
Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

CNN and KPCA Based Automated
Feature Extraction for Real Time Driving
Pattern Recognition
LIANG XIE1, JILI TAO2, QIANNI ZHANG3 AND HUIYU ZHOU.4
1College of Control Science and Engineering,Zhejiang University, Hangzhou, CO 310027 P.R.China (e-mail: xieliang65@zju.edu.cn)
2Ningbo Institute of Technology, Zhejiang University, Ningbo, CO 315100 P.R.China (e-mail: tjl810@126.com)
3School of Electronic Engineering and Computer Science, Queen Mary University of London, United Kingdom. (e-mail:qianni.zhang@eecs.qmul.ac.uk )
4Informatics, University of Leicester, LE1 7RH,United Kingdom. (e-mail: hz143@leicester.ac.uk)

Corresponding author: Jili Tao (e-mail: tjl810@126.com).

This work was supported in part by the National Natural Science Foundation of China under Grant 61603337 and the Zhejiang province
natural science fund under Grant LY19F030009. H. Zhou was supported by UK EPSRC under Grant EP/N011074/1 and Royal
Society-Newton Advanced Fellowship under Grant NA160342, and European Union’s Horizon 2020 Research and Innovation Program
through the Marie-Sklodowska-Curie under Grant 720325.

ABSTRACT Driving conditions greatly affect the energy control and the fuel economy of a hybrid electric
vehicle (HEV). In this paper, an automated feature extraction scheme based on convolution neural networks
(CNNs) and Kernel PCA (KPCA) for real time driving pattern recognition (RTDPR) is proposed in order
to achieve consistent performance of the energy management. Firstly, a dimension expanding strategy is
performed to transform one-dimensional speed sequences to generate a two-dimensional dataset. Then,
the transformed data is sent to the CNN and KPCA based feature extractor. Finally, the feature extractor
automatically selects the most representative features for classification. To improve the generalization of
CNN to a small sample dataset, the structure of the typical CNN is adjusted by adding the KPCA layer in
order to reduce model parameters. The model is well trained and evaluated in simulation, and it is tested for
RTDPR in the real world. Simulation and experimental results show that the proposed automated feature
extraction strategy outperforms the conventional driving pattern recognition algorithms based on manually
feature extraction, which has achieved the state-of-the-art recognition accuracy.

INDEX TERMS Convolution neural network, driving pattern recognition, feature selection, kernel
principle component analysis.

I. INTRODUCTION

A driving pattern is typically defined as the driving cycle
of a vehicle in a particular environment [1], [2]. Since

the current driving pattern has a great impact on the energy
management strategy of a hybrid electric vehicle (HEV) [3],
[4], it is efficient to use the prior knowledge of the driving
cycle to achieve the real time driving pattern recognition
(RTDPR) and enhance the control performance of the HEV
[5], [6]. There are many researches on the RTDPR [7]–[11].
The conventional way is to manually extract features from
the historical speed data to characterize the driving patterns
[7]. Then the classical machine learning models like k-means
[8], hidden Markov models [9], fuzzy c-means [10], and
their variants [11] are fully utilized to classify the extracted
features into different categories. Therefore, the quality of
the feature extraction algorithm plays a great impact on the

classification accuracy. However, those manually extracted
features usually include average speeds, average accelera-
tions and other features which are directly calculated using
physical models [12], while other complex and high level
features are hard to represent. In practice, those low level
features are unable to effectively characterize the complex
driving patterns. Additionally, to reduce time cost of RTDPR,
a limited amount e.g., 16 features are selected to characterize
the driving patterns [13]. Based on the above analysis, it can
be concluded that the recognition accuracy of the conven-
tional methods is significantly affected by selected features.
Recently with the development of deep learning and its
strong classification ability [14]–[16], the convolution neuron
network (CNN) has been wildly used in the pattern recogni-
tion fields [17]–[19], and achieved good performances. The
CNN can achieve an end-to-end recognition without feature

VOLUME 4, 2016 1



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

extraction but still has not been widely applied in RTDPR,
partially due to the lack of magnanimous training samples.
Motivated by the CNN, we do not manually generate the
feature vectors from the historical speed data to build the
model. Instead, the model learns to extract the features itself
from the datasets [20]. During the training process, the model
can learn to select the most representative features and their
amount automatically. The simulation results indicate that
the features selected automatically by the models are more
representative than those that are manually designed. The
standard CNN is a nonlinear model with typically thousands
of parameters, which may easily get overfitting when the
training samples are not sufficient [21]. The most parameters
concentrate on the fully-connected layers which hold much
redundancy. To solve the problem, we design an automated
feature extractor that retains the former part of the CNN
and removes the fully-connected layer. Then the kernel PCA
(KPCA) layer is added to further supply features, thus the
redundancy is removed and classification is simplified. Addi-
tionally, we have performed linear shift on the speed data to
expand the dataset, which also proves to be very effective to
avoid overfitting.

In this work, we firstly collect the training samples from
the historical speed data by a sliding window. The size
and step of the window are adjusted in the training pro-
cess. Secondly, we transform the training samples to the
two-dimension dataset so that the CNN based model can
effectively deal with the speed information. Thirdly, the
two-dimension dataset are divided into batches to fit the
feature extractor. Finally, the extracted features are utilized
for RTDPR. The specific contributions of this paper are as
follows: (1) We have improved the generalization of the
standard CNN for small dataset by adding the KPCA layer.
(2) We have achieved an end-to-end strategy for RTDPR
instead of manually designing features. (3) The historical
speed sequence is transformed to two-dimension to extract
spatial features. (4) We have achieved the state-of-the-art
accuracy for RTDPR.

The structure of this paper is as follows: the details of the
CNN+KPCA architecture are described in section II. Then
our model based on CNN+KPCA is reported in section III.
Section IV presents the applications on four typical patterns
in the congested urban, flowing urban, subway and high
way and in real environment. The results are compared with
that of other typical classifiers. Finally, section V gives the
conclusions of this paper.

II. THE CNN+KPCA ARCHITECTURE
A. THE STANDARD CNN CLASSIFIER
The CNN model is a complex nonlinear function that maps
the input samples into the corresponding driving patterns.
The overall structure of CNN is described in Fig. 1, which
includes one input layer, the complex middle layers and
one output layer. The input layer of the CNN deals with
the two-dimension samples. The middle layers include the
convolution layers and a fully-connected layer. Within the

convolution layer, the convolution operation is performed,
followed by the max-pooling operation immediately. The
outputs of the last convolution layer are then flattened to
one-dimension as the inputs of the fully connected layer for
further nonlinearization. In the output layer, there contain
four neurons that delegate different driving patterns. The
details of the calculation process are described as follows.

FIGURE 1: The architecture of typical CNN classifier

Provided that we have an n × n input sample represented
as a two-dimension array:

x ={x0,0...x0,n−1;x1,0...x1,n−1;

xn−1,0...xn−1,n−1}
(1)

where xi,j is the pixel at the position (i, j). A two-dimension
kernel is defined to connect the input layer to the convolution
layer, which is represented by a m × m array of shared
weights:

w ={w0,0...w0,m−1;w1,0...w1,m−1;

wm−1,0...wm−1,m−1}.
(2)

A two-dimension feature map is then obtained as described
in (3).

C1
i,j,k = f(bk +

m−1∑
a1=0

m−1∑
a2=0

wa1a2xi+a1,j+a2) (3)

Here, C1
i,j,k represents the i, j-th value of the feature map

to the k-th kernel in the first convolution operation. f is the
activation function of the neuron, which is described as:

f(x) = max(0, x). (4)

bk is the shared bias of the k-th kernel. Finally, we use
xi+a1,j+a2 to denote the pixel at the position (i+a1, j+a2).
The shared weights and bias of the kernel means that the
same features will be detected, just at different locations of
the input sample. Different kernels generate different feature
maps, which comprises the former part of the convolution
layer.

The max-pooling operation prepares the condensed feature
maps from the former part of the convolution layer. Then
those feature maps stack up and comprise the latter part of the
convolution layer. For instance, each neuron in the pooling
operation summarizes a maximum activation in a region of

2 VOLUME 4, 2016



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

e × e neurons in the feature maps. For the i, j, k-th (zero-
base) neuron in the first max-pooling operation, the output
is:

M1
i,j,k = max{C1

ei+σ1,ej+σ2,k | 0 ≤ σ1, σ2 < e}. (5)

The second convolution layer is obtained by performing
the convolution operationC2 and the max-pooling operation
M2. The details of those operations are described in (3) and
(5), respectively. ThenM2 is flattened from three-dimension
to one dimension, i.e., neurons in this layer are arranged in
line. The i-th activation in the flattened layer is represented
as M2

i .
Finally, the fully connected layer connects every neuron

from the flattened max-pooling layer to every one of 4
output neurons [22]. Assume that there are h neurons in the
fully connected layer, then the i-th activations of the fully
connected layer (Fi) and the output layer (Yi) are described
in (6) and (7), respectively.

Fi = f(ϕ1
i +

h−1∑
j=0

θ1jiM
2
j ), i ∈ [0, h) (6)

Yi = s(ϕ2
i +

h−1∑
j=0

θ2jiFi), i ∈ [0, 4) (7)

where ϕ1 and θ1 are the biases and weights between the
flattened max-pooling layer and the fully connected layer,
respectively. ϕ2 and θ2 are the biases and weights between
the fully connected layer and the output layer, respectively. s
is the softmax function described in (8).

s(z)j =
ezj∑3
i=0 e

zi
, j ∈ [0, 4) (8)

B. THE CNN+KPCA FEATURE EXTRACTOR
As shown in Fig. 2, the number of the parameters in the first
convolution layer is m ×m × k1, in the second convolution
layer is m×m×k1×k2, where k1, k2 are the number of the
kernels in the first and second convolution layer respectively.
In the flatten layer, the parameter number is (n4 )

2 × k2,
which is thousand magnitude due to the width of the input n.
The default number of the hidden neurons in the post-fully-
connected layer is always set to be 1024 or 2048 [23]. Thus
the parameter number in the fully-connected layer can reach a
million level, which can easily result in overfitting in the task
of small samples classification. We propose two methods to
reduce the parameters while keeping the CNN performance.
Firstly, we remove the fully-connected layer which contains
large redundancy. Secondly, we retain the convolution layer,
the output of which are projected by the KPCA operation, i.e.
the KPCA layer. The dimension of the flattened convolution
layer can be reduced considerably from thousands to ten
by KPCA projection. While the major feature information
is retained. The combined convolution and KPCA layers
are treated as the feature extractor as described in Fig. 2.
The output of the flattened convolution layer is calculated

by Eq.(1)-(4), represented as M2. The KPCA projection
is performed to reduce the feature dimension calculated as
follows.

FIGURE 2: The structure of the CNN+KPCA feature
extractor

Kij = k(M2
i ,M

2
j ) (9)

where k is the kernel function, Kij represents the i, j-th
element of the kernel matrix. Then the kernel matrix is
centralized by (10).

K = K − 1NK −K1N + 1NK1N (10)

Where 1N ∈ RN×N , (1N )i,j = 1
N , N is the number of the

training samples. Calculating the eigen value λi and the cor-
responding eigen vector ai of K, and perform normalization
to the eigen vector as follows.

ai ←
ai√
λi

(11)

Then select the corresponding normalized eigen vectors
according to the former maximum λ. The number of the
selected eigen vectors l is decided by the accumulated con-
tribution rate calculated as follows.

E =

∑l
i=1 λi∑n
i=1 λi

(12)

At last the feature dimension is reduced by (13).

M2
kpca = Kα (13)

where α = [a1, a2...al], M2
kpca are the extracted features

after KPCA layer. The extracted features are then utilized for
the post classification.

Provided that we have a speed sequence of a driving
vehicle with an unknown pattern, our goal is to recognize
the driving pattern. The CNN+KPCA model is applied as a
classifier to provide the probability distribution of the driving
patterns for each input sequence, which is illustrated in Fig. 3.
Each neuron of the output layer represents a driving pattern.
The driving pattern with the maximum probability is the final
recognized result.

III. MODEL BUILDING
Since the KPCA fitting requires to maintain the projection
space unchanged, the model building will include two sepa-
rate processes. In the first stage, we train the standard CNN
model with stochastic gradient descent methods. After the

VOLUME 4, 2016 3



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 3: Driving pattern recognition process

parameters of the CNN are optimized, we add the KPCA
layer between the convolution layer and the fully-connected
layer of the CNN. And in the second stage, we fine-tune
the fully-connected layer with the convolution layer frozen.
The parameters of the fully-connected layer are updated
iteratively by gradient descent with the whole training batch.
The computation is described in (14)-(20) in detail.

A. TYPICAL CNN MODEL BUILDING
We use the categorical cross-entropy in the loss function for
the multi-class classification problem [24], which is detailed
in (14).

L(z) = −
3∑
i=0

Gilog(Yi) (14)

where G is the ground truth of the sample. z represents the
parameters to be optimized, i.e., z = [w, b,θ1,θ2,ϕ1,ϕ2].
All the operations on the vectors are element-wise. An al-
gorithm for the first-order gradient based optimization of
the stochastic objective functions is used to minimize these
parameters. The adaptive estimation of the lower-order mo-
ments [25] is as follows:

gz,t = ∇zL(zt) (15)

where gz,t is the gradients of z at iteration t. Denotingmz,t

as the exponential moving averages of the gradient gz,t, vz,t
as the exponential moving averages of the squared gradient
g2z,t, then a momentum term is introduced to update the
values ofmz,t and vz,t as described in (16) and (17),

mz,t = β1mz,t−1 + (1− β1)gz,t (16)

vz,t = β2vz,t−1 + (1− β2)g2z,t (17)

where β1, β2 ∈ [0, 1) are two hyper parameters that control
the exponential decay rate of the gradient and the squared
gradient, respectively. When the moment estimations are
initialized as zero or the βs are initialized close to zero, those
estimations will be biased toward zero. To avoid this, mz,t

and vz,t are bias-corrected as follows:

mz,t =
mz,t

1− β1
(18)

vz,t =
vz,t

1− β2
(19)

where mz,t and vz,t are the bias-corrected first moment
estimates and bias-corrected second moment estimates, re-
spectively. Finally, the bias-corrected estimates are used to
update the parameters (20),

zt+1 = zt − α
mz,t√
vz,t + ε

(20)

where α and ε represents the learning rate and the target error,
respectively.

It is worthy to mention that the learning process in the
two different training phases is very similar. There only exist
slight differences of the objective parameters.

B. CNN+KPCA MODEL BUILDING
After we have built the standard CNN, we extract the convo-
lution layer and combine it with the KPCA layer as the fea-
ture extractor. Afterwards, we obtain all the features from the
dataset which are used to develop the classifier. The training
process is the same as the standard CNN described in (14)-
(20), leaving a different input and the objective parameters
to optimize. The feature extractor remains the same in this
developing phrase, and the parameters in (21) are optimized
following the way described in (14)-(20).

z = [θ1,θ2,ϕ1,ϕ2] (21)

IV. CASE STUDY
A. TYPICAL DRIVING PATTERN
The speed-time sequence under different driving conditions
is sampled to implement the driving pattern recognition. The
Environmental Protection Agency (EPA) has classified four
typical driving patterns in the real world, which include
congested urban roads, flowing urban roads, subway and
highway. The corresponding driving conditions are Man-
hattan bus drive cycle (MBDC), EPA urban dynamometer
driving schedule (UDDS), West Virginia suburban driving
schedule (WVUSUB) and US EPA highway fuel economy
certification test (HWFET), which are labeled from 1 to 4
respectively indicating 4 different groups. The characteristics
of the four driving conditions are described in Table 1, and
the speed-time sequences are shown in Fig. 4.

TABLE 1: Four Typical Driving Conditions

Driving
Conditions

Label Characteristics

MBDC 1 represents low speed go-and-stop traffic driv-
ing condition.

UDDS 2 represents city driving condition.
WVUSUB 3 represents suburban driving condition.
HWFET 4 represents highway driving condition under

60mph

B. THE DATASET PROCESS
To expand the dataset, a sliding window is defined as shown
in Fig. 5, where thewidth represents the width of the window

4 VOLUME 4, 2016



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 4: The speed-time sequences of four typical
driving conditions

and the step represents the sliding step of the window. The
width controls the size of the samples. The bigger the width
is, the more information is contained in the samples but it
takes more time to acquire the samples. The step controls the
size of the dataset. The smaller the step is, the more samples
are collected from the dataset but the samples become more
similar to each other. Therefore, the width and step are two
variables that need to be selected carefully. In this work,
width and step are experimentally set as 40 and 5 seconds
respectively. To collect samples, the window slides through
the speed-time sequence. At each step it slides through, a
sequence that represents the corresponding driving pattern
is obtained, e.g., the first step of the window is [0,40], the
second is [5,45], and the third is [10,50], etc. Then the
corresponding ground truth is labeled with the sequence. We
use a four-bit binary code to represent the ground truth (e.g.,
0001 for label 1 and 0010 for label 2).

In the one-dimension sequence, only the speed information
is taken into consideration. To exploit the spatial structure of
the speed distribution, we take a close look at the sequences
on the pixel-wise level. A two-dimension array is used to
reconstruct the sequence as shown in Fig. 5, where the 1s rep-
resent the corresponding pixels that contain the speed infor-
mation in the 1-dimension sequence, and the 0s represent the
corresponding pixels without the speed information in the 1-
dimension sequence. The resolution of the 2-dimension data
is defined by n × n, which controls the information amount
of the transformed samples. The transformed samples with
their labels are used to optimize the parameters of the model.

C. HYPER PARAMETERS

Table 2 gives the hyper parameters of the typical benchmark
models and the proposed CNN+KPCA model, respectively,
where k1 and k2 represents the number of the kernels in

FIGURE 5: Data transforming process

the first and second convolution layers, respectively. The
parameters listed in Table 2 are hyper parameters (i.e. choices
for the algorithm that we set rather than learn). We use the
hyperopt [26], a Python library, for optimizing the hyper
parameters, to select the best model set automatically.

D. RESULTS ANALYSIS
We equally divide the dataset into training and test datasets
to train and test the CNN model separately. Generally, the
larger the dataset, the stronger the generalization of the
model will be. Although our dataset is relatively small, we
have successfully avoided overfitting by adding the KPCA
layer to the architecture and achieved state-of-the-art results.
The accuracy reaches 100% on the training set and 97.40%
on the test set, which outperforms the other models based
on different machine learning methods. The simulation was
implemented at TensorFlow, running on a laptop with Intel
Core i5 @ 2.3GHz and 8GB RAM. The training and testing
classification results are illustrated in FIGURE6, where only
a small number of samples in class 2 (UDDS) and class 3
(WVUSUB) are misidentified on the testing set.

Knowing how the classifier performs on individual classes
is important as it helps to refine the system design. A receiver
operating characteristic (ROC), or simply ROC curve is plot-
ted from the confusion matrix [27] to assess the performance
of the classifier on the individual classes. By computing the
area under the ROC curve denoted by AUC, the quality of
the classifier is comprehensively evaluated. Fig. 7 shows the
ROC curve of the CNN+KPCA model on the testing set,
where the AUC of classes 1 and 4 are both 1, which means

VOLUME 4, 2016 5



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 2: The Hyper Parameters of Typical Benchmarks

Models Parameters Values Parameters Values
KNN k 20

width 60 step 60

MNN input 12 hidden 24
output 4
width 80 step 80

KPCAMNN input 5 hidden 9
output 4 E 0.99
width 80 step 80

CNN

n 40 m 5
e 2 h 28
k1 8 k2 16
α 0.001 ε 1e-8
β1 0.9 β2 0.999
l 4
width 40 step 5

CNN+PCA

n 40 m 5
e 2 h 28
k1 8 k2 16
α 0.001 ε 1e-8
β1 0.9 β2 0.999
E 0.95 l 4
width 40 step 5

CNN+KPCA

n 40 m 5
e 2 h 28
k1 8 k2 16
α 0.001 ε 1e-8
β1 0.9 β2 0.999
E 0.99 l 4
width 40 step 5

the model has outstanding performance on those classes. The
micro-average and macro-average ROC curve are calculated
to evaluate the generality on the four classes.

To visualize the effectiveness of the KPCA layer, the first
two components of the CNN feature extractor are selected
to form the scatter plot on both training and testing sets as
shown in Fig. 8. In (a) and (c), the space is formed by the
first two dimensions of the originally extracted features by
CNN on the training and testing sets, respectively. In (b) and
(d), the space is formed by the first two components of the
projected features by KPCA, where a projection of the data
makes features linearly separable and this help simplify the
post-fully-connected layer and improve classification accu-
racy.

E. COMPARISON WITH OTHER CLASSIFIERS
To evaluate the necessity and effectiveness of the KPCA
strategy on the CNN feature extractor, two sets of control
strategies, the standard CNN strategy and the CNN combined
with PCA strategy are performed on the same dataset, respec-
tively.

1) Typical CNN
The simplified typical LeNet-5 with only one fully-connected
layer (128 hidden neurons) and dropout strategy (0.5) was
selected as the classifier for real time driving pattern recog-
nition. The structure of the standard LeNet-5 was slightly
adjusted to fit in the dataset. The training and testing results
on the regular dataset are illustrated in Fig. 9, where the
accuracy rate are 100% and 79.78%, respectively. Although

FIGURE 6: CNN+KPCA classification results (a) training
(b) testing

FIGURE 7: ROC curve of the CNN+KPCA model

the classifier on the training dataset achieved 100% correct
rate, the testing accuracy fell far behind, which means the
classifier lacked the generalization ability to handle the data
point out of the training dataset, i.e. the overfitting occurred.
The ROC curve on the test dataset is shown in Fig. 10, where
the standard CNN classifier easily got confused between
classes 2 and 3, in addition, the average accuracy rate on the
test dataset is much lower than that of the proposed strategy.

2) CNN+PCA
The CNN and PCA based automated feature extractor was
also evaluated for real time driving pattern recognition. The

6 VOLUME 4, 2016



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 8: The first two components of the extracted
features by CNN with or without KPCA projection. Training
set: (a) Original space (b) Projection by KPCA; Testing set:

(c) Original space (d) Projection by KPCA

FIGURE 9: Typical CNN classification results (a) training
(b) testing

FIGURE 10: ROC curve of the typical CNN model

structure of the CNN part in the extractor was the same as
the proposed extractor. In the reduction part, we apply PCA
to replacing the KPCA to avoid overfitting. The classification
results are illustrated in Fig. 11 and Fig. 12. The accuracy
are 100% and 94.34%, respectively, where overfitting is
overcame by applying the PCA strategy. The correct rate
on the testing dataset is a little lower compared with the
proposed strategy as KPCA is better in extracting nonlinear
features.

FIGURE 11: CNN+PCA classification results (a) training
(b) testing

The two control strategies have proved that the standard
CNN will easily suffer from overfitting when the training

VOLUME 4, 2016 7



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 12: ROC curve of the CNN+PCA model

dataset is not large enough. By slightly adjusting the struc-
ture of CNN and extracting effective neurons of the fully-
connected layer, overfitting would be effectively reduced.
Table 3 and Fig. 13 have summarized the metrics of the three
models, where there is a big gap between the training and
testing accuracy in the standard CNN strategy due to the
numerous parameters. In addition, the AUC of the standard
CNN model is relatively lower compared with the proposed
strategies, which further prove the necessity and effectiveness
of the KPCA on the CNN based extractor.

TABLE 3: Metrics of the three models

Metrics Typical
CNN

CNN+PCA CNN+KPCA

Training accuracy 1.00 1.00 1.00
Testing accuracy 0.80 0.94 0.97
AUC 0.87 0.97 0.99
Number of model pa-
rameters

1641800 3760 3472

FIGURE 13: Metrics of the three Models

To prove the superiority of the proposed classifier based
on automated feature extraction over the classical classifiers

based on manually designed features, a variety of the tradi-
tional classifiers were trained and tested on the same dataset.
Wang and Wei et al. [28], [29] have analyzed the 12 motion
features that can best distinguish the driving patterns, as
shown in Table 4. The following three classical classifiers
were evaluated with the 12 manually designed features.

TABLE 4: Manually Designed Motion Features

Number Motion features
1 Average speed (Km/h)
2 Maximum speed (Km/h)
3 Standard deviation (Km/h)
4 Positive average acceleration (Km/h)
5 Maximum acceleration (m/s2)
6 Maximum deceleration (m/s2)
7 Average deceleration (m/s2)
8 Number of stops
9 Parking time (s)
10 Low speed time (10-25 Km/h) / total time (%)
11 Medium speed time (60-90 Km/h) / total time(%)
12 High speed time (> 90 Km/h) / total time (%)

3) K-Nearest Neighbor
K-Nearest Neighbor (KNN) is one of the popularly used
classifiers. This analysis generates speed feature vectors with
width = 60s and step = 60s. The features are then
associated with a specific driving pattern by a KNN classifier.
The classifier has the advantage that no training is required.
However, the memory requirement and recognition time are
demanding. On the regular test dataset, the correct rate was
81.51% with k = 20, while on the training dataset the correct
rate was 88.02%.

The parameter k of KNN was a hyper parameter which
was chosen to make the model perform best. The training
and testing KNN classification results are illustrated in Fig.
14. The ROC curve of the KNN model on the testing set are
given in Fig. 15, where we can find the classifier has a bad
precision on classes 2 and 3.

4) Multilayer NN
Another classifier that we tested was a fully connected mul-
tilayer NN (MNN) with 3 layers. The weights of the hidden
layer were obtained by training with back-propagation [30].
12 standard features were extracted from the speed distri-
bution with width = 80s and step = 80s. Then these
feature vectors were used to train the MNN. The accuracy
rate on the regular test dataset was 85.16% with 24 hidden
neurons and 84.91% with 20 hidden neurons, while on the
training dataset, the accuracy rate was 91.23%. The number
of the feature vectors and hidden neurons were chosen to
make the model perform best. The training and testing MNN
classification results are illustrated in Fig. 16. Fig. 17 shows
the classifier has a bad precision on class 2. MNN based on
feature extraction can achieve a relatively better result than
KNN’s. But the extracted features do not seem to positively
contribute to the recognition task and in simplifying the
classifier’s structure.

8 VOLUME 4, 2016



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 14: KNN classification results (a) training (b)
testing

FIGURE 15: ROC curve of the KNN model

5) Kernel PCA based Multilayer NN

In [31], a preprocessing stage was constructed which com-
puted the projection of the input pattern on the principal
components as the extracted feature vectors. To compute the
principal components, the mean of the input components was
first computed and subtracted from the training vectors. A
kernel function was then chosen to put the resulting vector
into the high-dimension space. The covariance matrix of the
high dimensional vectors was then computed and diagonal-
ized by using singular value decomposition. The selected
principal components represented by 5 dimensional feature

FIGURE 16: MNN classification results (a) training (b)
testing

FIGURE 17: ROC curve of the MNN model

vectors were used as the inputs of a multilayer classifier
with 9 hidden neurons. The selected 5 principal components
contained 99% information of the original data, and the
number of the hidden neurons was chosen to enable the
model to perform best. The accuracy on the test dataset
was 91.93%, while on the training dataset the accuracy rate
was 96.88%. The training and testing classification results
based on kernel PCA (KPCA) based MNN (KPCAMNN) are
illustrated in Fig. 18. The KPCAMNN achieves the overall
better performance compared with the former two classifiers,
which is shown in Fig. 19.

VOLUME 4, 2016 9



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 18: KPCAMNN classification results (a) training
(b) testing

FIGURE 19: ROC curve of the KPCAMNN model

Compared with the traditional driving pattern recognition
methods, the CNN+KPCA model has achieved the state-of-
the-art correct rate, reaching 100% recognition accuracy on
the training set and 97.40% on the testing set, whereas the
best testing results from the methods based on feature extrac-
tion algorithms is 91.93%, which is a substantial leap. The
model metrics including accuracy and AUC of the classifiers
mentioned above are described in Table 5, from which we
can conclude that the proposed framework outperforms the
other methods on both accuracy and AUC.

TABLE 5: Metrics Comparison of the Classifiers

Classifiers Training accu-
racy

Testing
accuracy

AUC

KNN 0.8802 0.8151 0.89
MNN 0.9123 0.8516 0.91
KPCAMNN 0.9688 0.9193 0.95
CNN 1.0000 0.7978 0.87
CNN+PCA 1.0000 0.9434 0.97
CNN+KPCA 1.0000 0.9740 0.99

F. REAL DRIVING PATTERN RECOGNITION
The bus line 335 from Cicheng to Panhuo in Ningbo, China,
with 41 bus stops, 11 traffic lights and 27.2Km journey
crossing almost the main area of the city, was selected as the
UDDS cycle to be recognized. The route map is shown in Fig.
20. The speed data were sampled from 6:00AM to 2:30PM in
every 10s except the bus idle time, which is shown in Fig. 21.
The classification results shown in Fig. 22 show that 95.81%
samples were recognized as class 2 (i.e. UDDS cycle) with
only a small part misclassified to be class 3 (WVUSUB) or
class 1 (MBDC).

FIGURE 20: The running route of bus 335 in Ningbo

V. CONCLUSION
In this study, we have proposed a novel end-to-end approach
to establish a strategy for real time driving pattern recognition
applied on the speed data. Our results show that the proposed
CNN+KPCA model effectively overcame the bottleneck of
other traditional driving pattern classifiers based on manually
extracted features. In addition, the proposed model have
successfully avoid overfitting by adding the KPCA layer to

10 VOLUME 4, 2016



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 21: The speed samples of bus 335

FIGURE 22: The results of real driving pattern recognition

the network architecture and the expanding dataset, which is
potential when the number of the examples in the training set
is not large enough. Our future goal is to apply this method to
the energy management strategy of HEV to achieve efficient
system control so as to save energy on vehicles.

REFERENCES
[1] Montazeri-Gh M, Ahmadi A, Asadi M, "Driving condition recognition for

genetic-fuzzy HEV control, presented at the 3rd International Workshop on
Genetic and Evolving Systems. IEEE, 2008.

[2] Braun A and Rid W, "Assessing driving pattern factors for the specific
energy use of electric vehicles: A factor analysis approach from case study
data of the Mitsubishi i–MiEV minicar," Transportation Research Part D
Transport & Environment, vol. 58, pp. 225-238, 2018.

[3] Ke S et al., "Multi-mode energy management strategy for fuel cell electric
vehicles based on driving pattern identification using learning vector quan-
tization neural network algorithm," Journal of Power Sources, vol. 389, pp.
230-239, 2018.

[4] Xiaopeng T et al., "Battery state of charge estimation based on a pure
hardware implementable method," DEStech Transactions on Environment,
Energy and Earth Sciences, 2018.

[5] Zhang R, Tao J and Zhou H, "Fuzzy optimal energy management for fuel
cell and supercapacitor systems using neural network based driving pattern
recognition." IEEE Transactions on Fuzzy Systems, pp. 99, 2018.

[6] M. K. Dayeni and M. Soleymani, "Intelligent energy management of a fuel
cell vehicle based on traffic condition recognition," Clean Technologies
Environmental Policy, vol. 18, no. 6, pp. 1-16, 2016.

[7] A. Braun, and W. Rid, "Assessing driving pattern factors for the specific
energy use of electric vehicles: A factor analysis approach from case study
data of the Mitsubishi i–MiEV minicar," Transportation Research Part D
Transport Environment, vol. 58, pp. 225-238, 2018.

[8] L. Si, M. Hirz and H. Brunner, "Big data-based driving pattern clustering
and evaluation in combination with driving circumstances," presented at the
SAE World Congress, 2018.

[9] J. D. Lee et al., "A novel driving pattern recognition and status monitoring
system," presented at Pacific Rim Conference on Advances in Image and
Video Technology. Springer-Verlag, 2006.

[10] H. Yu, F. Tseng and R. Mcgee, "Driving pattern identification for EV range
estimation," presented at Electric Vehicle Conference, 2012.

[11] X. Zhou et al., "Fuel consumption estimates based on driving pattern
recognition," presented at Green Computing and Communications. IEEE,
2013.

[12] D. Schramm et al., "Driving pattern analysis of hybrid and electric vehicles
in a German conurbation including a drive system evaluation," International
Journal of Advanced Mechatronic Systems, vol. 7, no. 3, pp. 158, 2017.

[13] L. Feng, W. Liu and B. Chen, "Driving pattern recognition for adaptive hy-
brid vehicle control," SAE International Journal of Alternative Powertrains,
vol. 1, no. 1, pp. 169-179, 2012.

[14] S. Mukhopadhyay, "Deep learning and neural networks," in Advanced
Data Analytics Using Python, Berkeley, CA: Apress, pp. 99-119, 2018.

[15] J. Schmidhuber, "Deep learning in neural networks," Neural Networks,
vol. 61, pp. 85-117, Jan, 2015.

[16] A. Vieira and B. Ribeiro, "Deep Learning: An Overview," in Introduction
to Deep Learning Business Applications for Developers, Berkeley, CA:
Apress, pp. 9-35, 2018.

[17] Yudian X , Lu T , Jiang Y, "Chinese character recognition based on Gabor
feature extraction and CNN," Pattern Recognition and Computer Vision,
2018.

[18] Kuo W , Ajay K, "Cross-Spectral Iris Recognition using CNN and Super-
vised Discrete Hashing," Pattern Recognition, 2018.

[19] Zhang B, Wang L, Zhe W, et al., "Real-Time Action Recognition with
Enhanced Motion Vector CNNs," Computer Vision & Pattern Recognition,
2016.

[20] S. Haykin and B. Kosko, "Gradient-based learning applied to document
recognition," in Proc. IEEE, 2009, pp. 306-351.

[21] Y. Lecun, Y. Bengio and G. Hinton, "Deep learning," Nature, vol. 521, no.
7553, pp. 436-444, May 2015.

[22] D. E. Rumelhart, G. E. Hinton and R. J. Williams, "Learning representa-
tions by back-propagating errors," Nature, vol. 323, no. 6088, pp. 533-536,
1986.

[23] A. Krizhevsky, I. Sutskever and G. E. Hinton, "ImageNet classification
with deep convolutional neural networks," presented at International Con-
ference on Neural Information Processing Systems, 2012.

[24] R. A. Dunne and N. A. Campbell, "On the pairing of the softmax activation
and cross-entropy penalty functions and the derivation of the softmax
activation function," presented at the 8th Australasian Conference on Neural
Networks, 1997.

[25] D. P. Kingma and J. Ba, "Adam: A method for stochastic optimization,"
presented at the 3rd International Conference for Learning Representations,
2015.

[26] Bergstra J et al., "Hyperopt: a python library for model selection and
hyperparameter optimization," Computational Science & Discovery, vol. 8,
no. 1, 2015.

[27] Richards J.A, "Image Classification in Practice," in Proc. Springer, Berlin,
Heidelberg, 2013.

[28] Wang J et al., "Driving cycle recognition neural network algorithm based
on the sliding time window for hybrid electric vehicles," International
Journal of Automotive Technology, vol. 16, no. 4, pp. 685-695 2015.

[29] Wei Z , Xu Z and Halim D, "Study of HEV power management control
strategy based on driving pattern recognition," Energy Procedia, vol. 88,
pp. 847-853, 2016.

[30] R. Zhang and J. Tao, "Data-driven modeling using improved multi-
objective optimization based neural network for coke furnace system,"
IEEE Transactions on Industrial Electronics, vol. 64, no. 4, pp. 3147-3155,
2017.

[31] H. He, C. Sun and X. Zhang, "A method for identification of driving
patterns in hybrid electric vehicles based on a LVQ neural network,"
Energies, vol. 5, no. 9, pp. 3363-3380, 2012.

VOLUME 4, 2016 11



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

LIANG XIE was born in Yichun, Jiangxi, China
in 1994. He received the B.E. in electrical and
information engineering from Hunan University in
2017. He is currently pursuing the M.E. in control
engineering from Zhejiang University, Hangzhou,
China. His research interests include machine
learning, deep learning and energy management in
hybrid electric vehicles.

JILI TAO received the B.Sc. degree in commu-
nication engineering and M.Sc. degree in traffic
information engineering and control from Central
South University, Changsha, China, in 2001 and
2004, respectively, and the Ph.D. degree in control
science and control engineering from Zhejiang
University, Hangzhou, China, in 2007. She is cur-
rently a Professor with the Ningbo Institute of
Technology, Zhejiang University, Ningbo, China.
Her research interests include intelligent optimiza-

tion, modeling and its applications to electronic system design and control
system design.

QIANNI ZHANG received the Ph.D. degree from
Queen Mary University of London, in 2007. She
is currently a Senior Lecturer at Queen Mary Uni-
versity of London. Her research interests include
Medical image analysis; 3D human modeling and
animation, and various topics and applications in
computer vision and pattern recognition.

HUIYU ZHOU received a Bachelor of Engineer-
ing degree in Radio Technology from Huazhong
University of Science and Technology of China
and a Master of Science degree in Biomedical
Engineering from University of Dundee of United
Kingdom, respectively. He was awarded a Doctor
of Philosophy degree in Computer Vision from
Heriot-Watt University, Edinburgh, United King-
dom. Dr. Zhou currently heads the Knowledge
Discovery and Machine Learning Theme and is

leading the Biomedical Image Processing Lab at University of Leicester. He
is the Director of MSc Programmes, Coordinator of MSc Distance Learning
and a Member of Research Committee at Department of Informatics. Prior
to this appointment, he worked as a Lecturer (2012-17) at the School of
Electronics, Electrical Engineering and Computer Science, Queen’s Uni-
versity Belfast. Dr. Zhou has published widely in the field. He was the
recipient of "CVIU 2012 Most Cited Paper Award", "ICPRAM 2016 Best
Paper Award in the Area of Applications" and was shortlisted for "ICPRAM
2017 Best Student Paper Award" and "MBEC 2006 Nightingale Prize". He
currently serves as the Editor-in-Chief of Recent Advances in Electrical &
Electronic Engineering, Associate Editor of IEEE Transactions on Human-
Machine Systems, Editorial Board Member and Guest Editor of several
refereed journals.

12 VOLUME 4, 2016


