
Vol.:(0123456789)

PharmacoEconomics (2019) 37:1329–1339
https://doi.org/10.1007/s40273-019-00837-x

PRACTICAL APPLICATION

A Need for Change! A Coding Framework for Improving Transparency
in Decision Modeling

Fernando Alarid‑Escudero1 · Eline M. Krijkamp2 · Petros Pechlivanoglou3 · Hawre Jalal4 · Szu‑Yu Zoe Kao5 ·
Alan Yang6 · Eva A. Enns5

Published online: 24 September 2019
© Springer Nature Switzerland AG 2019

Abstract
The use of open-source programming languages, such as R, in health decision sciences is growing and has the potential to
facilitate model transparency, reproducibility, and shareability. However, realizing this potential can be challenging. Models
are complex and primarily built to answer a research question, with model sharing and transparency relegated to being sec-
ondary goals. Consequently, code is often neither well documented nor systematically organized in a comprehensible and
shareable approach. Moreover, many decision modelers are not formally trained in computer programming and may lack
good coding practices, further compounding the problem of model transparency. To address these challenges, we propose
a high-level framework for model-based decision and cost-effectiveness analyses (CEA) in R. The proposed framework
consists of a conceptual, modular structure and coding recommendations for the implementation of model-based decision
analyses in R. This framework defines a set of common decision model elements divided into five components: (1) model
inputs, (2) decision model implementation, (3) model calibration, (4) model validation, and (5) analysis. The first four
components form the model development phase. The analysis component is the application of the fully developed decision
model to answer the policy or the research question of interest, assess decision uncertainty, and/or to determine the value of
future research through value of information (VOI) analysis. In this framework, we also make recommendations for good
coding practices specific to decision modeling, such as file organization and variable naming conventions. We showcase
the framework through a fully functional, testbed decision model, which is hosted on GitHub for free download and easy
adaptation to other applications. The use of this framework in decision modeling will improve code readability and model
sharing, paving the way to an ideal, open-source world.

Electronic supplementary material The online version of this
article (https ://doi.org/10.1007/s4027 3-019-00837 -x) contains
supplementary material, which is available to authorized users.

 * Fernando Alarid-Escudero
 fernando.alarid@cide.edu

Extended author information available on the last page of the article

1 Introduction

Many journals now strongly encourage that the data and
the code underlying an analysis be archived and made pub-
licly available alongside the publication [1, 2]. There are
similar calls for making mathematical models that are the
basis for health technology assessments (HTAs) and cost-
effectiveness analyses (CEAs) available to promote trans-
parency, support reproducibility, and facilitate adaptation of
existing models to new applications [3, 4]. In formal HTA
submissions, it is already expected that the model itself will

be provided to clients and stakeholders for them to scru-
tinize and manipulate, necessitating a certain degree of
model transparency and usability [5, 6]. More broadly, the
Open-Source Model Clearinghouse was recently launched
as a database of open source models with a mandate to, in
part, “facilitate adherence to standards calling for open dis-
closure of scientific software” [7]. Though it has been com-
mon wisdom that a detailed methods section and a lengthy
appendix of equations should be sufficient to reproduce a
mathematical model, this is not generally the case. Thus, to
support the transparency of mathematical modeling, more
and more emphasis is being placed on sharing the underlying
model construction, be it implemented in a specific software
platform or coded in a programming language [8–10].

For anyone who has ever looked under the hood of soft-
ware source code, the naivety of transparency being achieved
by sharing such code is obvious. Even for a well-trained and
sophisticated programmer, coding entails a certain amount
of personal style and preferences which may or may not be

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Erasmus University Digital Repository

https://core.ac.uk/display/237097913?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orcid.org/0000-0001-5076-1172
http://orcid.org/0000-0003-3970-2205
http://orcid.org/0000-0001-5090-7936
http://orcid.org/0000-0002-8224-6834
http://orcid.org/0000-0002-4987-3983
http://orcid.org/0000-0002-0344-6812
http://orcid.org/0000-0003-0693-7358
http://crossmark.crossref.org/dialog/?doi=10.1007/s40273-019-00837-x&domain=pdf
https://doi.org/10.1007/s40273-019-00837-x

1330 F. Alarid-Escudero et al.

Key Points for Decision Makers

The use of open-source software for model-based cost-
effectiveness analyses is growing and has the potential
to facilitate model transparency, reproducibility, and
shareability. However, guidance as to how to structure
the required components of such analyses is lacking.

A high-level coding framework can help standardize
the construction of model-based decision and cost-
effectiveness analyses, allowing the model code to be
more easily read, scrutinized, and understood by others.
The Decision Analysis in R for Technologies in Health
(DARTH) framework modularizes decision models into
a set of core components and provides guidance on how
to structure and organize the implementation of these
commons in R.

Adoption of this general framework will facilitate the
sharing and readability of decision models implemented
in R. It will also support the broader use of R in formal
health technology assessment (HTA) submissions, allow-
ing for more complex modeling methods to be more
transparently incorporated into decision making.

modeling so that these models can be read, scrutinized, and
understood by their consumers.

The aim of this paper is to provide a high-level framework
that sets a common structure for decision-model building for
both model developers and model consumers. The develop-
ment of this framework is the culmination of the research
and pedagogical experiences of The Decision Analysis in
R for Technologies in Health (DARTH) workgroup [12].
The DARTH framework modularizes decision models into
a set of core components that are common across CEAs and
HTA submissions, regardless of the type of mathematical
model used. In this paper, we also provide a number of rec-
ommendations specific to decision-modeling applications
relating to file organization, variable naming conventions,
use of functions and data structures, and unit testing. How-
ever, these more detailed recommendations are suggestions
only; the primary purpose of the DARTH framework is to
outline a high-level organizational structure for code under-
lying a decision-modeling analysis. Given the diversity of
applications and methodological needs of different analyses,
we hope that the DARTH framework provides a scaffolding
to facilitate readability, usability, and reproducibility of the
analysis to others, without overly restricting the kinds of
models and analyses that can be implemented in this frame-
work. We showcase the DARTH framework through a fully
functional, testbed decision model developed in R [11, 13],
implemented as an R package (darthpack) that is freely
available for download via GitHub (https ://githu b.com/
DARTH -git/darth pack). The testbed model was designed to
serve as a template for organizing and sharing model and
analysis source code [14] that can be easily adapted to other
applications and enhanced by other decision modelers. The
adoption and promotion of this framework will create more
readable, and thus more shareable models, paving the way to
an open-source culture in health decision sciences.

2 Methods

2.1 Components of a Decision Model

The DARTH framework is based on the premise that a com-
prehensive model-based decision and/or CEA will involve
the same high-level model-development analysis compo-
nents, regardless of the specific structure of the decision
model being applied, be it a decision tree, Markov model,
stochastic simulation model, and so on. In developing this
framework, we strived to create a flexible framework that
can successfully organize code relating to a diversity of
model types and applications.

The framework we present here focuses on the organiza-
tion of R code for the conduct of a decision analysis, but not
on the specific content of the code within each component.

intuitive to the reader. Imagine, then, the even more extreme,
yet still common, situation of releasing code that was never
intended for public use to the public. If this is done as an
after-thought, documentation may be lacking, and the code
structure will likely be a byproduct of the complex deci-
sion history that it took to arrive at the final model structure
rather than a pre-planned organizational structure. All these
issues may be further obscured when proprietary software is
required to view/operate the model, which may limit access
to those with active licenses and installations. The appeal
of proprietary software is often in the facilitation of model
construction through a graphical interface that allows a user
to point-and-click their way through an analysis. However,
despite the initial user-friendliness of these software plat-
forms, sharing the model alone still does not necessarily
achieve transparency or reproducibility, as any manual point-
and-click steps are not captured or recorded [11].

Health decision science and HTA are fields situated at
the intersection of operations research, economics, statis-
tics, medicine, and public health. Computer science and
software development are generally not the major foci of
decision-analytic training, as models are used to answer spe-
cific research questions, not necessarily as general tools for
a client user-base. Thus, in order for the benefits of transpar-
ent and open model sharing to be fully realized, guidance
is needed on coding best practices as they relate to decision

https://github.com/DARTH-git/darthpack
https://github.com/DARTH-git/darthpack

1331A Coding Framework for Improving Transparency in Decision Modeling

We also assume that an analyst has already fully documented
their biological, behavioral, and mathematical assumptions
and decisions that went into their model and analysis in
some kind of technical appendix. In our case study, we pro-
vide an example of how such documentation might look, but
it is not the primary focus of this work. Thus, commentary in
the code will primarily explain the functionality of that code,
with the assumption that broader descriptions of the disease
processes, interventions, and policy questions are provided
alongside the code in a separate document.

The DARTH framework divides a decision analysis
into five components: (1) model inputs, (2) decision model
implementation, (3) model calibration, (4) model valida-
tion, and (5) analysis. The first four components form the
model development phase, whereas the analysis component
is the application of the final model to answer the policy or
research question of interest, assess decision uncertainty,
and/or to determine the value of future research through
value of information (VOI) analysis. The same model from
the development phase could be used to answer multiple
research questions, which is why we make this distinction.
The relationship between the five components is illustrated
in Fig. 1 and described in detail in the sections that follow.

2.1.1 Component 1: Define Model Inputs

In this component, all model input variables are declared
and values are set. We broadly categorize input variables
into three categories depending on how their values are
informed: external, estimated, and calibrated. Parameters
informed by external sources are set to a value either directly
into an R script or read in from an external source, such
as a .csv file or a data repository. These parameter values
(and uncertainty ranges and distributions for probabilistic
analyses) are derived from published literature or external
data analyses not embedded into the analysis itself. Esti-
mated parameters are those whose values are estimated
through a primary data analysis conducted within the deci-
sion analysis. R has the advantage of being both a statistical
and a programming environment. This allows any neces-
sary statistical analyses to be embedded directly within the
decision analysis, further improving analysis transparency
and reproducibility. The third type of model parameters are
those that will be estimated via model calibration. In this
first stage of the DARTH framework, we simply set these
parameters to some valid but arbitrary ‘dummy’ values that
are compatible with the next phase of the analysis—model
implementation—but are ultimately just placeholder values
until we conduct the calibration phase. Not all models will
utilize all three types of input variables and different mod-
els may rely more heavily on one input type than another.
While we selected the three input parameter categories based
on how models are typically parameterized, for any given

application, it may make sense to organize input parameters
according to a different set of categories. The point of this
component is to group input variables together and organize
them in a logical fashion that can be easily communicated to
a user rather than rigidly prescribe a universal input param-
eter organizational structure.

2.1.2 Component 2: Decision Model Implementation

This implementation of the decision model component
is the heart of the decision analysis. In this section of the
DARTH framework, a function that maps model inputs to
outputs is created, via the dynamic and/or stochastic pro-
cesses that the decision model represents. The model itself
could be a decision tree, Markov model, stochastic simula-
tion, and so on. The output stored from the model at this
stage should be sufficiently general and comprehensive to
accommodate calibration, validation, and the main policy
analysis. Constructing the model as a function at this stage
facilitates subsequent components of model development
and analysis, as these processes will all call the same model
function but pass different parameter values and/or calculate
different final outcomes from the model outputs. The model
function also facilitates the use of parallel computing efforts
for computationally intensive tasks, such as calibration and
probabilistic sensitivity analysis (PSA).

We should note explicitly that the model function created
here should have the capacity to capture the effect of any
interventions or policy scenarios of interest on the outcomes
of interest. The specific ways that intervention effects are
incorporated into the model are decisions for the analyst.
Interventions that reflect changing intensities of existing pro-
cesses (e.g., increasing the frequency of screening) may be
implemented by changing the values of relevant model input
parameters. However, it is often the case that different inter-
ventions enable completely different pathways and processes
in the model (e.g., medical management vs surgery) and
would be better captured by passing a categorical parameter
value that indicates the intervention to be simulated. We do
not recommend mixing these two cases and generally rec-
ommend using an explicit categorical intervention variable
for generalizability. Ultimately, the analyst should decide
how best to implement the functionality required for their
application.

2.1.3 Component 3: Model Calibration

In the model calibration component, unknown or highly
uncertain model parameters are estimated by calibrating
model outputs to match specified calibration targets [15–17].
This component involves both the setup of the calibration
(specification of plausible ranges or prior distributions for
input parameters to be calibrated, specification of calibration

1332 F. Alarid-Escudero et al.

targets, calculation of corresponding values from model out-
puts, and assessment of fit to targets) as well as carrying out
the calibration itself with a chosen algorithm. Once appro-
priate values, ranges, and/or distributions have been identi-
fied for calibrated parameters, these values will replace the
placeholder values established in the model inputs compo-
nent for the subsequent validation and analysis components.
Though rare, not all models will have parameters that need
to be calibrated. In such cases, the model calibration com-
ponent can simply be omitted.

2.1.4 Component 4: Validation

Model validation should at the very least demonstrate the
internal validity of the model. This means that the model
reproduces outputs that correspond to its inputs [3, 18]. For
example, if an input parameter to the model was set to reflect
a screening frequency of every 2 years, then the number of
screenings conducted in the population over a given period
of time should correspond to an average per-person screen-
ing frequency of every 2 years. Internal validity may also be
demonstrated by plotting model-predicted outputs against
calibration targets. Additionally, comparison of model out-
puts to other data sources not used in the model development
(external validation) or to other models (comparative valid-
ity) may also be conducted here [19–23].

2.1.5 Component 5: Analysis

The analysis component is where the model developed in
components 1–4 is applied to answer the question(s) of inter-
est given current information. An analysis will generally be
broken down into several subcomponents. As an example,
we describe an analysis with three subcomponents: a prob-
abilistic analysis (which includes the base-case analysis),
a deterministic scenario and sensitivity analysis (such as
one- and two-way sensitivity analyses), and a VOI analysis.
However, in any given analysis, the analyst should create
subcomponents that are relevant and appropriate for their
application. Though the purposes and the structure of our
example subcomponents vary, the general setup is similar.
First, the analyst must specify the input parameter values
that should be passed to the decision model function. Sec-
ond, the analyst must set up calculation of the desired out-
put values from the decision model outputs, which again
are more comprehensive and detailed than may be neces-
sary. For example, a Markov cohort model might output the
cohort trace (distribution of the cohort across health states
over the time horizon) or the transition dynamics array
(proportion of the cohort that transitioned between any two
health states in each cycle over the time horizon) [24], but
in a given analysis, perhaps only the cohort’s survival over
time is of interest. Within CEA in particular, there are many

Fig. 1 Schematic representation of the connectivity between the different components of the proposed DARTH framework

1333A Coding Framework for Improving Transparency in Decision Modeling

standard calculations, comparisons, and visualizations that
are conducted based only on the total costs and quality-
adjusted life-years (QALYs) calculated from model outputs
for a set of strategies.

2.1.6 Subcomponent 5a: Probabilistic Analysis

The probabilistic analysis subcomponent is the primary
analysis component in the DARTH framework, which is
typical for CEA following the recent guidance from the Sec-
ond Panel on Cost-Effectiveness in Health and Medicine
and satisfying the requirements of many HTA agencies [6,
25]. In a probabilistic analysis, also called a probabilistic
sensitivity analysis (PSA), sets of input parameter values are
randomly sampled from specified distributions. The model
is then run for each set of parameter values, producing cor-
responding model outputs. Using analyst-specified func-
tions that calculate outcomes of interest based on the model
function output, means and standard deviations of these out-
comes can be calculated from the PSA samples. For CEAs,
primary outcomes of interest are generally total discounted
costs and QALYs accrued over the analysis time horizon,
though other intermediate outcomes may also be of interest.
Interventions are then compared by calculating incremental
cost-effectiveness ratios (ICERs) based on the expected cost
and QALY outcomes from the PSA. We note that in the
past, a primary analysis was often conducted using a sin-
gle, deterministic set of base-case parameter values but this
practice is no longer recommended [6]. The distributions of
outcomes produced from the PSA are also used to produce
additional results regarding decision uncertainty, including
cost-effectiveness acceptability curves (CEACs) and frontier
(CEAF), expected loss curves (ELCs), and others [26]. For
these common procedures, we rely on the decision-analytic
modeling in R package, dampack, which is available for
download from https ://githu b.com/DARTH -git/dampa ck.
Instructions for installing dampack are described in the
dampack GitHub repository.

2.1.7 Subcomponent 5b: Scenario and Deterministic
Sensitivity Analysis

The scenario and deterministic sensitivity analysis subcom-
ponent is where the impact of individual or pairs of param-
eters on model outcomes can be assessed systematically
through one- and two-way sensitivity analyses. An analyst
may also wish to compare different scenarios (e.g., high- vs
low-cost scenarios), either in a probabilistic or deterministic
framing. Generally, these scenario analyses and sensitivity
analyses would be secondary to the primary results pre-
sented in subcomponent 5a.

2.1.8 Subcomponent 5c: Value of Information (VOI)
Analysis

In the VOI component, we determine whether further poten-
tial research is needed using the results from the PSA gener-
ated in the probabilistic analysis subcomponent. The most
common VOI measures are the expected value of perfect
information (EVPI), the expected value of partial perfect
information (EVPPI), the expected value of sample infor-
mation (EVSI) [27, 28], and, more recently, the curve of
optimal sample size (COSS) [29].

2.2 File Structure and Organization

A model implemented in the R programming environment
will involve a series of scripts with the file extension ‘.R’.
The analysis will also generally use and/or generate a num-
ber of data and output files, which may be either stored as
internal R data files (using ‘.RData’, ‘.rda’, or ‘.rds’ exten-
sions) or as external data files, such as comma-separated-val-
ues (‘.csv’) files. In the suggested organizational file struc-
ture of the DARTH framework, we use folders to delineate
the different purposes that these files serve in the analysis.
Within a folder, we append the relevant component number
to the beginning of each file name to indicate where the file
will be used or was created (in the case of outputs). Our
suggested folder structure is summarized in Table 1. This
structure is inspired by the organizational recommendations
for an R package [30] and a simple reproducible workflow
developed in the field of ecology and evolution [31]. As an
example, consider the ‘data-raw’ folder. The purpose of this
folder is to store the raw data files that will be cleaned, pro-
cessed, and/or analyzed to be used as inputs in the different
components. The processed data would then be placed in the
‘data’ folder, perhaps stored as the file ‘01_primary_data.
RData’ to indicate that it will inform model parameter val-
ues (the first framework component). Within this folder, we
would likely also have a file named ‘01_inputs.csv’, which
would contain model parameter values derived externally
from published literature. Finally, in addition to input data
for the input generation component, an analyst might also
have a ‘03_calibration_targets.RData’ that stores the calibra-
tion target data that will be used to estimate unknown model
parameters through calibration.

Our suggested file folder structure is fairly self-explana-
tory and certainly customizable. However, two folders that
warrant further clarification are the ‘R’ and ‘analysis’ fold-
ers. The ‘R’ folder is the traditional directory for storing
functions for an R package. Here, we store a separate ‘.R’
script with all the functions for each framework component
as well as some auxiliary ‘.R’ scripts, such as the description

https://github.com/DARTH-git/dampack

1334 F. Alarid-Escudero et al.

of the different data included in the R package. For exam-
ple, the ‘data_init_params.R’ script includes the description
of the initial set of base-case parameters. To document the
functions and processed data to be used as package data,
we used roxygen2. roxygen2 is the recommended
format to produce documentation for R packages. For a
more detailed description on the different components and
steps for building an R package, we refer the reader to the
R package book by Wickham [30]. Formalizing operations
into functions is especially advantageous for operations that
will be repeated (e.g., calculation of total costs and QALYs
from model output). A single function can replace multiple
lines of code and modularizes operations, and any updates
to these repeated operations will be propagated across all
function calls. Using functions is considered a good pro-
gramming practice [32]. Functions that are customized for
the particular application, model, and/or analysis should
be defined in the ‘.R’ file corresponding to the component

where they are first needed. For example, the decision model
is implemented as a function, which is important since it will
be called by so many other processes (calibration, valida-
tion, as well as the analysis components). Model calibra-
tion would also involve several custom functions, such as
functions to derive outputs corresponding to the calibra-
tion targets from the model’s more generic, full output and
functions to compare those model outputs to the calibration
target values in terms of some kind of measure of ‘fit’. The
analysis components will have many functions for calculat-
ing outputs of interests (e.g., aggregating costs and QALYs
over a time horizon of interest), and running the model over
different sets of input parameter values in deterministic and
probabilistic sensitivity analyses.

The ‘analysis’ folder is the traditional directory for stor-
ing the scripts with the code of R-based analyses. In this
folder, we store a ‘.R’ script for each framework component.
These scripts are the overall control for these processes.

Table 1 File folder structure for organizing model and analysis files used in the proposed DARTH coding framework

CEA cost-effectiveness analysis, HTA health technology assessment, ICERs incremental cost-effectiveness ratios, PSA probabilistic sensitivity
analysis

Folder name Folder function

data-raw This is where raw data is stored alongside ‘.R’ scripts that read in raw data, process these data, and call use_this::use_
data (<processed data>) to save .rda formatted data files in the ‘data’ folder. These data could include a ‘.csv’ file with input
parameters derived from the published literature, as well as internal R data files (with .RData, .rds, or .rda extensions) containing
primary data from which model input values will be estimated through statistical models embedded into the analysis

data This is where input data is stored to be used in the different components of the CEA. These data could be generated from raw data
stored in the ‘data-raw’ folder. Essentially, this folder stores the cleaned or processed versions of raw data that has been gathered
from elsewhere

R This is where ‘.R’ files that define functions to be used as part of the analysis are stored. These are functions that are specific to
the analysis. The model will be one such function; however, other functions will likely be used, such as computing the fit of the
model output to the specific calibration targets of the analysis. This folder also stores ‘.R’ scripts that document the datasets in
the ‘data’ folder

analysis This is where interactive scripts of the analysis would be stored. These scripts control the overall flow of the analysis. This is also
where many operations that ultimately become functions will be developed and debugged

output This is where output files of the analysis would be stored. These files may be internal R data files (‘.RData’, ‘.rds’, ‘.rda’) or
external data files (such as ‘.csv’). Examples of files stored here would be the output of the model calibration component or the
PSA dataset generated in the uncertainty analysis component. These data files can then be loaded by other components without
having to first rerun previous components (e.g., the calibrated model values can be loaded for a base-case analysis without re-
running the calibration)

figs For analyses that will include figures, we generally create a separate figures folder. Though these could be stored in the output
folder, it can be helpful to have a separate folder so that the images of the figure files can be easily previewed. This is particularly
important for analyses that generate a large number of figures

tables This folder includes tables to be included in a publication or report, such as the table of intervention costs and effects and ICERs
report A report folder could be used to store R Markdown files to describe in detail the model-based CEA by using all the functions and

data of the framework, run analyses and display figures. The R Markdown files can be compiled into .html, .doc or .pdf files to
generate a report of the CEA. This report could be the document submitted to HTA agencies accompanying the R code of the
model-based CEA

vignettes A vignettes folder could be used to describe the usage of the functions and data of each of some or all components of the frame-
work through accompanying R Markdown files as documentation. The R Markdown file can use all the functions, outputs, and
figures to integrate the R code into the Markdown text

tests A tests folder includes ‘.R’ scripts that run all the unit tests of the functions in the framework. A good practice is to have one file
of tests for each complicated function or for each of the components of the framework

1335A Coding Framework for Improving Transparency in Decision Modeling

2.3 Naming Conventions

Within the outlined file structures, we recommend that
analysts use a consistent naming convention for variables
and files throughout their code that balance readability and
brevity. Different well thought-out naming conventions have
been proposed, including coding styles recommended by the
tidyverse collection of R packages [33] and the Google R
Style Guide [34]. We summarize our own naming conven-
tion, tailored to the specific types of parameters and files
used in decision analytic modeling, in Table 2. In our nam-
ing convention, file names begin with the component num-
ber followed by some content descriptor, separated by under-
scores. User-defined functions are named starting with an
action, followed by a descriptor, separated by underscores.

Our variable naming conventions involve encoding cer-
tain features of the variable in the name. The suggested
naming structure would be <x>_<y>_<var_name>, where
x indicates the data type (e.g., scalar, vector, matrix, data
frame, etc.), y is the variable type (e.g., probability, rate, rel-
ative risk, cost, utility, etc.), and var_name is some descrip-
tion of the variable presented separated by underscores. Sug-
gested prefixes are summarized in Table 3.

2.4 Unit Testing

A full decision-analytic model, complete with all the mod-
ules outlined in the DARTH framework, will have complex
interdependence between the various functions and pro-
cesses. It is important to ensure that these functions behave
as expected to maintain the integrity of the project. Thus,
systematic testing is recommended alongside the develop-
ment of the decision analysis source code. Testing increases
confidence in the results and conclusions of the model and
associated analyses and also allows the analyst to quickly
identify whether modifications or additions to the analysis
code impacts the behavior of the previously developed func-
tions and processes [35]. A widely used testing method is
unit testing, which tests a unit of code (often a function or
a small process) to verify whether the code executes and
generates outputs as intended.

For a comprehensive decision-analytic project, we sug-
gest writing tests alongside the development of any new
function or process or whenever a bug is found [30, 35]. This
practice results in a high level of test coverage of the analysis
code, reducing the likelihood that unintended interactions or
incompatibilities between functions and/or processes will
go undetected. In practice, we suggest that each R script in
the ‘R’ folder have a corresponding testing ‘.R’ script in a
separate ‘tests’ folder. The naming of a test file could begin
with ‘test_’, followed by the file name of the source code that
is the target of the testing. This file structure is also compat-
ible with the R package structure.

In each test file, tests are organized by the functions or
processes to be tested. A single function or process will
likely be associated with multiple tests. For instance, unit
testing of a function will involve testing that the function
runs when inputs are of the right data type, that the func-
tion outputs are of the right data type, and that the function
outputs are correct in dimension and value for specific sets
of input values. It is also important to test the error check-
ing within a function, such that the function returns an error
when invalid inputs are provided or unexpected results are
found.

Comprehensive testing facilitates model sharing, as any
downstream user wishing to modify the code can easily
verify whether their changes to the original source code
require adjustments to be made to other parts of the code.
To illustrate the use of unit testing, we provided examples
of unit testing on two selected source code files in our case
study using the R package testthat [30, 36]. We only include
a small number of tests so as to not overwhelm those new
to testing; however, in practice, a comprehensive set of unit
tests should be included.

Table 2 File and variable naming conventions in the proposed
DARTH coding framework

Object type Naming recommendation Examples

Files dir/<component
number>_<description>
.<ext>

analysis/01_model_
inputs.R

R/02_simulation_
model_functions.R

Functions <action!>_<description> generate_init_params()
generate_psa_params()

Variables <x>_<y>_<var_name>
where
x = data type prefix
y = variable type prefix
var_name = brief descriptor

n_samp
hr_S1D
v_r_mort_by_age
a_M
l_params_all
df_out_ce

Table 3 Recommended prefixes in variable names that encode data
and variable type

QALYs quality-adjusted life-years

Prefix Data type Prefix Variable type

<> (no prefix) scalar n Number
v vector p Probability
m matrix r Rate
a array u Utility
df data frame c Cost
dtb data table hr Hazard ratio
l list rr Relative risk

ly Life years
q QALYs
se Standard error

1336 F. Alarid-Escudero et al.

2.5 Additional Tools to Support Model
Transparency

A number of tools exist that can facilitate the decision mod-
elers interaction with the R language. A useful and com-
monly used tool is RStudio, an open-source, integrated
development environment (IDE) for R. RStudio offers
functionality that facilitates R coding (e.g., syntax highlight-
ing). With RStudio it is possible to create projects, which
are files with the ‘.Rproj’ extension. An RStudio project
creates a specific R session for the DARTH framework with
its own working directory, workspace, history, and source
documents [41]. In other words, the RStudio project makes
a standalone working environment without the trouble of
having to specify where files are located when used in differ-
ent computers. Additional functionality is embedded within
the RStudio platform that allows the modeler to present the
output of the analysis in a visually attractive and dynamic
form. In particular, through the Shiny package, an interac-
tive web app [37] can be developed to facilitate the usage of
the decision model [38]. The Shiny app allows the user to
modify the input parameters, rerun the model through the
app’s interface, and navigate through the updated results.
Although Shiny has been developed to support web access
to R models, it can also be downloaded and run locally. We
have added the ‘Shiny_framework.R’ file that generates the
Shiny app in the GitHub repository, which can be executed
locally once the darthpack repository is either down-
loaded or installed. An additional advantage of having the
DARTH framework as an R package via darthpack is its
integration with other packages to develop web applications
with JavaScript, such as OpenCPU.

Once the analysis is completed, the user might be inter-
ested in generating a report of the findings. R Markdown is
a functionality within RStudio that provides a dynamic solu-
tion to developing reports within an R environment. Once
written, an R Markdown file can be ‘knitted’ (transcribed)
to a variety of different formats (.docx, .pdf, .html). There
are a number of advantages associated with the use of R
Markdown. The primary one is the integration of the report-
writing process with the data analysis or the simulation
modeling. This allows for a better documented model-based
CEA and a dynamic element to the report. For example, a
report could be built in R Markdown while allowing for
narrative that can be automatically updated conditional on
the findings of the analysis. Another advantage of R Mark-
down is the ease of making a report publicly accessible,
because the ability for documents to be knitted in differ-
ent web formats allows them to be easily published on the
web. With R Markdown, the description and reporting of
the workflow of a CEA can be made more efficient with
limited entry costs for those not already familiar with this
functionality. Recently developed packages further enhance

the functionality of R Markdown. For example, bookdown
facilitates the development of long reports [39]. We provide
an example of how a report could be written in R Markdown
with bookdown by describing the use of the functions of
all the components of the DARTH framework using the case
study described below.

2.6 Case Study: Sick–Sicker Model

To showcase the DARTH framework, we performed a CEA
of a hypothetical treatment using a state-transition cohort
model on a hypothetical disease. For this CEA, we used the
previously published Sick–Sicker model first described by
Enns et al. [40]. Briefly, the Sick–Sicker model simulates
a hypothetical cohort of 25-year-old healthy individuals
with an age-specific background mortality that are at risk
of developing a disease with two different stages of illness,
‘Sick’ (S1) and ‘Sicker’ (S2). Individuals in both the S1 and
S2 states face an increased mortality and reduced quality of
life (QoL) compared with healthy individuals. The hypo-
thetical treatment improves QoL for individuals in the S1
state but has no effect on the QoL of those in the S2 state.
While individuals who are afflicted with the illness can be
identified through obvious symptoms, those in S1 cannot be
easily distinguished from those in the S2 state. Thus, under
the treatment strategy, all afflicted individuals are treated and
accrue the costs of treatment, even though only those in S1
experience any benefit.

We assume that most parameters of the Sick–Sicker
model and their uncertainty are known to the analyst and
do not require any statistical estimation. However, because
we cannot distinguish between S1 and S2, neither state-
specific mortality hazard ratios nor the probability of pro-
gressing from S1 to S2 can be directly estimated. Therefore,
we estimated these parameters by calibrating the model to
epidemiological data. We internally validated the calibrated
model by comparing the predicted outputs from the model,
evaluated at the calibrated parameters, against the calibra-
tion targets.

As part of the CEA, we conducted different deterministic
sensitivity analyses, including one-way and two-way sensi-
tivity analyses. To quantify the effect of parameter uncer-
tainty on decision uncertainty, we conducted a PSA and
reported our uncertainty analysis results with incremental
costs and QALYs, ICERs, CEACs, CEAF, and ELCs [26].
We also conducted a VOI analysis to determine whether
potential future research is needed to reduce parameter
uncertainty.

The CEA of the Sick–Sicker model implemented in the
DARTH framework may be downloaded from GitHub (https
://githu b.com/DARTH -git/darth pack). We recommend either
using the repository of this framework as a GitHub template
or installing it as an R package. Using darthpack as a

https://github.com/DARTH-git/darthpack
https://github.com/DARTH-git/darthpack

1337A Coding Framework for Improving Transparency in Decision Modeling

template allows users to easily modify any of the included
files and is most appropriate for users wishing to adapt the
DARTH framework to their own application model and
analyses. To use darthpack as a template, users should
first either clone the repository to their GitHub account or
download it locally as a .zip file containing all files and
folders. For users simply wishing to reproduce the exist-
ing analyses of the Sick-Sicker model in darthpack or
conduct simple explorations using the included model and/
or analysis functions, installing darthpack as a package
is most appropriate. To install darthpack as a package,
users should make use of the devtools package by typ-
ing devtools::install_github(“DARTH-git/
darthpack”). Detailed instructions on how to use and
install the repository can be found on the darthpack web-
site (https ://darth -git.githu b.io/darth pack/).

The DARTH framework is divided into different fold-
ers, described in Table 1, that could be accessed from the
RStudio project ‘darthpack.Rproj’. A detailed description
on how to install and use the DARTH framework on the
Sick–Sicker mode can be found in the darthpack GitHub
repository (https ://githu b.com/DARTH -git/darth pack) and
website (https ://darth -git.githu b.io/darth pack). The frame-
work of the case study is considered a finalized CEA so each
of the components in the ‘analysis’ folder should be able to
run independently from the rest of them. For example, if
there is interest in reproducing the calibration component,
the analyst or reviewer of the CEA can start by running the
file ‘03_calibration.R’ in the ‘analysis’ folder, and so on.
To reproduce the entire CEA, including all model devel-
opment components and all analyses, the analyst should
run the ‘_master.R’ file in the ‘analysis’ folder, which will
execute the R scripts of each of the components. For a more
detailed description of how the elements (functions, data,
and procedures) are interconnected within and between
components for the Sick–Sicker model CEA case study, we
recommend reading the vignettes of darthpack stored in
the ‘vignettes’ folder of the repository. In addition, a detailed
description of the CEA of the Sick–Sicker model can be
found in the file ‘report.pdf’ stored in the ‘report/_book’
folder and attached as electronic supplementary material to
this manuscript. This report could be used as a template for
CEAs that are submitted to HTA agencies for their approval.
These documents describe the code in detail and will guide
the reader on how to run code of the Sick–Sicker model
implemented in the DARTH framework.

3 Discussion

We developed the DARTH framework as a way to support
transparency, reproducibility, and model sharing in R-based
decision analytic models and CEAs. Adoption of this general

framework will facilitate the sharing and readability of deci-
sion analytic models implemented in R as analysts adopting
the framework will be familiar with the component structure
and the specific choices and assumptions of each component
can be easily scrutinized. The standardization of R code pre-
sented here may also support the broader use of R in formal
HTA submissions, allowing for more complex modeling
methods to be more transparently incorporated into deci-
sion making regarding coverage of new health technologies.

As we illustrated in this paper, a traditional model-based
decision analysis follows a well-defined conceptual struc-
ture. Despite this, our field lacks practical guidance for
the implementation of decision modeling in programming
languages. The DARTH framework addresses this gap and
will facilitate overall improvement in the quality, transpar-
ency, and reproducibility of decision models and analyses
conducted in R. Frameworks like the one we propose have
been adopted in other fields such as engineering, mathemat-
ics, and computer science to routinize frequently conducted
analyses, leading to improvements in quality and efficiency
in these methods [42]. There are additional benefits of using
R as the platform to develop model-based CEA. One such
benefit is that R has established packages that allow the eval-
uation of functions in parallel using different cores of com-
puting systems. If components have processes that require
the evaluation of the model multiple times (e.g., calibration,
validation, or PSA), the model evaluations can be carried out
more efficiently by parallelizing these processes.

While a standardized framework can facilitate model
sharing and readability, it must still be flexible enough to
accommodate a wide variety of needs and applications. The
framework we describe here is meant merely as the scaf-
folding for any given analysis; ultimately, the analyst should
make design decisions that work for their particular use and
that facilitate transparency to their audience, be it clients,
stakeholders, a government agency, other academics, or the
general public. Alongside the details of the DARTH frame-
work, we have also attempted to provide the rationale behind
our recommendations so that analysts may adapt the specific
structures and recommendations to their needs while follow-
ing the spirit of the framework.

The DARTH framework is focused on the structure
and organization of the source code underlying a decision
model and analysis to support transparency and sharing. The
DARTH framework facilitates dissemination by organizing
all the code necessary to conduct a given set of analyses into
a single directory that can be easily shared via a repository
hosting service, such as GitHub, as we have done in our
example model, or through open-source initiatives, such as
the Open-Source Model Clearinghouse [7]. The DARTH
framework is built as an R package, which allows the model
and analysis source code to be loaded directly into R. For a
description of the steps involved in package development,

https://darth-git.github.io/darthpack/
https://github.com/DARTH-git/darthpack
https://darth-git.github.io/darthpack

1338 F. Alarid-Escudero et al.

see the R package book by Wickham [30]. A package has the
advantage of generating a self-contained collection of code
with explicit dependencies on other packages and versions
with a standard downloading and installation process for
users. A package is also advantageous if computationally
intensive functions have been compiled from C/C++ source
code, as these functions will be available to the user as R
functions. The C/C++ source code can be stored in a folder
named ‘src’ as part of an R package.

An R package makes it easier for others to use built-in
functions, say for running a model with different input val-
ues or exactly reproducing the results of a set of pre-defined
analyses. To modify the model structure or adapt it to a new
application, the corresponding functions need to be modified
and the package must be recompiled. This may be cumber-
some in a model-development phase, when debugging and
internal validation studies are being conducted. However, if
RStudio is used for the package development or adaptation,
compiling the package is an effortless task as long as all the
R code is sound and well implemented. If an analyst truly
wants their model to be broadly used by practitioners, tools
such as R Shiny can make interacting with models more
user-friendly. Documenting the model structure and different
components in the CEA using R documentation and R Mark-
down also enhances the transparency of the decision models
and associated analyses. The use of the DARTH framework
alongside these complementary dissemination tools are the
foundations for open, transparent, and reproducible decision
modeling, paving the way to an ideal, open-source world.

Acknowledgements We thank Mr Caleb Easterly for his helpful
comments and suggestions on the code developed for this framework
and Dr Myriam Hunink for her overall contribution in the DARTH
workgroup.

Author contributions FAE, EK, PP, HJ SYK, AY, and EE: study design
and analysis. All authors participated in the interpretation of the data,
drafting of the manuscript, critical revision of the manuscript, and
approval of the final manuscript.

Compliance with Ethical Standards

Data availability statement Data and statistical code are provided in
the GitHub repository (https ://githu b.com/DARTH -git/darth pack) and
the darthpack website (https ://darth -git.githu b.io/darth pack). The
version of darthpack released in this article is available at https ://
doi.org/10.5281/zenod o.34454 51.

Funding/support Dr Alarid-Escudero was supported by a Grant from
the National Cancer Institute (U01-CA-199335) as part of the Cancer
Intervention and Surveillance Modeling Network (CISNET). Dr Enns
was supported by a Grant from the National Institute of Allergy and
Infectious Disease of the National Institutes of Health under award no.
K25AI118476. Dr Jalal was supported by a Grant from the National
Institute of Health (KL2 TR0001856). The content is solely the respon-
sibility of the authors and does not necessarily represent the official
views of the National Institutes of Health. The funding agencies had

no role in the design of the study, interpretation of results, or writing
of the manuscript. The funding agreement ensured the authors’ inde-
pendence in designing the study, interpreting the data, writing, and
publishing the report.

Conflict of interest FAE reports no conflicts of interest. EK reports no
conflicts of interest. PP reports no conflicts of interest. HJ reports no
conflicts of interest. SYK reports no conflicts of interest. AY reports no
conflicts of interest. EE reports no conflicts of interest.

References

 1. Taichman DB. Data sharing statements for clinical trials: a
requirement of the international committee of medical journal
editors. Ann Intern Med. 2017;14:e1002315–e1002315.

 2. Stanford. Data Availability Policies at Top Journals [Internet].
2019. https ://web.stanf ord.edu/~cy10/publi c/data/Data_Avail abili
ty_Polic ies.pdf. Accessed 2 Aug 2019.

 3. Eddy DM, Hollingworth W, Caro JJ, Tsevat J, McDonald KM,
Wong JB. Model transparency and validation: a report of the
ISPOR-SMDM modeling good research practices task force-7.
Med Decis Mak. 2012;32:733–43.

 4. Cohen JT, Neumann PJ, Wong JB. A call for open-source cost-
effectiveness analysis. Ann Intern Med. 2017;167(6):432–3.

 5. Baio G, Heath A. When simple becomes complicated: why Excel
should lose its place at the top table. Glob Reg Heal Technol
Assess. 2017;4(1):e3–6.

 6. Canadian Agency for Drugs and Technologies in Health
(CADTH). Procedure and Submission Guidelines for the CADTH
Common Drug Review. 2019. p. 110. https ://www.cadth .ca/sites /
defau lt/files /cdr/proce ss/Proce dure_and_Guide lines _for_CADTH
_CDR.pdf. Accessed 17 Sept 2019.

 7. Center for the Evaluation of Value and Risk in Health. Open-
source model clearinghouse [Internet]. Tufts University Medical
Center; 2019. http://healt hecon omics .tufts medic alcen ter.org/orcha
rd/open-sourc e-model -clear ingho use. Accessed 1 Feb 2019.

 8. Dunlop WCN, Mason N, Kenworthy J, Akehurst RL. Benefits,
challenges and potential strategies of open source health economic
models. Pharmacoeconomics. 2017;35:125–8.

 9. Sampson CJ, Wrightson T. Model registration: a call to action.
Pharmacoecon Open. 2017;1:73–7.

 10. Sampson CJ, Arnold R, Bryan S, et al. Transparency in decision
modelling: what, why, who and how? PharmacoEconomics. 2019.
https ://doi.org/10.1007/s4027 3-019-00819 -z.

 11. Jalal H, Pechlivanoglou P, Krijkamp E, Alarid-Escudero F, Enns
EA, Hunink MGM. An overview of R in health decision sciences.
Med Decis Mak. 2017;37:735–46.

 12. Decision Analysis in R for Technologies in Health (DARTH)
workgroup. Decision analysis in R for technologies in health
[Internet]. 2019. http://darth workg roup.com. Accessed 1 Jan
2019.

 13. R Core Team. R: A language and environment for statistical com-
puting. Vienna: R Foundation for Statistical Computing; 2019.

 14. Marwick B, Boettiger C, Mullen L. Packaging data analytical
work reproducibly using R (and friends). Am Stat. 2018;72:80–8.

 15. Stout NK, Knudsen AB, Kong CY, Mcmahon PM, Gazelle
GS. Calibration methods used in cancer simulation mod-
els and suggested reporting guidelines. Pharmacoeconomics.
2009;27:533–45.

 16. Briggs AH, Weinstein MC, Fenwick EAL, Karnon J, Sculpher MJ,
Paltiel AD. Model parameter estimation and uncertainty analysis:
a report of the ISPOR-SMDM modeling good research practices
task force working group-6. Med Decis Mak. 2012;32:722–32.

https://github.com/DARTH-git/darthpack
https://darth-git.github.io/darthpack
https://doi.org/10.5281/zenodo.3445451
https://doi.org/10.5281/zenodo.3445451
https://web.stanford.edu/%7ecy10/public/data/Data_Availability_Policies.pdf
https://web.stanford.edu/%7ecy10/public/data/Data_Availability_Policies.pdf
https://www.cadth.ca/sites/default/files/cdr/process/Procedure_and_Guidelines_for_CADTH_CDR.pdf
https://www.cadth.ca/sites/default/files/cdr/process/Procedure_and_Guidelines_for_CADTH_CDR.pdf
https://www.cadth.ca/sites/default/files/cdr/process/Procedure_and_Guidelines_for_CADTH_CDR.pdf
http://healtheconomics.tuftsmedicalcenter.org/orchard/open-source-model-clearinghouse
http://healtheconomics.tuftsmedicalcenter.org/orchard/open-source-model-clearinghouse
https://doi.org/10.1007/s40273-019-00819-z
http://darthworkgroup.com

1339A Coding Framework for Improving Transparency in Decision Modeling

 17. Alarid-Escudero F, MacLehose RF, Peralta Y, Kuntz KM, Enns
EA. Nonidentifiability in model calibration and implications for
medical decision making. Med Decis Mak. 2018;38:810–21.

 18. Sargent RG. Verification and validation of simulation models. J
Simul. 2013;7:12–24.

 19. Goldhaber-Fiebert JD, Stout NK, Goldie SJ. Empirically evaluat-
ing decision-analytic models. Value Health. 2010;13:667–74.

 20. Rutter CM, Savarino JE. An evidence-based microsimulation
model for colorectal cancer: validation and application. Cancer
Epidemiol Biomark Prev. 2010;19:1992–2002.

 21. Rutter CM, Knudsen AB, Marsh TL, Doria-Rose VP, Johnson E,
Pabiniak C, et al. Validation of models used to inform colorec-
tal cancer screening guidelines: accuracy and implications. Med
Decis Mak. 2016;36:604–14.

 22. Kopec JA, Finès P, Manuel DG, Buckeridge DL, Flanagan WM,
Oderkirk J, et al. Validation of population-based disease simu-
lation models: a review of concepts and methods. BMC Public
Health. 2010;10:710.

 23. Cancer Intervention and Surveillance Modelling Network (CIS-
NET). About CISNET [Internet]. 2019. https ://cisne t.cance r.gov/
about /index .html. Accessed 16 July 2019.

 24. Krijkamp EM, Alarid-Escudero F, Enns E, Pechlivanoglou P,
Hunink MM, Jalal H. A multidimensional array representation of
state-transition model dynamics. bioRxiv 670612. 2019.

 25. Sculpher MJ, Basu A, Kuntz KM, Meltzer DO. Reflecting uncer-
tainty in cost-effectiveness analysis. In: Neumann PJ, Sanders GD,
Russell LB, Siegel JE, Ganiats TG, editors. Cost-effectiveness
heal med. 2nd ed. New York: Oxford University Press; 2017. p.
289–318.

 26. Alarid-Escudero F, Enns EA, Kuntz KM, Michaud TL, Jalal H.
“Time traveling is just too dangerous” but some methods are
worth revisiting: the advantages of expected loss curves over
cost-effectiveness acceptability curves and frontier. Value Health.
2019;22:611–8.

 27. Raiffa H, Schlaifer RO. Applied statistical decision theory. Cam-
bridge: Harvard Business School; 1961.

 28. Claxton K, Posnett J. An economic approach to clinical trial
design and research priority-setting. Health Econ. 1996;5:513–24.

 29. Jutkowitz E, Alarid-Escudero F, Kuntz KM, Jalal H. The curve
of optimal sample size (COSS): a graphical representation of the
optimal sample size from a value of information analysis. Phar-
macoeconomics. 2019;37:871–7.

 30. Wickham H. R packages: organize, test, document, and share your
code. Spencer A, Marie Beaugureau, editors. Sebastopol: O’Reilly
Media; 2015.

 31. Cooper N, Hsing P-Y, editors. A guide to reproducible code in
ecology and evolution. London: British Ecology Society; 2017.

 32. Kleijnen JPC. Verification and validation of simulation models.
Eur J Oper Res. 1995;82:145–62.

 33. Wickham H. The tidyverse style guide [Internet]. 2019. https ://
style .tidyv erse.org. Accessed 19 July 2019.

 34. Google. Google’s R Style Guide [Internet]. 2019. p. 1–6. https ://
googl e.githu b.io/style guide /Rguid e.xml. Accessed 24 July 2019.

 35. Martin RC. Clean code: a handbook of agile software craftsman-
ship. Boston: Pearson Education; 2009.

 36. Wickham H. testthat: get started with testing. R J. 2011;3:5.
 37. Beeley C. Web application development with R using Shiny. Bir-

mingham: Packt Publishing Ltd; 2013.
 38. Incerti D, Curtis JR, Shafrin J, Lakdawalla DN, Jansen JP. A

flexible open-source decision model for value assessment of bio-
logic treatment for rheumatoid arthritis. Pharmacoeconomics.
2019;37:829–43.

 39. Xie Y. Bookdown: authoring books with R Markdown. Boca
Raton, FL: CRC Press; 2016.

 40. Enns EA, Cipriano LE, Simons CT, Kong CY. Identifying best-
fitting inputs in health-economic model calibration: a pareto fron-
tier approach. Med Decis Mak. 2015;35:170–82.

 41. RStudio. Using projects [Internet]. 2019. https ://suppo rt.rstud
io.com/hc/en-us/artic les/20052 6207-Using -Proje cts. Accessed 1
Feb 2019.

 42. David O, Ascough JC, Lloyd W, Green TR, Rojas KW, Leavesley
GH, et al. A software engineering perspective on environmental
modeling framework design: the object modeling system. Environ
Model Softw. 2013;39:201–13.

Affiliations

Fernando Alarid‑Escudero1 · Eline M. Krijkamp2 · Petros Pechlivanoglou3 · Hawre Jalal4 · Szu‑Yu Zoe Kao5 ·
Alan Yang6 · Eva A. Enns5

1 Drug Policy Program, Center for Research and Teaching
in Economics (CIDE)-CONACyT, Circuito Tecnopolo Norte
117, Col. Tecnopolo Pocitos II, 20313 Aguascalientes, AGS,
Mexico

2 Department of Epidemiology, Erasmus MC, Rotterdam,
The Netherlands

3 The Hospital for Sick Children and University of Toronto,
Toronto, ON, Canada

4 Department of Health Policy and Management, Graduate
School of Public Health, University of Pittsburgh, Pittsburgh,
PA, USA

5 Division of Health Policy and Management, University
of Minnesota School of Public Health, Minneapolis, MN,
USA

6 The Hospital for Sick Children, Toronto, Ontario, Canada

https://cisnet.cancer.gov/about/index.html
https://cisnet.cancer.gov/about/index.html
https://style.tidyverse.org
https://style.tidyverse.org
https://google.github.io/styleguide/Rguide.xml
https://google.github.io/styleguide/Rguide.xml
https://support.rstudio.com/hc/en-us/articles/200526207-Using-Projects
https://support.rstudio.com/hc/en-us/articles/200526207-Using-Projects
http://orcid.org/0000-0001-5076-1172
http://orcid.org/0000-0003-3970-2205
http://orcid.org/0000-0001-5090-7936
http://orcid.org/0000-0002-8224-6834
http://orcid.org/0000-0002-4987-3983
http://orcid.org/0000-0002-0344-6812
http://orcid.org/0000-0003-0693-7358

	A Need for Change! A Coding Framework for Improving Transparency in Decision Modeling
	Abstract
	1 Introduction
	2 Methods
	2.1 Components of a Decision Model
	2.1.1 Component 1: Define Model Inputs
	2.1.2 Component 2: Decision Model Implementation
	2.1.3 Component 3: Model Calibration
	2.1.4 Component 4: Validation
	2.1.5 Component 5: Analysis
	2.1.6 Subcomponent 5a: Probabilistic Analysis
	2.1.7 Subcomponent 5b: Scenario and Deterministic Sensitivity Analysis
	2.1.8 Subcomponent 5c: Value of Information (VOI) Analysis

	2.2 File Structure and Organization
	2.3 Naming Conventions
	2.4 Unit Testing
	2.5 Additional Tools to Support Model Transparency
	2.6 Case Study: Sick–Sicker Model

	3 Discussion
	Acknowledgements
	References

