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Objectives: To evaluate in vitro drug recovery in cardiopulmonary bypass (CPB) systems used for pediatric cardiac surgery.

Design: Observational in vitro study.

Setting: Single-center university hospital.

Participants: In vitro CPB systems used for pediatric cardiac surgery.

Interventions: Three full neonatal, infant, and pediatric CPB systems were primed according to hospital protocol and kept running for 6 hours.

Midazolam, propofol, sufentanil, and methylprednisolone were added to the venous side of the systems in doses commonly used for induction of

general anesthesia. Blood samples were taken from the postoxygenator side of the circuit immediately after injection of the drugs and after 2, 5,

7, 10, 30, 60, 180, and 300 minutes.

Measurements and Main Results: Linear mixed model analyses were performed to assess the relationship between log-transformed drug concen-

tration (dependent variable) and type of CPB system and sample time point (independent variables). The mean percentage of drug recovery after

60 and 180 minutes compared with T1 was 41.7% (95% confidence interval [CI] 35.9-47.4) and 23.0% (95% CI 9.2-36.8) for sufentanil, 87.3%

(95% CI 64.9-109.7) and 82.0% (95% CI 64.6-99.4) for midazolam, 41.3% (95% CI 15.5-67.2) and 25.0% (95% CI 4.7-45.3) for propofol, and

119.3% (95% CI 101.89-136.78) and 162.0% (95% CI 114.09-209.91) for methylprednisolone, respectively.

Conclusions: The present in vitro experiment with neonatal, infant, and pediatric CPB systems shows a variable recovery of routinely used drugs

with significant differences between drugs, but not between system categories (with the exception of propofol). The decreased recovery of

mainly sufentanil and propofol could lead to suboptimal dosing of patients during cardiac surgery with CPB.

� 2019 Elsevier Inc. All rights reserved.
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CARDIOPULMONARY BYPASS (CPB) is necessary to to-three eighths connection piece. A venous reservoir completed
facilitate most cardiac surgery in children. The effect of CPB

on in vivo drug concentrations in patients can be profound and

is attributed to hemodilution, altered hemodynamic status,

hypothermia, systemic inflammation, changes in acid-base sta-

tus, exclusion of the lungs from the circulation, and hemofiltra-

tion.1 Furthermore, the plastic components of the CPB system

themselves have been shown to absorb drugs.2-7

In the authors’ institution, multiple experiments have been

performed to determine in vitro drug recovery in extracorpo-

real membrane oxygenation (ECMO) systems.8,9 Drug recov-

ery has been defined as the concentration of drug present in

the priming fluid after a certain amount of time has passed

since addition of the drug to the CPB system.8,9 Previous pub-

lications have used the term absorption to indicate the decrease

in concentration of drug in the priming fluid. In the authors’

institution, recovery has been deemed a more precise definition

because not all drug is actually absorbed by the system compo-

nents. Drugs also are subject to spontaneous degradation, for

example, providing an altogether different reason for a

decrease in drug concentration than absorption of drug to com-

ponents of the CPB system.8 There is a lack of data in the liter-

ature concerning pediatric CPB systems. As part of the

authors’ CPB PHARM study, which aims to measure and

model drug concentrations during CPB for pediatric cardiac

surgery (registered at the Netherlands Trial Register

[NTR3579]), the in vitro experiments described herein were

undertaken. The ultimate goal is to incorporate these data into

in vivo population pharmacologic models.

Methods

The present study was conducted at the Department of Cardio-

thoracic Surgery of a tertiary teaching hospital. No human partic-

ipants were involved in the study, so the need for medical ethical

review board approval was waived according to Dutch law.

Soon to be expired CPB systems were made available free

of charge by Terumo Europe NV, Leuven, Belgium, and Sorin

Group, Mirandola, Italy. This research did not receive any spe-

cific grant from funding agencies in the public, commercial, or

not-for-profit sectors. There was no role for Terumo Europe

NV or Sorin Group in the design of the study, collection, anal-

ysis, and interpretation of data; writing of the report; or the

decision to submit the report for publication.

CPB Systems

Table 1 shows the composition of the different CPB systems

used. All systems contained a hollow-fiber membrane oxygena-

tor with a polymethylpentene membrane. For the neonatal and

pediatric systems an arterial filter was integrated in the oxygena-

tor, and for the infant system a stand-alone arterial filter was

used. Silicone and polyvinylchloride (PVC) tubing with differ-

ent lengths and diameters were used in the neonatal and infant

roller-pump systems. In the pediatric system a centrifugal pump

was used, and the silicone tubing was discarded. Tubing was

made continuous via a one fourth-to-one fourth or a one fourth-
the systems. Terumo components of the systems were coated

with X-coating (poly[2-methoxyethylacrylate]), which is a non-

heparin biocompatible polymer with hydrophilic and hydropho-

bic properties. Sorin components of the systems were coated

with P.h.i.s.i.o. (Sorin) coating, which is a nonheparin, biomi-

metic layer consisting of a phosphorylcholine polymer.

All systems were placed on a conventional mast-mounted,

remote pump head console (St€ocker S5 Perfusion System;

Sorin Group) with a specific pediatric configuration.

Three full systems were assembled for each category (neo-

natal, infant, and pediatric) and primed according to hospital-

based protocol (Table 2). Priming fluid contained fresh frozen

plasma and Gelofusine (B. Braun, Melsungen, Germany). Red

blood cells were added to the priming to achieve a hematocrit

of 28%. Recently expired red blood cells and fresh frozen

plasma obtained from the authors’ local blood bank were used

for priming. The priming fluid was completed with human

albumin (Sanquin Plasma Products BV, Amsterdam, The

Netherlands) and 2 to 5 mL sodium bicarbonate 8.4% (Frese-

nius Kabi Nederland BV, Zeist, The Netherlands). Heparin

was added to the system according to hospital protocol to pre-

vent clotting.

The CPB systems were kept running for 6 hours. This is

the maximum runtime with guaranteed quality by the man-

ufacturers. The temperature was maintained at 36˚C.,

pCO2, and pH were measured with an iStat handheld

device (Abbot BV, Hoofddorp, The Netherlands) and main-

tained within physiological ranges by titration of sweep

gas flow, gas composition, and addition of sodium bicar-

bonate 8.4% if needed.

A flow rate of 0.5 L/min was maintained for the neonatal

circuits, 1.5 L/min for the infant circuits, and 3 L/min for the

pediatric circuits. Postmembrane pressures were kept at 100

mmHg by adapting the resistance using the venous clamp.

Drug Administration

For the neonatal system a standardized body weight of 5 kg

was used for drug amount calculations, 15 kg for the infant

system, and 30 kg for the pediatric system were used. Drugs

were added to the venous reservoir via a manifold sample port

in a dose that normally would be used for the induction of gen-

eral anesthesia according to the following authors’ institution’s

guidelines: midazolam (1 mg/mL; Actavis Group PTC ehf,

Hafnarfj€ordur, Iceland) 0.2 mg/kg; propofol (10 mg/mL; Fre-

senius Kabi Nederland BV) 2 mg/kg; sufentanil (50 mg/mL;

Hameln Pharma Plus GmbH, Hameln, Germany) 2 mg/kg; and

methylprednisolone (100 mg/mL; Pfizer BV, Capelle a/d IJs-

sel, The Netherlands) 30 mg/kg. Drugs were injected in the

same order for all systems. Between administration of each

drug and after administration of the last drug, the sample port

was flushed with 2 mL of 0.9% saline solution to prevent crys-

tallization or pooling of drug. Midazolam, propofol, sufentanil,

and methylprednisolone were used because these drugs are

commonly used for pediatric cardiac anesthesia in the authors’

institution.



Table 1

CPB Systems

Oxygenator Reservoir Arterial filter Venous Filter

Cardiotomy

Defoaming

Sponge

Silicone Tubing PVC Tubing Priming

Volume

Neonatal roller Capiox FX05 (Terumo

Europe NV, Leuven,

Belgium)

Hollow fiber

Polycarbonate housing,

polypropylene

membrane 0.5 m2

Priming volume 43 mL

X-coating

Open, hard shell

polycarbonate

Minimum capacity

15 mL

Maximum capacity

1,000 mL

Integrated polyester

screen type

Surface area 130 cm2

Pore size 32mm

Polyester screen

type

Pore size 47mm

Polyurethane Sorin Kids neonate set,

custom made, (Sorin

Group, Mirandola,

Italy)

Diameter 1=4 inch, length

1.10 m, 0.02 m2

contact surface area,

P.h.i.s.i.o. coating

Sorin Kids neonate set,

custom made (Sorin)

Diameter 1=4 inch, length

2.95 m, 0.069 m2 contact

surface area,

P.h.i.s.i.o. coating

230 mL

Infant roller Sorin Kids D101 (Sorin)

Hollow fiber

Polycarbonate housing,

polypropylene

membrane 0.61 m2

Priming volume 87 mL

P.h.i.s.i.o. coating

Open hardshell,

polycarbonate

Minimum capacity

30 mL

Maximum capacity

1,500 mL

Sorin Kids D131

stand-alone arterial

filter

Polycarbonate housing,

phosphoryl-chloride

screen type membrane

Surface area 27 cm2

Pore size 40mm

Priming volume 28 mL

Polyester

Pore size 51mm

Polyurethane Sorin Kids, custom made

Diameter 1=4 inch, length

1.05 m, 0.02 m2 contact

surface area

P.h.i.s.i.o. coating

Sorin Kids neonate set,

custom made

Arterial part diameter 1=4

inch, length 1.88 m

Venous part diameter 3/8
inch, length 1.51 m

Total 0.08 m2 contact

surface area

P.h.i.s.i.o. coating

420 mL

Pediatric

centrifugal

Revolution

(Sorin)

Pump casing

polycarbonate

Priming volume

57 mL

Capiox FX15 (Terumo

Europe)

Hollow fiber

Polycarbonate housing,

polypropylene

membrane 1.5 m2

Priming volume

144 mL

X-coating

Open hardshell

polycarbonate

Minimum capacity

70 or 200 mL

Maximum capacity

3,000 or 4,000 mL

Integrated polyester

screen type

Surface area 360 cm2

Pore size 32mm

Polyester screen

type

Pore size 47mm

Polyurethane None Sorin Kids Pediatric set,

custom made

Diameter 3/8 inch, length

4.87 m, 0.15 m2 contact

surface area

P.h.i.s.i.o. coating

700 mL
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Table 2

Priming Fluid Composition

Neonatal Infant Pediatric

Priming volume (mL) 263 430 683

RBC (mL) 135 235 365

FFP (mL) 30 40 50

Gelofusine (mL) 30 40 50

Albumin 20% (mL) 40 50 100

Mannitol 15% (mL) 20 50 100

NAHCO3 8.4% (mL) 8 15 18

Heparin (mL) 0.4 0.5 1

Flow (L/min) 0.5 1.5 3.5

Temperature (˚C) 36 36 36

Line pressure (mmHg) 100 100 100

Abbreviations: FFP, fresh frozen plasma; NAHCO3, Sodium bicarbonate;

RBC, red blood cells.
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Samples

Four-milliliter blood samples were taken from the arterial

(post oxygenator) side of the circuit via a manifold sample

port in a polypropylene (PLP) ethylenediaminetetraacetate

tube (7.2 mg) (BD Vacutainer, BD Life Sciences, Plymouth,

UK). Samples were taken immediately after injection of the

drugs (T1) and after 2, 5, 7, 10, 30, 60, 180, and 300 minutes.

Samples were stored at 4˚C until processing. After centrifu-

gation (10 min at 3,600 rpm), the supernatant serum was trans-

ferred to PLP cryogenic vials with PLP screw caps (Sarstedt

Aktiengesellschaft & Co, N€umbrecht, Germany) and stored at

�80˚C until analysis.

Assay Methods

Drug concentrations for sufentanil, midazolam, propofol,

and methylprednisolone were measured using liquid chroma-

tography mass spectrometry. Methods were validated accord-

ing to US Food and Drug Administration guidelines for

bioanalytical method validation.10 All analyses included qual-

ity control samples, as is required for Food and Drug Adminis-

tration analyses, and were performed in International

Organization for Standardization- and Good Clinical Practice-

certified laboratories by a certified research technician.

Drug concentrations for sufentanil were measured using a

Thermo TSQ Vantage triple-stage quadrupole mass spectrome-

ter (Thermo Fisher Scientific, Waltham, MA) at the pharmacy

laboratory of the Erasmus Medical Center. Drug concentrations

for midazolam were measured using a Quattro Premier mass

spectrometer (Waters Corp, Milford, MA) at the pharmacy labo-

ratory of the Erasmus Medical Center. Propofol was measured

using a Thermo TSQ Quantiva triple-stage quadrupole mass

spectrometer (Thermo Fisher Scientific) at the pharmacy labora-

tory of the University Medical Center in Groningen, the Nether-

lands. Drug concentrations for methylprednisolone were

measured using a SCIEX Triplequad 6500+ mass spectrometer

(AB SCIEX, Concord, Ontario, Canada) and Analyst software,

Version 1.7 (AB SCIEX) at the Institute for Biomedical and

Pharmaceutical Research in N€urnberg-Heroldsberg, Germany.
The lower limit of quantification was 0.25 mg/L for sufenta-

nil, 2.0 mg/L for midazolam, 100.0 mg/L for propofol, and 10

mg/L for methylprednisolone. The upper limit of quantifica-

tion (ULOQ) was 50.0 mg/L for sufentanil, 2,400 mg/L for

midazolam, unknown for propofol, and 30100 mg/L for meth-

ylprednisolone.

Statistical Analysis

The relationship between log-transformed drug concentra-

tion (dependent variable) and type of CPB system and sample

time point (independent variables) was assessed with linear

mixed model analyses. Linear mixed model analyses were

used because a correlation can be expected between repeated

measurements of the same variable (ie, drug concentration) in

the same subject (ie, individual CPB systems). Both indepen-

dent variables were treated as categorical variables, and a

2-way interaction effect between the type of CPB system and

sample time point was included in the model. To correct for

within-system correlations between time points, a random

intercept was used and we assumed a first-order autoregressive

error covariance matrix. This model specification was chosen

by comparing values of the Akaike information criterion

between different structures for the random effects and the

error covariance matrix.

For each time point and each CPB system, the difference

between the predicted log-transformed estimated marginal

means11 at T1 and the predicted log-transformed concentration

at the different time points was calculated, as was the 95% con-

fidence interval (CI) of this difference. Finally, this difference

and the 95% CI were exponentiated to obtain the percentage

drug recovery (the percentage of drug still present in the prim-

ing fluid) for T2 to T300. The maximum expected concentration

in case of perfect mixture of drug (MEC) was calculated by

dividing the amount of drug added to the CPB systems by the

total priming volume used because it was unclear whether mix-

ing of drug with the priming fluid would be complete at T1.

Spearman correlations were calculated to assess the rela-

tionship between drug recovery at 60 and 180 minutes and log

P, protein binding, and pKa among the 4 drugs (ie, with a sam-

ple size of n = 4 drugs). For each drug, the recovery used for

the calculation of this correlation was based on the estimated

marginal means of the linear mixed model.

Statistical analyses were performed using SPSS Statistics

for Windows, Version 24 (IBM Corp, Armonk, NY). All statis-

tical tests used a 2-sided significance level of 0.05.

Results

No technical problems were encountered during the experi-

ments. A total of 81 samples (27 for each CPB system cate-

gory) were analyzed. No loss of drug samples occurred.

Fig 1 shows predicted drug recovery (based on the estimated

marginal means of the linear mixed models) versus time for

propofol for each CPB system category. There was a sharp and

significant decline in recovery of propofol compared with T1

in all the system categories in the first 60 minutes, to 41.3%



Fig 1. Drug recovery versus time based on estimated marginal means for pro-

pofol, for each cardiopulmonary bypass system category, expressed as means

and 95% confidence interval based on the linear mixed models.

MEC, maximum expected concentration in case of perfect mixture of drug.

*p < 0.002.
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(95% CI 15.5-67.2), meaning that approximately 59% of the

added drug was lost from the circulating prime fluid at that

time. After that, recovery continued to decrease slightly but

significantly throughout the study period to 25% (95% CI 4.7-

45.3) after 180 minutes and 19% (95% CI 5.2-32.8) after 300

minutes. Based on the interaction effects in the mixed models,

there was a significant difference in the pattern of recovery

over time among systems for propofol (p < 0.001). Recovery

was the greatest in the infant system, followed by the pediatric

system. The neonatal systems appear to absorb the largest

amount of propofol to their system components.

Fig 2 shows predicted drug recovery (based on the estimated

marginal means of the linear mixed models) versus time for

sufentanil, midazolam, and methylprednisolone. Because there

was no significant interaction effect between the type of CPB

system and sample time point for sufentanil (p = 0.111), mida-

zolam (p = 0.213), or methylprednisolone (p = 0.829), a single

graph was used to depict decrease of drug recovery over time

for all 3 systems. The pattern of decline in recovery of sufenta-

nil shows stable drug concentrations in the first 7 minutes,

with a significant decline compared with T1 from T10 onward.

Drug recovery was 41.7% (95% CI 35.9-47.4) at

60 minutes. After 60 minutes, recovery continued to decrease

slightly but significantly throughout the study period. For

sufentanil, recovery was 23.0% (95% CI 9.2-36.8) after

180 minutes and 15% (95% CI 1.3-31.3) after 300 minutes.

For midazolam, there also was stable drug recovery in the

first 7 minutes. The decline in drug recovery compared with

T1 reached significance at T10 and from T60 forward. Drug

recovery was 87.3% (95% CI 64.9-109.7) after 60 minutes and

82.0% (95% CI 64.6-99.4) after 180 minutes. For methylpred-

nisolone, there was stable recovery of drug in the first
30 minutes. After that, recovery increased significantly com-

pared with T1 to values much higher than 100%.

No significant correlation between log P and percentage

recovery of the 4 drugs at 180 minutes (r �0.324; p = 0.304)

was found. In addition, a decreased recovery of highly protein-

bound drugs (r =�0.822; p = 0.007) was found. The third fac-

tor that correlated to percentage recovery at 180 minutes in

the present study was pKa (r = 0.822; p = 0.007).

Discussion

These in vitro experiments investigated drug recovery in 3

different pediatric CPB systems used in the authors’ center.

Decrease of drug concentration in the circulating prime fluid

for propofol and sufentanil was fast in the first 60 minutes.

Because 60 minutes is a relatively common bypass time in

pediatric cardiac surgery, this period is clinically very relevant.

The decreasing speed of reduction in drug concentration after

60 minutes may be an indication of near complete saturation

of binding places on the different components of the CPB sys-

tems. It is, however, unknown whether there is a finite amount

of binding places and if complete saturation of these binding

places is possible. Hammaren et al.12 and Myers et al.13 have

shown that for propofol there appears to be no maximum satu-

ration of binding places in complete adult CPB systems, even

at very high propofol concentrations. Binding of propofol may

be concentration dependent.12 In contrast, complete saturation

of oxygenator membrane fragments has been shown for fenta-

nyl in in vitro studies.5

In the present study, midazolam recovery was remarkably

large in both centrifugal and roller-pump systems. Unfortu-

nately, there are no in vitro studies of pediatric CPB systems

with which to compare the present study’s results. An ECMO

study performed in the authors’ hospital showed a recovery

pattern similar to the present experiment in systems with a cen-

trifugal pump.8 In roller-pump systems there was just 7.5%

recovery after 2 minutes and 0.6% recovery after 180 minutes.

For midazolam, however, it must be taken into account that

the concentrations measured in the present study were far

above the ULOQ. The authors believe that this may at least

partly be the reason that the MEC was lower than the measured

concentrations. This introduced an unknown amount of bias,

but the authors do not expect that this measurement bias would

explain the high recovery rates. An error in the addition of

medication to the system or a laboratory error also were not

expected because the experiments were performed on different

days for the different systems and all the percentage recovery

versus time curves show a similar pattern.

Methylprednisolone concentrations in the first hour were

much lower than would be anticipated from the MEC. This

most likely was caused by a problem with the mixing of meth-

ylprednisolone added to the system with the priming fluid.

Another explanation would be very fast binding of methyl-

prednisolone to components of the CPB system and release of

drug from those binding sites after 60 minutes. However, it is

unknown whether binding of drug to components of a CPB

system is a reversible process.



Fig 2. Drug recovery versus time based on estimated marginal means for midazolam, sufentanil, and methylprednisolone, expressed as means and 95% confidence

interval based on the linear mixed models.

MEC, maximum expected concentration in case of perfect mixture of drug.

*p < 0.05
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The substantial differences in recovery found between drugs

suggest that drug characteristics influence the interaction with

components of the CPB system (Table 3). From previous studies

in ECMO systems, recovery of drugs seems to be highly depen-

dent on lipophilicity.8,9,14,15 In the present study, no correlation

between log P and recovery percentage was found. This likely

was caused by the recovery profile of midazolam. Significantly

decreased recovery of highly protein-bound (>80%) drugs also

was shown in a previous publication.15 We found a generally

decreased recovery of highly protein-bound drugs, which may

be caused by binding of drug to protein adhered to system com-

ponents.15 The similar recovery patterns of propofol and sufen-

tanil suggest that there is a common physicochemical property
of both drugs causing this effect. The authors, however, cannot

explain why the recovery pattern of midazolam is different in

our study because the physicochemical properties known to

influence recovery are very similar to those of propofol and

sufentanil. Another factor correlated to the percentage recovery

at 180 minutes in the present study was pKa. To the authors’

knowledge no correlation between pKa and recovery has been

described previously. The surface-coated CPB systems are neg-

atively charged, making electrostatic attraction of positively

charged molecules a possible mechanism for absorption of

drugs to CPB system components. Drugs with a high pKa are

unlikely to be dissociated at normal pH, however, which was

maintained during the study period.



Table 3

Drug Physicochemical Data19

Blood/Plasma Ratio Log P Protein Binding (%) Vd (L/kg) pKa

Methylprednisolone Unavailable 2.06 78 Unavailable 12.58

Sufentanil 0.75 3.4 Unavailable Unavailable 8.86

Propofol Unavailable 3.81 95-99 Unavailable for children 10.98

Midazolam 0.75 3.89 97 Children 6 mo-16 y 1.24-2.02 10.98

Abbreviations: Vd, volume of distribution.
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A significant difference in drug recovery between the differ-

ent types of CPB system was found only for propofol. In gen-

eral, one would expect a larger system to have more binding

sites for drugs and thus a lower recovery for drugs with similar

properties. The surface area of the oxygenator and the PVC

tubing in the authors’ pediatric systems are much larger than

those in their neonatal and infant systems. In the present study,

midazolam and methylprednisolone showed lower recovery in

larger systems, although not significantly so. For propofol,

however, there was greater recovery in larger systems. The dif-

ferences are smaller than would be expected if system size

were the only factor involved.

Different components of the CPB system are capable of

absorbing drugs to their plastics. Differences in drug recovery

between different types of oxygenator have been described

extensively.5,16 With the new polymethylpentene and PLP

membranes the oxygenator does not appear to be a factor of

considerable interest in drug recovery anymore. Based on a

study by Preston et al., 80% of drug is lost to PVC tubing, with

a small additional amount of drug (of just 5%) lost to the oxy-

genator.17 Silicone tubing has been shown to decrease the

recovery of drugs compared with PVC tubing.2,8 The effect of

different surface coatings on both oxygenator and tubing on

drug recovery has been investigated by several authors,7,12,13

and those studies suggest different effects for different coat-

ings for different types of drugs. The addition of an arterial fil-

ter also may lead to decreased drug recovery.13 Many factors

thus are at play and interact with each other.

It is unclear which differences in system composition play a

role in the present study. The interplay of differences in sur-

face area, coating, tubing type, and pump type makes it diffi-

cult to draw firm conclusions about the influence of individual

system components on drug recovery. In an earlier study by

Preston et al., a Terumo Baby Rx oxygenator was used17. The

Terumo Capiox Fx05 was used in the present study’s neonatal

systems, which is the same oxygenator with the same mem-

brane, the same coating, and the same surface area, but with an

integrated arterial filter. The Baby Rx oxygenator absorbed

3% of fentanyl added to the system in the study by Preston

et al., which amounts to 0.6 ng/cm2. Raffaeli et al. showed that

sufentanil absorption is similar to fentanyl absorption in their

ECMO systems.9 Assuming the aforementioned holds true, the

amount of drug absorbed in the present study’s neonatal sys-

tems just by the tubing and the arterial filter would be 4.2 mg

of sufentanil at 180 minutes (total uptake of sufentanil 72% at

180 min of 10 mg added to the neonatal systems minus the
amount absorbed by the oxygenator). Because the neonatal

systems in the present study had silicone tubing, this relatively

low amount of absorption seems unlikely.

A similar calculation for the pediatric systems used in the

present study is possible. The Capiox Fx15 oxygenator would

absorb 9 mg in total because of its larger surface area. After

180 minutes, 76% of the 60 mg of sufentanil added to the sys-

tem would be absorbed. Further calculation shows that this

would mean that the Sorin tubing would absorb 25.1 ng/cm2 of

sufentanil. This, however, would mean that all the sufentanil

in the neonatal system in the present study would have to have

been absorbed, which is not the case. For a more extensive cal-

culation, the reader is referred to the supplemental materials.

Hynynen et al.18 described propofol recovery of 25% after

120 minutes of circulation in an adult system. Hammaren

et al.12 and Myers et al.13 described recovery of 37% and 43%,

respectively, after 60 minutes. These values are remarkably

similar to those of the present study, even though completely

different CPB systems were used. Based on the calculations

previously described and the results by Hynynen, Hammaren,

and Meyers, it appears that it is very difficult to translate

research performed in individual centers to one’s own clinical

practice because of the amount of factors and interactions at

play. It is clear that not all factors influencing absorption to dif-

ferent components of CPB systems are known. A possible lack

of generalizability thus may be seen as a limitation to the pres-

ent study and other studies already performed in this field.

Several authors have found no influence of temperature

management on the recovery of drugs in their systems.16,19,20

Therefore the authors of the present study did not attempt to

simulate a cooling protocol.

Despite the significant decrease in recovery of drug from the

priming fluid of the CPB system found in the authors’ in vitro

studies, clinically patients do not wake up on initiation or dur-

ing CPB. A clinical study of propofol infusions in cardiac sur-

gery in adult patients showed no change or even a decrease in

bispectral index values during CPB.21 This most likely was

caused by an increase in unbound drug concentration as a

result of decreased protein concentration on initiation of

CPB,21-23 causing a greater amount of drug available for end-

organ effect.

The present study has several other limitations. Only com-

plete systems were tested, thus there is no information in the

present study as to which amount of drug was absorbed by

which system component. Unfortunately this type of research is

expensive because of the costs of systems, blood products for
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priming, and drug concentration measurements. Also, for pur-

poses of the present study, namely the integration of these in

vitro results with the results of the in vivo part of the CPB

PHARM study, the authors sought to mimic everyday practice

in their hospital as closely as possible, making testing of indi-

vidual components less useful. For the same reasons, the authors

have not performed isolated drug studies. It is not known

whether there is competition for binding sites to components of

the CPB system for different individual drugs. Although theo-

retically this is an interesting topic, in clinical practice, patients

receive multiple medications at the same time.

Just 3 full systems in each category were used, and although

this may seem like a small number, the sample size is compa-

rable with that of other publications performed with both CPB

and ECMO systems and which are cited in this article.

Spontaneous degradation may have produced bias in the pres-

ent study because it causes a decrease in drug concentrations not

caused by adherence of drug to components of the CPB system.

Previous studies in the authors’ hospital have shown that sponta-

neous degradation over 24 hours for midazolam is 11.4% and

for sufentanil is 0%.9 For propofol, spontaneous degradation in

glass bottles with daylight and room temperature is around 5%

after 6 hours.24 For methylprednisolone, no references were

found for spontaneous degradation. Because degradation usu-

ally is calculated over 24 hours, the effect on the present study’s

results would be constant over time.

For the calculation of MEC, the authors did not correct for

blood-plasma ratio. In previous studies in the authors’ hospital,

midazolam was shown to have a blood-plasma ratio of 75%.8

Because the present study’s MEC value was calculated in

blood, but drug concentrations were measured in plasma,

MEC would be underestimated for midazolam. Because pro-

pofol is highly bound to red blood cells in vivo, a high blood-

plasma ratio would be expected and the present study’s MEC

would be overestimated.

The authors did not aim for a similar drug concentration in

the different types of CPB systems. Instead, the dose of drug

that would be administered to a typical patient connected to

a neonatal, infant, or pediatric CPB system in the authors’

daily clinical setting was added because the goal of the pres-

ent study was to mimic the authors’ everyday practice as

closely as possible so that in the future the authors will be

able to incorporate CPB system recoveries in a larger popu-

lation pharmacokinetic model of the influence of CPB on

drug concentrations in children.

Because of the high doses of drug added to the authors’ sys-

tems, drug concentrations were more than the ULOQ for some

drug assays, necessitating additional dilution before quantifica-

tion. The high doses also might have resulted in potential dif-

ferences in absorption rates, as has been shown for propofol.12

In the present study, indications that mixing of drug with the

priming fluid is not always complete were observed. This may

have clinical consequences if drugs are added to the CPB sys-

tem during CPB, rather than given directly to the patient.

Despite these limitations, to the authors’ knowledge, the

present study is the first comprehensive in vitro testing of CPB

systems used in pediatric congenital cardiac surgery.
In conclusion, the present study’s in vitro experiment with

neonatal, infant, and pediatric CPB systems shows a variable

recovery of routinely used drugs with significant differences

among drugs but not among system categories, except for pro-

pofol. The study also demonstrates that the generalizability of

this type of research may be limited. The clinical consequen-

ces of the present study’s research must be investigated fur-

ther. The decreased recovery of sufentanil and propofol could

lead to suboptimal dosing of patients during cardiac surgery

with the use of CPB, even though clinically this doesn’t show;

thus it is important that these findings are integrated with the

results of in vivo studies into population pharmacokinetic

models to further investigate the clinical relevance of the pres-

ent study’s findings and the implications for perioperative

patient care.
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