
   

 

   

 

PRISM: An Experiment Framework for Straggler Analytics                       

in Containerized Clusters 

Dominic Lindsay 
 School of Computing & 

Communications 

 Lancaster University, UK 

  d.lindsay4@lancaster.ac.uk 

Sukhpal Singh Gill 
 School of Electronic Engineering & 

Computer Science 

 Queen Mary University of London, UK 
 s.s.gill@qmul.ac.uk 

Peter Garraghan 
 School of Computing & 

Communications 

 Lancaster University, UK 
 p.garraghan@lanacster.ac.uk 

 

ABSTRACT 

Containerized clusters of machines at scale that provision Cloud 

services are encountering substantive difficulties with stragglers – 

whereby a small subset of task execution negatively degrades 

system performance. Stragglers are an unsolved challenge due to a 

wide variety of root-causes and stochastic behavior. While there 

have been efforts to mitigate their effects, few works have 

attempted to empirically ascertain how system operational 

scenarios precisely influence straggler occurrence and severity. 

This challenge is further compounded with the difficulties of 

conducting experiments within real-world containerized clusters. 

System maintenance and experiment design are often error-prone 

and time-consuming processes, and a large portion of tools created 

for workload submission and straggler injection are bespoke to 

specific clusters, limiting experiment reproducibility. In this paper 

we propose PRISM, a framework that automates containerized 

cluster setup, experiment design, and experiment execution. Our 

framework is capable of deployment, configuration, execution, 

performance trace transformation and aggregation of containerized 

application frameworks, enabling scripted execution of diverse 

workloads and cluster configurations. The framework reduces time 

required for cluster setup and experiment execution from hours to 

minutes. We use PRISM to conduct automated experimentation of 

system operational conditions and identify straggler manifestation 

is affected by resource contention, input data size and scheduler 

architecture limitations.  

CCS CONCEPTS 

• Cloud Computing • Scheduling   • Distributed Architectures 

KEYWORDS 

Containers, Stragglers, Clusters, Experimentation 

ACM Reference Format: Dominic Lindsay, Sukhpal Singh Gill, Peter Garraghan. 

2019. PRISM: An Experiment Framework for Straggler Analytics in Containerized 

Clusters. In proceedings of International Workshop on Container Technologies and 

Container Clouds (WOC '19), CA, USA. https://doi.org/10.1145/3366615.336835 

1 INTRODUCTION 

Large-scale containerized clusters have driven development of 

Cloud technologies, required for the execution of Big Data 

applications such as social media, e-commerce, and data analytics. 

The velocity and volume of data generated require schedulers that 

can execute application workflows on highly distributed and 

heterogeneous shared computing resources. Application isolation 

and resource abstraction are critical for shared cluster provisioning. 

Containers runtimes such as Linux Containers, Docker and 

OpenVZ have emerged as lightweight performant alternatives to 

virtual machines [1]. Due to the increased scale and inherent 

complexity of such containerized clusters in production, these 

systems are frequently exposed to emerging phenomena directly 

impacting system performance. One such phenomena is the Long 

Tail problem, whereby a small number of task stragglers degrades 

job completion time.  

It has been demonstrated that such stragglers are an unsolved 

challenge in production containerized clusters operated by Google 

[2] and Alibaba [3]. Whilst there have been considerable efforts to 

address the challenge of stragglers pertaining to their detection and 

mitigation [4-7], ascertaining the causes of straggler manifestation 

is challenging. This is because stragglers may occur from a wide 

variety of sources spanning resource contention, data skew, 

daemon processes, energy management, failure [2], or a 

combination of each. Stragglers are highly transient and stochastic 

in nature, making it difficult to reproduce system conditions leading 

to their occurrence. Whilst we have begun to empirically study and 

understand straggler root causes [3][8], it is unknown to what 

degree system conditions directly influence their manifestation.   

An effective means to address this problem is via conducting 

comprehensive experiments in real-world containerized clusters 

under various controlled operational scenarios in a laboratory 

setting. Conducting such experiments allows for empirical study of 

realistic system operation in order to propose new approaches 

without interfering with production system behavior, as well as 

underpin parameterization of Cloud simulation frameworks [9]. 

This is particularly important as current simulators are unable to 

realistically represent straggler manifestation due to their 

decoupling of occurrence probability and the underlying cluster 

operational conditions [14-16].  

 

Permission to make digital or hard copies of part or all of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 

for profit or commercial advantage and that copies bear this notice and the full 

citation on the first page. Copyrights for third-party components of this work must 

be honored. For all other uses, contact the owner/author(s). 

WOC '19, December 9–13, 2019, Davis, CA, USA  

© 2019 Association for Computing Machinery. 

ACM ISBN 978-1-4503-7033-2/19/12…$15.00 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queen Mary Research Online

https://core.ac.uk/display/237088475?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:s.s.gill@lancaster.ac.uk


  

 

 

 

Designing and performing experiments in real-world 

containerized clusters is a tedious, error-prone, and time-

consuming process.  This poses three challenges to researchers: 1) 

configuration and integrating container environments such as 

Kubernetes[24] and Yarn with various data processing frameworks 

and scheduling architectures, 2) manual design and implementation 

of workload submission and straggler injection tools that are 

bespoke in nature, often publicly unavailable, and only applicable 

to a specific cluster and experiment configuration, and 3) 

researchers must collect and clean heterogeneous datasets extracted 

from various cluster components in order to conduct their analysis.  

With these issues combined, a large portion of a researcher’s 

time is dedicated to cluster maintenance and experiment design as 

opposed to exploring an experiment problem space. This results in 

challenges associated with experiment reproducibility, and limited 

comparison against state-of-the-art approaches (i.e. sufficient time 

to only compare a single scheduler framework as opposed to 

multiple). These issues are not solely limited to straggler research 

and encompass a large body of systems research for Cloud 

datacenters, Fog Computing, and IoT.  

Similar to how Apache MapReduce simplified the complexities 

of deploying data processing on networked machines [10], we see 

a similar opportunity for experiment design in clusters. In this 

paper, we propose PRISM, a framework that enables automated 

cluster setup and experiment execution for containerized clusters to 

study straggler manifestation. Our framework automates 

configuration of scheduling platforms, as well as translation, 

aggregation and execution of performance traces and metrics. 

Using our framework, it is possible to submit workload onto a 

cluster within various operational scenarios controlling cluster 

operation to ascertain the relationship between system conditions 

and straggler manifestation. Our contributions are two-fold: 

̶ Automated cluster experiment framework; capable of 

interfacing with a wide variety of scheduler and workload 

types, and simplifying a large portion of containerized cluster 

deployment, configuration, experiment execution, and metric 

aggregation. The system is capable of injecting tunable 

resource contention, used for capturing straggler 

manifestation. Furthermore, PRISM can execute several 

scheduling and application frameworks by encapsulating 

cluster configurations and algorithms for trace parsing, 

transformation and execution operations, fostering module 

sharing, and supporting experiment repetition. 

̶ Straggler analytics; we demonstrate how the framework 

supports studying straggler manifestation under various 

controlled system conditions. Our preliminary findings show 

stragglers may manifests as a result of CPU contention and 

data size. Furthermore, we find a schedulers logical model of 

a cluster, can impact straggler manifestation. 

  The paper is structured as follows: Section 2 provides the 

research background; Section 3 discusses the related work; Section 

4 presents the proposed PRISM framework; Section 5 presents a 

straggler analysis case study; Section 6 presents the conclusions. 

2 BACKGROUND 

Containerized clusters: Containers provide virtualized 

environments encapsulating applications and their configurations 

[1]. Similar to virtual machines (VMs), containers allow several 

application environments to share a single host machine. 

Implemented as a kernel feature, containers do not require 

hypervisor hardware emulation and instead achieve resource 

isolation via resource multiplexing of kernel resources [11]. 

Containers provide several advantages over hypervisor-based 

virtualization, including; smaller image size [12], rapid boot time, 

and greater resource efficiency [1] allowing for rapid scaling. 

Hence, providers such Google Cloud [2] and AliYun[3] are 

increasingly leveraging containers in their physical computing 

infrastructure to form containerized clusters for Cloud services.  

Scheduling platforms such as Kubernetes use containers as their 

primary unit of execution and isolation. However, increased 

adoption and scale of containerized clusters, such systems 

frequently exposed to straggler manifestation. 

Stragglers: A straggler can be defined as abnormally slow task 

execution within a job [13]. It has been established that stragglers 

are particularly problematic towards ensuring predictable job 

execution within production systems due to volatile network 

conditions, resource dynamicity, and scheduling architecture [2]. It 

has been demonstrated that approximately 5% of tasks stragglers 

can negatively impact the performance of almost 50% of total jobs 

within containerized clusters [3]. If a straggler task prevents other 

dependent tasks from successfully completing, the job is unable to 

complete until straggler task completion, increasing job completion 

times, reducing system availability, and incurring addition resource 

overheads. Due to the wide variety of causes of stragglers, their 

transient behavior, and non-deterministic manifestation, it is 

considerably challenging to determine what system conditions 

influence their occurrence within production and laboratory 

conditions alike. As such simulated work aim to evaluate mitigation 

techniques by providing mechanisms emulating system behaviors 

leading to straggler manifestation.  

Cluster Experiment Frameworks: For many researchers, 

studying straggler manifestation within containerized clusters is 

particularly challenging due to the complexities of cluster setup and 

experiment design. Even if a research group has access to a 

sufficiently large cluster, configuring and deployment of data 

processing framework requires considerable domain knowledge on 

management and monitoring cluster operation. This causes cluster 

setup and maintenance to be an error-prone, time-consuming 

process; an activity typically performed by a group of dedicated 

developers. . Designing experiments for clusters also encounter 

similar issues, whereby tools to control system operation, workload 

submission patterns, and straggler injection are bespoke to a 

specific cluster setup, and not generalizable to other containerized 

clusters. This is an issue given that such tools are frequently not 

made publicly available, reducing experiment reproducibility. This 

also imposes additional limitations on researchers, reducing the 

number of approaches that can be feasibly compared for evaluation. 

These issues have resulted in a large body of research relying on 



 

 

small-scale experiments [15] or simulated environments [14][16]. 

Although such approaches are appropriate for designing new 

straggler mitigation techniques, simulated environments make 

assumptions about underlying causes of straggler manifestation and 

require expert knowledge to achieve representative behaviors. As 

such stochastic system behaviors influencing straggler 

manifestations are often overlooked  and require empirical analyses 

and experimentation in order to understand straggler manifestation 

within real-world systems, as well as capture non-deterministic 

system behaviors. 

3 RELATED WORK 

Related work is categorized into two research domains: (1) 

straggler analysis, and (2) straggler evaluation frameworks. 

Straggler Analysis: Eman et al. [17] identify a potential cause 

of stragglers stemming from data dependencies amongst parallel 

processes further complicated by differing task data priorities. The 

authors proposed a load balancing and partitioning technique to 

alleviate task slowdown and enhance job performance. Garraghan 

et al. [3] empirically analyzed straggler manifestation and their 

root-causes within two production Cloud datacenters using 

containers, discovering that approximately 5% of stragglers 

negatively impacted the performance of 50% of all jobs. 

Furthermore, they identified the most frequent cause of stragglers 

were due to resource contention (CPU, disk, memory, and 

network). Ouyang et al. [8] studied the impact of straggler 

manifestation from node failures contention, and observe high 

resource contention as an underlying cause of stragglers. Ganesh et 

al. [4] studied straggler manifestation within latency sensitive jobs, 

and demonstrated that job cloning as an effective means to 

minimize their impact. Farshid [6] identified that Mapper task 

duration increases as clusters scale, and designed an analytical 

model comprising application and hardware characteristics to 

capture this. Ganesh et al. [18] created various resource-aware 

techniques for straggler mitigation and identified the several causes 

of straggler manifestation from varying bandwidth, network 

congestion, workload imbalance and contention of resources. 

Research findings define assumptions of straggler manifestation 

in containerized clusters, and are used to create straggler mitigation 

techniques that focus on different aspects of latency [4][19], 

network congestion [20], and energy [21]. However, no current 

work has attempted a comprehensively study how precise system 

operational conditions influence straggler manifestation. 

Straggler Frameworks: There exist several straggler 

evaluation frameworks: Bux et al. [14] proposed 

DynamicCloudSim to simulate cluster execution by configuring 

different models for failure, resource contention, and straggler 

manifestation. Straggler behavior is configured with default values 

from prior work [7], and is used to simulate various existing 

mitigation strategies to improve cluster performance. Yanfei et al. 

[15] proposed a user-transparent task slot management framework 

FlexSlot, which identifies the stragglers and automatically resizes 

the number of virtual node slots to improve the speed of execution 

of tasks. The framework was evaluated within an 8-node Hadoop 

cluster, whereby they injected stragglers to alleviate job data skew. 

Tien-Dat et al. [16] proposed a framework for straggler detection 

and mitigation to enhance job execution time and system energy-

efficiency. Using the Grid’5000 testbed consisting of 21-nodes, 

authors artificially injected stragglers into job application execution 

and evaluated the framework with straggler mitigation techniques.  

Whilst these frameworks have evaluated various straggler 

mitigation strategies, most rely on simulation or small-scale 

clusters experiments for evaluation.  Each framework is dependent 

on artificial straggler injection introduced by the developer and are 

not designed to explore natural system operation that may cause 

stragglers. Importantly, frameworks rely on manual design of 

experiment design from a domain expert to conduct experiments. 

4 PRISM FRAMEWORK 

PRISM framework enables automated deployment, execution, 

and performance collection of containerized cluster operation. 

Researchers capture stages of the experimental lifecycle as 

containers encapsulating components and configuration enabling 

deployment and sharing of bespoke scheduling systems as well as 

trace parsing and transformation. In doing so, configuration and 

algorithms can be deployed as modules. Furthermore, modules can 

be shared, reducing complexity associated with reproduction of 

experimental clusters and trace execution. PRISM also allows for 

injection of resource (CPU, disk, memory and network) utilization 

enabling cluster preloading. Thus researchers are able to submit 

identical workload patterns into a containerized cluster using 

different resource management frameworks (YARN, Kubernetes) 

under various levels of contention to study changes in cluster 

performance. Moreover, the system automatically extracts data 

parameters of interest spanning both software and hardware 

components into a data repository for ready analysis.  

4.1 Design 

Several interfaces are defined for submission, execution and 

data collection. Figure 1 shows the system model.  The framework 

is formed by three main components: Experiment Runner, Cluster 

Manager, and Results Repository. 

Experiment Runner: The experiment runner is designed so 

that it can readily implement different scheduling platforms, 

workload patterns, and system operational scenarios. Different 

schedulers are integrated into the module via implementation of 

abstract interfaces. A variety of workload types and submission 

patterns are configurable by parsing and conversion of job traces, 

including specifying the number of jobs, application type, and data 

input. The module is also designed so that it can use real-world 

trace data to inform its submission patterns. The module is capable 

of controlling cluster operational scenarios, specifically resource 

contention (demonstrated to be a primary cause for failure [22] and 

straggler manifestation [2]). Achieved by co-deployment of 

utilization containers, designed to exert varying levels of load 

(10%, 20% .... 100%) on specified resources of a worker node.  

Cluster Manager: Abstracts the scheduling control plane, used 

to administrate the scheduler platform. Because the control planes 



  

 

 

 

have different interfaces, ranging from IPC clients, to REST 

interfaces[23][24], our approach provides a cluster management 

interface. Users of the PRISM framework must for implement 

scheduler specific interface (IClusterInterface) responsible for 

mediating between the scheduling control plane, job tracking and 

ClusterManager components.  

Results Repository: Responsible for collecting results of jobs 

and parsing the traces from a scheduler framework specific format 

to a user defined format, before writing to persistent storage. Users 

implement the IOutputWriter interface responsible for encoding 

how job performance traces are parsed and transformed from their 

target scheduling framework trace format to a bespoke output 

format. Finally, traces can be pushed to a target database, or output 

as csv format for persistent storage. 

4.2 Experiment Lifecycle 

The PRISM framework abstracts the lifecycle of configuration, 

execution and metric/trace aggregation of scheduling experiments. 

The first stage of experimentation is often concerned with 

configuration of the cluster to enable or configure a feature of the 

scheduler. Comparing scheduler configurations of the same 

platform is relatively simple, and trace can be simply cast into job 

description. More involved is the process of converting traces of a 

different scheduling framework and application. Traces must be 

prepared and transformed into job descriptions that can be executed 

at the target scheduling framework. Furthermore, performance 

traces are application specific and as such require transformation 

into a common format for comparison. The workflow for PRISM 

(Figure 1) operates is follows: 

1. Client initiates the experimental run by passing a path to a 

directory containing the PRISM framework configuration. 

2. ExperimentControlLoop starts the experiment by calling the 

ExperimentRunner component to execute jobs traces found in 

the configuration manifest. 

3. ClusterManager periodically interfaces with the scheduling 

control plane and ExperimentRunner to identify experiment 

progress and framework status. 

4. Upon completion of experiment traces, the ClusterManager 

invokes the ResultRepository.  

5. ResultsRepository collects and stores performance and 

telemetry metrics from the scheduling platform before 

transforming and storing traces into a user defined format. 

 

 

 

5 FRAMEWORK CASE STUDY 

5.1 Experiment Setup 

In order to demonstrate the applicability of our proposed 

framework, we have deployed PRISM into a containerized cluster 

to study straggler manifestation under various system conditions. 

We deployed the framework onto a medium-sized cluster 

containing 38 nodes (4 x i7-4770 cores, 8GB RAM, 256GB SSD). 

Our experiment setup deployed a PaaS infrastructure using 

Kubernetes1.15. Apache Yarn capacity resource scheduler [23] 

was automatically deployed into the Kubernetes [24] cluster as 

isolated namespaces. We used Hadoop 2.9.2 to create a suitable 

data processing network and persistent Hadoop Distributed File 

System (HDFS). Both HDFS and Yarn were configured with a 

single master node with 37 worker nodes, and managed by the 

Kubernetes StatefulSets. This entire process is automated by the 

PRISM framework by manipulating configuration manifests 

(Figure 4), hence it is relatively trivial to deploy an alternative 

scheduler framework, data processing framework, or application 

type by simply changing manifest files. 

Our experiment case study provides a preliminary investigation 

into straggler manifestation under varying cluster operational 

conditions. As previous studies of production systems have 

indicated a relationship between cluster resource contention and 

straggler occurrence [2][3], thus we expose jobs to various 

controlled system conditions. Multiple experiment runs were 

performed, each configuring different application data input size 

(20GB, 40GB) and resource contention per node (0%, 20%, 50%, 

80%) to provide sufficient coverage of high and low system usage. 

Each experiment run consists of submitting 100 jobs into the cluster 

via the Yarn scheduler, each job executing WordCount benchmark 

containing 150-320 tasks with and without speculative execution 

[19] (i.e. replicas automatically launched from detected slowdown).  

The design of PRISM allows all experiment run configurations and 

system conditions to be controlled via configuration files, parsed 

and executed by the framework. When combined together, our 

experiment design consists of 16 unique experiment runs, 4,800 

unique job submitted, and totaling 9 days of cluster execution. 

5.2 Analysis 

Job Execution: Table 1 shows the statistical properties of job 

execution for each experiment run under various controlled 

operational conditions. It is observable that increased data input 

size and cluster resource contention levels results in increased 

average job completion times (JCT) from 175s to 3609s and 1013s 

– 6591s between 0% to 80% CPU contention, respectively. Whilst 

an increase in CPU contention and data input size results in a larger 

JCT is somewhat intuitive, an observation of interest is the 

substantial difference in JCT when speculative execution is 

disabled, reflected by a 3x-4x increase. We believed this is caused 

by variability in performance interference from tasks co-located on 

the same node and caused by lack of speculative monitoring. Task 

Figure 1: PRISM conceptual model. 



 

 

execution is not deterministic, and straggler task latencies are 

allowed to accumulate, as reflected in JCT standard deviation. 

Stragglers: We were able to observe straggler manifestation 

across two experiment runs, as shown in Figure 2. The reason for 

stragglers not detected in each experiment run is due to their highly 

transient nature as discussed in Section 2. Hence, it is not guarantee 

for stragglers occur every experiment run, nor replay deterministic 

system conditions to reproduce their occurrence. This is important 

given that stragglers become increasingly frequent as system scale 

increases (i.e. stragglers rarely manifest at small-scale, seldom in 

medium-scale clusters, and frequently in 1000+ node clusters).  

Specifically, 43 - 220 tasks were detected as stragglers within 

experiment runs. We observe that stragglers appear to be contained 

with a small subset of jobs between 4-7%, echoing prior 

observations in production systems with similar probability [3][8].  

We observe that the deviation in task straggler severity 

increases at higher levels of CPU contention and data input, as 

shown in Figure 3 and Table 1. It is observable that at very high 

levels of contention and data input, task stragglers exhibit a large 

deviation between their execution in comparison.  It is apparent that 

higher CPU and data input together results in a higher straggler 

occurrence. The reason for their occurrence is inconsistency 

between the schedulers logical state and the physical resource 

availability in the cluster. More specifically the schedulers view 

assumes exclusive access to resource at the worker machine, 

however production cluste rs rely on multitenancy to achieve 

higher throughput and utilization. This pattern is exemplified when 

observing an increase in both JCT and deviation per job and per 

task as shown in Table 1 and Figure 3. High contention levels result 

in greater deviation significantly reducing a subset of tasks 

execution latency. 

We also observed stragglers occurring with 0% CPU contention 

and 20GB data input. The reason for such an occurrence was 

identified to be result of constrained scheduler execution units 

(slots in yarn [23]). When all execution units are occupied the 

scheduler can no longer start any new containers for maps/reduces. 

As such, the scheduler must wait application frameworks to release 

resources, before allocating resource to waiting jobs, impacting job 

latency. The point to emphasize again is that stragglers are non-

deterministic, hence it is not a given that stragglers only occur at 

high contention. 

Platform Usage: As discussed in Section 5.1, configuration 

variability was encapsulated within Docker images, and experiment 

configuration variability was achieved by manipulating a single 

line of configuration used to initializing the PRISM framework. 

Scheduler traces are formatted using scheduler specific structures, 

whereas scheduler application framework clients submit jobs as 

manifests and/or via command line clients. A scheduler 

ExperimentRunner::ItraceParser::MapReduceTracermodule was 

implemented to parse yarn output traces into intermediary job 

description format. ExperimentRunner::Iclient::WordcountRunner 

which executes equivalents jobs at the target framework.  

Reproduction of performance traces is greatly simplified, rather 

than estimating job parameter configuration on a case by case basis, 

we were able to develop a translation algorithm capable of creating 

new jobs, whilst maintaining characteristics from performance 

traces. Doing so reduced time and complexity associated with 

reproducing experiment testbeds, furthermore we created several 

reusable modules which can be distributed alongside PRISM. As 

an example, traditional approaches we found to manually configure 

all associated experiment design components, taking on average 

 

 
(a)   (b) 

Figure 2: Straggler manifestation for job during                     

(a) 0% CPU, 20GB, and (b) 80% CPU, 40GB. 

Table 1: Job Execution statistical properties. 

Speculation  
Data Input 

(GB) 

CPU 

contention 
JCT µ (s) JCT σ (s) 

Enabled 

20 

0 175.1 15.8 

20 376.4 23 

50 573.3 37.4 

80 1608.8 236.8 

40 

0 720.6 30.4 

20 793.9 31.7 

50 1196.6 49.4 

80 3609.6 637.5 

Disabled 

20 

0 1013.9 479.7 

20 1188.107 568.5 

50 1595.9 761.9 

80 3119 1484 

40 

0 2161.2 1030.1 

20 2535.3 1206.4 

50 3372.3 1601.9 

80 6561.8 3109.3 

 

 
           (a) 

 
           (b) 

Figure 3: Task execution distribution for job stragglers during 

(a) 0% CPU, 20GB, and (b) 80% CPU, 40GB. 



  

 

 

 

hours, and is exasperated by cluster misconfiguration leading to 

wasted experiment execution time. Contrasted with PRISM, 

configuration and algorithms for transformation of traces are 

encapsulated by containers and abstracted by interfaces, reducing 

time taken to reconfigure the cluster and tweak traces to minutes. 

Experiment traces and resource metrics must be collected and 

parsed into an intermediate storage format. ResultsRepository was 

responsible for collecting and integrating performance data. In its 

current state, PRISM only collects job performance statistics and 

node CPU utilization. Future development of PRISM will integrate 

telemetry and log data related to hardware operation, cooling 

system, power usage, and environmental data. This is relatively 

straightforward given (the intermediate interface transformation 

architecture as discussed in Section 4. 

6 CONCLUSIONS 

In this paper we have proposed the PRISM framework for 

automated containerized cluster setup, as well as experiment 

configuration and design to study straggler manifestation. We have 

discussed challenges associated with analyzing stragglers, as well 

conducting experiments within clusters. We leverage the 

framework to analyze straggler manifestation within real-world 

containerized clusters, and demonstrate we are able to simplify 

experiment design and controlling system conditions. Our analysis 

identifies that speculative execution impacts job completion time 

by as much as 300% - 400%, as well as reduce overall task latency 

variance. We find stragglers appear to be temporally related, and 

that their manifestation is influenced by resource contention within 

scheduler architectures. As such we have identified a need for 

dynamicity of slot based schedulers, capable of observing dominant 

workload characteristics and trends, accounting for contention 

caused by machine resource constraints. 

Future work includes extending the PRISM framework in order 

to capture a wider variety of scheduler architectures, workload 

types, and complex submission patterns including multistage 

frameworks such as Apache Tez. Furthermore, we aim to extend 

the framework to interface with telemetry services, as well as 

integration into Kubernetes. Moreover, we aim to make the 

platform publicly available; allowing researchers to rapidly deploy 

containerized cluster environments and design experiments. 

ACKNOWLEDGMENTS 

This work is supported by the Engineering and Physical 

Sciences Research Council (EPSRC) (EP/P031617/1). 

REFERENCES 
[1] Q. Zhang, L. Liu, C. Pu, Q. Dou, L. Wu, W. Zhou, “A Comparative Study of 

Containers and Virtual Machines in Big Data Environment,” IEEE International 

Conference on Cloud Computing (CLOUD), pp. 178–185, 2018. 

[2] J. Dean, L A. Barroso, “The tail at scale,” ACM Communications 56, pp. 74–80, 

2013. 

[3] P. Garraghan, X. Ouyang, R. Yang, D. McKee, J. Xu, “Straggler Root-Cause 

and Impact Analysis for Massive-scale Virtualized Cloud Datacenters,” IEEE 

Transactions on Services Computing, 2016. 

[4] G. Ananthanarayanan, A. Ghodsi, S. Shenker, and I. Stoica, "Effective Straggler 

Mitigation: Attack of the Clones," In NSDI, vol. 13, pp. 185-198. 2013. 

[5] E. Coppa, I. Finocchi, "On data skewness, stragglers, and MapReduce progress 

indicators," ACM Symposium on Cloud Computing, pp. 139-152. 2015. 

[6] F. Farshid, “Stochastic modeling and optimization of stragglers in MapReduce 

framework,” Thesis, The Pennsylvania State University, 2015. 

[7] M. Zaharia, et al., “Resilient distributed datasets: A fault-tolerant abstraction for 

in-memory cluster computing,” USENIX NSDI, 2012. 

[8] X. Ouyang, et al., “Adaptive Speculation for Efficient Internetware Application 

Execution in Clouds,” ACM Transactions on Internet Technology, 2018. 

[9] R. N. Calherios, R. Ranjan, A. Beloglazov, C. De Rose, R. Buyya, “CloudSim: 

A Toolkit for Modeling and Simulation of Cloud Computing Environments and 

Evaluation of Resource Provisioning Algorithms,” Software: Practise and 

Experience, pp. 23-50, 2011. 

[10] J. Dean, S. Ghemawat, “MapReduce: Simplified Data Processing on Large 

Clusters,” ACM Communications, pp. 107–113, 2013. 

[11] M. A. Rodriguez and R. Buyya, “Container-based Cluster Orchestration 

Systems: A Taxonomy and Future Directions,” Software: Practice and 

Experience, pp. 698–719, 2019. 

[12] C. Pahl. B. Lee, “Containers and Clusters for Edge Cloud Architectures – A 

Technology Review,” International Conference on Future Internet of Things 

and Cloud, 2015. 

[13] G. Nannicini, “Straggler Mitigation by Delayed Relaunch of Tasks,” ACM 

SIGMETRICS Performance Evaluation Review, pp. 248-248, 2018. 

[14] M. Bux, L. Ulf, “Dynamic Cloudsim: Simulating heterogeneity in 

computational clouds,” Future Generation Computer Systems, pp. 85-99, 2015. 

[15] Y. Guo, J. Rao, C. Jiang, X. Zhou, “Moving Hadoop into the cloud with flexible 

slot management and speculative execution,” IEEE Transactions on Parallel & 

Distributed Systems, pp. 798-812, 2017. 

[16] T. Phan, G. Pallez, S. Ibrahim, P. Raghavan, “A New Framework for Evaluating 

Straggler Detection Mechanisms in MapReduce,” ACM Transactions on 

Modeling and Performance Evaluation of Computing Systems, 2019. 

[17] E. B. Khunayn, S. Karunasekera, H. Xie, and K. Ramamohanarao, “Exploiting 

Data Dependency to Mitigate Stragglers in Distributed Spatial Simulation,” 

ACM SIGSPATIAL, pp. 43-53, 2017. 

[18] G. Ananthanarayanan, et al.. “Reining in the Outliers in Map-Reduce Clusters 

using Mantri,” In OSDI, vol. 10, no. 1, p. 24. 2010. 

[19] L. Lei, T. Wo, and C. Hu, “CREST: Towards fast speculation of straggler tasks 

in MapReduce,” In IEEE International Conference on e-Business Engineering 

(ICEBE), pp. 311-316.2011. 

[20] W. Da, G. Joshi, and G. Wornell, “Efficient Straggler Replication in Large-scale 

Parallel Computing,” arXiv preprint arXiv:1503.03128, 2015. 

[21] S.S. Gill, et al., “Holistic resource management for sustainable and reliable 

cloud computing: An innovative solution to global challenge,” Journal of 

Systems and Software, Volume 155, 104-129, 2019.  

[22] D. Tang, et al., “Failure Analysis and Modeling of a VAXcluster System,” 

International Symposium on Fault-Tolerance Computing, 1990. 

[23] V. K. Vavilapalli, et al., “Apache hadoop yarn: Yet another resource 

negotiator,” in ACM SoCC, 2013 

[24] B. Burns, et al.. “Borg, Omega, and Kubernetes,” ACM Queue, pp. 70-93, 2016. 

PRISM:  v0.1 

experiment_ID:straggler_20gb_0_util 

experiment_input: 

trace_path: test_trace.csv 

trace_parser: yarn_json_parser 

Result_spec: 

output_writer_module: csv 

Output_writer_out_args: 

path: straggler_20gb_0_util 

Cluster_spec: 

framework: yarn 

Size: 38 

Master: 

image: yarn:master 

Workers: 

image: yarn:worker 

InterferanceInjector: 

image: resource_isolation:CPU 

---Command Line-- 

prismUser$ PRISM deploy straggler_20gb_0_util.yaml 

Figure 4: Example PRISM experiment configuration file.  


