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A multiscale simulation of a hydrophobic polymer chain immersed in water including the supercooled

region is presented. Solvent effects on the polymer conformation were taken into account via liquid–state

density functional theory in which a free-energy functional model was constructed using a density

response function of bulk water, determined from a molecular dynamics (MD) simulation. This approach

overcomes sampling problems in simulations of high-viscosity polymer solutions in the deeply supercooled

region. Isobars determined from the MD simulations of 4000 water molecules suggest a liquid–liquid

transition in the deeply supercooled region. The multiscale simulation reveals that a hydrophobic polymer

chain exhibits swelling upon cooling along isobars below a hypothesized second critical pressure; no

remarkable swelling is observed at higher pressures. These observations agree with the behavior of a

polymer chain in a Jagla solvent model that qualitatively reproduces the thermodynamics and dynamics of

liquid water. A theoretical analysis of the results obtained from the multiscale simulation show that a

decrease in entropy due to the swelling arises from the formation of a tetrahedral hydrogen bond

network in the hydration shell.

1. Introduction

Water in the liquid phase exhibits (i) a thermodynamic
anomaly (density decrease upon cooling and entropy increase
with pressurization) and (ii) a dynamic anomaly (increase in
diffusivity upon compression).1,2 These anomalies are related
to the tetrahedral structure of the hydrogen bond network. It
has been hypothesized that in the deeply supercooled region,
water undergoes a phase transition from a low-density liquid
(LDL) state, with a large amount of empty space around the
tetrahedrally coordinated molecules, to a high-density liquid
(HDL) state in which the tetrahedral structure is distorted and
weakened, whereby the empty space decreases.3–5 The possible
existence of the liquid–liquid critical point is experimentally
supported by the changing gradient of the metastable melting
curves observed for different ice polymorphs.6,7 These two
different dense liquids have well characterized counterparts in
the glassy state: the low-density and high-density amorphous
ice forms.8,9

Recently it was shown that a spherically symmetric two-
scale potential liquid model (Jagla model)10,11 with both
repulsive and attractive ramps not only exhibits thermody-
namic and dynamic anomalies similar to those found in liquid
water as well as the liquid–liquid transition,12–14 but also
reproduces water-like solvation thermodynamics such as a

decrease in the solubility of small non-polar solutes with
decreasing temperature.15 These observations strongly suggest
that these anomalies may arise from the hypothesized liquid–
liquid transition in the deeply supercooled state of water.3,16

Moreover, it was demonstrated that the two-ramp spherically
symmetric Jagla solvent model, at which particles interacting
via a hard core repulsion (r1 = dhc) and a soft core repulsion (r2

= 1.72dhc) and an attraction (r3 ¡ 3dhc) [see Fig. 1(a) in ref. 15],
exhibits a significant swelling of a solvophobic polymer chain
upon cooling.15,17 It has also been pointed out that the
phenomenon might be related to the basis of cold denatura-
tion of proteins.

The study presented here is the third work in a series of
studies on water and hydration effects over a wide range of
pressures and temperatures. The first study was conducted to
investigate the underlying physical mechanisms of high-
pressure unfolding of proteins from a general point of view
of hydrophobic hydration effects.18 In the second work,
extensive molecular dynamics simulations of water were
performed over a wide range of temperatures and pressures
including the hypothesized liquid–liquid transition in the
deeply supercooled state, and a generalized Arrhenius analysis
of the self-diffusion coefficient of bulk water was presented.19

A rigid planar four-site interaction potential model of water
TIP4P/200520 was employed in these studies to determine the
thermodynamic and dynamic properties of bulk water. In the
study presented here, we performed a multiscale simulation of
hydrophobic polymer chains immersed in water to investigate
the relationship between the thermodynamic anomalies of
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water and hydration thermodynamics. In this method, the
solvation effects are taken into account via an effective
Hamiltonian21 that is constructed from a density functional
model in which a solvent density–response function and a
polymer–solvent pair correlation function are determined
from a molecular dynamics (MD) simulation of bulk water
and a density functional theory (DFT)-based integral equation
for polymer–solvent mixtures, respectively.

The outline of this paper is as follows. The details of the
theory and computation of the multiscale simulation of the
polymer chain in solvent are presented in Sec. 2 and 3,
respectively. In Sec. 4, we present and discuss the results
obtained from both the MD simulations of bulk water and the
multiscale simulations of the polymer chain in water. A
summary is given in Sec. 5.

2. Multiscale simulation of polymer chains in
solvent

From a partition function of infinitely diluted polymer
solutions, the following effective Hamiltonian for a polymer
chain immersed in solvent can be derived using DFT:21

Heff rl
1

� �� �
~Hipc rl

1

� �� �
z
XNp

a~1

XNp

b~1

Wpp ra
1{rb

1

�� ��� �
, (1)

where Hipc rl
1

� �� �
is a Hamiltonian for the polymer chain existing

in a vacuum, Np is the number of monomers, and Wpp(r) is a
solvent-induced interaction between monomers. The effective
Hamiltonian provided by eqn (1) should approximately reproduce
the ensemble average of the conformational properties of the
polymer chain provided by the original partition function; effects
of the solvent on the conformational properties are reproduced by
Wpp(r). From the density functional Taylor expansion of the grand
potential for the solvent Vs[Upr

sp] under an external field Upr
sp rl

1

� �� �

up to the second order, and making a site decomposition
assumption, the Fourier transform of Wpp(r) is obtained as
follows:21

Ŵpp(k)~kbT ŝ{1
pp (k)ĥps(k)n0

s Ĉss(k)n0
s ĥsp(k)ŝ{1

pp (k)=2: (2)

Here, the external field Upr
sp rl

1

� �� �
for Vs[Upr

sp] in the original
partition function is caused by the monomer–solvent interaction
potential nps(r), where the conformation of the polymer chain is
fixed in space with a set of coordinates for the monomer positions
{rl

1}. In eqn (2), kb is the Boltzmann constant, T is the temperature,
and n0

s is the number density of the solvent. The terms ŝpp(k),
ĥps(k), and Ĉss(k) are Fourier transforms of the intramolecular
correlation function, polymer–solvent pair correlation function,
and direct correlation function between the solvents, respectively.
The solvation structure around the polymer chain characterized by
hps(r) and the equilibrium average conformation of the polymer
chain characterized by spp(r) influence each other. Therefore, both
the correlation functions hps(r) and spp(r) should ideally be
determined in a self-consistent manner.

Here, Css(r) (or hss(r)) and hps(r) in eqn (2) were determined
from integral equations based on DFT for polymer–solvent
mixtures21 using spp(r) as the input. In the limit of infinitely
diluted polymer solutions, the DFT for polymer–solvent
mixtures that is formulated for an arbitrary concentration of
the polymer chain provides an integral equation for hss(r) in
the bulk pure solvent, which is independent of the integral
equation for hps(r). This is a general conclusion that is driven
from statistical mechanics in the limit of infinitely diluted
solutes. The reason why hss(r) in the polymer–solvent mixture
is equal to hss(r) for the bulk solvent is that the number of
solvent particles in the solvation shell around the solutes is
finite in comparison with the infinite number of non-
perturbation solvent particles in the case of infinitely diluted
solutions. However, the equivalence in these hss(r) values does
not indicate that the correlation between solvents in the
solvation shell are not perturbed by solutes in the limit of
infinitely diluted solutions. The DFT for the polymer–solvent
mixtures provides the following integral equation for hps(r):21

hps(r)~

ð
P
Np

a~1
dra

1

� �
1

Np

XNp

a~1

d r{ra
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� �
{1, (3)

where

Fig. 1 Number densities (solid circles) as a function of temperature for various
isobars in the density–temperature plane. Isobars, from bottom to top in the
figure, are shown for 1, 1000, 1250, 1500, 1750, 2000, 3000, 4000, 5000, 6000,
7000, 8000, 9000, and 10 000 bar. Densities along the 1250, 1500, and 1750
isobars are given only for temperatures lower than 250 K. The open circles
connected by the dashed black line show hypothesized coexistent densities that
were estimated from the densities determined from the MD simulations (shown
by the solid circles) assuming that these isobars indicate the liquid–liquid
transition between the high-density liquid (HDL) and the low-density liquid
(LDL) states. The dashed red line is the maximum of the isothermal
compressibility kT. The hypothesized second liquid–liquid critical point that was
estimated from these isobars and the maximum kT are located at Tc = 182 K, n0

c

= 1.02 g cm˜ 3, and 1580–1620 bar. The dashed blue line and blue triangle
indicate the maximum kT and the hypothesized second liquid–liquid critical
point determined by Abascal and Vega (ref. 28), respectively.
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U ref
p (r)~nps(r){

1

b

ð
dkexp({ik:r)Ĉp(k), (4)

Ĉp(k)~
ŝpp(k){ŝref

pp (k)

ŝpp(k)ŝref
pp (k)

ĥps(k)z
ĥps(k)

ŝpp(k)
n0

s Ĉss(k): (5)

In eqn (3), s(r) is a bond function between nearest-neighbor
monomers and is given by d(Lpp 2 r)/4pL2

pp, where Lpp is the
bond length. Eqn (3) corresponds to the monomer density
distribution function of an ideal chain gas under the effective
external field Uref

p (r). The ideal chain gas, in which there are no
interactions except for the bonding interaction between
nearest-neighbor monomers, is introduced as a reference
system in the DFT for the polymer–solvent mixtures. In eqn
(5), ŝref

pp (k) is the Fourier transform of the intramolecular
correlation function for the ideal chain, i.e., the reference
system. As mentioned above, the direct correlation function
for the bulk solvent is denoted as Ĉss(k) in eqn (5). However,
this theoretical conclusion does not necessarily indicate that
the perturbation effects from solutes on the correlation
between solvents in the solvation shell are not taken into
account in the integral equation approach.

The multiscale simulation for the polymer chain in a
solvent consists of the following two parts: (i) a single-polymer
simulation with the effective Hamiltonian of eqn (1) and (2),
which is needed to determine spp(r), and (ii) solving the
integral equations for hss(r) and hps(r) given by eqn (3)–(5),
where spp(r) is used as the input. Both (i) and (ii) are
performed iteratively to determine self-consistent forms of
spp(r) and hps(r). The approximations introduced in the
derivation of eqn (1)–(5) have been demonstrated to predict
high-pressure unfolding of hydrophobic polymer chains18 as
well as high-temperature and low-pressure unfolding of
solvophobic polymer chains.22

3. Computational details

To perform the multiscale simulation using eqn (1)–(5), we
need the structure factor of bulk water Sss(k) to construct the
DF model for water in eqn (2), (4), and (5) because Ĉss(k) is
obtained from Ĉss(k) = [1 2 S{1

ss (k)]/n0
s .(ref. 23) Here we employ

the following approach to determine Sss(k): An MD simulation
of bulk water is performed first to calculate the radial
distribution function between oxygen sites gss(r). We then
extend this gss(r) function to a large radial distance (50 nm)
using the HNC integral equation;23 the gss(r) values for r ¡ rh

(1.3–1.7 nm) were fixed to the MD values when iteratively
solving the HNC integral equation gss(r) = hss(r) + 1 = exp[hss(r)
2 Css(r)] for r . rh,24 where the intermolecular potential is
assumed to be neglible for r . rh. The rh value was chosen
carefully so that the gss(r) obtained from the HNC integral
equation for r . rh was smoothly connected to the gss(r)
determined from the MD simulation for r ¡ rh. Here, we note
that the statistical error included in the MD values of gss(r)
gradually increases as the radial distance increases. This error

would artificially influence the result of gss(r) obtained from
the integral equation. If the structural information for larger
radial distances without the statistical error were taken into
account by choosing an appropriate value of rh when the
integral equation was solved, the extended values of gss(r)
determined from the integral equation would almost agree
with the MD values of gss(r) at radial distances around rh for r
. rh. In general, it is known that the bridge function that gives
an exact correction for the HNC approximation is a short-range
function.23 Since all the bridge corrections are already taken
into account through the radial distribution function deter-
mined from the MD simulation for r ¡ rh, the approach using
the HNC integral equation can extend the radial distribution
function to r . rh at quite a high precision. Therefore, we can
obtain an accurate Sss(k) by combining the MD result of gss(r)
and the HNC integral equation.

In this study, a rigid planar four-site interaction potential
model of water TIP4P/200520 was employed for the MD
simulation of bulk water. All the MD simulations were
performed for 4000 water molecules in the isothermal–
isobaric NpT ensemble using the MD package GROMACS
4.0.5.25 The time step was 2 fs, and the cutoff distance of the
Lennard–Jones (LJ) potential was 0.9 nm. The Coulomb
interaction was treated by the particle–mesh Ewald method.
Simulations of between 40 and 100 ns were conducted to
evaluate the ensemble average of the thermodynamic quan-
tities and gss(r).

For the multiscale simulation of the polymer chain in
water, we employed a hydrophobic polymer model consisting
of 512 monomers interacting via the LJ potential with a set of
parameters epp = 0.25 kcal mol21 and dpp = 0.38 nm. The
nearest-neighbor monomers were linked via a rigid bond with
a bond length L = dpp, where dpp was the diameter of the
monomer. The polymer chain model was also given an
intrinsic stiffness by including a bond angle potential uang(h)
= kang(h 2 h0)2, where h is the angle between three consecutive
monomers, and the equilibrium value was h0 = 109u. The value
of kang was set to 2.5 kcal mol21 rad22. For the LJ parameters
between the polymer and water, the equations eps~

ffiffiffiffiffiffiffiffiffiffiffi
eppess
p

and
dps = (dpp + dss)/2 were used, where ess and d are 0.1852 kcal mol21

and 0.31589 nm, respectively, from the TIP4P/2005 model of
water.20 The following Weeks–Chandler–Andersen (WCA) repul-
sion was employed as the monomer–solvent interaction: nps(r) =
4eps[(dps/r)12 2 (dps/r)6] + eps for r ¡ 21/6dps and nps(r) = 0 for r .

21/6dps.
The smart Monte Carlo (SMC) method26 was employed to

evaluate the ensemble average with respect to the polymer
conformation. The SMC simulation was performed under the
effective Hamiltonian of the solvated polymer chain. The bond
lengths were kept constant using the RATTLE algorithm of the
TINKER simulation package.27 The equilibrium properties
were evaluated from an average of 2.5 6 106 MC steps. The
integral equations were solved with 4096 grid points, in which
the maximum value of the radial distance was 50 nm. Except
for significant swelling states, 40 cycles between the SMC
simulation with the effective Hamiltonian and solving the
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integral equation for hps(r) were typically performed to
evaluate the ensemble average of spp(r) and the radius of
gyration Rg.

4. Results and discussions

In Fig. 1, isobars are shown as a function of temperature in the
density–temperature plane. The solid circles indicate number
densities determined from the MD simulation. Isobars are
shown for pressures of 1 to 10 000 bar from the bottom to the
top. The open circles connected by the dashed black line,
estimated from the MD densities, illustrate the hypothesized
coexistence line of a liquid–liquid transition between the HDL
and LDL. The dashed red line crossing the isobars is the
maximum of the isothermal compressibility, kT. The location
of the second liquid–liquid critical point C* was estimated
from the schematic coexistent line and the maximum of kT to
be located at Tc = 182 K, n0

c = 1.02 g cm23, and between 1580
and 1620 bar. The maximum of kT, i.e., the Widom line in the
case of a liquid–liquid transition, determined from the
thermodynamic limit of the 4000-water-molecule MD result
using the integral equation almost agrees with the Widom line
determined by Abascal and Vega from the volume fluctuation
of a 500-water-molecule MD simulation28 using the TIP4P/
2005 model. However, our result (the dashed red line) is
approximately 5–10 K higher than their result (the dashed blue
line). The corresponding values of kT for isobars of 1 and 1000
bar are shown in Fig. 2. The isobars of kT (black circles)
obtained from the compressibility equation kT = Sss(k = 0)/
n0

s kbT are slightly higher than those evaluated from the volume
fluctuation by Abascal and Vega28 (red triangles), and in
addition, the maximum values provided by our result are
located at higher temperatures. Our estimate of C* is also close
to the estimate for a thermodynamic state at Tc = 190 K, n0

c =

1.03 g cm23, and Pc = 1750 bar by Paschek et al.29 using a
replica exchange MD simulation with the TIP4P-Ew water
model. The overall isobar diagram shown in Fig. 1 agrees with
that presented by Paschek et al.,29 although the temperature
and density of each isobar determined from our MD
simulation with the TIP4P/2005 model are approximately 10
K and 0.01 g cm23 lower, respectively, than those determined
with the TIP4P-Ew model. However, we cannot confirm
whether the hypothesis of the liquid–liquid transition is valid
because we have not confirmed whether the high- and low-
density sides are in chemical equilibrium.

Fig. 3 shows the radial distribution function of the oxygen
site gss(r) and the structure factor obtained from Sss(k) = 1 +
n0

s ĥss(k), where ĥss(k) is the Fourier transform of hss(r) = gss(r) 2

1 and n0
s is the number density of water. The functions gss(r)

and Sss(k) at 1 bar for 160–300 K are summarized in Fig. 3(a)
and 3(b), respectively; those at 3000 bar are shown in Fig. 3(c)
and 3(d). The isobars of 1 and 3000 bar in the density–
temperature plane are indicated in Fig. 1 as the blue and red
circles, respectively. We can see in Fig. 1 that the 1 and 3000
bar isobars tend toward the LDL and HDL side, respectively,
with a decrease in the temperature below about 180 K. In
Fig. 3(a), we find that both the first and second peaks increase
and the first minimum decreases with a decrease in
temperature. The change in gss(r) shows that water molecules
located at radial distances around the first minimum between
0.3 and 0.4 nm are moving to radial distances associated with
the first and second maxima in gss(r) so that they form
tetrahedral hydrogen-bond networks. The temperature depen-
dence of the structure as seen in gss(r) should qualitatively
correspond to the temperature dependence of the character-
istic first and second peaks in Sss(k) shown in Fig. 3(b). As the
temperature decreases, the first and second peaks increase

Fig. 2 Isothermal compressibility kT as a function of temperature along isobars.
Lines are natural smoothing spline fit to the results. The open and solid black
circles show results obtained from the compressibility equation kT = Sss(k = 0)/
n0

s kbT, where Sss(k) is the structure factor at 1 and 1000 bar, respectively. The
open and solid red triangles show the results of Abascal and Vega (ref. 28) at 1
and 1000 bar, respectively.

Fig. 3 Radial distribution function of the oxygen site gss(r) and structure factor
obtained from Sss(k) = 1 + n0

c ĥss(k), where ĥss(k) is the Fourier transform of hss(r)
= gss(r) 2 1, and n0

c is the number density of water. Data for gss(r) and Sss(k) are
shown for temperatures of 160–300 K at (a) and (b) 1 bar, and (c) and (d) 3000
bar.
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and their peak positions shift toward small and large values of
k, respectively. In comparison with the low-density side at 1
bar, the first and second peaks of gss(r) at 3000 bar are not as
significant, and the position of the second peak of gss(r) is
located at a smaller radial distance at 3000 bar even though
the temperature is sufficiently low [see Fig. 3(c)]. This
observation suggests that the tetrahedral hydrogen-bond
network is distorted on the high-density side at 3000 bar.

In Fig. 4, the temperature dependence of the excess entropy
of bulk water Sex

s , spacing between the water molecules 2p/k1,
number density of water n0

s , and translational order parameter
t are shown as a function of temperature along isobars of 1
(blue circles) and 3000 bar (red triangles). The excess entropy
of bulk water Sex

s was estimated approximately from the
following two-body contribution Sð2Þs , (ref. 30)

S(2)
s ~{2pn0

s kb

ð
drr2 gss(r)ln gss(r)½ �{ gss(r){1½ �f g: (6)

The wave number k1 in 2p/k1 is that at the first maximum of
ĥss(k). The translational order parameter t was determined
from the following definition:31

t~

ð
ds gss sð Þ{1j j, (7)

where the dimensionless variable s = r(n0
s )1/3 is the radial

distance r scaled by the mean intermolecular distance (n0
s )21/3.

In Fig. 4(a), Sex
s along the 3000 bar isobar monotonically

decreases as the temperature decreases. This decrease in Sex
s is

interpreted as a decrease in the free-volume effect on Sex
s due

to the monotonic increase in n0
s along the isobar, as shown in

Fig. 4(c). In contrast, Sex
s along the 1 bar isobar decreases

significantly when the temperature decreases from 273 K to
200 K even if the free-volume effect contributes to an increase

in Sex
s at these temperatures, as shown in Fig. 4(c). The

temperature dependence of t, shown in Fig. 4(d), appears to be
consistent with the temperature dependence of Sex

s . In
Fig. 4(b), the value of 2p/k1 along the 3000 bar isobar
monotonically increases as the temperature decreases, but
we find a larger increase in 2p/k1 along the 1 bar isobar with
decreasing temperature at temperatures above 210 K. Both the
decrease in n0

s and the increase in the spacing between the
water molecules specified by 2p/k1 indicate the formation of a
tetrahedral hydrogen-bond network at 1 bar. Therefore, the
significant decrease in Sex

s along the 1 bar isobar can be
attributed to a reduction in Sex

s caused by the formation of the
tetrahedral hydrogen-bond network.

Fig. 5 shows the radius of gyration Rg of the polymer chain
as a function of temperature along isobars of 1 bar (blue
circles) and 3000 bar (red triangles). Along the 3000 bar isobar,
no remarkable change in Rg is observed even if the
temperature decreases from 300 K to 160 K. On the other
hand, a significant increase in Rg is seen in the case of the 1
bar isobar with a decrease in temperature below 220 K. These
results suggest that the HDL and LDL are poor and good
solvents for the hydrophobic polymer chain, respectively. The
difference in the entropies of a globule and swelling state DStot

is negative at temperatures below 220 K because d(DGtot) =
2dTDStot is negative with decreasing temperature along the 1
bar isobar, where DGtot is the difference in the Gibbs free
energy of the globule and swelling states. The physical origin
of the negative DStot value is discussed in relation to Fig. 7. The
polymer behavior is in accordance with the expectations based
on a decrease in the hydration free energy of a small apolar
solute examined in supercooled water using MD simulations
with the TIP5P-E water model.32 A similar swelling behavior
was demonstrated in a solvent model whose particles interact
via a two-ramp spherically symmetric Jagla potential.15,17 The
results presented here are consistent with the possibility that
the Jagla fluid exhibits water-like solvation thermodynamics

Fig. 4 (a) The excess entropy of bulk water Sex
s from the two-body contribution

Sð2Þs ; (b) the spacing between water molecules 2p/k1, where k1 is the wave
number at the first maximum of ĥss(k); (c) the number density of water n0

s ; and
(d) the translational order parameter t as a function of temperature along
isobars of 1 bar (blue circles) and 3000 bar (red triangles).

Fig. 5 Radius of gyration of the polymer chain as a function of temperature
along isobars of 1 bar (blue circles) and 3000 bar (red triangles).
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for solvophobic polymer chains. However, we realize a
discrepancy between the swelling of the polymer chain and
cold denaturation of proteins: the swelling transition of the
polymer chain takes place at temperatures lower than not only
the melting temperature of the water model TIP4P/2005 (about
251 K)20,33,34 but also the temperature of the maximal growth
rate of hexagonal ice for the water model (about 241 K).34 The
swelling phenomenon of the hydrophobic polymer chain is
interpreted as being affected by the hypothesized liquid–liquid
transition.

In Fig. 6(a) and 6(b), the effective solvent-induced interac-
tion potential between monomers neff

pp (r)/kbT and the radial
distribution function of water around the monomers gps(r) for
various temperatures at 1 bar, respectively, are shown. At 300
K, neff

pp (r)/kbT has a large first minimum at the monomer
contact distance, whereas no distinct minima are observed at
radial distances larger than the contact distance. When the
temperature decreases to 220 K, the first minimum increases
slightly, whereas the second minimum decreases so that
water-separated conformations are relatively stabilized.
However, a compact globular polymer chain conformation is

still stable at 220 K. At both 220 K and 300 K, as seen in
Fig. 6(b), water molecules are excluded from the inside of the
globular polymer. At 210 K, however, the contact-monomer
conformations are significantly destabilized, while the water-
separated conformations are stabilized. As a result of the
change in neff

pp (r)/kbT, water molecules penetrate the inside of
the polymer chain, as seen from gps(r). For the completely
extended conformation at 160 K, both the first and second
minima in neff

pp (r)/kbT become positive, the first maximum
becomes higher than kbT, and the third minimum becomes
negative. The gps(r) function shows that the monomers are
strongly hydrated at 160 K. The first and second maxima in
gps(r) at radial distances of 0.34 and 0.61 nm, respectively, are
attributed to the first and second hydration shells around a
monomer fixed at the origin. The third maximum in gps(r),
meanwhile, can be regarded as the first hydration shell of the
nearest-neighbor monomers connected to the monomer fixed
at the origin. Three similar maxima in gps(r) have been
observed in a MD simulation of a hydrophobic polymer chain
using the TIP5P water model as the solvent.35 These results,
qualitatively comparable with the MD simulation, show the
reliability of the DFT model presented here.

Fig. 7 shows the change in the spacing between the water
molecules in the hydration shell due to swelling of the polymer
chain D(2p/k1) = 2p/k1[swollen] 2 2p/k1[collapsed] as a function
of temperature along the 1 bar isobar, where k1[swollen] and
k1[collapsed] are the wave numbers at the maximum of the
Fourier transform of hps(r) = gps(r) 2 1 calculated by assuming
swollen and collapsed conformations, respectively.

Fig. 7 (Left axis) Change in the spacing between water molecules in the
hydration shell due to swelling of the polymer chain D(2p/k1) = 2p/k1[swollen]
2 2p/k1[collapsed] as a function of temperature along the isobar of 1 bar,
where k1[swollen] and k1[collapsed] are wavenumbers at the maximum in the
Fourier transform of hps(r) = gps(r) 2 1 calculated by assuming swollen and
collapsed conformations, respectively. (Right axis) Change in volume due to
swelling of the polymer chain DV = Vex[swollen] 2 Vex[collapsed] as a function
of temperature along the isobar of 1 bar, where Vex[swollen] and Vex[collapsed]
are the excess partial molar volumes calculated from {

Ð
drhps(r) by assuming

swollen and collapsed conformations, respectively. Conformations of the
polymer chain at 160 and 300 K were employed as the swollen and collapsed
conformations in the calculations of gps(r), respectively.

Fig. 6 (a) Effective solvent-induced interaction potential between monomers
Veff

pp (r)/kbT for various temperatures at 1 bar, where kb is the Boltzmann
constant. (b) Radial distribution function of water around monomers gps(r) for
various temperatures at 1 bar.
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Conformations of the polymer chain at 160 K and 300 K were
employed as the swollen and collapsed conformations in the
calculation of hps(r), respectively; ŝpp(k) determined at 160 K
and 300 K were employed as the input for eqn (6). The spacing
D(2p/k1) increases slightly as the temperature decreases from
285 K to 240 K. The values of D(2p/k1) at these temperatures
are negative, indicating that 2p/k1[collapsed] is larger than 2p/
k1[swollen]. The spacing D(2p/k1) increases rapidly as the
temperature decreases and becomes positive at about 220 K, at
which point Rg also starts to increase. The positive value of
D(2p/k1) indicates that the spacing between the water
molecules surrounding the swollen polymer chain is longer
than that surrounding the collapsed polymer chain. In other
words, the distortion of the tetrahedral hydrogen-bond net-
work in the hydration shell is relaxed, and a more ideal
tetrahedral structure is formed when the polymer chain swells.
The decrease in the entropy due to the swelling, i.e., DStot , 0
is, therefore, interpreted as a decrease in the entropy caused by
the formation of the more ideal hydrogen-bond network in the
hydration shell.

Fig. 7 also shows the change in volume due to the swelling
of the polymer chain DV = Vex[swollen] 2 Vex[collapsed] as a
function of temperature along the 1 bar isobar, where
Vex[swollen] and Vex[collapsed] are the excess partial molar
volumes calculated from {

Ð
drhps(r) by assuming swollen and

collapsed conformations, respectively. The values of DV are
positive at temperatures above 220 K, whereas DV becomes
negative when the polymer chain has swollen significantly at
temperatures below 210 K. The decrease in the volume due to the
swelling, i.e., DV , 0, would also contribute to the decrease in the
entropy, DStot , 0, owing to the free-volume effect. These
observations provide the following physical picture for the
hydration shell: Water molecules surrounding the swollen
polymer chain attempt to form the more ideal tetrahedral
hydrogen-bond network in which the spacing between water
molecules is longer but as compact as possible so that the entropy
decreases. The thermodynamic stability of the swollen state of the
hydrophobic polymer chain DStot , 0 and DV , 0 is qualitatively
consistent with the thermodynamics of the formation of gas
hydrates.

5. Concluding remarks

For the purpose of investigating the relationship between the
thermodynamic anomalies of water and the hydration
thermodynamics, we performed a multiscale simulation of a
hydrophobic polymer chain immersed in water. In this
method, the solvation effects on the polymer conformation
were taken into account via DFT where a free-energy functional
model was constructed using the density response function of
bulk water and a polymer–solvent pair correlation function,
which were determined from MD simulations of bulk water
and a DFT-based integral equation for polymer–solvent
mixtures, respectively. The multiscale approach overcomes

the sampling problems regarding simulations of high-viscosity
polymer solutions in the deeply supercooled region.

Isobars determined from the MD simulations using 4000
water molecules and the TIP4P/2005 water model suggest a
liquid–liquid transition between the LDL and HDL in the
deeply supercooled region. At pressures higher than the
hypothesized second critical pressure estimated in the present
work, at which the tetrahedral hydrogen-bond network is
distorted, the excess entropy of water monotonically decreases
in accordance with a monotonous increase in the density of
water as the temperature decreases along the isobar. However,
at pressures lower than the hypothesized second critical
pressure, at which ideal tetrahedral hydrogen-bond networks
are formed, the excess entropy decreases significantly with a
decrease in the temperature, although a free volume effect due
to a decrease in the density of water would contribute to an
increase in the excess entropy. The remarkable decrease in the
excess entropy on the low-pressure side is therefore attributed
to the formation of an ideal tetrahedral hydrogen-bond
network that is revealed as an increase in the spacing between
water molecules.

Using the multiscale simulation of a hydrophobic polymer
chain in water, we investigated the temperature dependence of
both the polymer conformation and hydration structure along
isobars on the high- and low-pressure sides (1 and 3000 bar).
The multiscale simulation approach demonstrated that the
polymer chain swells when the temperature is lower than 220
K at 1 bar, i.e., it moves toward the LDL state, whereas no
significant conformation change was observed at 3000 bar,
even if temperature decreased to 160 K. These results agree
qualitatively with reported polymer behaviors in the Jagla
solvent model.15,17 Our theoretical analysis revealed that the
entropy-driven swelling of the hydrophobic polymer chain
immersed in the LDL that occurs upon cooling is caused by
the formation of a hydrogen-bond network in the hydration
shells. Moreover, it was also shown that the hydration
structures are optimized to reduce the hydration entropy, are
as compact as possible, and have a sufficiently large spacing
between the water molecules to form a stronger tetrahedral
hydrogen-bond network around the swelling polymer chain.
These observations are qualitatively consistent with not only
an increase in the solubility of small non-polar solutes upon
cooling but also a thermodynamic stabilization of clathrate
hydrates that trap non-polar compounds inside the cages of
hydrogen-bonded water molecules at low temperatures.
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