with

a 100% threshold and/or a partial pricing parameter of 100%.

Summarizing, the results shown in Figure 8 give insight in the effective usage and possible

gain of the acceleration strategies discussed in Section 5.4. Clearly, it is not possible

to select the ‘best’ configuration based on the experiments, as the number of runs per

configuration are limited and the running times vary substantially (see Appendix A). It

does, however, give insight in ‘good’ configuration settings. In particular, the experiments

highlight the benefit of partial pricing and the focus on task-disjoint columns, together

with a suitably picked number of maximum paths to be returned for each solved pricing

problem.

6.3 Results Iterative Selection Procedure

In this section, we analyze the benefit of the integrated approach compared to the day-by-

day approach. As discussed in Section 2, the start and end of the alternative rosters can

shift at most half an hour, but the start and end times of duties within the roster can be

changed freely. The maximum allowed shift regulates the latter: Allowing a shift of two

hours implies that the end of the alternative duty on Saturday and the beginning of the

alternative duty on Sunday can deviate up to two hours from their corresponding original

duty. By varying the allowed shift, the trade-off between the number of necessary duties

and the deviation from the original rosters can be analyzed. In particular, the solution

found using the day-by-day approach (corresponding to a maximum shift of half an hour)
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can be compared with the solutions when larger shifts are allowed. Note that every duty

should still satisfy the general start and end time rules (i.e., duties start from 04:00 and

end before 08:30 the next day), even if the maximum shift would allow otherwise.

We consider four maximum shifts for each instance: 00:30, 01:00, 02:00 and 05:00. Note

that larger shifts are also possible, yet we found that these shifts did not lead to a decrease

in the root bound (compared to 05:00), and are therefore omitted. The problem for a

maximum shift of 00:30 is equivalent to the day-by-day approach, i.e., the problem is

decomposable per day. Hence, in this case, we solve two separate CRSPs (instead of

the ICRPP). For each instance and each shift size, we average the results over five runs,

each for a different random seed. The results are shown in Table 5. The major cost

components are a cost of 2100 for a scheduled duty, a cost of 1 for an empty duty, and

an additional penalty of 10000 for an additional duty (roughly five times the cost of a

normal duty), together with some (small) cost on the connections. In other words, we

avoid scheduling additional duties, and try to assign empty duties whenever possible (as

assigning an empty duty to an original duty reduces the fixed cost for this duty from

2100 to 1) . We used a partial pricing parameter of 10%, similarity threshold of 50%, and

return 100 paths per RCSPP.

Shift Objective Gap (%) Best Found Root Bound Additional Empty Time (s)

1

00:30 343286.0 (4711.9) 4.3 (1.3) 340506.0 328406.0 3.2 (0.4) 6.0 (0.0) 560.0 (65.6)
01:00 328529.4 (11253.5) 5.5 (3.3) 310009.0 310009.0 2.6 (1.0) 9.4 (0.8) 1127.0 (211.8)
02:00 330233.2 (7944.9) 8.0 (2.3) 315812.0 303712.0 3.4 (0.8) 13.2 (1.2) 1969.6 (253.5)
05:00 327294.6 (4435.3) 7.8 (1.2) 323714.0 301613.0 3.4 (0.5) 14.6 (0.8) 5281.4 (464.5)

2

00:30 270574.2 (8396.6) 7.8 (2.8) 261314.0 249214.0 1.8 (0.7) 14.2 (0.4) 418.2 (51.0)
01:00 258375.4 (7032.9) 5.0 (2.6) 247115.0 245365.8 1.0 (0.6) 15.4 (0.5) 812.2 (81.8)
02:00 265437.8 (5837.7) 8.4 (2.0) 257116.0 242917.0 2.0 (0.6) 17.8 (1.2) 965.8 (145.5)
05:00 259758.2 (8472.8) 6.4 (3.2) 242917.0 242917.0 1.6 (0.8) 18.2 (0.7) 1983.0 (174.4)

3

00:30 375570.2 (8396.6) 5.6 (2.1) 366310.0 354210.0 3.8 (0.7) 10.2 (0.4) 677.4 (39.4)
01:00 360274.2 (9348.4) 8.0 (2.4) 345814.0 331086.9 3.2 (0.7) 14.2 (1.0) 2936.8 (462.7)
02:00 351197.2 (1570.7) 6.8 (0.4) 349518.0 327417.0 3.0 (0.0) 17.2 (0.7) 3070.4 (625.3)
05:00 354876.6 (8887.3) 7.7 (2.4) 339517.0 327417.0 3.2 (0.7) 16.6 (0.5) 5924.0 (303.4)

4

00:30 368077.8 (9504.9) 7.9 (2.4) 350718.0 338618.0 6.4 (0.8) 17.8 (0.4) 641.6 (55.3)
01:00 334178.4 (11083.5) 7.5 (3.0) 322918.0 308719.0 4.0 (1.1) 18.4 (1.4) 1923.8 (286.6)
02:00 337240.4 (7725.3) 9.0 (2.0) 330820.0 306620.0 4.6 (0.8) 20.4 (1.0) 2406.4 (161.9)
05:00 342080.4 (13671.5) 10.2 (3.5) 328721.0 306620.0 5.0 (1.1) 20.4 (0.5) 5018.2 (308.6)

Table 5: Computational results for the iterative selection procedure. For each instance and
each maximum shift, the results are averaged over five different runs, each for a different
random seed. The average found solution value, average root gap, best found solution,
and root bound are shown. Furthermore, the average number of scheduled additional and
empty duties is depicted, together with the average computation time (in seconds). The
numbers within brackets denote the standard deviation, when applicable.

The results in Table 5 show a clear benefit from the integrated approach: The solutions

found using time shifts larger than 00:30 all improve on the day-by-day approach. Fur-

thermore, in almost all cases, the best found solution is below the root bound for the

half hour shift, i.e., the best found solutions are provably better than the best possible

solution using a day-by-day approach. The benefit of larger time shifts is most clearly
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expressed in the root bounds, where often a major decrease (often about 10%) is visible.

Table 5 also shows, however, that the solution quality varies over the different runs. In

particular, the objective value of the found solutions are not monotonically decreasing (or

non-increasing) in the allowed shift size, something which is clearly the case would the

problem have been solved to optimality. This variability seems to be mostly contained in

the number of reserve duties in the found solution, the major driver behind the objective

value. Table 5 does show that the number of scheduled empty duties tend to increase

with larger shift sizes, an indication that the original duties can be used more efficiently,

i.e., more tasks can be placed into a single duty.

The computation times shown in Table 5 are in line with the expectations: The running

time for the half hour shift (i.e., the combined time of two CRSPs) is substantially lower

than the time needed for the ICRPP, since there is no synchronization between the two

days in this case. Furthermore, the running times increase in the shift size. Note, how-

ever, that the running times for the ICRPP can be considered reasonable: The average

computation time never exceeds two hours, and in most cases stays well below one hour.

Summarizing, the integrated approach shows clear potential over the day-by-day ap-

proach: Allowing larger shifts leads to provably better solutions. The trade-off between

the efficiency (i.e., number of necessary duties) versus the deviation from the original

roster, however, is not clear, as the performance of the heuristic varies among runs. From

a practical point of view, a small increase in shift (e.g., one hour) seems therefore the

most profitable strategy: The solution value decreases substantially, the running time

stays within one hour, and the newly scheduled duties stay relatively close to the original

duties.

7 Conclusion

In this paper, we introduced the Integrated Crew Re-Planning Problem (ICRPP), an

integrated approach for crew re-scheduling over multiple days. In doing so, we extend the

Crew Re-Scheduling Problem (CRSP), by allowing more flexibility in the newly assigned

duties. The additional complexity of the ICRPP resides in the problem size, as multiple

days need to be re-scheduled at once, and in the fact that the feasibility of the rosters

should be taken into account explicitly.

We proposed a mathematical formulation for the ICRPP and developed a column gener-

ation based heuristic to solve the problem. We applied the approach to four instances,

based on data from NS. We analyzed the benefit of an integrated approach and consid-

ered the trade-off between the number of necessary duties and the deviation from the

original plan. The results show a clear gain from integrating the solution process, yet also

show that the performance of the heuristic varies among different runs. From a practical

point of view, the integrated approach accompanied with a slightly larger flexibility in
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the start and end times seems most profitable: The solution value decreases substantially,

the increase in running time is limited, and the deviation from the original schedule will

be relatively small.

For further research, the (primal) performance of the column generation heuristic seems

most interesting. It is well-known that the incorporation of sophisticated local search

methods within the column generation algorithm can substantially improve the perfor-

mance. Similarly, exact branch-and-price methods could further highlight the potential of

the integrated approach. Finally, heuristic approaches that iteratively enlarge the allowed

time shift, either in an integrated or sequential way, could be an effective way of obtaining

good solutions quickly.

Appendix A Overview Computational Results

Tables 6 and 7 show the computation results used for Figure 8. Table 6 shows the overall

computation time and the computation time per shift size, averaged over three random

seeds. Table 7 shows the average number of iterations and the average number of iterations

per shift size, averaged over three random seeds.
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mans. A quasi-robust optimization approach for crew rescheduling. Transportation

Science, 50(1):204–215, 2014.

C. G. Walker, J. N. Snowdon, and D. M. Ryan. Simultaneous disruption recovery of a

train timetable and crew roster in real time. Computers & Operations Research, 32(8):

2077–2094, 2005.

30


	Introduction
	Problem Description
	Literature Review
	Mathematical Formulation
	Solution Approach
	Iterative Selection Procedure
	Selecting Alternative Rosters
	Pricing Problem
	Acceleration Strategies

	Computational Experiments
	Case Study
	Analysis of Acceleration Strategies
	Results Iterative Selection Procedure

	Conclusion
	Appendix Overview Computational Results

