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Abstract

Histopathology imaging is a type of microscopy imaging commonly used for the micro-

level clinical examination of a patient’s pathology. Due to the extremely large size of

histopathology images, especially whole slide images (WSIs), it is difficult for pathologists

to make a quantitative assessment by inspecting the details of a WSI. Hence, a computer-

aided system is necessary to provide a subjective and consistent assessment of the WSI

for personalised treatment decisions. In this thesis, a deep learning framework for the

automatic analysis of whole slide histopathology images is presented for the first time, which

aims to address the challenging task of assessing and grading colorectal liver metastasis

(CRLM). Quantitative evaluations of a patient’s condition with CRLM are conducted through

quantifying different tissue components in resected tumorous specimens. This study mimics

the visual examination process of human experts, by focusing on three levels of information,

the tissue level, cell level and pixel level, to achieve the step by step segmentation of

histopathology images.

At the tissue level, patches with category information are utilised to analyse the WSIs.

Both classification-based approaches and segmentation-based approaches are investigated

to locate the metastasis region and quantify different components of the WSI. For the

classification-based method, different factors that might affect the classification accuracy are

explored using state-of-the-art deep convolutional neural networks (DCNNs). Furthermore,

a novel network is proposed to merge the information from different magnification levels

to include contextual information to support the final decision. With the support by the



vi

segmentation-based method, edge information from the image is integrated with the proposed

fully convolutional neural network to further enhance the segmentation results.

At the cell level, nuclei related information is examined to tackle the challenge of

inadequate annotations. The problem is approached from two aspects: a weakly supervised

nuclei detection and classification method is presented to model the nuclei in the CRLM

by integrating a traditional image processing method and variational auto-encoder (VAE).

A novel nuclei instance segmentation framework is proposed to boost the accuracy of the

nuclei detection and segmentation using the idea of transfer learning. Afterwards, a fusion

framework is proposed to enhance the tissue level segmentation results by leveraging the

statistical and spatial properties of the cells.

At the pixel level, the segmentation problem is tackled by introducing the information

from the immunohistochemistry (IHC) stained images. Firstly, two data augmentation

approaches, synthesis-based and transfer-based, are proposed to address the problem of

insufficient pixel level segmentation. Afterwards, with the paired image and masks having

been obtained, an end-to-end model is trained to achieve pixel level segmentation. Secondly,

another novel weakly supervised approach based on the generative adversarial network

(GAN) is proposed to explore the feasibility of transforming unpaired haematoxylin and

eosin (HE) images to IHC stained images. Extensive experiments reveal that the virtually

stained images can also be used for pixel level segmentation.
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Chapter 1

Introduction

The analysis of histology images is an essential approach for biologists and pathologists

to study an object’s characteristics at a micro level, as the microscopic images of cells and

tissues contain valuable information for both scientific study and medical diagnosis [1].

Especially for cancer diagnosis and progress evaluation, histology images (referred to as

histopathology images) are considered as the “golden truth” [2]. In this research, the main

focus is developing computer-aided histopathology image analysis algorithms for assisting

regression assessment for colorectal liver metastases. In this chapter, the background, research

objective and challenges of this research are introduced and then the outline of the thesis is

provided.

1.1 Background

Histopathology images refer to the microscopic images of animal tissues or cells used for the

purpose of clinical pathology diagnosis. In the medical field, the condition of the cells and

tissue can provide a reliable interpretation of the corresponding performance of the patients’

organs. For biological study, the composition of the tissue or the growth pattern of the cells

is an effective reflection of the lower level mechanism. However, these are too small to
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be observed directly with the eyes. Only with the help of a microscope, can the object be

explicitly inspected after being magnified dozens of times. Therefore, microscopy imaging

becomes an indispensable technique for biomedical study.

Most histopathology images are obtained using a light microscope, but there are other

kinds of equipment available such as electron or infrared scopes. However, these are not

widely used due to the cost or other factors. Currently, there are some problems with the

traditional microscope [3]. For example, the slides need to be loaded for the observation

whenever they are needed. This is inconvenient and inefficient particularly for slide analysis

on a large scales. Thanks to recent developments in advanced microscopy, the images of

slides at different magnification levels can be easily digitalised and stored. Subsequently, the

slide can be viewed on any computer locally or remotely. Moreover, observers can obtain a

better view on computer screens compared to using scopes.

Aside from the imaging methods, how the tissue is acquired also makes a difference.

Some slides are made from biopsies, while others are from specimens. With consideration

of the staining methods, there are many more types of histopathology images in terms of

their appearance. In this study, the main research focus is on light microscope scanned

histopathology images from resected tissue after the surgery for colorectal liver metastasis

(CRLM) patients.

1.1.1 Histopathology images - slides preparation and digitisation

Unlike the acquisition of other medical images like X-ray and Ultrasound, the acquisition of

histopathology images is rather complicated. Typically, there are six steps (as shown in Fig.

1.1) to prepare a slide for digitalization in a pathology lab: fixation, grossing, processing,

embedding, sectioning and staining [4]. The purpose of fixation is to prevent the tissues

from autolysis, and to preserve them in the same state as when they were alive. Fixation also

hardens the specimen to maintain its molecular structure. Grossing is a relatively simple
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operation that occurs in the grossing station, where the specimens are labelled, measured and

pre-processed. At the processing step, the specimens react with different types of chemical

reagents in an automated processor machine. Then, after the embedding, the specimens

are solidified on the platform to be readied for sectioning cutting. A thin piece of tissue is

placed on the slide, and then the last step is to stain the tissue on the slide, otherwise, it is

not possible to observe the slide since the thin piece of tissue would otherwise be almost

transparent.

There are a series of dyes such as hematoxylin & eosin (HE) and immunohistochenistry

(IHC) that can be used to highlight the different components of the tissue. However, HE

staining is the most commonly used and low-cost staining method and is used to highlight the

nuclei out of the cytoplasm and reveal the structure of the tissue as well. The whole process

takes around 12 to 24 hours before the slide can be sent for digitalisation depending on the

size of the specimen. Compared to X-ray and MRI, the acquisition of a histopathology image

takes a very long time.

Fig. 1.1 Steps for specimen preparation with figures from Geoffrey Rolls’ 1 and Chris Mills’
2 tutorials

1Six Steps of Processing a Biopsy in the Histology Lab, from website: “https://owlcation.com/stem/what-
happened-to-that-biopsy-the-doctor-took-from-me/”, accessed at September, 2017

2An Introduction to Specimen Preparation, “http://www.leicabiosystems.com/pathologyleaders/an-
introduction-to-specimen-preparation/”, accessed at September, 2017
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1.1.2 Colorectal liver metastasis - background

Colorectal cancer (bowel cancer, CRC) is one of the most common cancers in the world,

where over 1 million patients are diagnosed with colorectal cancer each year [5, 6]. There

are four stages of colorectal cancer, the final stage being metastases, which means the cancer

has spread to other parts of the body. CRLM is a very serious stage for the patient since for

most colorectal cancer patients, the liver is the first target organ for distant metastases. Some

patients may develop CRLM along with their original cancer, or even after their original

cancer has been treated. The standard care for patients with CRLM is surgical resection

which is also the only effective treatment for longer survival or cure. However, according to

the distribution of the disease, only about 20% CRLM patients are identified as being suitable

for resection [7]. Even though the 5-year survival rate with resected CRLM has increased to

50-60% with the progress made in a multidisciplinary field [8], the overall 5-year survival

rate is too low, and this makes the treatment after resection so important.

Before resection surgery, patients have to undertake chemotherapy to control the growth of

the tumour tissue and decrease the size of the tumour. Furthermore, preoperative chemother-

apy will help 16% patients with initially unresectable lesions to achieve a resectable condition

[9]. However, even though preoperative chemotherapy helps the prognosis of patients, it is

impossible to eliminate all tumour cells since this will cause damage to the healthy parts of

the body as well. Thus, after surgery, the number of residual tumour cells in a sample can be

considered as critical information to inform the subsequent treatment strategy. Aside from the

histopathology image, other medical images such as from magnetic resonance imaging (MRI)

can be used to estimate the tumour size. However, after chemotherapy, the other methods

cannot be used to estimate the tumour size as they cannot access the tumour to assess its

condition.

After surgery, patients are still subject to cancer related risks. Recurrence is the most

significant risk facing CRLM patients after resection surgery, making after-surgery evaluation
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and a recovery plan so important. With the resected tissue making it possible to obtain

a histopathology image, this provides pathologists with opportunity to perform detailed

regression grading. Afterwards, a personalised plan according to the histopathological

diagnosis result can be implemented for a better after-surgery recovery. Moreover, data

describing the outcomes for previous patients can be used to predict the recurrence rate or

other potential adverse events. Therefore, the evaluation of the cancer regression grade is of

vital importance for patients. Usually, there are two features that can be employed to evaluate

Fig. 1.2 Example of an annotated region for CRLM tumour regression assessment 3

the regression. One is the percentage of residual tumour tissue in the whole observed area.

And the other crucial visual clue is the distribution of normal cells and tumour cells around

the invasive front [10]. The invasive front is the region where pro-tumour cells fight against

the anti-tumour cells and can be presented through visual clues such as pushing, infiltrating

or tumour budding. Fig. 1.2 demonstrates the images that are used for the tumour regression

assessment through the proportion of the residual tumour cells on the whole region: the tissue

that lies inside the yellow contour is tumour tissue; the tissue surrounded by the tumour tissue

is necrosis killed by chemotherapy; and the other tissues with a lighter colour are normal
3This is cropped region of a WSI from CRLM patients and annotated by the experts
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stroma. Fig. 1.3 illustrates different types of invasive fronts with the sketch and real patches

from histopathology images. The different types of invasive fronts can also provide valuable

information for clinical assessment. Currently, both kinds of histopathological evaluations

are performed by expert pathologists through the visual assessment of the tumour slides. This

is often inefficient and expensive due to the large number of slides that need to be reviewed

and the limited availability of expert liver pathologists. Moreover, visual evaluations are

inherently subject to inter- and intra-observer variability meaning that assessments can be

unacceptably inconsistent and imprecise, and this can have a negative impact on the actual

diagnosis and future treatment planning.

Fig. 1.3 Different invasive front patterns Images are adapted from Fig.1 in [11]. In the first
row, blue irregular cells are the tumour, the orange ones are hepatocytes. In the corresponding
H & E stained images, Ca denotes cancer cells while LP represents liver parenchyma.
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1.1.3 Digital histopathology images

A sound understanding of the histopathology of whole slide images is the key to their

successful analysis. Fig. 1.4 explains our understanding of the whole slide images. There

are two different levels in this study, the physical level and semantic level. The physical

level relates to the physical storage of the images. Due to the huge size of whole slide

images (WSIs), WSIs are normally saved in a pyramid tiff format using tiles for the better

performance of loading for visualisation. Subfigure (A) illustrates the pyramid structure of

the file: the highest magnification level (in this study 40×) is located at the lowest level of

the pyramid with the highest resolution; for each level up, the magnification level (whole

image size) increases by a factor two. In other words, all the layers in the pyramid have the

same content but different resolution.

Fig. 1.4 Pyramid structure of WSIs and components observed on different levels

The subfigures (B-D) describe the semantic level of the whole slide. Although there are

the associations shown in the figure, no fixed mapping exists between these two systems. At

the semantic level, the contents in the scope are the main factors to consider. The slide level
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(B) tends to consider all the contents in the slides. At the tissue level, there are some objects

such as the glands and porta area that can be observed, except for different tissue components

with their unique textures. The nuclei are the main objects that are distinguishable at the cell

level, since the distribution of the nuclei is a matched reflection of the distribution of the

cells.

1.2 Research objective

The demand for a computer-aided diagnosis (CAD) system for histopathologists to perform

an objective, efficient, reproducible and quantitative analysis of a histopathology image has

been put forward along with the emergence of digital histopathology images. Generally

speaking, the study of an automated process to analyse histopathology images with computer

vision is undertaken to assist biologists or doctors to accelerate the analysis process and save

them from exhaustive and laborious manual inspection.

1.2.1 General tasks for histopathology image analysis

There are several general scenarios that the computer-aided techniques can help:

(a) Cells (nuclei) localisation and counting. Counting the cells or nuclei on a slide is a

daily task for some biologists. For them, the exact number of objects has significant

meaning. It seems to be an easy task for image processing, however, the challenges

come when there are overlapping and blur in the image despite of huge morphology

variance.

(b) Cells (nuclei) segmentation and classification. The classification of the cells (nuclei) is

another meaningful task along with cell (nuclei) counting, especially when there are

different cells mixed together. The cells (nuclei) segmentation place higher require-

ments on the computer vision task. To segment the cells (nuclei) out of the background
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will help to gain a statistical understanding of them since there are masses of them in a

region. The segmentation will also lead to a better classification performance since the

foreground and background components are separated.

(c) Tissue level detection and classification. In the WSI, to detect and locate regions that

have special structures like glands, invasive fronts, is another essential task. These

kinds of regions are of greater interest to researchers and doctors, as both the number

and the location of these special structures will provide valuable information about the

whole slide.

(d) Tissue level segmentation for quantitative assessment. To analyse and segment different

tissues in a whole slide image is a very challenging but important task especially for

cancer-related diagnosis in clinical practice. Typically, the whole slide image for

diagnosis purposes contains several different kinds of tissues such as normal tissue,

cancerous tissue and dead tissue. In most cases, the percentage of tumour tissue in

the whole slide is a critical factor. Yet, accurate calculation needs to be based on the

accurate segmentation of the tissue.

(e) Virtual staining. The staining of the slides aims to highlight their different components.

However, on the one hand, some of the histopathology images are grayscale images like

those obtained with electron microscopy, to enrich the content and highlight different

components, and in this case virtual staining could play a vital role. On the other hand,

it is usually impossible to stain the slides with different dyes, whereas, with virtual

staining, different components can be analysed by a computer and then stained.

The tasks above are only some common tasks that occur daily in a lab. With the development

of computer vision and the improvement of a microscope, more and more application

scenarios can be exploited.
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1.2.2 Research objective of this study

In medical or clinical practice, one of the most important applications of histopathology

image analysis is cancer grading. Histopathology image based cancer grading aims to detect

and segment the normal and abnormal tissues or cells and then grade them based on medical

guidelines. In this research, the overall objective is to develop CAD systems with intelligent

algorithms to enhance the accuracy and efficiency of the automatic quantitative assessment

of CRLM tumour regression and enable precise characterisation of the tumour invasion

front. This objective requires development algorithms that have sufficient robustness and

generalisability so that they can be applied to the segmentation and classification tasks of

other histopathology images as well, especially for those with limited annotation data. More

specific goals involved in this research can be broken down as follows:

1. Classification: develop computational models to classify the sub-types of tissue

patches and nuclei based on the annotation information.

2. Detection: locate the regions of interest (ROI) in a larger patch or WSI, such as

detecting the cancerous area in the WSI and detecting all the nuclei in an ROI.

3. Segmentation: segment the target tissue components (normally cancerous tissue) or

nuclei out of the input image.

1.3 Challenges

Analysing histopathology images for a quantitative and reproducible result is a very challeng-

ing task for both pathologists and computers. The main drawbacks of the manual analysis

conducted by pathologists’ can be summarised as follows [2]:

1) Efficiency Pathologists need to manually zoom into different objectives and look through

a WSI to complete their assessment. However, a WSI is huge, and the size of a compressed
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WSI is normally several gigabytes, while on the 40× objective, the size can go up to billions

of pixels. Moreover, WSIs usually do not come alone, because diagnostic decisions need to

be made on a series of slides. Hence, it can take hours for pathologists to analyse WSIs and

make a final diagnosis for a single patient.

2) Reproducibility It is very difficult to define whether a tissue is tumorous or normal

subjectively, especially for tissues in a transition state. Different pathologists may have their

own rules to classify tissues, and the same pathologist may even make different decisions

about a similar slide at different times. However, if the segmentation and classification

are undertaken by algorithm, the results will not be affected by intra- or inter-observer

subjectivity.

3) Quantifiability Quantitative analysis is usually conducted by the pathologist using com-

puters for the task. For the pathologists, the evaluation of the percentage of the cancerous

tissue on the whole slide is mostly based on visual estimation. While for the machine, the

calculation of the index can go to the pixel level, even though it may not be necessary.

To overcome these difficulties and boost the efficiency of the analysis, pathologists have

encouraged the development of a computer-aided diagnosis system for histopathology image

analysis. Nonetheless, the task is very challenging for the computer as well, as unlike

any other medical images or natural images, histopathology images have a unique visual

characteristic. These difficulties can be summarised as follows:

1) Morphology The huge variance of morphologies at both the tissue and cell levels pose

serious challenges for the automated analysis process. These variances not only come from

different tissues that have totally different structures, but also from the same tissue because

of the different sectioning angles. At the tissue level, due to a lack of shapes representing

elements, there are few abstract representations for most tissue images. The visual appearance

of the tissues at a lower magnification level is more like texture images, but the huge variance

of morphology makes it different from most natural images. At the cell level with higher
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magnification level, the outline of the nuclei can be easily observed. Despite the morphology

of the nuclei at certain regions tending to be identical, there will be a blur in some areas and

overlaps where there are high-density nuclei, which makes it difficult to detect and segment

nuclei.

2) Big data with limited annotations The large amount of data itself poses a critical chal-

lenge, irrespective of the CAD process. On the other hand, annotations for these big data are

considerably limited. The lack of adequate and high-quality annotations present significant

obstacles for detailed analysis.

3) Human factor Different human factors during the preparation of the slides also increase

the difficulties. The slide needs to be sliced and stained to highlight the biological structures

such as the nucleus and stroma. The thickness of the slide, the die concentrate, as well as

other factors will result in a huge difference between the slides. On the one hand, tissues can

be very similar to each other, especially when they are at a transition stage. On the other

hand, each pixel of the WSI needs to be assigned a label so that the area can be calculated for

obtaining a quantitative result. These requirements add to the overall difficulty.

Despite all these difficulties and challenges, it is a promising research topic. More and

more researchers all over the world are attracted to this field. Moreover, computer vision and

artificial intelligence are finding their way to assist researchers and doctors to better observe

and analyse histopathology images.

1.4 Outline of the thesis

Following this introductory chapter, Chapter 2 presents a review of the methods for histopathol-

ogy image analysis for both the cell level and tissue level. Notably, specific attention is paid

to reviewing the application of deep learning methods on histopathology images. In addition,

the new trend of using generative adversarial networks for weakly supervised learning and

pixel level analysis is reviewed.



1.4 Outline of the thesis 13

Chapter 3 addresses the task of the tissue level analysis with deep neural networks

(DCNNs). Classification-based and segmentation-based methods are investigated to enhance

the overall segmentation accuracy. During the processing, a number of feature maps and

features are plotted to help understand how the networks make decisions. Variant approaches

are conducted to visualise and evaluate the performance of different models on the WSIs.

Based on the rough analysis on the WSI, Chapter 4 tends to further explore the infor-

mation contained in histopathology images. Both supervised and unsupervised algorithms

are applied to the histopathology for extracting cell level information. Based on the tissue

level and cell level information acquired, a tissue region growing framework is proposed to

enhance the segmentation results for the tissue border region.

In Chapter 5, another representation (staining) that highlights different tissue types of the

CRLM WSI is introduced for the WSIs analysis. GANs are the main approaches facilitated

to explore the inner connection between images with different staining. Aside from targeting

at a better visualisation of the WSI, a weakly supervised framework is proposed to achieve

the pixel level segmentation result.

In the last, Chapter 6 presents the conclusions the findings and limitations of the work

in this thesis, then proposals for future work are made.



Chapter 2

Literature Review

The study of computer-aided histopathology image processing dates back to the early 80s

[12]. Although efforts have been made in this field, there are still very few commercial

applications of automated histopathology image analysis that have reported until recently.

With the rapid development of both software and hardware, especially with the help of deep

learning, automated histology image analysis is eventually finding its way to clinical practice.

Some early trials on specific cases have demonstrated its promising future, while more and

more applications are on their way.

This chapter presents a review of the histopathology image analysis literature, with a

particular focus on HE stained histopathology images. Firstly, based on the targeted contents

of the WSI, this review is conducted from two different perspectives, the tissue level and cell

level. Tissue level mostly summaries the methods that process the large patches as a whole.

Whereas, the cell level examines the approaches that detect and segment the nuclei out of

the complex background. Then the generative adversarial network (GAN) based algorithms,

along with other weakly supervised methods are reviewed. In the final two sections, in

addition to the introduction of the evaluation metric used for classification and segmentation,

a few open-source tools and software are investigated for the purpose of integrating the

algorithms into the platforms later.
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2.1 Related work on tissue patch classification and segmen-

tation

Due to the limitations of computation capability, the computer-aided processing of WSIs is

normally based on tiles or patches, which only provide a partial scope of the whole slide.

These image patches are called tissue level patches when they are cropped either with a

large size (usually more than 400×400) on 40× magnification level or relatively smaller

size at a lower magnification level such as 200× 200 at a 20× /10× magnification level.

The successful process of these patches at the tissue level is the groundwork for the WSIs

analysis, and the review of the tissue level is conducted from two aspects, classification and

segmentation based research.

2.1.1 Tissue level overview

Histopathology image patches are an import category of texture patches. Hence, most

algorithms developed for extracting texture features can be directly used for histopathology

images as well. However, there are some unique problems and challenges for histopathology

image analysis, which are in addition to the challenges caused by the extremely large size of

the WSIs. These challenges are described in detail as follows:

Problem 1 : what are the suitable patch sizes and magnification levels?

Finding a suitable combination of patch size and magnification level is a primary challenge in

patch-based approaches. Fig. 2.1 illustrates the example of different magnification levels and

different patch sizes. Apparently, with a lower magnification level, e.g. 10×, the details of

the images are very blurry, and the nuclei can be observed as spots, but here, an overview of

the bigger picture can be obtained. While on the 40× level, the best image quality and details

can be acquired, and texture of the nucleus and the cytoplasm can be observed. However, the
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scope of the image is limited and the contextual information is ignored. The ignorance of

Fig. 2.1 Illustration of information contained in different magnification levels or patch size.
(a): patches from hepatocyte with nuclei can be observed as individual objects in 40×
magnification level; (b) patches from necrosis demonstrate repetitive features across different
magnification level.

context is even worse when the patch size becomes smaller. As shown in Fig. 2.1(a), for some

kinds of tissue, e.g. hepatocyte, on 40× magnification level, with a patch size 448×448px,

the patch can contain different nuclei which can be treated as individual objects with rich

visual features such as the shape, size and filling content. However, without contextual

information, it is difficult to judge which type of tissue this patch comes from, because such

texture can exist in a variety of different tissue types. Moreover, for other types of tissues, as

shown in Fig. 2.1(b), necrosis, the patches contain only textural features which are similar to

noise. These textures are homogeneous irrespective of the patch sizes or magnification levels.

In this case, the magnification level is not so important although the patch size could matter.

Problem 2: large scale dataset with repetitive features

One of the great challenges imposed on patch-based histopathology image processing is the

vast scale of the data. For a large homogeneous region like 2000×2000 pixels, considering

a patch size 224×224, with a step size 100, 400 training samples can be extracted without
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involving any other augmentation procedure. For 10 WSIs with 10 annotations (the same size

as described before) in each, a 40,000 training set will be obtained. However, it should be kept

in mind that the actual sizes of the WSIs are normally greater than 1,000,000 × 1,000,000

pixels. To take into account larger areas in WSIs, the number of patches becomes enormous.

Despite the advantage of abundant training data, there is a further obvious drawback: a

large percentage of this data possess similar features, which may be even repetitive and

redundant. The proportion of annotated data is another challenge that needs to be taken into

consideration. Compared to the vast database collected by a different research institute, the

portion of annotated data is certainly small. With limited knowledge provided to the model,

methods to ensure the generalisability of trained models is always an issue.

Problem 3 : multi-class tissue classification and segmentation

Instead of performing a binary classification which mainly concentrates on detecting the

cancerous area, the multi-class tissue classification and the segmentation task provide a

more in-depth insight and offer a better understanding and assessment of histopathology

images. The obscure border between different tissue types is one of the big obstacles for

multi-class classification and segmentation methodologies. Some of the tissue regions are in

the intermediate/ transformation state that no suitable class can be applied to, hence it is very

difficult to define an clear border between different tissue. When it comes to segmentation,

there is no explicit boundary that can be defined manually for training segmentation models.

Another common issue is the data imbalance among different classes. The normal tissues

account for a large portion of the samples, while the quantity of some other classes can be

extremely rare, and this will cause a serious problem on the performance without proper

handling.
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Problem 4: rotate-invariant feature

The rotation-invariant feature is a critical feature for the histopathology image since the

image actually comes from a 2D cross-section of a 3D object. Theoretically, there is no right

direction for the histopathology images. This property can be useful on some occasions,

such as, when augmenting the training dataset. Moreover, it brings potential problems. For

example, if detecting a specific kind of structure in the whole slides is needed, the features

from different angles will be individual which will enormously increase the workload.

2.1.2 Tissue level classification Method

The classification of the histopathology image patches is considered as the basic tasks for

histopathology analysis. In this section, the trend of the classification methods applied on

histopathology image patches is reviewed.

From handcraft features to deep features

In image processing based methods, feature extraction and classification are two independent

tasks. Over the last few decades, most studies have concentrated on extracting the hand-

crafted features of the histopathology image patches. Texture features are absolutely one

of the most important of these approaches. The Local Binary Pattern (LBP), Gabor filter,

Haralick texture, and co-occurrence texture as well as many other texture features have been

introduced or proposed to be applied to histopathology image analysis for various cancer

types. The bag of features uses a feature dictionary learned from image patches and shows

decent performance in many related kinds of research [13, 14]. Aside from the texture

features, the intensity features, morphological features and topological features are very

important for histopathology image analysis as well. Intensity features refer to utilising

information from different colour spaces. Even though there is the staining variance issue,

the colour of the whole slide images are constrained to limited subspace. Nonetheless,

for most of the studies that have employed intensity features, maximising the intra-slide
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variance and minimising the inter-slide variation are necessary procedures. In [15], the

authors compare performances of 11 colour models in a classification task; they found that

no model outperforms others in all cases. Whereas, the authors in [16] conclude that RGB

colour space is better, while DiFranc et al. [17] state that adding CIELab information may

be helpful. Morphological features focus more on the relative location and distribution, like

the area, shape, perimeter, compactness, eccentricity & etc. [18] present an explicit shape

descriptor and use it in histopathology image retrieval. Many other types of research [19, 20]

have employed the gland area as an essential criterion in prostate cancer. Topological features

which are also called graph-based features, can provide information about the structure of the

sample. In [21], the nuclei were extracted and then used as the primary note for constructing

the graph. The Voronoi Diagram, Delaunay triangulation, and minimum spanning tree are

the most commonly used topological features for histopathology image analysis.

Deep learning algorithms have been the state-of-the-art methods for the natural image in

different tasks such as classification and segmentation, and these have inspired researchers

to apply them in the medical image field. Cruz-Roa et al. [22] present the first attempt

of using a deep learning framework for the quantitative WSI analysis of invasive ductal

carcinoma detection for breast cancer. By constructing a 3-layer CNN network, they obtained

a 71.80% F-measurement and 84.23% balanced accuracy across 49 independent testing sets.

Litjens et al [23] also employed the DCNN structure to detect metastasis in sentinel lymph

nodes and to detect cancer in prostate slides, and demonstrated the powerful capability of

the ’deep learning’ technique in WSI analysis. Their team also hosted the CAMELYON16

(cancer metastasis detection in the lymph node) and CAMELYON17 contest, which has

greatly attracted the interest of researchers all around the world and has boosted the usage of

the deep learning algorithm with histological images. The winner of the CAMELYON16

[24] employed a much deeper network structure (GoogLeNet) and performed to the highest

magnification objective (40×), they obtained a 92.5% AUC (area under the receiver operating
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curve) and 73.3% tumour localisation score. The author also compared the performance of

other network structures including Alexnet and VGG16, but found that GoogLeNet yields

the best training accuracy.

Nowadays, it is the trend to embrace deep features. Different studies have reported on

different tasks through which the deep features can achieve much better results than the

handcraft features. Obviously, it is not sufficient to only conduct the classification on the

patch despite the excellent performance. Most clinical diagnosis is based on the WISs or a

series of WSIs. Hence, focus on the slide level or case level is the next trend.

From tissue level to slide/case level Strictly speaking, there is no boundary between the

tissue level and slide level/case level. Most slide/case level results are based on the output of

the tissue level result, while the slide/case level result will try to output a semantic label of the

whole slide instead of focusing on some of its parts. In the challenge of “CAMELYON”, one

goal of the tasks (CAMELYON16) is to distinguish whether the slide contains a cancerous

area or not. Furthermore, in “CAMELON17”, multiple slides from the same patients along

with the patients’ clinical data are provided. The objective is to predict a patient’s pN-stage

based on the detection and classification of metastases in multiple lymph node slides. During

this challenge, many creative algorithms are developed to solve the two problems. Table 2.1

summaries some of the novel studies conducted based on this dataset.

From binary label to multi-type tissue classification

In terms of the environment of the tissue especially in the cancerous region, the components

are very sophisticated. For example, in Fig. 2.2, from a patch cropped from the TCGA

dataset; there are Tumour, Fibrosis, Inflammation and Blood. In a paper by Kather .et.al, a

dataset contained eight different types of tissue patches from colorectal cancer (CRC) cases.

In their work, they also provided a benchmark method by combining different handcraft

features, which achieved 87.4% accuracy for eight classes. However, for this dataset, the

patch size was too small, only 150px×150px at a 20× magnification level, which will lead to
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Table 2.1 Related research using CAMELYON dataset

Paper Base Model Novelty / Contribution
Wang [24] GoogleNet,

Alexnet, VGG16,
FaceNet

Compare performances of different network
structures

Liu [25] Inception-V3 Compare performance from different magni-
fication level

Yi [26] Resnet Introduce the conditional random field (CRF)
for post processing

Lin [27] VGG-based
fully connected
network

Fast processing ability with large patch size

Courtiol [28] ResNet-50 CHOWDER as a weakly-supervised architec-
ture

Agarwalla [29] Alexnet A context-aggregation network with 2D-
LSTMs

Kohl [30] DenseNet Transfer learning for better performance

insufficient information for classification (especially for contextual details). Also, the dataset

mostly comes from one lab meaning that it would not contain enough staining variance to

build a robust and universal model.

Fig. 2.2 Example of tissue patch with different components from TCGA dataset

From small patches to large patches

During the first task of the ICAR2018 Challenge- BACH, another dataset with four different
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types of tissues labelled for breast cancer was introduced. Each patch was annotated with

a patch-wise label: normal, benign, situ carcinoma or invasive carcinoma. Yet, the patch

size for each patch can go up to 2048px×1536px for each training image. More detailed

information can be found in the paper by Araújo et al. [31]. However, one drawback of the

contest is that the total size of the provided dataset is not large enough compared to the other

contests such as CAMELYON. A critical feature of the dataset is that it comes with a staining

variance which adds to the overall difficulties. There usually are two ways to deal with this

issue. Some researchers claim that image pre-processes with the stain normalisation method

are not necessary with proper colour augmentation, while others insist on applying a colour

normalisation method before training. By any means, the purpose is to deal with the staining

variance among different patches from different slides. The best option might be to keep

the data variances during the training to make sure the networks learn the colour-invariant

features and apply a normalisation method before testing to ensure robust performance.

Table 2.2 A summary of the methods employed for BACH contest

Paper Patch Size
(px)

Base Network Norma-
lisation

Pre-
trained
Model

Araújo et al. [31] 512×512 8-layer DCNN Yes No
Nazeri et al. [32] 512×512 FCN No No
Vang et al. [33] 512×512 Inception-v3 Yes Yes
Vesal et al. [34] 512×512 Inception-V3,Resnet Yes Yes
Xie et al. [35] 512×512 DEN+SCU No No
Awan et al. [36] 512×512 Resnet Yes No
Rakhlin et al. [37] 400×400 ,

650×650
ResNet-50, InceptionV3
and VGG-16

No Yes

Golatkar et al. [38] 299×299 Inception-v3 No Yes
Cao et al. [39] 224×224 A multi-view RFSVM

method
No Yes

Safwan et al. [40] 224×224 Resnet Yes No

Regarding network structures, generic deeper networks such as the inception net and

Resnet are more popular compared to networks specially designed for texture images.
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Nonetheless, transfer learning is also preferable to training from scratch. Besides, because

only one label is provided for the large patch in the training dataset, a more substantial patch

size such as (512px× 512px) is used for the network input. To make a single prediction

based on the extensive information for a 2048px× 1536px image patch, more algorithms

focus on integrating the contextual information or for fusing the results from the different

levels or different networks. Cao et al. [39] proposed a multi-view RFSVM method to fuse

the results from different models. In the work of Rakhlin [37], networks with different input

patch size are fused to gain better performance, while Awan et al. [36] have attempted to

integrate contextual information. Other methods such as the “Dual Path Network” proposed

by Vang et al., “Two stage network” by Nazeri et al., and “Reversed Active Learning” by Xie

et al. have also been proposed to refine the results from small patches.

2.1.3 Tissue level segmentation methods

At the tissue level, there exist two kinds of segmentation: for those with a particular type of

structure such as the gland, the segmentation can be treated as object-oriented segmentation.

For the others that contain only textural features, the segmentation can be considered as

textural segmentation.

The GlaS (Gland Segmentation) contest [41] hosted by Warwick University is focused on

the first kind of segmentation which is another critical contest that significantly boosts the

application of the deep learning algorithm on histopathology images. The objective of this

contest is to achieve semantic segmentation over the glands area for colon cancer histopathol-

ogy images. Dozens of deep learning methods have been proposed for this task [42, 43].

Some researchers have tried to incorporate the features from different perspectives for a better

result. [44] propose a deep contour-aware network based on the fully convolutional network,

which can incorporate multi-level contextual features for an end-to-end result. Xu et al. [45]

present a deep multichannel side supervision network that can harness the features of both
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edges and the blocks, and this leads to better and more accurate border info. BenTaieb et

al. [46] propose a topology-aware fully convolutional networks to segment the gland area.

In their study, they propose a new loss to include geometric and topological constraints into

the deep network. They compare their results with several segmentation methods for natural

image segmentation such as FCN-32s [47], Deeplab [48] and CRF-CNN [49]. MIMONet

proposed by Raza et al. attempts to use multiple-input and multiple-output at the same time

and achieved state-of-art results [50]. Other studies such as [42], [51] & etc. seek to merge

information from different perspectives as well. At the same time, some researches have

tried to employ other methods to overcome the limited amount of ground truth provided. For

example, in the studies by Yang et al. [52] and Zhang et al. [53], they attempted to utilise

unannotated data to augment the training. Nonetheless, Singh et al. [54] present the whole

workflow for gland segmentation in the prostate including the annotation procedures.

Apart from the studies based on the GlaS dataset, semantic segmentation of other cancer

types targeting at texture-based segmentation is more challenging. In the paper by Wang et

al. [24], they introduce the fully convolutional network (FCN) for the semantic segmentation

of muscle and messy regions. Aside from this, the recurrent neural network (RNN) was

firstly introduced for histopathology image segmentation by [55]. The authors in this paper

proposed a 2D spatial clock-wise RNN model for muscle perimysium segmentation. The

comparison with U-net demonstrates the network to be a promising structure for generic

histopathology image segmentation. Instead of using a sequential network, Gadermayr et

al. employed a cascaded strategy to organise a different U-net based sub-network. Another

end-to-end network described by Mehta et al. [56], uses the ground truth label on the pixel

level, while the input patches contain a variety of types of breast cancer. To tackle the

problem, the authors constructed an encoder-decoder network structure which can also fuse

output from the multi-scale input to obtain an end-to-end result.
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2.1.4 Publicly available datasets on tissue/slide level

A high-quality annotated dataset is a critical prerequisite for training a good deep learning

model. However, the annotations for these histopathology images are very difficult to obtain.

Unlike the annotations for natural images which can be done by a normal person with

little training, the annotation for medical images needs to be conducted by experts with

corresponding medical knowledge. Table 2.3 lists a few publicly available data sources on

the tissue level.

Table 2.3 Public dataset for tissue-level histopathology image analysis

Dataset Description Size Annotation

TCGA 1 Multiple different
cases more than 1000 WSIs No annotation

TCIA 2 Multiple different
cases more than 1000 WSIs No annotation

GlaS 3
Gland area
segmentation for
colon tissue

50 ROIs with size
600×400 for training,
46 testing

Gland areas

CAMELYON-16 4
Breast cancer
lymph node
matestasis

270 WSIs for training,
130 WSIs for testing Tumor area

TUPAC16 5 Breast cancer cases 500 WSIs for training
Proliferation
scores based on
mitosis counting

CAMELYON-17 6
Breast cancer
lymph node
matestasis

500 WSIs for training,
500 WSIs for testing

Lesion-level and
patient-level
annotations

BACH 7 Breast cancer cases
400 ROIs with size
2048×1536
for training

Patch-level label
with 4 different
classes

1Webpage: https://cancergenome.nih.gov/
2Webpage: http://www.cancerimagingarchive.net/
3Webpage: http://www2.warwick.ac.uk/fac/sci/dcs/research/tia/glascontest/
4Webpage: https://camelyon16.grand-challenge.org
5Webpage: https://camelyon17.grand-challenge.org/
6This challenge is an extension task of mitosis detection. Webpage: http://tupac.tue-image.nl/node/3
7Webpage: https://iciar2018-challenge.grand-challenge.org/Dataset/

https://cancergenome.nih.gov/
http://www.cancerimagingarchive.net/
http://www2.warwick.ac.uk/fac/sci/dcs/research/tia/glascontest/
https://camelyon16.grand-challenge.org
https://camelyon17.grand-challenge.org/
http://tupac.tue-image.nl/node/3
https://iciar2018-challenge.grand-challenge.org/Dataset/
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2.2 Related work on cell level tasks

In HE stained histopathology images, the morphology of the nuclei can be clearly observed

with a more than 40× magnification objective. Even with a 20× magnification level, the

outline of the nuclei can be easily distinguished except under a few complicated circumstances.

Hence, at the cell level, in most situations, instead of detecting and segmenting the whole

cell, the nuclei are the main targets. The properties of the nuclei, such as its shape, size and

distribution are important properties for differentiating cells, and is important for biomedical

analysis. This is because cells are the basic functional units of the living creature, and the

nuclei are the core part of the cells.

Nuclei detection, classification and segmentation were well-studied fields before the trend

of deep learning began. Dozens of methods have been proposed to tackle these tasks over the

past few decades. Irshad et al. [57] presented a review on the methods for nuclei detection,

segmentation and classification in 2014, in which the author reviewed most of the start-of-

art image processing methods for cell level tasks including threshold, morphology, region

growing, watershed, active contour, k-means clustering, probabilistic models and graphic

cuts. The authors also provide a table which describe the datasets, objectives and metrics used

in previous studies. In recent years, inspired by the great success of deep learning algorithms

on natural image processing, more and deeper learning algorithms have been introduced

or designed for nuclei detection, classification and segmentation. A few recent works are

described in the survey by Litjens et al. [58]. The deep convolutional neural network, stacked

auto-encoder and the recurrent neural network are the most adopted methods employed for

cell level tasks. In this section, the work on the cell level are summarised from four aspects

as detailed in the following.
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2.2.1 Image pre-processing: image deconvolution and normalisation

With more and deeper learning models applied to histopathology images, image normalisation

is no longer a necessary procedure to obtain a robust result. However, due to the huge variance

of the images caused by different concentrations of the dye and the different illuminant in

different labs, typically, image normalisation is normally the first step before other image

processing algorithms can be applied. Although, it is also essential to enhance the visual

experience of the captured histopathology images on the screen for the histologists. In

addition, colour deconvolution is the usual approach for colour normalisation, which separates

the different channels in the original image in terms of the colour of the stains. With the

separated H channel image, the nuclei can be easily located and segmented with a threshold.

Hence, a brief introduction of colour normalisation methods is provided here.

Typically, there are only limited colour components presented in one stained histopathol-

ogy image. For example, there are only two main colours in the HE stained images, blue and

magenta/pink. The purpose of colour normalisation is to align the main colour components in

different images to realise a universal appearance. Li and Plataniotis [59] have summarised

the previous work on image normalisation into three categories: histogram matching, colour

transfer and spectral matching. They also propose a novel framework which attempts to

address the three challenges (illumination and stain variation, preservation of histological

information, and the requirement of a reference image) in one framework. Janowczyk et al.

conclude that previous work can be grouped into a stain specific algorithm and clustering

type algorithm [60]. Then, based on Basavanhally and Madabhushi’s work [61], the authors

propose a StaNoSA model which utilises a sparse auto-encoder to extract the features from

both the reference image and the target image before applying the alignment.
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2.2.2 Nuclei detection

The basic goal of nuclei detection is to initialise the seeds of possible locations of nuclei

which is critical for subsequent biomedical analysis. However, more advance goals require

accurate localisation of the nuclei, such as in a bounding box way. Conventional nuclei

detection methods prefer to use the statistical or geographical properties of an image to

generate the seeds. After the image normalisation, the most straightforward method to locate

the seed position for the nuclei is the threshold. More advanced method such as the H-maxima

transform [62, 63], Hough transform [64], and radial symmetry transform (RST) [65, 66]

detect seed points with local peak or shape information & et al. The voting method proposed

by Qi et al. [67] utilises the shifted Gaussian Kernel for single-path voting and demonstrates

a better performance than the iterative voting method proposed by Parvin et.al [68]. Most

image processing based methods can achieve decent results with normal tissues where the

nuclei distribute uniformly. When it comes to a complicated situation like tumour tissues

that have crowded and overlapped nuclei, they may not work as well. Moreover, they are

not robust enough since the performances are subject to the appropriate parameters being

selected. With the wide application of the deep learning method, the situation is constantly

evolving, and more and more robust and accurate algorithms are proposed for cell level tasks.

The general deep learning framework normally employs CNN to generate feature maps or

to build a regression network directly. The work by Xie et al. [69] has proposed a novel fully

convolutional regression network structure for an end-to-end prediction of the central point

of cells. Their results indicate that the proposed method has a good performance in terms of

overlapping and clumping cells. Instead of using the central location of the cells, another

regression network represented in [70] employs the bounding box for cell(nucleus) detection

which increases the overall difficulty by introducing another dimension to regress. But the

outcome shows an excellent result, especially for the overlapped cells. To adapt the CNN

to suit the nuclei detection task, the authors in [71] propose a spatially constrained network
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which merges the spatial info into the network. Usually, using deep learning methods takes a

long time to process a large image. While Xu and Huang [72] propose a distributed network

with the pre-fetch operation and compressed network parameters to accelerated the process

of detecting the nuclei on the whole slide image. As their title states, they are able to detect

10,000 cells in one second. Inspired by the voting method mentioned before, another voting

method which combines the CNN and the Hough voting method was proposed by Xie et al.

The advantage of this method requires relatively low efforts of annotation. Other methods

that utilize unsupervised networks or semi-supervised networks have also been proposed.

Xu et al. [73] tried to extract the features of the nuclei with an unsupervised network - the

stacked sparse auto-encoder, and then used the extracted features to classify the foreground

and background on breast cancer histopathology images with 3,500 manually annotated

ground truth.

For most image processing based methods, they do not require a large training dataset

because they are mainly based on prior knowledge. While, for most deep learning based

methods, a large well-annotated dataset is necessary. Hence, even though the deep learn-

ing methods for this task demonstrate excellent performances, methods to efficiently take

advantage of prior knowledge may be the next trend in the development of this task.

2.2.3 Nuclei segmentation

In previous research, the pure segmentation method only considered the edge information

and morphology features. Hence, the performance for overlapped nuclei or cells is not

satisfactory. A more reasonable and high accurate segmentation, semantic segmentation and

instance segmentation need to be considered. Watershed [74, 62], active contour [64, 75] and

graphical cut [76] were previously the fundamental methods for nuclei segmentation. Many

advanced methods and frameworks [77–80] have been developed based on these methods.
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These methods are proposed to overcome the disadvantages of the basic methods and tackle

the difficulties for the overlapped nuclei.

To adopt a deep learning method for the nuclei segmentation task, the normal DCNN

model is not suitable for the task. Ronneberger et al. [81] have proposed a specially designed

U-net structure for biomedical image segmentation which has proven to be very successful

for many related tasks. While Akram et al. [70] fused the extracted bounding box information

with another network for the segmentation task. The authors in [82], attempted to integrate

the information from multi-scale, and also incorporated high-level prior information to

reconstruct the border of the overlapped cell(nuclei). The work in [83] utilized the probability

map generated with DCCN to initialize the shape, and then the final segmentation would be

completed by a deformable model and a sparse shape model. Their team also proposed a

fast-scan CNN for region segmentation [84].

2.2.4 Nuclei classification

Nuclei detection and classification are two closely related research topics. For example,

the detection problem can be converted into a binary classification problem with the label

background or foreground. Furthermore, for some deep learning frameworks, the detection

and the classification tasks are deeply integrated into one network.

However, before the deep learning dominates the computer vision related task, the nuclei

detection, feature extraction and the classification are independent tasks. The shape, size,

and smoothness of the cell (nuclei) are important visual features for the classification. Other

than that, spatial information such as the density, overlap ratio & etc. are also important

clues. These features are intensively used in [85, 64]. In 2012, a challenge to detect mitosis

in breast cancer histological images was proposed [86]. The winner using a CNN model

beat others who used traditional methods and achieved a big advantage. Afterwards, many

methods using the deep neural network were proposed [87, 88].
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Table 2.4 Public datasets for cell-level histopathology image analysis

Dataset Descriptions Size of the dataset Annotation
MITOS-12 8 Mitosis detection for

breast cancer evalua-
tion

50 high power field image
on 40× magnification level
with patch size more than
2000px×2000px

Center of each
Mitos

AMIDA13 9 Mitosis detection for
breast cancer evalua-
tion

21 patches with size
2000px× 2000px on 40×
magnification level

Centre of each
Mitos

MITOS-14 10 Mitosis detection for
breast cancer evalua-
tion

284 frames at 20 × magni-
fication and 1,136 frames
at 40 × magnification

Center of each
Mitos

CASE-Nuclei
Detection 11

Breast cancer image
for nuclei detection

Training: 14421 nuclei
patches and 28032 non-
nuclei patches with the size
68px× 68px Testing: 516
ROI with size 400pxpx are
annotated

Central point
of the nuclei

MoNuSeg
Challenge 12

Multi-orgran nuclei
instance segmenta-
tion

32 images with size
400px × 400px for train-
ing, 14 images for testing

Mask of each
nuclei

Kaggle Nuclei
Segmentation
Challenge 13

Patches from various
microscopy images

670 images with size
varies from 256px×256px
to 600px×1000px
for training;
around 1000 patches
for testing

Instance-level
annotations

Except for detecting and classifying specific types of cells, classifying different sub-types

of cells in one image is also a popular research topic. Yao et al. [89] leveraged the features

extracted with DCNN to differentiate biomarkers in lung cancer and used them for survival

prediction. Based on the spatial constrained network, [90] proposed a novel Neighbouring

Ensemble Predictor (NEP) to classify the four types of nuclei in colon cancer. To solve the

8webpage: http://ludo17.free.fr/mitos_2012/download.html
9webpage:https://ismi-amida13.grand-challenge.org/

10webpage: https://mitos-atypia-14.grand-challenge.org/home/
11webpage:http://gleason.case.edu/webdata/TMI2015
12webpage: https://monuseg.grand-challenge.org/
13webpage: https://www.kaggle.com/c/data-science-bowl-2018/

http://ludo17.free.fr/mitos_2012/download.html
https://ismi-amida13.grand-challenge.org/
https://mitos-atypia-14.grand-challenge.org/home/
http://gleason.case.edu/webdata/TMI2015
https://monuseg.grand-challenge.org/
https://www.kaggle.com/c/data-science-bowl-2018/
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insufficient annotations problem, the authors in [91] proposed an AggNet with a new concept

- learning from crowds. Jacobs et al. [92] compared the performances of transfer learning

and the ladder network for detecting and classifying different nuclei with limited data.

2.2.5 Publicly available datasets for cell level

Over the past decades, although a number of datasets have been published, few of them have

high-quality images and detailed annotations. For example, some of the annotations just

mark out the rough central location of the nuclei with a point. Another common problem is

the number of collected images in the datasets. Due to the high density of the cells, it is very

time-consuming to collect a large dataset, and is probably the reason why high-quality cell

level datasets are so rare. In this section, a few publicly available datasets with good image

quality and annotations are considered. They are listed in Table 2.4 with their website.

2.3 Towards a pixel level analysis with weakly-supervised

methods

Generative adversarial networks were first introduced in 2014 by Goodfellow et al. [93]

to model the distribution of input data (image). As an important branch of deep learning,

GANs have gained more and more attention from researchers around the world since their

presentation. Normally, the generative model is trained to learn the underlying distribution

of the data instead of memorising the entire data. More specifically, the objective of GAN

is to learn those specific semantic and structural properties and then create new reasonable

samples from the trained model. Hence, a significant amount of investigations have explored

the potential of GANs for the generation of realistic images [94–100]. On the other hand,

with some additional input constraints, the GANs can be applied in more promising tasks

like image super-resolution, style transfer, and semi-supervised learning, amongst many
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others [101–108]. In the review by Xin et al. [109], recent medical related research using

GANs was summarised.

2.3.1 GAN-based networks for dataset augmentation

One of the main challenges for histopathology image analysis is the insufficient annotations

available for training, since the annotations for the medical image have to be performed

by clinical experts, which is costly and time-consuming. In this case, generative methods

can play an important role in augmenting a training dataset to achieve a decent final result.

A few initial efforts were made to explore the possibilities of applying this on biomedical

images. For example, Osokin et al. used GANs for synthesising cells imaged by fluorescence

microscopy [100], their results revealed that GANs are able to “simulate the localisation

of multiple proteins throughout the cell cycle”; Costa et al. [94] and Guibas et al. [110]

synthesise retinal images by applying adversarial training.

Most current adversarial training based image synthesis systems try to generate realistic

images from a random noise vector, or by refining low-quality images to create more

realistic high-quality versions. However, modelling the tissue patterns of different categories

in histopathology images is a particularly complex task for generative models since they

demonstrate various complicated morphological features. There are several challenges to

synthesising histopathology images. The current image synthesis approaches often require

a physics-based 3D construction and rendering model [99], but the physics at the cellular

level is mainly unknown, making physics-based modelling unfeasible. The CytoGAN model

proposed by Goldsborough [111] attempts to synthesise new cells by combining the different

morphology of different cells. In the work of Mahmood et al. [112], they tried to generate

realistic histopathology images from generated masks which will help to create ground truth

for nuclei segmentation at the same time.
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Histopathology images are rich in terms of their structure and texture characteristics

when observed at different levels of magnification. It is hard to synthesise a whole slide

image with a large variety of morphology features. Moreover, care must be taken to avoid

bias in synthesised images. Most synthesised histopathology images focus on synthesising

a gland area or nuclei related regions due to their multi-scale, random distribution and

rotate-invariant features. More applications of adversarial augmentation data for improving

model performances on histopathology images were introduced in [113–117], the results

demonstrated the feasibility of using GANs for data augmentation.

2.3.2 GAN-based networks for image enhancement

Image enhancement is another important research topic through which GAN related networks

can help. Methods to improve the visualisation of histopathology images is at the core

of the challenge due to their crucial impact on the efficiency of pathology examination

and diagnostic accuracy. Following novel GANs applications for natural image processing,

virtual staining and super-resolution are promising and related tasks for histopathology image

analysis.

Research on virtual staining has been conducted for many years and applied to many

different types of images. The recent advances in GAN based approaches with their superior

abilities have opened new roads in this direction. Early virtual staining research mainly

focuses on the low visual level, for instance, image normalisation can be treated as a special

type of virtual staining. In the research by [118], a GAN-based network is proposed for

normalising the input images. While other research will be more straightforwardly related

to virtual staining in terms of the concepts. Rana et al. [119] present a GAN-based network

to stain and de-stain the prostate biopsy. Histopathology image super-resolution tasks

can be treated as low visual level tasks as well. Despite extensive research on natural

image processing tasks [120, 101], few studies have explored the potential to apply them to
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histopathology images. No matter whether the image is enlarged for a more detailed view or

the image is compressed for a more compact size, the GAN will play a significant role.

More advanced (high level) virtual staining will involve a transformation in terms of the

semantic understanding of the region which may contain different tissue components. Recent

work has demonstrated that with the help of deep learning, different tissue components can

be separated semantically. This means that the staining of different tissue components can

be separately and re-colourized regardless of the original staining technique. Early trials

from Bayramoglu et al. [96] utilised a Conditional Generative Adversarial Networks (cGAN)

to virtually stain unstained specimens and Rivenson et al. [121] employed the GAN model

to virtually stain the fluorescence images to HE images. No GAN-based semantic virtual

staining, which is considered a deeper process for managing raw images and is related to

image segmentation and classification tasks have been reported yet. Although a few attempts

have been reported using deep neural networks. Trahearn et al. [122] propose a hyper stain

inspector for image alignment and cancer detection. Another innovative way “virtual staining”

method has been proposed in [123]. The authors represent different tissue components in an

image with colourful plates of different sizes, thereby facilitating diagnosis.

2.4 Evaluation

Proper evaluation is of significant meaning for both algorithm design and clinical decision-

making. The evaluations in this thesis are mainly carried out from two aspects: classification

and segmentation.
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2.4.1 Evaluation metrics for classification

For classification-oriented tasks, the main metrics concerned are Accuracy, Precision, Sen-

sitivity, and F-Measures (FM). With true positive denoted as T P, false positive as FP, true

negative as T N and false negative as FN, the above metrics can be described as following:

Accuracy =
T P+T N

T P+FP+T N +FN
(2.1)

Sensitivity =
T P

T P+FN
(2.2)

Precision =
T P

T P+FP
(2.3)

FM = (1+β
2)× Precision×Sentivity

β 2 ×Precision+Sensitivity
(2.4)

where β is a coefficient for FM, typically, 1 is the most commonly applied value for β . In this

case, the F-measure will be called the F1-measure or F1-score. For algorithm performance

evaluation, accuracy and the F1-score are the most commonly applied metrics. However, in

clinical practice, precision and sensitivity are more important indexes for doctors.

2.4.2 Evaluation metrics for segmentation

For segmentation-oriented evaluation, Pixel Accuracy (PA), Mean Intersection of Union

(MIoU) and Dice indices are employed in this study. The PA is calculated based on the

predicted value at the pixel level. The pixel accuracy has the same definition as the accuracy

in classification-oriented evaluation shown in Eq. 2.1. However, the definition of T P,T N,FN

and FP are based on each pixel.



2.4 Evaluation 37

The MIoU is the mean of a series of Jaccard indices, since Jaccard indices are called the

intersection over union (IoU). Given the segmented result S and ground truth G, the definition

of Jaccard and Dice indices can be written as :

Jaccard(G,S) =
|G∩S|
|G∪S|

(2.5)

Dice(G,S) = 2× |G∩S|
|G|+ |S|

(2.6)

Hence, the MIoU can be defined as:

MIoU =
1
c

c

∑
i=1

(
1
n

n

∑
j=1

IoU(i, j)) (2.7)

where c is the number of classes and n is the number of samples in each class.

Another perspective from which to evaluate the segmentation result is to measure the

boundary similarity. For example, in the GlaS contest [41], they introduced an objective-level

Hausdorff distance to evaluate the boundary accuracy. However, for the histopathology image

segmentation at the tissue level, it is not as important to evaluate the boundary accuracy since

it is very difficult to get a precise annotation in the border region. Following the semantic

segmentation survey for natural images using a deep learning method as described in [124],

no boundary-based metrics have been reviewed.

2.4.3 Other metrics

The receiver operating characteristic (ROC) curve is a popular metric which provides a

graphical explanation for a binary classifier, and can be used to evaluate the performance of

both the classification and segmentation tasks. The ROC curve plots the true positive rate

along the false positive rate for different cut-off points. The points on the ROC curve denote

sensitivity pairs for a particular decision threshold. The area under the ROC curve (AUC) is

another important measure which indicates how well the model can distinguish between two
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different groups. Mean average precision (mAP) is an important metric for object detection,

especially for the nuclei detection task. The average precision (AP) is a calculation based on

the area under the curve (AUC) for the Precision-Recall curve. During the calculation of the

precision and recall, the detected mask will be considered true if the Jaccard index is greater

than a threshold (0.5). While, the mAP is the mean AP value through all the samples in the

evaluation set.

2.5 Open-source platforms for histopathology images man-

agement and analysis

To manage the increasingly large amount of histopathology image data, a few comprehensive

and powerful platforms have been developed to achieve efficient data management and

cooperative annotation.

2.5.1 Traditional cell level platforms

Before the wide application of the digital scanner of histopathology image and the explosive

increase of the WSIs, researchers mostly focused on the processing of the cell level images.

A few tools developed for cell or nuclei processing (cytology) were reviewed in [125, 126].

Among them ImageJ [127] and Cellprofiler [128] are the most powerful. For whole slide

image management, annotation and analysis, many platforms have been built in recent years.

Cytomine [129, 130] and Qupath [131] are two such examples.

ImageJ/Fiji14 ImageJ is a Java-based medical image processing software. Its biggest ad-

vantage lies in its rich resources of plugins which can be easily utilized by other software.

Furthermore, the large user community provides great support.

14https://github.com/imagej/imagej
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Cellprofiler15 Cellprofiler is developed with MatLab. Initially, it was designed for biologists

to quantitatively process the cell in the images. CellProfiler Analyst [132, 133] is an upgraded

version which integrates several machine learning algorithms to enable the interactive analysis

of data.

Open Microscopy Environment (OME)[134] For the whole slide image management and

analysis, OME has existed for a long time. It is a powerful tool, and supports different formats

which include the most commonly used formats. Moreover, they have different products for

different application scenarios, which include both commercial and non-commercial products.

In a client-server manner, all the data are stored in the server to ensure the safety of the data

and save the local storage space.

2.5.2 Basic libraries or tools

In contrast to the commonly used image formats, such as .jpeg, .png, the digital pathology

image needs to handle extra-large images in terms of pixel size. Normal software cannot

handle these kinds of images directly, and special tools are needed to decode the image.

Openslide [135] The WSIs used in different hospitals/countries are not in a universal format,

and for commercial reasons, different scanner manufacturer companies have their own

protocols to encode and decode their images. With the rapid growth of histopathology

image usage in both clinical practice and scientific research, Openslide, as an open source

application interface with integrated multiple format support for WSIs, has been developed

to deal with this situation. Openslide is the base for many other platforms such as ASAP,

Cytomine and Qupath.

Libvips16 is another powerful library for histopathology whole slide image processing, which

can be treated as an updated version of Openslide. Libvips is built for efficient large scale

image processing with low memory cost. However, it is not only used for histopathology

15https://github.com/CellProfiler/CellProfiler
16https://jcupitt.github.io/libvips/
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images but can also be applied to any large scale images. Many advanced operations are also

supported such as rotating, flipping, and format converting.

Slidealtas17 is more of a web-based visualisation tools/script than a basic library for histopathol-

ogy image processing. It is mainly used in web-based visualisation tools for loading image

tiles from the server according to the users’ requests. In contrast to other libraries such

as Openseadragon, Openlayers, Leaflet and Geojs which have been developed mainly for

geographical related tasks, slidealtas is designed especially for histopathology image visual-

ization.

2.5.3 PC-based software

There are many PC-based software packages available on the market, mostly from scanner

providers. However, one of the main drawbacks of these software are that they only support

their own formats. Moreover, this is the reason why the open-source platforms is more

popular.

Automated Slide Analysis Platform(ASAP)18 ASAP is a light-weight open source applica-

tion for WSIs visualising and annotation which is based on Openslide. The Qt-based viewer

inside supports fast and smooth visualisation, and supports saving large images to generic

multi-resolution tiled TIFF files.

Qupath [131] QuPath is specially designed software for whole slide image analysis and

digital pathology. Since it is a Java-based application as well, it provides good support for

different kinds of extensions, for example, the ImageJ is included in the software.

17https://slide-atlas.org/
18https://github.com/computationalpathologygroup/ASAP
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2.5.4 Web-based platforms

With the growing amount of slides scanned in a hospital every day, the big data problem is a

serious concern. This also indicates that a web-based system which stores all the slides in the

cloud is more suitable for such tasks.

HistomicsTK 19 HistomicsTK is both a pure python toolkit and web-based tool for histopathol-

ogy image processing and analysis. With respect to the web platform component, it serves

as a plugin for Girder which is a very powerful data management platform. Girder supports

different plugins including Openslide. Hence, it can be used as a histopathology image

organization and dissemination platform with user management.

Cytomine [136] Cytomine aims for a collaborative web-based platform, where the web

interface will ensure the same user experience across different operating systems. The whole

system is made of four main components. The core is in charge of the overall logic of the

system and responds to the requests from users. The image management system (IMS)

manages all the image files. The WebUI module is the interface provided to the users, where

users can upload, visualise, and annotate the image. The last main module is the Data Mining

module which includes different machine learning algorithms or other retrieval algorithms.

Another main feature of the platform is that these modules are independent of each other,

and can easily be deployed to different servers to increase the overall performance.

19https://github.com/DigitalSlideArchive/HistomicsTK



Chapter 3

Deep Neural Networks for

Histopathology Whole Slide Image

Classification and Segmentation

In the computational analysis of histopathology WSIs, extremely high-resolution images are

often decomposed and analysed in the unit of patches that have a more practical size. This

kind of patch-based approach is particularly important when WSIs are to be processed with

DCNNs that can normally only take a fixed size image as an input. In this chapter, the task

of multi-class tissue patch classification and segmentation is examined. Firstly, to gain a

better understanding of how DCNNs classify histopathology images, their decision-making

mechanisms are investigated with the visualisation of activation maps of different layers.

Then, a multi-scale context-aware network is constructed to enhance the segmentation results

for the ROI by incorporating contextual information to promote the discriminative power

of the network. Following the processes considered above, the performances of different

DCNNs with variant patch sizes and magnification levels are further compared. In the final

section, the main efforts are contributed to achieve a pixel level segmentation result in a

weakly supervised manner to further fine tune the classification outputs. In addition, to solve
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the problem of under-training with insufficient annotation, a data synthesis/augmentation

method is proposed to augment the training set for optimal model performance.

3.1 Overview and problem formulation

Histopathology images provide a valuable micro level inspection of a human or animal’s

tissue morphology which normally reflect the health state of the subjects. In practice, these

images are captured through optical microscopes and digitalised by cameras attached to

the scopes. With advancements in the last decade, scanners from different manufacturers

with 40× magnification capability are currently available in labs. One pixel in a 40× image

corresponds to around 0.25 mm2 physical size in the slides. Hence, for a slide with a physical

size of 5mm×10mm, the captured image can easily reach 100,000px by 200,000px in terms

of pixel size.

The extremely large resolution of a histopathology image makes it difficult to handle as

a single unit with current computation capabilities. For most natural images, the problem

can be addressed by introducing the resize operation, and then the semantic and abstract

information of the objects can be maintained after the resizing operation. However, this

does not work for histopathology images since the images are magnified on purpose to

accommodate more details of the examined sample. As a consequence, the patch-based

method is the most applicable and popular way to process WSIs as described in the literature.

In fact, this is also the approach employed when scanning, storing, and visualising WSIs.

The patch-based method divides a large image into small patches (tiles) for processing with a

fixed size, and then merges the results from the small patches for a final output of the whole

view. As illustrated in Fig. 3.1, with an original image with size H px×W px, the actual

processing units will be a much smaller region sampled from the original image with size

hpx×wpx (where H ≫ h,W ≫ w) .
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Fig. 3.1 From whole slide images to patches

The histopathology image can be processed with patches because they can be considered

as a kind of orderless textural image with magnification levels greater than 10×. There

are two categories of textures - repetitive and orderless. Fig. 3.2 shows the differences in

textures between the repetitive texture and orderless texture. Based on the “Texton” theory

[137], the textons in histology images correspond to the basic units and structures that exist

in the tissue/cell, such as the nucleus and cell membrane. In contrast to artificial textures

which often are repeated on a regular bias, the textons in histopathology images are randomly

distributed and restricted to weak and latent rules.

Fig. 3.2 Comparison between repetitive texture (a) and orderless texture (b)

Fig. 3.3 illustrates the components of histopathology images at a 40× magnification level

from a “Texton” point of view. The elements including the nuclei, fibrosis, and blood cell
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etc, in the third row, can be treated as the “Textons”. A group of the same “Textons” will

contribute the uniform texture features as shown in the second row. In the first row, different

textures tangle together and form cases of mixed textures. Another important observation

from Fig. 3.3 is the absence of any high-level abstract features in the images at the 40×

magnification level. Only the “Textons” can be treated as objects with certain shapes and

features. However, for the uniform textures or mixed textures, they are just a combination of

the “Textons” with some statistical rules, and cannot be considered as objects in the analysis.

Thus, the use of patches as the basic units for analysis is a practical solution, especially in the

context of tissue classification and segmentation.

Fig. 3.3 Understand the WSI from the “Texton” point of view

3.2 DCNNs components and data preparation

Among different deep network structures, the DCNN is proved to be one of the most

successful structure for image processing. This section starts by briefly introducing the

convolutional neural network(CNN). Then the data collection and preparation process is

described.
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3.2.1 Components & structures of DCNNs

Convolutional layers A deep convolutional neural network consists a stack of different

layers in which the output of the former layer is used as the input of the later one. For each

input image I, the output of the nth convolutional layer yn can be expressed as:

yn =C(I;w1,w2...,wn)

=Cn(Cn−1(...(C2(C1(I,w1),w2)...)wn−1),wn)

(3.1)

where Cn represents the convolutional operation in the nth layer in the network, and wn

denotes the weights for that layer. The yn are always referred to output of the nth layer.

Normally, there are three kinds of operations inside one layer, convolution, pooling and

non-linear activation. The convolutional layer is the core operation for a DCNN. The basic

idea of a convolutional layer is to transform the image to a feature map with a series of filters

(kernels) on a high dimension. With an image I(x,y) and a filter g(x,y) of the size of w×h,

the convolution operation is defined as:

(I ∗g)(x,y) =
y+h

∑
v=y−h

x+w

∑
u=x−w

I(u,v)g(x−u,y− v) (3.2)

Where ∗ denotes the convolution operation. The outputs of the convolution will be linked to

a local receptor field and then be mapped to a single value through an activation function.

Non-linear activation aims to add non-linearity to the network. The rectified linear unit

(ReLU) as defined in Eq. 3.3 has been proved to have better performance than the sigmoid

function in DCNN:

δ (x) = max(0,x) (3.3)

One of the great advantages of CNN is that the number of parameters (weights) can reduce

significantly via parameter sharing over images. After the training, the kernels can capture

common spatial representations of the input images which can be clearly observed especially
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from the first convolutional layer. In the first convolutional layer, the representations tend

to extract the edge information which makes the kernels look like a Gabor filter or other

first-order filters. For the kernels in the higher layer, the representations are not so obvious,

since they contain embedded kernel information from lower layers.

Pooling can be treated as a kind of down-sampling operation. The idea is to divide

the image into several pools (regions) and extract the maximum values or mean values to

represent the region. Fig. 3.4 illustrate the pooling process with a 2×2 max-pooling and

mean-pooling. Pooling operation is not mandatory for CNNs, but for the network with large

(a) Max Pooling (b) Mean Pooling

Fig. 3.4 Mean pooling and max pooling

input image size, it helps to reduce the spatial size of the feature maps as well as the number

of the weights. Moreover, by summarising the information of the former layer, the pooling

operation helps to transform the features to translation-invariant.

For the purpose of classification, the last layer of the network is often composed of a

Softmax classifier layer. The output of the last convolutional layer or fully connected layer

will be sent to the classifier. The Softmax function is the most widely adopted function for

multi-label classification. The final label c is determined by the class j that has the maximum

values l( j) among the output vector.

l( j) =
exp(z j)

ΣN
k=1exp(zk)

, f or j = 1, ...,N (3.4)
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Dropout To prevent the over-fitting problem during training, drop-out is the essential trick to

be added to the network. By adding the dropout parameters θ to a layer, the weights for the

layer will be randomly set to zero with a probability of θ . Intuitively, this equals to adding

noises to the images which will help to improve the model’s generalisability.

Fig. 3.5 Network structures of Alexnet, VGG-16 and Resnet-34

Batch Normalisation Batch normalisation is another import approach to enhance the perfor-

mance of the network and accelerate the training process. It targets at normalising each of the
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mini-batch during the training to overcome the gradient vanishing and exploding problem.

During the training phase, the mean µB and the standard variance σB is calculated for each

mini-batch. The output data yB in the batch is normalised with two variables γ and β :

ŷB = γ
yB −µB√
σB + ε

+β (3.5)

where ε is a small constant to prevent the division error, while, the γ and β need to be learned

during the training. ŷB is therefore the normalised data. In the test phase, especially when

the size of mini-batch is 1, the µB and σB will be replaced by the mean and variance of the

whole dataset.

Residual Block In some case when very deep networks are needed, the Resnet structure

shown in Fig. 3.5, can be employed [138]. The shortcut in the residual block can be

formulated as :

y =C1,2...n(x,w1,w2...wn)+ x (3.6)

where x,y is the input and output of the network, C is the convolutional layers. This kind

of structure enables the network to pass the features from lower levels to a higher level to

acquire more complicated features.

Dense Block Dense blocks are the main functioning modules for Densenet [139]. Instead of

a skip layer element-wise addition as defined in Eq. 3.6, a dense block concatenates outputs

from all the previous layers as its input. For the nth layer, the output can be defined as:

yn =Cn((Cn−1(yn−2,wn−1), .....,C2(y1,w2),C1(x,w1)),wn) (3.7)

It is reported that Densenet structure outperform the Resnet structure in multiple tasks.

Network Structures Four classic DCNN structures are discribed in the Fig. 3.5, Alexnet

[140], VGG-16 [141], Resnet-34 and Densenet. Both of dropout and batch normalisation

layers are facilitated for all the networks. The activation function employed here is ReLU.
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3.2.2 Visualising and understanding the network

To understand how the CNN works for histopathology images, the features from different

layers of the Alexnet are extracted and visualised through the deconvolution method proposed

in [142].

(a) Features captured on 40× objective (b) Features captured on 20× objective

Fig. 3.6 Visualising first layer feature maps of models trained at different magnification levels.
The highlighted boxes indicate in (a) correspond to the edge features of the nuclei and in (b)
related to the shape features of the nuclei.

In Fig. 3.6, the features captured from the first convolutional layer of Alexnet illustrate

that, compared to the network on 20× magnification level, the one on 40× magnification

level lays more concentrate on the edges of the nuclei which means the network utilises more

details from the nuclei or other components for the decision-making. While the features

extracted from 20× magnification level (b) have more round blobs, which correspond to

the outline of the nuclei. That means the morphologoies of the nuclei are processed as a

whole. These observations coincide with the information that the input images can provide

for human.

The feature maps from the ‘conv5’ layer are plotted in Fig. 3.7. To understand what kind

of features matter to the network, the highest value in the map is deconvolved to locate and

reconstruct the input. As shown in Fig. 3.7, for a patch comes from hepatocyte region, some

of the feature maps try to capture the nuclei of the normal hepatocyte cells, which means



3.2 DCNNs components and data preparation 51

Fig. 3.7 Feature maps of the layer conv5 and the corresponding reconstruction of the top
value in the feature map. The green bounding box defines the reception field of that top value.

the presence of these nuclei provides important evidence for final decision making. More

examples are provided in Fig. 3.8. For the patches in the same group, the reactions are from

the same feature map. From the group A in Fig. 3.8, it’s easy to observe that the features

captured for hepatocyte mainly are the nuclei’s shape and edges, while for group B and C,

the texture information are captured.

3.2.3 Dataset preparation and augmentation

Specimen preparation and digitalisatoin The WSIs are provided and annotated by the liver

pathology experts in Karolinska University Hospital (KUH), Sweden. The dataset contains

104 WSIs, which are produced from resected specimens of different CLRM patients. After

a series of processes like slicing, fixation and staining, the resected tissues are made into

slides. Then the slides are digitalised with a Hamamatsu scanner. The source length of

applied is 40× objective, and there are around 100,000 × 100,000 pixels in each WSI. The
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(a) (b)

Fig. 3.8 Features of top reactions in the layer5 for different patches.
(a) Features reconstructed from layer5 for natural images from [142] (b) Features recon-
structed from layer5 for CRLM histology images. Patches in A are from hepatocyte, B from
necrosis, C from Fibrosis

corresponding physical size of each pixel is 226nm.

Dataset annotation process The annotation work is done manually by the experts in KUH

with the software NDPviewer 1 which comes along with the scanner. Because of the large

size and ambiguous details sometime, it is not possible to annotate the WSI slide-wise. Thus,

the annotation work is done on the selected ROIs.

The annotation of this dataset was conducted in two phases. In the first phase, the

annotations are mainly concentrated on the featured ROIs. Of all the 18 WSIs received, there

are 30 ROIs selected and annotated in total. For each WSI, at least one region of interest

is selected in each slide. While, the size of the ROI is not fixed, but they are sized at least

5000×5000 pixels in 40× magnification objective. The overall workflow for the annotation

in the first phase is described as follows:

1https://www.hamamatsu.com/eu/en/product/type/U12388-01/index.html
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1. The experts go through the WSIs to choose the ROIs and box the regions.

2. In an ROI, each region that contains the same kind of tissue is annotated with an

enclosed freehand boundary drawn by an expert. Then a tag will be used to denote the

category of the region. Ten different kinds of tissues are annotated in the slides except

for the background . They are Hepatocyte(H), Tumour(T), Necrosis(N), Fibrosis(F),

Inflammation(I), Blood(B), Foreign Blood Reaction(FB), Macrophage(MF), Mucin(M)

and Bile Ducts (BD).

3. In addition to the large ROIs, other regions which contain special types of tissues are

annotated directly without the bounding box to keep the balance of the total samples.

4. Each annotation is extracted and categorised in terms of their annotation. Then the an-

notation will be reviewed by another expert to minimise the inter-observer subjectivity.

Fig. 3.9 Example of an annotated ROI from the CRLM dataset. The regions inside red
contours are tumour, yellow contours are fibrosis, blue regions are hepatocyte.

An example of the annotation is demonstrated in Fig. 3.9. The ROI is marked with

black rectangular bounding boxes. Within the ROI, each region of a uniform type of tissue is

indicated by an enclosed irregular boundary drawn by free hand. Although the annotation

boundaries are drawn with high quality and great efforts, inter- or intra-annotators variability
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is still expected and observed largely due to the fact that the border between different tissues

is often unclear. Hence, the principle employed during the annotation is to make sure the

accuracy of the tissue inside the annotation area instead of the maximising the area or defining

a precise border. For the test and evaluation purpose, the dataset are divided into two parts. 4

of the WSIs which only contains one ROI per slide are selected for evaluation. Out of the

other 24 ROIs, 18 of them are used for training and 6 are used for evaluation.

In the second phase, another 31 slides are received. In these slides, the experts mainly

annotate the areas with morphologies that do not appear or appears very few times in previous

annotations. Of all the 49 annotated images, Table 3.1 provide the summary of the number of

annotated tissue.

Table 3.1 Details of the annotated WSIs

H F N T I M B MF FB BD
No.
Annontations 3148 2522 1112 6432 1253 428 296 443 176 1636

No.
Patches 45102 12399 28092 22726 1827 10181 1030 270 2585 380

Fig. 3.10 Patches from different magnification levels and different classes

Patch cropping For each 128× 128 patch within the annotation area, if more than 75%

of the area is annotated as one tissue type, then this patch will be defined as a sample of
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the corresponding category. At the same time, the surrounding pixels will be included in

the sample as the context for classification. Thus, the size of a training sample can be

very flexible. Whereas, in this study, to explore the effect of different objectives in this

task, patches are prepared on 40×, 20× and 10× objectives with patch size 224× 224px.

Furthermore, patches with size of 448×448 are also prepared to analyse the importance of

the contextual information. Due to the fact that the area of the annotation varies, an adaptive

stride strategy is adopted to balance the number of different samples. The adaptive stride

strategy can be formulated as Equation. 3.8:

stride = b+b×min{n ∈ Z| log
a

p× p×16
≤ n} (3.8)

Where a denotes the area of the annotated region, p is the patch size, b represents the basic

stride, for 20×,40× objective, it is 32, 64 accordingly. Fig. 3.10 illustrated the patches

sampled from different objectives. On the 40× objective, the patches contains details of the

nuclei and the texture of the stroma and necrosis. Whereas, on the 20× objective, the outline

of the nuclei and the distribution of the cells can be clearly observed. On the 10× objective,

the outline of the nuclei is obscure and the detailed texture information of the stroma is lost

as well.

Data augmentation Due to the limited number of annotated ROI, two augmentation ap-

proaches are adopted to enlarge the datasets and improve the robustness of the trained model.

1) Geographic transformation. For the WSI itself, there is no canonical orientation for the

slide, but to the model, the orientation makes a difference. Hence, the original input images

are flipped up to down and left to right to enlarge the database

2) Colour perturbation. The red channel and the blue channel of the input image are multiplied

by a random value from 0.9 to 1.1 to change the colour. Since for HE-stained image, the

concentrate of the dye or the thickness of the slide will lead to the differences in the red/blue

ratio. Afterwards, an overall random factor in the range (0.8, 1.1) is applied to simulate the
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Fig. 3.11 Illustration of the data augmentation methods

change in brightness and contrast. At last, the pixel value of the image patches is normalised

to the range (0, 1).

3.3 Multi-scale context-aware convolutional network (MC-

CNet)

For natural images, the top levels of the network tend to capture the abstract features of

the input objects. Networks with more layers usually achieve a larger reception field which

leads to better performance. However, histopathology images are very different from natural

images. Firstly, there are no well-defined high-level abstract features that characterise the

images. Thus, down-sampling does not help to differentiate the several tissue components.

Even worse, it blurs the image and leads to loss of morphologically relevant low-level texture

features. Secondly, because of the patch-based method, each patch is treated individually

and loses contextual information. Therefore, in this section, two novel multi-scale context-
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aware convolutional networks are proposed that are specifically designed for dealing with

histopathology images, taking into account their unique visual characteristics. They are

referred to as MCCNet1 and MCCNet2.

3.3.1 Network structure and implement details

The structures of the proposed network, MCCNet, are illustrated in Fig. 3.12. The input

images to the networks are of the same size but from different magnification levels. The

patches of higher level are extracted from the same region at different magnification levels

sharing the same centre. Therefore the patches from a low magnification level provide

contextual information of the region while the ones from high magnification level provide

the details of the texture features. In MCCNet1, a late fusion strategy is adopted. The three

sub-networks for different levels are trained separately before concatenating the feature

vectors for prediction. For MCCNet2, an early fusion strategy takes the initiative. The feature

maps are merged at an early stage and then trained together for the final output.

(a) MCCNet1 (b) MCCNet2

Fig. 3.12 Proposed network structure: MCCNet1 and MCCNet2

The network is implemented with the MXnet framework, while the training is carried on

a dell desktop with the 2GB GPU (GTX-750) and 16GB memory. The dataset from the first

annotation phase (18 WSI, 30 ROI) are used for training and testing. For the MCCNET1, the

subnets are first trained separately. Then, with the trained weights, the network is fine-tuned

with a relatively small learning rate (0.0001). For the MCCNET2, the network is trained
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directly with the learning rate 0.01. The batch size hired is 32. For one training epoch, both

networks take around 1.5 to 2 hours. For this training, all the nine categories annotated by

the experts are involved. After 20 epochs of training, MCCNET1 converges with training

accuracy 99.84% and validation accuracy 99.24%. For MCCNET2, it takes 30 epochs to

converge, the training accuracy is 99.83% and validation accuracy 99.32%.

Fig. 3.13 Performances of proposed MCCNet on the ROIs

3.3.2 Results and discussion

The proposed multi-scale context-aware convolutional networks outperformed the classical

methods Alexnet and VGG-16 with input from each single magnification level on the

CRLM dataset both in terms of quantitative and qualitative results. In Table 3.2, the overall
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classification results from the several networks and magnification levels are detailed. The

results indicate that the patches from 20× magnification level outperform the other two levels

and VGG-16 outperforms the Alexnet; MCCNet2 results in a slightly better score than the

MCCNet1, but both outperform the start-of-the-art networks with single input magnification

level. This indicates that the hierarchical input had a positive though the modest impact on the

overall accuracy. However, the differences are more obviously appreciated in the qualitative

results shown in Fig. 3.13. On 40× magnification level, the networks were very sensitive to

variation due to high tissue details and lack of contextual information, and thus the results

appear noisy. But on 10×, the patches contain more structural information of the tissue and

fewer texture details, and hence it generates results closer to the semantic perception of the

human eye.

Table 3.2 Overall quantitative classification accuracy of different models

Scale Alexnet (%) VGG-16 (%) MCCNet1 (%) MCCNet2 (%)
40× 94.39±0.78 95.04±0.59

96.43±0.32 96.51±0.3520× 95.97±0.66 96.27±0.39
10× 95.82±0.52 96.20±0.44

Detailed examination of qualitative results in Fig. 3.13, it reveals that the main differences

between network outputs lie within the unannotated areas, which are not included in the

quantitative evaluation that is based on experts’ annotations. That contributes to explain

why the accuracies reported in Table 3.2 are very similar. To obtain an evaluation of the

networks’ performance in the unannotated regions, the experts are invited to visually assess

and score the results. Again, both MCCNets lead to higher scores than the single input ones.

Fig. 3.14 illustrates in detail the overall results of Table 3.2 by presenting the F1-score of

the four main tissue classes of the dataset. The F1-scores of hepatocytes are much higher

than for necrosis, fibrosis, and tumour cells. Meanwhile, the performances of different

networks at several magnification levels are very close to each other. These results indicate

that the hepatocytes in this dataset have the most distinguishable and stable features on all
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magnification levels. However, for the necrosis and fibrosis classes, the proposed MCCNet

methods achieve superior performance, which indicates that contextual information is more

important for these classes.

Fig. 3.14 Comparison of F1-scores on different classes

3.4 Whole slide image analysis using DCNNs

The objective of tissue patch classification to classify the patches by learning the underlying

connections between the morphological features of patches from annotated regions and their

corresponding annotation labels, and predict the labels for unannotated patches. As long

as all the patches can be classified accurately, a rough segmentation can be acquired by

stitching them back together. In most cases, the classification of a patch between cancerous

or non-cancerous is the main concern, forming a binary classification problem. While in this

study, more dedicated research simultaneously considering multiple classes is conducted.

This is particularly useful in quantifying the proportion of different components of the tissue.
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3.4.1 Methods and experiments

To explore the impact of networks with different depth to the classification performance and

to find the most suitable network structure for the task, four different network structures, as

illustrated in Fig. 3.5, with different depth, are employed in the task. Furthermore, to explore

the importance of the contextual information or perception field, a dataset with different

magnification levels (40×,20×,10×) and different input sizes (224×224, 448×448) are

investigated in the experiments.

The training of the deep models is performed based on the Pytorch framework and is

running on TITANX-Pascal GPU. For all the networks, Stochastic Gradient Descent (SGD) is

adopted for the back-propagation. The adaptive learning rate is used in all the networks with

an initial learning rate 0.001, then decrease for every 1000 steps with the ratio 0.1. Dropout

and batch normalisation are both adopted during the training.

The comparison of the performance in different models is conducted in two manners,

quantitative evaluation and qualitative evaluation. Regarding the qualitative assessment, the

main approach applied is to visualise the output vectors on a 2D space with t-SNE algorithm

[143]. The t-SNE algorithm will map the high dimensional data to a 2D/3D space through the

“Student’s t-distribution” based on the distance of the two vectors. Furthermore, the whole

slide segmentation results are calculated for both visual assessment and rough quantitative

assessment. The quantitative evaluation is performed on two aspects, patch level evaluation

and slide level evaluation. On the patch level , the accuracy on the testing dataset from CRLM

dataset and an independent dataset from colorectal lymph node metastasis (CRCLNM) are

calculated. For all the patches from CRLM dataset (as described in Table. 3.1) cropped out

of the experts’ annotations, 70% of them are used for training, 30% is used for testing. For

the CRCLNM dataset, those classes that the same features as in the CRLM dataset, are used

for further evaluation. On the slide level, the overall percentage of different components are

calculated and compared with the ground truth information from IHC stained images.
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Fig. 3.15 Visualisation of feature vectors from the DCNN on 2d space with t-SNE

3.4.2 Results and discussion

Qualitative results In this part, two different approaches are presented to assess the clas-

sification performance visually. Firstly, the t-SNE algorithm is applied to visualise the 11

dimension vector output in a 2D space as shown in Fig. 3.15. The dots with different colours

demonstrate patches from different classes. There are totally 2200 dots sampled from the

testing dataset with 200 for each class. From the distribution, it is easy to find that all the

classes can be well distinguished except for the classes, hepatocyte and background, tangled

together. The reasons behind can be attributed to two reasons: one is because of the rough

annotation of the hepatocyte classes, which include lots of background from porta area; the

other one is due to the large white holes in the hepatocyte with fat that may cause confuses.

However, this also provides us an index to evaluate the models’ performance. In (c) and
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(d), it can be obviously observed that the two classes (hepatocyte and background) tend to

separate from each other, while in (a) and (b), they are uniformly mixed. Observations from

the distribution of the dots in Fig. 3.15 show that the models with patch size 448×448 have

a very tight distribution, while the distributions for models with patch size 224× 224 are

relatively sparse. After comparing (a) / (b) and (a) / (c), it is natural to find that the patch size

is a more important factor than the network structure.

Secondly, the trained model are applied on the WSIs in a sliding window manner. Thus,

a segmentation result can be obtained as demonstrated in Fig. 3.16. With the first glance, the

overall impression on the two results obtained with model Resnet-34 on two different patch

size (224 vs. 448) is that there is more noise in the results by patch size 224. The reason for

this phenomenon is obvious, the patch size 448 has a larger receptive field which can utilise

contextual information for decision making to avoid misclassifying those small regions that

have confusing appearances. However, the larger patch size will lead to a low resolution in

the final result given the same input size. Especially on the borders where two kinds of tissue

encountered. More results of WSIs obtained with patch size 448 are demonstrated in Fig.

3.17. It takes around 30 minutes to complete the prediction on the whole slide image with

step size 112.

Quantitative results Table 3.3 listed the classification results on the testing dataset with

different networks and inputs. Meanwhile, the independent test result with Alexnet, Vgg16

and Resnet-34 are illustrated in table 3.4. From the experiment results in Table 3.3, some

basic conclusions can be drawn.

Table 3.3 Classification accuracy on the CRLM dataset

Objective Patch
size

Alexnet
(%)

Vgg-16
(%)

Resnet-
18 (%)

Resnet-
34(%)

Resnet-
50(%)

Densenet
(%)

10× 224 92.02 92.53 92.24 93.73 94.13 93.93
20× 224 93.78 94.58 93.41 95.87 95.22 95.87
40× 224 93.55 93.27 94.36 96.01 95.19 94.85
40× 448 94.58 95.76 95.13 96.97 97.24 97.16
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(a) Results on WSI with patch size 224

(b) Results on WSI with patch size 448

Fig. 3.16 Whole slide results with model Resnet-34
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Fig. 3.17 Examples of results on WSIs with model Resnet-34 and patch size 448

(1) the magnification level or the patch size of the input plays a critical role in boosting

the classification accuracy. As discussed in [58], it is difficult to choose the suitable patch

dimension and magnification level. If the patch size is relatively small and the magnification

objective is relatively high, the information will be limited for a tissue level classification

which results in the decrease of the overall accuracy. On the contrary, the patches will contain

too much information and lead to a bad performance in the whole slide image, because the

larger patch size will not be able to describe the border of different tissue regions. With

patch size 224×224 , the magnification level 20× achieved a little better results than that on

40×, which indicate the reception filed(contextual information) is a very important factor for

patches classification.

(2) The increase of the depth of networks will not necessarily help to improve the accuracy

or generalisability. But with residual block, the increase of the network depth (Resnet-18,

Resnet-34, Resnet-50) will indeed improve the performance to some extent. However, the

deeper network also means a longer process time for the same amount of data, especially

dealing with the WSIs.
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(3) The features of different tissue types have different performance responses. For those

tissue types with smaller scale “Textons” like fibrosis, necrosis and blood, the larger patch

size will not help too much since the patches with smaller patch size already carry adequate

information. Instead, in the process of classifying patches like hepatocyte and tumour, whose

“Texton” is relatively large and sparsely distributed, the patch size will be more important.

Table 3.4 Evaluation accuracy on colorectal lymph node metastases

Model Name Tumour (%) Necrosis (%) Fibrosis (%) Mucin (%) Blood (%)
Alex-224 78.48 81.74 90.13 86.76 93.97

Vgg16-224 87.22 69.86 90.13 90.21 93.21
Resnet-34-224 85.83 83.22 90.13 91.87 93.93

Alex-448 92.08 85.04 93.42 92.73 86.74
Vgg16-448 78.91 86.20 93.42 91.96 83.20

Resnet-34-448 90.69 88.53 96.71 94.52 88.64

A rough quantitative evaluation over the WSI is performed based on the IHC stained

images which have high contrast over different types of tissue. The IHC staining employed

for this task is CK18-CK19, which highlight the tumour & necrosis) as brown, hepatocyte

as magenta and others as unstained. One example of the IHC/HE pair is demonstrated in

Fig. 3.18. With simple processing, the IHC stained images (D) can be used as a mask as

shown in (E). Since the WSIs are not exactly match, the evaluation can only be considered as

a rough reflection of the accuracy of the segmentation. Hence, it is called as “pseudo ground

truth”, only the model Resnet-34 with patch size 448 is considered for the original input (A).

The results of the model are illustrated in (B). The percentage of different kinds of tissues is

demonstrated in (C) and (F) from the statistical value form (B) and (E).
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Through the observations, it is apparent the overall distribution of these two images are

identical. Most of the differences lay on the percentage of tumour and necrosis which is

because the model works on a higher level and will classify patches with tumour as tumour.

Fig. 3.19 Hierarchical labelling system for CRLM dataset

Further discussion By inspecting the distribution of the different categories on the t-SNE

figure and the whole slide segmentation results. It can be concluded that a hierarchical

labelling system (as illustrated in Fig. 3.19) with more tissue type is needed to take into

consideration of more pathological definitions as well as the visual and morphological

differences. From a higher abstract level or whole slide level, the tissue can be categorised as

background, normal liver tissue, the abnormal tissue and other tissue. As the magnification

level goes up, more details can be observed, while the classification criterion is also based on

the component details. In this level, the tissue can be labelled with the nine classes mentioned

above. However, this level of labelling can sometimes be too general. For example, fibrosis

around tumour and fibrosis around capsule zone are totally different in term of their nature

even though they may have very similar appearances. Vice versa, for the tumour class,

tumour in different stages can look very different, but they are undoubtedly in the same class.
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The outer layer of the diagram shows some more specific classes that can be considered in

labelling and segmentation. According to the feedback from the pathology experts, except

for the labelling system, the resolution and sensitivity of the segmentation output need to be

further enhanced as well. Therefore, in the following section and chapters, variant methods

are proposed to enhance the segmentation results based on the current annotations.

3.5 From tissue level to pixel level

In clinical related research, one of the prior requirements is to ensure the accuracy and

confidence of the measured data. Even though the classification-based method described

in last section can achieve decent results, it is still not accurate enough for a quantitative

assessment. The ideal result of the tissue components analysis on WSIs is to produce pixel

level segmentation on the input images. However, to achieve that goal, the main challenge to

deal with is the insufficient and inadequate annotation data. Therefore, in the section, a weakly

supervised method that integrate segmentation-based method with the fully convolutional

neural network is proposed to further enhance the segmentation results in a hierarchical way.

3.5.1 Framework and methodology

Increasing the resolution of the output result is critical to achieve a more accurate overall

result on the WSIs. However, there is no need to apply a pixel model on all the patches in the

whole slide. Therefore, a two-step (border localisation and border enhancement) framework

is proposed to enhance the resolution and accuracy of the WSI result for the purpose of

reducing the computational cost over the WSI and preventing the over-segment happening.
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Fig. 3.20 Proposed framework for segmentation-based segmentation with border localisation
(a) and border enhancement (b)

Border localisation : weakly-supervised PatchCNN framework

Data imbalance is one of the most challenging problems for machine learning. When it

comes to segmentation problem, it is especially true since most of the patches are localised

in homogeneous regions that do not need further process, comparing to those that fall in

the tissue border region. Therefore, the first step of the proposed framework is to locate

the heterogeneous region by determining whether the patches contain homogeneous regions

or not. To this end, PacthCNN is proposed as illustrated in Fig. 3.20(a), which is actually

composed of a fully convolutional neural network. Instead of generating one label, PatchCNN

can output a n×n matrix to describe the content of patches while increasing the resolution

of the results. The output will grow accordingly when the size increases. In this case, the
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computation cost will be greatly reduced compared to using a sliding window method for

getting output with the same size.

Even though the output resolution increases, the annotation did not. If the ground truth

label of patches is the same for all the components in the matrix, there is no way that the

model can model the inner spatial relationship of different types of tissues inside. For this

reason, a weakly supervised method is introduced. The input images are divided into n×n

regions (for example 2×2 in Fig. 3.20 (a)), each region will be filled with the cropped centre

of a random patch in the database. Meanwhile, the ground truth labels for the output of the

network will be changed. Thus, the network will be enhanced and the spatial resolution will

be improved without sacrificing contextual information. With the trained model, patches

with homogeneous tissue type and with mixed tissue type can be classified easily without

annotating extra dataset. For instance, with n equal to 4, if all these 4×4 outputs have the

same label and very high confidence (>0.9), then the patches can be treated as a homogeneous

patch. Vice versa, those have different labels and low confidence of the labels are mixed

regions.

Border enhancement: towards a pixel level results

As stated previously, unlike the natural image processing, the annotation of histopathology

images requires the professional knowledge on the pathology. Hence the lack of pixel level

annotation is one of the biggest challenges. In this circumstance, another weakly supervised

method is proposed to enhance the final segmentation results. To achieve a pixel level

result based on the PatchCNN result without ground truth on the pixel level , unsupervised

superpixel algorithm [144] is employed to further enhance the results based on the intensity

features of the input image. The workflow involving superpixel is demonstrated in Fig. 3.20

(b). The superpixel algorithm actually takes advantages of the local properties of the pixels

and help to find the natural borders in terms of the derivatives of neighbouring pixels. The
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initial points will be defined by the 2 ∗ n ∗ 2 ∗ n, where n is the number of divisions of the

patches. Afterwards, the pixels of the input patch will cluster into several blocks according

to their intensity features. With the outputs of the superpixel and PatchCNN, it is natural to

assign the regions with the classification labels with simple rules: the region will be labelled

by the class that has the largest amount in terms of quantity of pixels in the region. After the

fusion of these two results, the final segmentation output will become smooth and get rid of

the rigid boundary.

3.5.2 Experiment details

Training and testing dataset Except for the original data, two kinds of synthesised data are

employed to boost the model’s performance. As shown in Fig. 3.21, the uniform synthesis

(a) will make sure all the contents in the slides are consistent, while the random synthesis (b)

attempt to make the different parts distinctive.

Fig. 3.21 Simple data synthesis strategy

Evaluation dataset The dataset for evaluating the performance of proposed methods is

composed of 50 ROIs with pixel level annotation. The ROIs are cropped mostly from the

tumour border area or metastasis area which has multiple tissue types inside with size 4096×

4096. Afterwards, the ROIs are annotated by several experts. The final annotation is actually
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an average over multiple experts. Few examples of these ROIs and their corresponding masks

are demonstrated in Fig. 3.22 A and B.

Implementation details The PatchCNN model is constructed in a fully convolutional manner,

which means there is no fully connected layers used in the network. The backbone network

for PatchCNN employed is Resnet-34. Instead of attaching one fully connected layer to

the end, two convolutional layers are added to extract the features for classification. One

important trick for the PatchCNN is to replace the zero padding with the reflective padding to

ensure a continuous feature and identical performance with larger input. During the training,

for an input image with size 448×448, the output is 4×4, which lead to a distinguishable

size 112×112. However, the corresponding reception field defined in the model is 128×128.

Evaluation metrics The evaluation of the performance of different networks is performed

in two aspects. In terms of numerical and quantitative evaluation, the MIoU and PA value

are hired for the comparison among different methods. While visual performance can be

assessed through the results demonstrated in Fig. 3.22.

3.5.3 Results and discussion

To evaluate the performance of the proposed framework, two baseline methods are employed.

Both of them have the same backbone network, Resnet-34, and obtain the segmentation

results using the sliding window method. The difference lies if the post-processing method is

applied. The Conditional Random Filed (CRF) introduced in [47] for natural scene semantic

segmentation are employed to smooth the segmentation results. The MIoU values of different

models are demonstrated in Table 3.5. For the purposed of qualitative assessment, output

from different models is detailed in Fig. 3.22. As can be observed from the Table 3.5 that

the proposed framework achieve the best result, even though the improvement is limited in

terms of numerical performance. However, the final improvement comes from two parts, the

improvement of the original network output (PatchCNN v.s Resnet-34) and the improvement
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Table 3.5 Segmentation results (PA & MIoU) on the evaluation dataset with different models

Resnet-34
Resnet-34

+ CRF PatchCNN
PatchCNN

+ CRF
PatchCNN

+ Superpixel
PA 77.31% 80.47% 78.12% 80.27% 80.87%
MIoU 57.92 % 59.33% 58.16% 58.78% 59.74%

of the post-processing (CRF v.s superpixel). From the visual assessment in Fig. 3.22, it can

be concluded that both of the post-processing method, CRF and the superpixel, will help

to enhance the semantic segmentation performance by removing the artefact and locating

the real border. However, the difference from Resnet-34 and PatchCNN are very limited,

which can not be observed visually, for example, the testing images on the first & second

row in Fig. 3.22, different approaches have very similar outputs. When it comes to those

heterogenous regions, for example, the testing images on the third & fourth row in Fig.3.22

with many small tumour areas, the performances become different. In summary, comparing

the current results with the ground truth, there is a large space for the models to improve the

segmentation results.

3.6 Summary

In this chapter, the patch-based method for histopathology image analysis is investigated.

Attempts have been made step by step to achieve better segmentation results based on the

patch-level annotations. Firstly, based on the understanding of both the challenges and

how the networks make decisions from the experiment results, a multi-scale context-aware

network structure is proposed to improve the segmentation performance through the combined

information from different magnification level and enhanced the contextual information.

Furthermore, different network structures are compared on the classification task to investigate

the influence of different magnification levels, input sizes and network depth. In the end,

efforts are made to improve the segmentation result in a pixel level with a segmentation-based
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method in a weakly supervised manner. Even though there are improvements shown on both

quantitative result and qualitative result, it is far from satisfactory. Hence, in the next chapter,

cell level information will be employed for segmentation result enhancement.
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Chapter 4

Nuclei Segmentation and Classification

for Cell Level Histopathology Image

Analysis

Nuclei (cells) detection and segmentation are fundamental tasks for many biological or

clinical related applications. The shapes, quantity and the distribution of the nuclei (cells) are

distinctive features for experimental evaluation or decision-making. In many biology studies,

counting the nuclei (cell) is an indispensable daily routine. Whereas, in clinical practice,

the successful detection and classification of different nuclei (cells) can be considered as

valuable evidence in assessing the progression of certain diseases.

In this chapter, the cell level analysis of this research is presented, addressing the CRLM

task from three different aspects. Firstly, in section 4.2, with the help of image processing

methods, nuclei are extracted from liver tissue and then modelled with a variational auto-

encoder (VAE). Then the classification of different nuclei types is explored in a weakly

supervised manner to overcome the issue of insufficient annotations. Secondly, a novel and

efficient network, referred to as US-net, is proposed to deal with the nuclei detection and

segmentation problem in tissue with dense or overlapped nuclei. In section 4.4, based on the
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cell level results in this chapter, a tissue region growing algorithm is proposed to enhance the

tissue level segmentation results in Chapter 3, which is the final objective of the cell level

research in this chapter.

Fig. 4.1 A standard cell structure and examples of nuclei in the CRLM dataset (a) the sketch
of a conventional cell structure, (b) nucleus of hepatocyte , (c) nuclei of inflammation cells,
(d) nuclei of tumour cells, (e) nuclei of fibrosis cells

4.1 Overview

Cells are the elementary units of many living creatures, but are not solid objects. In fact, they

are made of several components as illustrated in Fig. 4.1(A). The components for different

cells can vary largely in terms of their functionalities in tissue. However, no matter how a

cell looks, the nucleus, membrane, and cytoplasm are its indispensable components.

For histopathology image analysis in clinical practice, HE staining is the most common

and economical way to highlight the basic tissue structure for better visualisation and

examination. However, in HE stained histopathology images, only the nuclei (sometimes the

nucleolus) can be clearly observed as meaningful individual objects from other components
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in the background. Hence, nuclei related analysis such as detection, classification and

segmentation are the main tasks at the cell level. One of the main challenges in manual

traditional pathology evaluation based on HE stained slides, is the significant time, efforts

and skills required for the visual assessment of each case. A massive number of samples are

produced on a daily basis that need to be examined. Moreover, the increasing shortage of sub-

specialised pathologists is also being reported [145]. Fortunately, with the recent advances

in digitisation techniques for scanning digital whole slide images, a good foundation has

been laid for developing intelligent computer-aided histopathology assessment systems. Such

systems are expected to augment pathologists’ ability by automating some of the fundamental,

labour-intensive and relatively easy tasks, thereby allowing experts to focus on the most

challenging parts of the assessment. The analysis of the cell shape, size, distribution and other

features is an essential task for both biologists and histopathologists in their visual analysis

of histopathology data. The automation of this task plays a critical role in the subsequent

analysis in computer-aided histopathology image assessment.

Fig. 4.1(B-E) demonstrate a few nuclei examples extracted from the HE stained histopathol-

ogy images of CRLM. It can be observed that nuclei from different types of tissues have

significantly different morphologies. However, not all tissue contains cell structures, for

instance, necrosis and mucin. While others have several different subtypes inside, e.g., for

normal liver tissue (marked as hepatocyte) have hepatocytes, kupffer cells, et. al..

Fig. 4.2 Cell level problem statement and task overview



4.1 Overview 80

The nuclei related tasks in histopathology image analysis can be understood in a rather

abstract manner. Fig. 4.2 illustrates the complicated nature of nuclei morphology. Fig. 4.2

(A) shows the ideal scenario where the cells/nuclei objects can be represented with regular

shapes which indicate the different shapes and scales of these objects. The multi-scale

problem is one of the many challenges that needs to overcome in this task. Whereas, in real

histopathology images, there will be a lot of noise in both the background and foreground as

shown in Fig. 4.2 (B). The outlines of the objects are mostly coarse instead of being smooth.

A more realistic and challenging situation is described in Fig. 4.2 (C). For example, there

are more textures to be considered in both the nuclei/cells and the background. Moreover,

situations like overlay and crowding impose further challenges.

To analyse HE stained images, accurate nuclei detection is the basis for many tasks. The

idea of nuclei detection is to locate the approximate position and size of the nuclei, e.g.,

with bounding boxes. Sometimes, detection can be achieved with the semantic segmentation

permitted under the condition that the nuclei are distributed sparsely. However, when it

comes to a situation when the nuclei significantly overlap, nuclei detection is indispensable.

Nuclei classification classifies the nuclei regarding their morphology and surroundings after

the nuclei have been detected, especially in cases where different types of cells mix together.

Whereas, the nuclei semantic segmentation task segments the nuclei from other components.

This is not as relevant here due to the limited application scenario, but can help to improve the

performance of the detection task. Nuclei instance segmentation which aims to separate the

overlapped objects, is an approach that jointly addresses the nuclei detection, classification

and segmentation tasks. In the output of the instance segmentation, almost all visual related

features can be extracted and calculated, for example, the perimeter and the size of the nuclei.

Nuclei instance segmentation is a promising solution to many nuclei/cell related analysis

problems if it is appropriately designed. Thus, one of the main goals of this chapter to

develop an effective nuclei instance segmentation approach.
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4.2 Nuclei detection and classification in liver tissue - a

weakly supervised method

In supervised machine learning, adequate labelled training datasets are normally associated

with the excellent performance of a trained model. However, when the available training

dataset is inadequate, the performance of the model will drop significantly. To deal with

the numerous unannotated data generated every day from clinical practice or biomedical

experiments, unsupervised or weakly supervised methods provide practical alternatives with

great potential. In this section, the traditional image processing techniques and unsupervised

deep learning methods are integrated to investigate the problem of nuclei detection and

classification with weak supervision.

4.2.1 Preliminaries

Auto-encoder is one of the most widely used unsupervised deep learning algorithms to

model the representation of the data. According to the implementation methods and different

constraints set to the network, several variations are proposed based on the basic auto-encoder,

like sparse auto-encoder, denoise auto-encoder and variational auto-encoder. In this section,

a few auto-encoders employed in this research are briefly introduced.

Basic Auto-encoder Auto-encoders usually includes two main parts in one network, the

encoder and the decoder (pink zone and green zone in Fig. 4.3). The target of an auto-encoder

is to compress the input into a feature vector with encoder and reconstruct the input with

decoder with a minimum reconstruction error. For an input x, the feature vectors or, in other

words, the hidden nodes can be expressed as:

hW,b = f (Wx+b) (4.1)



4.2 Nuclei detection and classification in liver tissue 82

(a) Single-layer Auto-encoder (b) Stacked Auto-encoder

Fig. 4.3 Illustration of auto-encoder and stacked auto-encoder

where b is bias, W represents the parameters for encoder, it also can be considered as the

extracted features of the input data. f (θ) is an activation function, which can be sigmoid or

hyperbolic tangent et.al.. Then the reconstruction of the decoder can be described as :

y = x′ = f (W
′
h+b

′
) (4.2)

Usually, the W for encoder and the W
′
are constrained by W T =W

′
which means the same

parameters are used for encoding and decoding. However, in some cases, it is not possible to

apply these constraints. The loss of the reconstruction is denoted as:

J(W,W
′
,b,b

′
;x,x′) =

1
2
||x

′
− x||

2
(4.3)

During the training, a back-propagation algorithm is employed to minimise the reconstruction

loss. Furthermore, the power of the auto-encoder can be improved by stacking several layers

together. To enhance the performance, sparse auto-encoder and denoising auto-encoder are

proposed [146]. For the sparse auto-encoder, a sparsity term ρ is added to the loss function

to control the activation of the feature vector to ensure the sparsity. Whereas, the notion of

the denoising auto-encoder aims to add noise to the input x to confuse the encoder while
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recovering the original input with the decoder in order to enable the model to extract more

robust features.

Fig. 4.4 The directed graphical model used to explain VAE in [147]

Variational auto-encoder(VAE) VAE is a generative model which introduces “variational

inference” [148] into auto-encoder. As illustrated in Fig. 4.4, the objective of VAE is to train

a generative model pθ (x,z) = pθ (x|z)pθ (z), by which it can generate an x with a given latent

variable z.

p(x) =
∫

pθ (x|z)p(z)dz (4.4)

However, calculating the integral of the marginal likelihood is intractable since the poste-

rior density pθ (z|x) = pθ (x|z)pθ (z)/pθ (x) is intractable. Hence, an alternative probability

qφ (z|x) is proposed to replace pθ (z|x). In the loss function, KL divergence DKL(qφ (z|x)||pθ (z|x))

is introduced to control the similarity between qφ (z|x) and pθ (z|x). Thus, the log-likelihood

is:

log pθ (x) = DKL(qφ (z|x), pθ (z|x))+L (θ ,φ ;x) (4.5)

where the L (θ ,φ ;x) is called evidence lower bound. With the variational inference principle,

the total cost of can be further transformed to:

Jφ ,θ = DKL(qφ (z|x)||pθ (z|x))−E[[qφ (z|x)|pθ (z|x)]] (4.6)
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Hence, the VAE can be considered as two part, the probabilistic encoder qφ (z|x) and the gen-

erative probabilistic decoder pθ (x|z). To simplify the sampling process, Gaussian distribution

is usually hired for qφ (z|x).

Convolutional auto-encoder Convolutional neural networks are proved to be very powerful

in image processing as the structure is able to extract hierarchical information from the input.

However, the original auto-encoder does not consider the 2D structure of the image. To adapt

the auto-encoder for 2D or 3D input, the convolutional auto-encoder is proposed by [149].

Intuitively, the main change is that convolution is hired for each layer in encoder hW,b = f (x∗

W +b) and deconvolution for decoder y = x
′
= f (h∗W

′
+b

′
) instead of the multiplication in

the original operation. The nature of the deconvolution is not a real deconvolution operation.

In fact, it convolves the input with another set of parameters W
′
. Other than that, a pooling

layer is also introduced to obtain translation-invariant representations. The rest of the network,

such as the reconstruction loss and training method, is consistent with other convolutional

neural networks.

4.2.2 Image pre-processing and nuclei detection

Before the era of deep learning which is also known as a data-driven approach, researches

invested a huge amount of efforts in solving the image-related problems with mathematical

analysis. Whereas, these traditional image processing methods do not require any labels

or annotations which is the obvious advantage over the deep learning methods, especially

for those occasions without sufficient annotations. Several important techniques for nuclei

processing is employed for nuclei detection and segmentation.

Colour deconvolution

One of the fundamental goals is the segmentation of HE stained images according to certain

semantic structures. In such images, there are main colours present, pink for the cytoplasm
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and blue for nuclei. However, the colours are not uniform across different slides due to the

variation of concentration of the dye and other factors in staining procedures, and can even

be different within the same slide due to the changes in slide thickness. As long as the two

colours in the same slide are differentiable, the nuclei will be easily distinguished from the

background.

Fig. 4.5 Nuclei region proposal pipeline. (a) Original image (b) H channel image for colour
deconvolution (c) Greyscale image (d) Blurred image (e) Proposed region from adaptive
threshold (f) Refined results with morph-snake algorithm

In the RGB colour space, the problem can be formulated as follows: a hyperplane needs

to be defined by the two main vectors representing the colour of the haematoxylin and the

colour of the eosin to ensure that the projection of all the colours in the slide to this plane

has the minimum reconstruction error. For an image matrix M with size N ×N ×3, it can be

represented as Eq. 4.7:

M ≈ I ×B (4.7)
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where B is the bias vector with the size 2×3, and I (N ×N ×2) is the intensity map of the

two colours. To solve this equation, the non-negative matrix factorisation (NMF) algorithm

proposed by [150] is employed. The original image will be decomposed into two images: an

H channel image which concentrates on the nuclei and an E channel image which focuses on

the cytoplasm. The results shown in Fig. 4.5 (b) is a separated H channel image extracted

from the original image Fig. 4.5(a).

Region proposal

From the separated H channel image, a clearer view of the nuclei’s distribution and shapes

can be acquired. However, the noise in the image and the variation of the intensity still hinder

us from segmenting all the nuclei out with one threshold. Besides, the shape of the nuclei are

not always closed since the slicing operation during sample preparation will cut some nuclei

into pieces. In this case, to find the centre of a nucleus, the total variation denoising (TVD)

algorithm [151] is adopted on the down-sampled image to smooth the image and highlight the

nuclei in the region (as shown in Fig. 4.5(d)). Afterwards, to address the intensity variation

problem, a local adaptive threshold is used to separate the background from the foreground.

With a basic thresholding, a possible nuclei region I′(x,y) can be estimated from the image

I(i) :

I′(x,y) =

1, i f I(x,y)> T

0, otherwise.
,T ∈ [0,1] (4.8)

where T represents a threshold value. In comparison, the local adaptive threshold method

considers the local context and adjust the threshold accordingly. T is determined by the local

mean m(x,y) and standard deviation δ (x,y) of a window with size w×w centred at (x,y):

T (x,y) = m(x,y)[1+ k(
δ (x,y)

R
−1)] (4.9)
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where R is the maximum of standard deviation and k is a bias in the range of [0.2, 0.5]. Fig.

4.5(e) shows an example of the result of the adaptive threshold.

Active contour for mask refining

Snake model is one of the most popular active contour models designed to detect object

boundaries [152]. For the initial boundary constructed by a set of points, the energy of it can

be defined as :

ETotal = EIn +EEx (4.10)

EIn indicates the force to shrink the contour and smooth the curve C:

EIn =
∫

α(|C
′
|)2 +β (|C

′′
|)2dC (4.11)

α and β are two weighting variables that control the relative importance of the two factors.

EEx represents the energy to expand the contour which can be formulated as:

EEx =−(|∇I(x,y)|)2 (4.12)

where ∇I(x,y) extracts the edge information of the image. Following the algorithm proposed

in [153], the morphological snake model is employed to refine the mask for each patch.

The advantage of the morphological snake lies in the morphological operation after each

iteration which will smooth the edge produced by pre-defined operators. The initial level set

comes from the binary value of the grayscale H-channel image with an adaptive threshold.

The importance of the inside content and the outside content is set equal. Three times of

smoothing is performed on the result of the basic active contour. However, after the process,

if two contours are found in one patch, that means these two cells are too close to each other

and have been mistaken as one. While, if no contour is found, that means this patch might be

a background image.
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The output of the proposed segmentation method is demonstrated in Fig. 4.6. The

proposed region on the left is intermediate results after region proposal step, while the

extracted nuclei on the right are the output after refining with the active contour algorithm.

Fig. 4.6 Proposed regions (left) and extracted hepatocyte nuclei regions (right)

4.2.3 Convolutional variational auto-encoder for nuclei classification

Among the cells in the normal liver tissue, there are mainly four different types, as shown in

Fig. 4.7. They are hepatocytes, kupffers cells, stellate cells and endothelial cells. About 80%

of the cells are hepatocytes, and they have regular round nuclei. Endothelial cells’ nuclei

tend to be elongated and flattened. Kupffer cells are located in the sinusoids and have the

bean or ovoid-shaped nuclei. For the stellate cells, they have spindle-shaped cell bodies and

oval or elongated nuclei which are difficult to distinguish from endothelial cells.

Method

To model all the nuclei of cell types in the hepatocyte region and extract their representations,

two types of unsupervised neural networks are employed, Convolutional Auto-Encoder

(CAE) and Convolutional Variational Auto-Encoder (CVAE). These two networks are very

similar in their structures. They both have a pair of convolutional encoder and decoder. The
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Fig. 4.7 Different types of cells in hepatocyte tissue

only difference is that CVAE has a variational inference layer instead of a linear layer before

the decoder as shown in Fig. 4.8. The convolutional encoder network has no difference with

other convolutional neural networks. Each layer in the network facilitates the convolutional

operation to acquire the feature maps. Then the last layer of the network is a fully-connected

layer which is also the input of the auto-encoder. The convolutional decoder network has

the same number of layers as the encoder network, which means each layer in the encoder

network has a counterpart in the decoder network. The decoder networks perform the

deconvolution operation and aim to reconstruct the input image with given parameters. The

loss of the network is defined as the norm of the error between the input image and the

reconstructed image.

For the convolutional encoder and decoder networks, two different structures are em-

ployed to compare the performances, the Alexnet structure with pooling layers and a 6-layer

fully-convolutional network (FCN) without pooling layers. The detailed parameters for FCN

are listed in Table. 4.1. The loss of the networks is the binary cross-entropy of the input

patch and the reconstructed patch.
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Fig. 4.8 Network structures of convolutional auto-encoder and variational auto-encoder.

Implementation details and results

The dataset for training comes from 5 different WSIs of the CRLM cases. 10 patches with

the size 2000×2000 pixels are sampled from the 40X objective. After the pre-process step

as described in section 4.2.2, 31833 nuclei regions are proposed. From the centre of each

proposed region, a patch with a fixed size of 64×64×3 is extracted and used for training

the model. However, the small nuclei whose size are far smaller than the average size will

be discarded, as well as those exceptionally large ones. To augment the training set, each

Table 4.1 Encoder and decoder layout of FCN

Encoder Decoder
Layer Depth Filter size Stride Layer Depth Filter size Stride
Input 3 Input 8/16

1. Conv 3 4 × 4 (2, 2) 1. Deconv 64 4 × 4 (2, 2)
2. Conv 16 4 × 4 (2, 2) 2. Deconv 32 4 × 4 (2, 2)
3. Conv 16 4 × 4 (2, 2) 3. Deconv 32 4 × 4 (2, 2)
4. Conv 32 4 × 4 (2, 2) 4. Deconv 16 4 × 4 (2, 2)
5. Conv 32 4 × 4 (2, 2) 5. Deconv 16 4 × 4 (2, 2)
6. Conv 64 4 × 4 (2, 2) 6. Deconv 3 4 × 4 (2, 2)
7. Conv 254 4 × 4 (2, 2) 7. Deconv 3 4 × 4 (2, 2)

8. Output 16/32 7. Output 3
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patch is flipped horizontally and vertically. At last, around 90000 patches are prepared for

training. For each network structure, 8 and 16-dimensional feature vectors are extracted for

classification. Fig. 4.9 demonstrates their original input images and the reconstructed images

from the 16 dimensional CAE networks.

Fig. 4.9 Input image patches (left) and the reconstructed image patches by CAE (right)

The CVAE is a generative network, the network can generate a certain images by learning,

with a set of pre-defined parameters. As shown in Fig. 4.10 (b-e), those nuclei are generated

based on the same output vector. For each patch, only one dimension is changed comparing

to the neighbour patches. Thus, similar input patches will result in similar feature vectors.

With the help of the t-SNE [143] algorithm, the extracted 8-dimension and 16-dimension

feature vectors are mapped to a 2D dimensional space as shown in Fig. 4.10 (a). The four

colour denotes the four classes clustered by the algorithm. As it can be observed in the figure,

the features of different classes clutter together, making it difficult to define the centre of

each class.

From the pathologists’ point of view, the proposed cells can be classified into four cate-

gories in term of their functionalities. However, according to the nuclei’s visual appearance,

they can be categorised into four groups as well: the hepatocytes with single nuclei are treated

as an independent group; the endothelial, kupffer and stellate cells are merged as one group

since they have elongate nuclei or ovoid shape; those cells with touching nuclei are labelled
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Fig. 4.10 Features of the nuclei regions on transformed space. (a): 2D visualisation of the
t-SNE distribution of the feature vectors. (b)-(e): generated nuclei from 2 variants of the
vector.

as another group together with other cells with irregular nuclei. Hence, these four classes are

hepatocytes, endothelial and stellate cells, cells with irregular shape and background.

In this study, 16 manually picked patches from each of the class are considered to define

the centre of the cluster C. The samples used to calculate the centre are demonstrated in Fig.

4.11. The labelled cells are flipped vertically and horizontally to augment the library. With

the feature vectors, V derived from the output of the trained network, the mean vector of

each class is calculated as the centroid of that class.

M =
1

16

16

∑
n=1

Vn (4.13)

For each patch p, the Euclidean distance between the feature vector Vp of this patch and the

centroid Mi of the ith classes is compared as shown in Eq. 4.14 . The minimum distance

will be used for the indication of the classes. The class whose centroid leads to the minimal
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distance from the patch is considered as the class of the patch.

l = argmin
i
(||Vp −Mi||), i ∈ {1,2,3,4} (4.14)

Fig. 4.11 Samples that used to extract the centre of the features. A: Background B: Hepatocyte
C: Cell with irregular shapes D: Endothelial and stellate cells

Evaluation and discussion

To evaluate the performance of the different network structures and dimensions of the feature

vectors, 3000 patches are randomly sampled from the dataset and annotated. Precision and

recall are calculated for each structure, as reported in Table 4.2, from which three observations

can be made. FCN structure outperforms the AlextNet structure on both accuracy and recall.

The increase of the feature vectors’ dimension will improve the performance. The CVAE

structure can output better results than the CAE structure.

Table 4.2 Evaluation of the classification precision and recall

8 dimension 16 dimension
Precision Recall Precision Recall

CAE-Alexnet 82.4% 75.2% 83.9% 74.3%
CAE-FCN 83.1% 74.9% 83.8% 76.1%

CVAE-Alexnet 85.4% 78.8% 86.2% 80.2%
CVAE-FCN 86.6% 79.1% 87.9% 80.5%

The study presented in this section demonstrates a novel workflow for nuclei classification

with insufficient annotation data. Efforts have been made to exploit the possibility of tackling
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the classification problem by combining the weakly supervised method and traditional image

processing algorithm. Even though the accuracy of the proposed weakly supervised method

is far from satisfying, the proposed method can play a critical role in generating annotations,

which can significantly reduce the manual workload.

4.3 US-net for robust nuclei instance segmentation

Comparing to natural objects, the detection and segmentation of nuclei seem to be much

easier due to their simple structures and homogeneous properties in representation. However,

despite the fact that the topic of nuclei detection and segmentation has been researched

for decades, there is still no publicly available trained model that support universal nuclei

detection across HE slides produced in different labs and conditions. Before the wide adoption

of deep neural networks, conventional nuclei detection methods often use the statistical or

geographical features of images to generate the seeds.

In this section, a robust model is proposed for nuclei detection and segmentation. This

model, referred to as US-net, benefits from a concise, yet efficient architecture, which

consists of a nuclei detection network and a segmentation network. It involves a workflow

that dynamically integrates the regression output of nuclei location and the end-to-end output

of the semantic segmentation to enhance the performance of both networks. The main

contribution of this section is two-fold: i) a novel and robust deep neural network architecture

for instance segmentation of the nuclei in HE stained histopathology image; ii) an enhanced

focal loss that can help deal with the class imbalance and accelerate the training is designed.

4.3.1 Background and preliminaries

U-net [154] is a baseline network for many segmentation methods even though it is originally

proposed for biomedical image related tasks. The basic structure for U-net and its derivative
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Fig. 4.12 Basic framework of the U-net

networks is demonstrated in Fig. 4.12. The key idea of U-net is to pass the low-level features

directly to high-level so that during the up-sampled/deconvolved process, the low-level

features can contribute to the final decision making. In other words, the importance of

low-level features is emphasised, which explains why it is prevalent among biomedical image

processing. For the original U-net, the blocks are filled with convolutional modules. If

these blocks are replaced with Residual module and Dense module, they are Res-Unet and

Tiramisu-net [155] accordingly.

Single shot detection (SSD) [156] is a powerful one-step object detection network com-

paring to the two-step networks such as R-CNN [157] and faster R-CNN [158]. With one

shot, the SSD model is capable of locating the object and classifying the object as well. Fig.

4.13 illustrate the network structure, the multibox detector [159], anchor box and the data

structure of SSD network. In SSD, it employs a multi-box detector to replace the region

proposal operation in the two-step object detection networks, which can be explained with

Fig. 4.13 (C & D), for each point on the feature map, a set of anchor boxes will be employed

for the location prediction. For each anchor box, the location information will be optimised



4.3 US-net for robust nuclei instance segmentation 96

Fig. 4.13 Network structure of SSD network

in a regression manner, while, for the category information, it will be calculated with softmax.

In the end, all of the predictions will be concatenated for predicting the final result.

4.3.2 US-net architecture

US-net is a specialised network that is designed especially for nuclei detection and seg-

mentation. As shown in Fig. 4.14, the structure of US-net is very compact, composed of a

segmentation and a detection branch, sharing the same backbone network. In practice, the

proposed network takes advantage of the powerful end-to-end semantic segmentation ability

of U-net [154] structure and the excellent object detection and classification performance of

SSD [156], precisely RetinaNet [160], to achieve an instance segmentation results with the

help of a post-processing sub-network for refinement.
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Fig. 4.14 Network structure of proposed US-net with post-processing sub-networks

The overall objective of the network extends the loss of MultiBox objective [159]: given

an input image I and its corresponding segmentation masks s , location information l and its

class information c , the loss L can be decided by the following function:

L(I,c, l,s) = Lcon f (I,c)+αLloc(I, l)+βLseg(I,s) (4.15)

where the parameters α and β control the relative importance of the loss components.
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The term Lseg(I,s) which is defined with the L2 norm, and it helps to achieve the segmen-

tation results.

Lseg(I,s) = avg(||s− ŝ||2) (4.16)

where ŝ is the segmentation results and s is the ground truth information. The loss Lcon f

measures the confidence scores of the binary class (nuclei or not) of the detected boxes with

an adapted version of Focal loss [160] :

Lcon f (I,c) = ηŝc(1− ĉ)γ log(ĉ) (4.17)

where c∈{0,1} denotes the ground truth information for classification, γ(⩾ 0) is the focusing

parameter and ηŝc is associated with the output of the segmentation results:

ηŝc =

√
Sall

Ŝc
(4.18)

where Sall represents the number of the pixels in ground truth s, while Ŝc denotes the number

of pixels that equals to c in output of the ŝ. The term Lloc(I, l) in Eq. 4.19 calculate the

location regression loss of the multi-boxes given the ground truth information l with a Smooth

L1 loss as defined in [159].

Lloc(I, l) =
1
N

N

∑
i=1

∑
p∈(x,y,w,h)

smoothL1(l
p
i − l̂p

i ) (4.19)

For the ith bounding box location information li, (x,y) is the center of the box while h and w

represent the height and width of the box. With the Soomth L1 loss defined as:

smoothL1 =


0.5x2 |x|< 1

|x|−0.5 |x| ≥ 1
(4.20)
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Since the output of US-net can only achieve a relatively rough segmentation result, thus,

post-processing steps are necessary to realise an instance level segmentation of the input

image. The post-processing part is also described in Fig. 4.14. With the rough location

and rough segmentation result, another network with U-net structure that consisting of 8

convolutional layers is built for further refining the detected regions. The function of the

post-processing network is similar to the attention mechanism, which is to refine the results

from a local scope.

4.3.3 Experiments and evaluation

DATASET

The training dataset employed in the experiments come from the Segmentation of Nuclei in

Images Contest (SNIC)[161] and the MICCAI MoNuSeg [162, 163] . There are 32 patches

with size 600×600 pixels from SNIC and 30 patches with size 1000×1000 pixels from

MoNuSeg. Both of them have instance level annotation masks. The proposed model works

with input patches of size 300× 300. Hence, the images from the original dataset are cropped

to size 400×400 with a fixed step size of 200. After pre-processing, 878 patches are acquired

in which 650 patches are used for training and 228 patches are reserved for evaluation. For

all the nuclei from different organs, they are treated as the same which means no category

information will be attached to each nucleus since the accurate detection and segmentation

of the nuclei is the main focus here. In addition to the 300×300 patches, another dataset

with patch size 48×48 is created for the refinement sub-network in the post-processing stage.

These patches are cropped from the scaled bounding boxes area and then resized to 48×48.

Implementation Details

In the U-net part, there are six down-sampling layers and six up-sampling layers connected

by a bottleneck layer. The block size for all the layers is 4. For the purpose of performance
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comparison, different blocks such as Resnet blocks and Densenet blocks are introduced

to replace the convolutional blocks. In the SSD part, the detectable objects’ (nuclei) size

is constrained to the range of 20∼128 by using the feature maps from the last 3 layers of

the base network. The corresponding feature map sizes are 38×38,19×19,10×10. Two

anchor box aspect ratios (1×1 and 1×0.75), and two scales (0.8 and 1.2) are considered

in the experiments which make 4 different anchor boxes for each point in the feature maps.

That makes up the 7620 default anchor boxes for an input image. In the training phase, the

parameter α is set to 1 while β is set to 0.1. Two different optimisers are employed for two

different branches. For the SSD branch, Adam optimiser [164] with a learning rate of 0.001

is employed, while for the U-net branch, the optimizer is SGD with a learning rate 0.0001,

momentum 0.9 and weight decay 0.0001.

Fig. 4.15 Losses and evaluation accuracies for different network structures
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Fig. 4.16 Results of the proposed method on the CRLM dataset

4.3.4 Results and discussion

The evaluation of the results of the proposed networks takes two aspects into account,

the evaluation of semantic segmentation and the evaluation of detection results. For the

segmentation part, PA is calculated in terms of the number of accurately predicted pixels

out of the total number of pixels. The evaluation metric for object detection part is the

same as the interpolated mAP used for VOC dataset [165], which has been introduced in

Sec 2.4. In Fig. 4.15, losses for different branches of the US-net as well as the AP/PA for

evaluation are demonstrated along the training process. It can be observed that the US-net

performs significantly better than either of the branches individually. Besides, it should be

noted that the inclusion of the Densenet blocks or Resnet blocks into the framework does not

necessarily increase its performance due to the low complexity of the features in the image.

Furthermore, the trained model is applied to the histopathology images from CRLM cases

used in the previous section. The results presented in Fig. 4.16 demonstrates the outstanding

performance of the trained network which verifies the decent robustness and transferability

of the proposed framework.
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4.4 Multi-scale fusion for semantic segmentation in

colorectal liver metastasis

The accurate segmentation of the tumour tissue regions in histopathological images is of

crucial importance for cancer pathology analysis. However, due to high morphological

variance in histopathology images, especially along the border regions where cancer cells

interfere with normal tissue, it is challenging even for pathologists to identify a clear boundary

between tumours and normal tissue, let alone an automated tumour segmentation system. In

this section, an innovative framework is presented to segment tumour areas of CRLM at the

cell level in a semantic manner, by integrating the features from the spatial and statistical

information of cells. With the rough annotations from pathologists, deep neural network

architectures, including a cell-level model and a tissue-level model, are trained to classify

patches from the whole slide scan images. Afterwards, based on the trained models, a

growing-style algorithm is designed to segment the images by closely investigating the

statistical and spatial properties of the cells. In a comprehensive evaluation against the ground

truth created by professionals, the proposed framework demonstrates significant improvement

over the conventional deep convolutional neural networks operating at the tissue level alone.

Technically, the contributions of this work are to integrate the multi-scale results to achieve

a more accurate pixel-level semantic segmentation results with the proposed tissue region

growing algorithm.

4.4.1 Framework and proposed method

An overview of the proposed framework is illustrated in Fig. 4.17. This framework integrates

two workflows from the cell level and tissue level in order to adequately exploit the most

representative and distinctive morphological features on the two levels in a complementary

manner.



4.4 Multi-scale fusion for semantic segmentation in CRLM 103

At the tissue level, the PatchCNN model proposed in Chapter 3 is employed to make a

rough prediction of tissue region segmentation. The advantage of starting with a tissue level

prediction is that a larger reception field of the whole patch can be covered so that the model

can include more contextual information to assist the prediction. Like other works on tissue

level segmentation, the output boundary of this tissue level models is coarse and the details in

the boundary, which may be of clinical relevance, need to be better demonstrated. Here, the

integration with the cell level workflow is considered to enable a pixel level segmentation.

Fig. 4.17 An overview of the proposed fusion framework

At the cell level, the nuclei segmentation and classification model (US-net) proposed in

Section 4.3 are employed. The purpose of this model is to classify the potential nuclei regions.

Although the proposed network achieved excellent results, without context information, the

result still contains a significant amount of biased data which will introduce noise to the

results. Here, the lack of inclusion of contextual information is complemented by the tissue

level workflow. Meanwhile, the cell level model is more sensitive to the changes in the border,

which can lead to a more detailed prediction for segmentation. The integrated workflow of

the framework is summarised as below:
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Step 1. Process raw images and associated annotations, and prepare training data for the

models.

Step 2. Train the cell level model and tissue level model separately (shown as blocks A

and B in Fig. 4.17).

Step 3. Apply the trained tissue level model on an input image.

Step 4. Apply the cell level model on the image patches for a cell level prediction.

Step 5. Resize the tissue level prediction to fit with the input image’s size, if the prediction

by the cell level model agrees with that of the tissue level model, then mark these

nuclei with corresponding labels. Mark the rest of the nuclei on which an agreement

cannot be achieved as uncertain.

Step 6. Run the Tissue Region Growing algorithm (Block C in Fig. 4.17) to relabel

those uncertain nuclei.

Step 7. Remove outliers and refine the segmentation results.

Tissue region growing for the integration of tissue and cell level segmentation After the

pre-process and nuclei detection, the distribution of the detected nuclei can be converted

to a graph using Delauney tree [166] as shown in Fig. 4.19. Based on the results from cell

level and tissue level models, each node will be assigned a temporary label to indicate if the

results from two levels agree or not. Here, the tissue region growing algorithm is designed to

determine the membership of those nodes with uncertain labels.

Consider a simple example as illustrated in Fig. 4.18, the red dots belong to set ℜ,

representing nuclei with uncertain labels. The others (black and green) belong to set Φ

including dots whose the labels are agreed by the two models. Θ is a subset of Φ which

includes the nearest K nuclei to a nucleus r with a certain label. For each undetermined

nucleus, four properties are calculated: the size of the nucleus Sr, the average size of the
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Fig. 4.18 An illustration of the proposed Tissue Region
Growing algorithm

Fig. 4.19 Delauney tree of the
nuclei’s location

nearest Kr nuclei regions aSr, the average distance to the nearest K nuclei’s region centers

Dr, and the average of K nearest nuclei regions’ Dr,i, (i = {1,2,3...K}) value aDr. For

each class of nuclei with label Ci, the average value of these four properties are denoted as

SΘ
i , aSΘ

i , DΘ
i , aDΘ

i , where i indicate the index of the label in set C. For the nuclei in the set

Φ, the four properties are denoted as SΦ
i , aSΦ

i , DΦ
i , aDΦ

i . The distance of unlabelled nuclei

r to the class Ci is defined as Wd in Eq. 4.21.

Wd(r,CH
i ) =

√√√√ ∑
G∈(S,aS,D,aD)

(Gr −GH
i )

2

GH
i

2 ,H ∈ {Φ,Θ} (4.21)

With the joint assessment of the four statistical properties in Wd , the tissue region growing

algorithm assigns class memberships to the uncertain regions iteratively based on their nearest

neighbours in a growing style. The iterative algorithm is described in Algorithm 1. The

criteria for classification includes two parts. For those regions close to only one kind of

nuclei, the goal is to decide if they can be treated as the same kind according to the distance

to the statistical properties of this category. If they are not similar enough, the growing will

stop. A threshold value λ controls the similarity of the region and its neighbours. To make

sure of the convergence of the algorithm, a growing rate of µ is introduced. If the growing

stops, the threshold value will be adjusted to reactivate the growing. For those nuclei whose
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Algorithm 1 Tissue Region Growing

Precondition: Initial threshold λ , growing rate µ , regions with certain label Φ, regions with
uncertain label ℜ

1: repeat
2: repeat
3: for each r ∈ ℜ do
4: Locate nearest K certain nuclei to r as set Θ

5: if Labels Ĉ of Θ contains multiple classes then
6: Find the Ĉm which leads to the minimum value in set Θ Wd(r,ĈΘ

m)
7: Update r’s label with ĈΘ

m
8: else if Label Ĉ only contain one class Ĉn in Θ then
9: Find the one with the maximum value Wd(r̂, ĈΦ

n ) in set Φ

10: if Wd(r, ĈΦ
n )< λWd(r̂, ĈΦ

n ) then
11: Update r’s label with Ĉn
12: end if
13: end if
14: end for
15: until Φ does not change
16: Increase the value of λ by µ

17: until ℜ = /0

neighbours include multiple kinds of nuclei, the goal is to attribute the region to the right one.

The criteria are the distances of the region to each category’s statistical centre.

4.4.2 Dataset preparation

In this section, several different datasets are employed for this research. The dataset for

the tissue level model is the same as those used in Chapter 3 where tissue level model is

described and trained. While, the situation for the cell level are kind of complex. The model

for nuclei detection and segmentation are trained on the public dataset as described in the last

section. However, for the fusion framework, a cell level CRLM dataset are prepared. This

dataset is made from 120 homogeneous tissue patches manual selected from the tissue level

dataset on the 40X level with the patch size of 448×448 pixels. Each of them has an overall

label that indicates its class membership. These patches are used to extract the nuclei for
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constructing a CRLM classification dataset, in which each nucleus image is of size 128×128

and is cropped from the nucleus centre.

Fig. 4.20 Examples of the detected nuclei on the large patch (a) and the extracted nuclei
regions (b)

From 30 patches, over 5000 nuclei with high confidential scores are extracted. Among

them, 3500 are used for training and 1500 are used for validation. In the last, a 7-layer

fully convolutional network is established for the classification task. The evaluation on the

independent testing dataset indicated that 96.28% of the nuclei (over 1500 samples) can be

accurately classified. Fig. 4.20 illustrate the examples of the patches and the extracted cell

level dataset from them. In the last, to test the proposed segmentation methods, the same

testing dataset containing 50 ROIs as employed in Chapter 3 are used for evaluation.

4.4.3 Implementation details

The fusion stage take place after the tissue level results and cell level results is acquired

separately. The main process of the fusion stage is the implementation of the tissue region

growing algorithm. The Fig. 4.21 demonstrates the intermediate results of the fusion process.

The parameters λ and µ is set to 0.1 and 0.2 respectively. To evaluate the proposed framework,

the same evaluation metrics are considered: PA and MIoU.
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Fig. 4.21 The outcomes of the intermediate steps of the tissue region growing algorithm.
The purple points indicate the nuclei with the uncertain label, the yellow, green, blue ones
represent H,F/I, T tissue types respectively.

4.4.4 Results and discussion

The quantitative analysis on the testing set with the metrics are listed in Table 4.3. It is

reported in the table that comparing to the tissue level models, the proposed method with

merged results from the two levels can improve numerical value of both the PA and MIoU.

Furthermore, from the distribution of the nuclei in Fig. 4.21, it is easy to found that most of

the purple points (nuclei with uncertain labels) fall in the border area of two types of tissue

where the tissue region growing algorithm works.That’s explained why the results improved.

Table 4.3 Quantitative segmentation result (PA & MIoU) of proposed methods

PatchCNN
Resnet-34

+ CRF
PatchCNN

+ Superpixel
Proposed

fusion method
PA 78.12% 80.47% 80.87% 81.83%

MIoU 58.16% 59.33 % 59.74% 61.07%

In addition, a few example of the segmentation results are demonstrated in Fig. 4.22.

Except for the segmentation result, the nuclei map of the input image are demonstrated as

well. The results in the last row of Fig. 4.22 expose the bad performance of the cell level

model. With carefully inspection, it can be found that the nuclei in this kind of fibrosis have

confusing appearance because they are very similar to some of the tumorous nuclei. Besides,
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there are some tumorous nuclei mixed inside as well. Meanwhile, the tissue level result

could not provide enough information for the fusion process, which lead to the overall bad

performance. In summary, the cell level model can help to enhance the segmentation result

to some extent, but the framework still has some constraints to overcome.

4.5 Summary

In this chapter, the overall objective is to make more accurate segmentation the tumour border

region with a weakly supervised method by utilising the information from the cell level. To

this end, my research was carried in three-folds. Firstly, by leveraging the image processing

method, we modelled the nuclei in the hepatocyte area through a generative model, variation

auto-encoder. Then, a novel network is proposed to do the instance-level nuclei detection

and segmentation In the last, a multi-scale fusion framework is proposed to increase the

segmentation accuracy and resolution. Extensive experiments have been carried out and the

results confirmed that the improvement of the proposed method.
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Chapter 5

Weakly Supervised Models for Pixel

Level Histopathology Image Analysis

Pixels are the basic units of the digitalised image on a computer, and all operations on these

images will eventually lead to numerical changes in the pixels. However, the concept of “pixel

level” in this thesis does not refer to the specific pixels in the histopathology images, since

the information contained in one pixel are closely associated with the magnification level,

for example, one pixel in an image from 5× magnification level contains information from a

8px×8px patch at 40× magnification level. Hence, the “pixel level” in this study refers to the

details of the pixels at the highest magnification level, which is the 40× magnification level.

Even though it might not be essential for clinical diagnosis with pixel level segmentation,

it could provide a more accurate calculation on the WSIs by assigning pixels with different

classes. In this chapter, several different weakly supervised methods are proposed to address

the challenge of insufficient annotations at the pixel level. Firstly, the augment training

methods are investigated, and two different approaches for generating matched training pairs

are proposed to solve the insufficient pixel level annotations of the training data. Secondly,

virtual staining is explored to transform the HE stained images to an IHC stained image in a
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weakly supervised manner. The high contrast characteristic of the IHC style staining can be

facilitated for use with an auxiliary visualisation method.

5.1 Overview

Pixel level segmentation aims at training an end-to-end model that can transform the input

image to another image with different pixel values thereby indicating different types of tissue.

In this context, the pixel level segmentation has similar purposes as virtual staining. Virtual

staining, by its literal meaning, uses computerised algorithms to create the artificial effect

of staining without physically tampering with the slide. This means virtually converting the

staining of the image to another kind of staining through computer algorithms according to

the semantic features of the structures. In fact, virtual staining is a post-processing step that

can generate other stained versions of the same slide based on the digital scan of a real slide

stained using a traditional dyeing method. The aim is to provide different staining effects

that can highlight different relevant histological and cell features on the same slide. From

this point of view, the objective of pixel level segmentation and virtual staining is almost

identical. Hence, in this study, virtual staining is employed as an auxiliary method to assist

the pixel level segmentation.

5.1.1 Problem statement

In clinical practice, there are other methods, mainly IHC staining, that a pathologist can use

to highlight the cancerous or other cell and tissue components of interest. As shown in Fig.

5.1, IHC staining allows the visualisation of specific proteins on a tissue slide using targeted

antibodies and subsequently detecting the bound antibodies using chromogens of different

colours. In such a way, by using protein-binded antibodies that are selectively expressed in

the cancer cells, these become readily distinguishable from other tissues using high-contrast



5.1 Overview 113

chromogen staining, as shown in Fig. 5.1 (b). Despite its superior features compared to HE,

there are obstacles that preclude the wide application of IHC staining in clinical practice - the

high cost of antibodies, autostainer machine equipment, and the complex laboratory process.

Unfortunately, these issues are currently unresolvable. In most cases, pathologists have to

rely on HE or other relatively cheaper and more generally available staining methods for

their diagnosis and limit the use of IHC to a very small number of selected slides. For this

reason, the majority of computer models and systems for histopathological cancer grading

are designed for segmenting and classifying the tumour tissue based on HE imaging.

(a) HE stained image (b) IHC stained images

Fig. 5.1 Matched HE and IHC stained images patches from the same region of two adjacent
WSIs

Fig. 5.2 illustrates how the IHC stained image can be facilitated in different tasks. As can

be observed, the segmentation results can be easily acquired from IHC stained images with

thresholds. In this case, if the HE stained images can be converted to IHC stained images,

the problem can be addressed easily. From the computer vision aspect, the transformation is

asymmetric due to the information contained in these two kinds of images not being equal.

With all these channels being decomposed, it can be observed that it is relatively easy to

compose HE stained images through a linear combination of the channels from IHC images.
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Fig. 5.2 Pixel level problem statement and task overview

But it would be rather difficult to compose a IHC image with linear combinations of these

channels since they do not contain the same amount of information. Hence, the transformation

from IHC to HE is referred to as virtual registration, while the reverse transformation is called

virtual restaining. The term “virtual restaining” is used in order to emphasize the difference

between another kind of “virtual staining” which transforms the unstained images to stained

images.

The transformation between a IHC and HE stained image can be considered as a special

kind of style transfer problem [167] that only transfers the colour coding to the original

images while keeping the structural information consistent. It is also similar to the image

colourisation problem which will re-colourise the image with new colours [108]. However,

this method needs to be based on the excellent performance of semantic segmentation. Based

on the tightly related common features of images with different stainings, the most relevant

problem is the unpaired image-to-image translation that will transfer the original image
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using the style of the reference image. Therefore, if there is a way to model the pairwise

relationship between the tissue morphology in HE and IHC stained conditions, it is then

possible to predict one from the other. Recently, with the continuous progress of deep learning

with different image processing tasks, it has become possible to ‘translate’ one image to

another with a different style. Such technology brings the opportunity to produce an image

virtually stained with one dye from another, for example, producing IHC images from images

dyed with relatively cheaper and widely available staining techniques such as HE. This may

be very useful in many clinical diagnostic and artificial intelligence (AI) based applications,

such as improving the effectiveness of pathological examination by reducing the eyeballing

time in the visual screening of the slides, and increasing the segmentation and classification

performance of AI models. I.e. if the HE slides can be virtually IHC stained, with simple

post-processing, the generated IHC images can provide highly precise segmentation of the

tissue regions of interest.

What is more interesting is that given an original image acquired with one stain, virtually

restained images with one or more other dyes can now be generated from exactly the same

sample. Currently, only one or two chromogens can be employed on the same sample for

brightfield microscopy, which is the standard in histopathology practice. However, it is often

the case that several IHC stainings need to be performed on the same tissue region to extract

multiple features of diagnostic relevance. In such cases, pathologists perform serial cuts

from the same tissue block, each between 3µm and 5µm thick, and stain them with different

techniques and antibodies. This introduces inevitable inter-slide variability in the cell and

tissue structures, as while performing serial cuts along the z-axis, neighbouring tissue regions

are typically similar but do not exactly match each other, preventing cell-level segmentation

and colocation analyses across slides. Consequently, the differently stained sections do not

represent exactly the same tissue sample. With the help of virtual staining, multiplexing with

two or more multiple stains on the same sample becomes possible.
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5.1.2 Challenges and objective

The large size of unannotated histology image data has posed critical challenges for its

understanding and analysis. Motivated by the great success of deep learning models applied

in different tasks in natural image analysis, more and more deep learning algorithms and

systems are being designed for histopathology image analysis. Dozens of fruitful outcomes

have been achieved based on deep convolutional neural networks (DCNN), especially using

patch-based methods. With a sufficient number of annotated patches, a DCNN will be

trained to detect cancerous tissue patches against other benign tissue components. However,

there are intrinsic limitations in the current methods. A major issue is the high dependence

networks on annotated training sets that are often inadequate both in terms quantity, due to

the expensive manpower consumption required for the job, and in terms of quality, because

of inter- and intra-observer subjectivity. Moreover, when multiple tissue types are present

in a region intertwined together, it becomes impossible even for experienced pathologists

to create accurate annotation masks, such as the HE stained image region shown in Fig. 5.1

(a). For this reason, the lack of adequate and accurate training data is the most challenging

problem.

Another challenge that the pixel level segmentation task faces is the difficulty in evaluation.

As stated above, it is almost impossible to make an accurate annotation on the tissue border

manually. In this case, the evaluation of the transformed image or segmented image will be

difficult. Besides, for most of the annotations conducted by experts, they are more focused

on the semantic meaning. While, the masks from the IHC stained images will maintain the

small objects as well, which makes the segmentation results noisy and coarse.

5.1.3 Preliminaries

Generative Adversarial Networks [93], as an important branch of deep learning, is gaining

more and more attention from the researchers around the world. A significant amount of
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investigations have been made to explore the potential of GAN for natural images related

tasks like image synthesising, image super-resolution, and style transfer [107, 108]. However,

modelling the patterns in the histology images is a particularly complicated task for generative

models since tissue morphology can be treated as orderless texture patterns. Although there

are underlying regulations that control the growth pattern of the cells, yet the rules are

limited and unknown to human experts. In this case, the generative adversarial networks

are often served as a data augmentation method that helps generate more tissue regions.

This is one of the most intuitive application of generative models in histology image related

application. But the potential of applying generative model is not limited to that, more

innovative and promising researches are on the way. In the following, the basic GAN model

and its derivatives (or important applications) are introduced first.

Generative Adversarial Networks

The fundamental idea of a GAN, as shown in Fig. 5.3, is to train the generative model Gθg

that can generate fake images from the noise z though learning the real images, to fool the

discriminator Dθd which can discriminate real/fake images. Once the discriminator Dθd

cannot tell the fake ones from the real, it means that the network has learned to model the

distribution of the input data appropriately. The mathematical description of overall loss is:

Lgan(G,D,x,z) = Ex∼pdata[logDθd(x)]−Ez∼pz[logDθd(Gθg(z))] (5.1)

where θg and θd are the parameters of the generator network and the discriminator network.

The objective of the networks is to maximise the discrimination accuracy and minimise the

error of generated images so that the generated data can have identical distribution as the real

data.
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Fig. 5.3 Network structure for generative adversarial network

GANs for paired image translation

Based on the original GAN networks, conditional GAN[168] has been proposed to take into

account certain constraints that can help to improve the truthfulness of images, in addition to

the imaginary information. Instead of generating an image from imaginary, conditional GAN

will apply some constrictions/ conditions on the model and further guide the model on how

the images should be generated. The conditions encode the labels of the generated images

which contain category information. Furthermore, pix2pix GAN, as a paired image-to-image

translation method, provides segmentation masks as conditions to generate images on a pixel

level [169]. From the image translation point of view, the pix2pix model translates the images

from abstract representation to real images while keeping the semantic meaning.

GANs for unpaired image translation

Among the above mentioned paired image-to-image translational models, an obvious draw-

back is the requirement for corresponding masks on the input images. Thus, a few un-
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paired image translation models are proposed including SimGAN [97], CoGAN [170] and

CycleGAN[171]. Although the images are unpaired and from different domains, they shared

similar semantic and structural features, which provides the foundation for unpaired image

translation. For example, in CycleGAN, the model tried to translate a horse to a zebra and an

apple to an orange. The objects before and after the translation have to demonstrate similar

semantic structures to make the translation meaningful.

5.2 Augmented training for pixel level segmentation

Following the discussing above, if the problem of paired training data is tackled, it will be

not that challenging to train a pixel level end-to-end model. Therefore, in this section, two

augmented training methods are proposed as weakly supervised methods to generate training

pairs for the end-to-end model in order to achieve a pixel level segmentation result.

5.2.1 Image synthesis for data augmentation

It is acknowledged that the tissue image is a special kind of texture image [172]. Therefore,

inspired by the work in texture segmentation [173], the tissue image synthesis approach is

employed to generate the dataset for pixel level model. The workflow of the image synthesis

is explained in Fig. 5.4. The input images are the tissue patches from different types of tissue,

but all the patches have uniform visual features within the same patch. By assigning them

to different segments of the mask, the new image will be synthesised. However, to obtain a

natural appearance, all the patches are normalised to smooth the border between different

types of tissues.

Regarding the mask, the main challenge is to make the border have a natural appearance.

Therefore, the masks acquired from Chapter 3 with superpixel algorithm is utilised to

generate masks for the syntheses process. Then, different kinds of tissues are filled in the
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Fig. 5.4 Image synthesis framework for data augmentation

mask generated by superpixel to synthesis new patches. In order to ensure the contextual

information and avoid the over-segment problem, the masks will have no more than 3

regions and the proportion of each region should account more than 1/3 of the whole area.

However, such constraints would introduce new problems as well. For example, the proposed

method could not synthesis those patches containing small tumours inside, because these

small tumours are discrete objects which are difficult to synthesis. In this context, image

transformation based methods are presented to synthesis more realistic image pairs.

5.2.2 Image transformation for data augmentation

The high-contrast feature of IHC reveals that there are explicit borders between different

kinds of tissues. This inspires us to seek the possibility of segmenting the tissue border in

pixel level. As discussed in Fig. 5.2, if the IHC stained images can be transformed to HE

stained images, there will be enough paired images for training. Therefore, in this section, the

virtual registration task is addressed through a novel GAN-based framework as demonstrated

in Fig. 5.5. Considering of importance of the overall contextual information over the low-

level textural details and the constraints of the computation ability, the proposed framework

is divided into 2 sub-networks, the virtual registration (VR) block (B) and the conditional

virtual magnification (CVM) block (A). The VR task is conducted on 20× magnification
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Fig. 5.5 Augmented training framework for pixel level segmentation. x̂ and x denote the input
IHC stained images in 40× and 20 × magnification level accordingly. Likewise, ŷ and y for
HE stained images. x′ is output of virtual registration module while (̂x)′ is output for virtual
magnification model.

level concentrating on transforming the IHC stained images to HE stained images, while, the

CVM task will help to restore the resolution on 40× by using the details from the original

40× IHC image.

Virtual Registration

The VR block is composed of two modules: the generative encoder Gvr inside takes in IHC

stained images and converts them into HE stained images; the hierarchical discriminator Dvr

inside is in charges of improving the quality of generated HE images with regards to the

semantic label c and the training samples of the HE stained images. To ensure the quality of

the generated image, a hierarchical discriminative loss is proposed. The loss contains two

parts: the low-level true/false PatchCNN loss regarding how real the patches are and the
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high-level semantic classification loss indicating the semantic category of the whole patch.

The definition of the hierarchical loss is:

Lhier(Gvr, Dvr, x, y, c) = Ey∼p(y|c)[logDvr(y)]+Ey∼p(y)[logDvr(y)]

+Ex∼p(x|c)[log(Dvr(Gvr(x)))]−Ex∼p(x)[log(Dvr(Gvr(x)))]
(5.2)

In addition to the hierarchical discriminative loss, identity loss and photorealism loss are

hired in the module as well. The identity loss proposed by Taigmen et al. [174] is introduced

to preserve the colour composition especially when the input image is very close to the output

image domain [171]. The identity loss can be obtained by feeding the HE stained images to

the input. The definition of identity loss is demonstrated as follow:

Lidt(Gvr, y) = Ey∼p(y)[||(Gvr(y)− y||1] (5.3)

Furthermore, to keep the structural information unchanged, the photorealism loss [167] is

introduced to to ensure the texture structure details of the input image unchanged. Photo-

realism loss uses Matting Laplacian transform to measure the structural differences and is

defined as :

Pho(p, q) =
3

∑
k=1

qT
k [Mp]qk +

3

∑
k=1

pT
k [Mq]pk (5.4)

where k denotes the RGB channels while Mp/Mq is the transformed matrix regarding to the

input images pair p/q. Hence, the photorealism loss for VR block can be formulated as

following:

Lpho(Gvr, x) = Pho(Gvr(x), x) (5.5)

The overall loss of the VR block is:

Lvr(Gvr, Dvr, x, y, c) = Lhier(Gvr, Dvr, x, ,y, c)+

τLidt(Gvr, y)+ωLpho(Gvr, x)
(5.6)
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Where τ and ω are the weight parameters that regulate the importance of relative losses.

Thus, the overall objective is to find the optimal generator Ĝvr and discriminator D̂vr :

Ĝvr, D̂vr = argmin
Gvr

max
Dvr

L (Gvr, Dvr, x, y, c) (5.7)

Conditional Virtual Magnification

The main task of the CVM block is to boost the resolution of the transformed HE stained

images according to the local textual details of the corresponding 40× IHC image, which is

to virtually magnify the 20× HE stained images to 40×. The structure of the CVM block are

presented in Fig. 5.5 (A), which is very similar to the VR block. It has a conditional generator

Gcvm and a discriminator Dcvm as well. During the training, four losses are hired to regulate

the up-sampled image to ensure both the local textual details and the semantic meaning of

the patch. They are discraminative loss Lgan on the final output image x̂′, photorealism loss

Lpho between the input IHC image x̂ and x̂′ , identity loss Lidt for y and ŷ and the LL1 loss

between the input image x′ and the resized output y.

Lcvm(Gcvm, Dcvm, x′, x̂, ŷ) = Lgan(Gcvm, Dcvm, x′)+ρLpho(Gcvm, x̂)+

ηLidt(Gcvm, ŷ)+ εLL1(Gcvm, ȳ)
(5.8)

where ρ,η ,ε are three weight parameters, the Lgan(Gcvm, Dcvm) is defined as :

Lgan(Gcvm, Dcvm, x̂,x′, ŷ) = Eŷ∼p(ŷ)[logDcvm(ŷ)]−Ex′∼p(x′)[log(Dcvm(Gcvm(x′, x̂)))] (5.9)

Similarly, the overall objective is to find the optimal generator Gcvm and discriminator Dcvm :

Ĝcvm, D̂cvm = argmin
Gcvm

max
Dcvm

L (Gcvm, Dcvm, x′, x̂, ŷ) (5.10)
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5.2.3 Dataset collection and preparation

Two different datasets are employed for different augmentation methods. The image synthesis

approach is purely base on the HE stained images, while the image transformation methods

will need additional information from IHC stained images. Hence, the two different datasets

will be introduced separately.

Dataset for image synthesis

Patches with homogeneous patterns are cropped from the HE stained WSIs with a patch size

1024px× 1024px are collected. Only 4 classes are considered in the end, they are H, F/I,

T and N. However, the F and I will be treated as different classes during the synthesis and

training. Furthermore, to make the synthesised patches possess a more natural appearance,

normalisation is applied on the homogeneous patches before sticking them together. But

during the training, the whole image will be augmented to simulate the real situation. In

total, there are 3000 masks are cropped, 2000 HE stained image patches (400 for each class)

are collected. During the training phase, both the synthesised images and the images with

homogeneous appearance are used as input. The proportion of them is set to equal.

Dataset for image transformation

Matched HE and IHC stained slides (2-plex CK19/CK18) were scanned at 40× with Hama-

matsu NanoZoomer slide scanner. On HE stain, all cell types show varying tones of dark blue

and pink. CK19 stains in brown colorectal cancer cells using DAB chromogen, while CK18

stains in red the surrounding and benign liver cells (hepatocytes) with AP chromogen. Im-

mune cells, stromal cells and extra-cellular matrix (fibrosis) are negative for both cytokeratine

(CK) stainings. Immunohistochemical sections are also counterstained with haematoxylin

(H) to visualise the background context of cells and tissue components on the slide.
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As histological sections are 4 µm thick, there is always some degree of inter-slide variation

between the matched slides. The differences may not be apparent at low magnification levels,

for example, 10×, but become evident at higher magnification levels, e.g. 40×. In this study,

the dataset are cropped from 40× magnification level with a patch size of 1024px×1024px

pixels. However, for the transformation block, the patches are from 20× magnification level,

while for segmentation block, the input images are on 40×. Given the overall objective of

this study and the main colours in the IHC stained slides, the main classes considered in this

section are Hepatocyte (H), Fibrosis/Inflammation (F/I), Necrosis (N) and the tissue border

regions which contain more than one kind of tissue, Tumour & Fibrosis (TF), Hepatocyte &

Fibrosis (HF), Tumour & Necrosis (TN), Tumour & Hepatocyte & Fibrosis (THF), Tumour &

Fibrosis & Necrosis (TFN), .

The total number for both kinds of staining is 2400 with 300 for each type. The masks

for the IHC images are derived through an image processing framework proposed in Sec.

4.2. After separating different channels with colour deconvolution algorithms, thresholds

are applied on the channels to get the seeds area. Morphological operations are performed

to filter out those small objects and small holes to keep the integrity of the semantic mask.

In the last, all the pairs are examined by the experts to improve the quality of the data. To

ensure the generalisability of the transformation for IHC images to HE images, both of the

IHC images and the HE images are augmented to simulate the staining variance of the slides

from different labs. This is one of the critical steps for handling staining variances across

different labs. Meanwhile, the HE images for the input of the discriminator are normalised

to reduce the dimension of the target domain. After these augmentation steps, the trained

network will obtain the ability to normalise the output image as a side product. It is especially

true during the identity loop when the same image is distorted and resized as input but has a

corresponding normalised output. More importantly, it will greatly reduce the efforts when

composing different small tiles into a large whole slide image. Other image augmentation
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techniques (mainly geometric transform) are also employed to enlarge the number of the

sample for training a more robust model.

5.2.4 Implement details and results

The implementation details of the proposed methods are detailed here, which reports the

network structures and the parameters for the weights.

U-net for end-to-end segmentation

The ultimate goal of this task is to train an end-to-end model that is capable of segmenting

the input patch at a pixel level. Hence, after solving the insufficient data issue, the task

remaining is about the end to end model. The U-net structure introduced in Sec 4.3 is

employed here again because the model needs to take into consideration of both the low-level

edge information at the local context and the high-level semantic meaning of the overall

patch. To ensure a larger receptive field of the model, the U-net constructed here is much

deeper than the model employed in Sec. 4.3.

Network structures

The two blocks in the framework are implemented separately instead of integrating into

one. The VR block is implemented first. The encoder network in transformation has 6

layers of Resnet blocks except for the convolutional header and deconvolutional footer. The

hierarchical structure is used to fuse the information from a different level of the network.

The true/false label will give feedback upon the low-level textual details after 2 Resnet blocks

with 8× down-sample rate while the high-level semantic label will work after another 2

Resnet blocks. In the CVM block, the idea of adversarial training is also employed as well.

However, the discriminator is simple PatchCNN which is composed of two Resnet blocks

and two convolutional layers. In contrast, the conditional super-resolution network is more
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complex. As described in Fig. 5.5 (B), the IHC stained images are provided as a condition

after a deconvolutional block and 2 Resnet blocks. The up-sampled features will keep the

same dimension as the IHC images so that they can be concatenated. Afterwards, all these

channels will be further fused through the 2 Resnet blocks and the convolutional block. For

the U-net, constrained by the computational capability and the desire for a deeper network,

the final network is constructed by 8 convolutional layers with 32 × down-sample rate.

Parameters and optimiser

There are several weight parameters in the proposed transformation based framework. All

these parameters pose critical challenges for network optimisation. In this task, they are

determined by trails of different combinations. The optimal setting for the τ and ω in VR

block are 1, 5 and 2, the ρ , η and ε in CVM block are 2, 5, 1. Regarding to the optimiser,

both the VR block and the CVM blocks employ Adam since they share the same adversarial

structure. Whereas, the U-net segmentation network use SGD for the optimisation with

learning rate 0.0001 and dropout rate 0.3.

Post-processing

The post-processing step is a very important step for both the mask preparation and output

refinement. In the transformation based method, the masks acquired from the image process-

ing method often contains a large amount of artefacts and noises. Likewise, the outputs of

the U-net require further refinement as well. Hence, in this study, the same approach and

parameters are facilitated for all the post-processing steps to ensure a fair comparison.

5.2.5 Results and discussion

The results of the data augmentation procedures are demonstrated in Fig. 5.6 and Fig. 5.7,

corresponding to the synthesised and the transformed image pairs. As can be observed, in the
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Fig. 5.6 Example of synthesised image for augment training

synthesis based method, the masks mainly address the borders for large homogeneous areas.

On the contrary, the masks in transform based method have more sophisticated appearance.

However, when comparing the synthesised or transformed images with the real HE stained

images, the differences between them are more obvious. The synthesised images contain no

semantic information in the patch and introduced artificial border to the image. While, the

transformed images have no apparent difference with the real HE stained images except for

the colour coding: the virtual stained images tend to be uniform across the whole patch.

To keep the integrity throughout the whole research, the evaluation dataset and metric

are kept the same across different chapters. The numerical evaluation results on the testing

dataset are demonstrated in Table 5.1 along with the results from previous chapters. At the

same time, the corresponding qualitative results are plotted in Fig. 5.8 for visual assessment.

Table 5.1 Comparison of segmentation results (PA & MIoU) among different models

PatchCNN Fused U-net1 U-net2
PA 80.87% 81.83% 81.32% 84.71%

MIoU 59.74% 61.07% 61.72% 63.02%

PatchCNN: PatchCNN with Superpixel as post-processing from Chapter 3.5 Fused: Fusion model
from Chapter 4.3 U-net1: U-net with the training dataset from image synthesis U-net2: U-net with the

training dataset from image transform
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Fig. 5.7 Examples of transformed image for augment training

The numerical results in the table suggest that both of the proposed augment training

methods will help to boost the accuracy of the segmentation results. However, the U-net

model trained with the transform based training pairs greatly outperform the model trained

with synthesis based pairs and the methods proposed in previous chapters. The reason for

the unsatisfying results with the synthesised model can be attributed to the quality of the

images. For the other models, the main reason of the improvement is the providence of

extra information. The results in Fig. 5.8 reveal more reasons about the differences in the

performance. For the patches with obvious borders, the performances of different methods

are almost the same. Whereas, for the patches containing small tumours or those regions

with complicated morphology, the performances vary a lot. Hence, it can be concluded that

the proposed transform based weakly supervised method will efficiently help to supplement

the information for a better pixel level segmentation.
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5.3 Conditional CycleGAN for virtual restaining

In this section, the pixel level segmentation is investigated from the perspective of unpaired

image-to-image translation, referred as “virtual restaining”. The idea behind is to transform

the HE stained image to IHC stained image by correlating the shared structural information

with the right colour coding. Then, as long as the image can be correctly transformed, the

segmentation result will be easily obtained. A conditional CycleGAN (cCGAN) which could

perform multi-class virtual staining with additional patch-wise labelling is proposed. This

method extends the original CycleGAN model proposed in [171] for the histology image

tasks, by introducing the following two improvements: 1) Patch-wise label information is

employed to enforce the model to learn mutual representation with a conditional query. This

is achieved by appending a few classifier layers to the original generative network for the

sub-domain consistency. 2) Two constraints are introduced to regularize changes to the

structural details: the photorealism loss and the structural similarity loss.

Fig. 5.9 Mapping between two domains and their sub-domains

5.3.1 Proposed method

The overall objective of the proposed network is to learn a multi-class mapping between two

domains X and Y . In fact, the transformation takes place between their sub-domains X t and

Y t , t ∈ [1,C], where C denotes the number of predefined classes. For two unpaired samples
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x and y , their distributions of the training dataset are denoted as x ∼ p(x|c) and y ∼ p(y|c)

where c represents the category condition. As illustrated in Fig. 5.9, there are two conditional

mappings in our model, the encoder network Enc maps the input image from domain X to Y

while the decoder network Dec maps back from Y to X .

Fig. 5.10 Overall structure of the proposed cCGAN network

As shown in Fig. 5.10, the whole framework consists of two big modules, an encoder

network (in green zone) and a decoder network(in blue zone), both of which have the same

sub-network structure, a generator G, a discriminator D and a classifier S. In the encoder

network, they are denoted as Genc, Denc and Senc. Likewise, in the decoder network, they are

Gdec, Ddec and Sdec. The generator is in charge of translating the image between domains,

while the discriminator provides feedback on True or False for the generated image. At

the same time, the classifiers will provide extra information about the image’s sub-domain.

To train the proposed model for decent performance on the task, the following losses are

facilitated during the training phase.
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Conditional adversarial loss

To include the category information for guiding the translation process, conditions are applied

on the inputs for the discriminators Denc, Ddec. For the mapping from X to Y , the conditional

adversarial loss inspired by the loss in [93, 175] within the class c and the generator Genc is

defined as :
LcGAN(Genc, Denc, x, y, c) = Ey∼p(y|c)[logDenc(y, c)]

+Ex∼p(x|c)[log(1−Denc(Genc(x), c))]
(5.11)

Likely, for the mapping from Y to X , the same loss is calculated with the discriminator Ddec

and generator Gdec.

Deterministic loss for tissue classification

The tissue sub-type is a kind of crucial information for the histopathology image translation.

Without appropriate class inference, it will lead to a failed translation. In our network, the

classifiers S infer the category information independently of the generator but share the same

base network structure. Practically, by adding extra category information to the network, the

objective is to map the distribution of the data category information during the transformation

and include the categories information in the output as well. The networks employ the

Softmax Entropy Loss ℓ to regularise the category information with regards to their class

information. The loss of the classifiers is defined as :

Lclass(Senc, Sdec, x, y, c) = Ex∼p(x|c)[ℓ(Senc(x), c)]+Ey∼p(y|c)[ℓ(Sdec(x), c)] (5.12)

Cycle loss and classification cycle loss

The core idea of cycle-GAN is to use the encoder and decoder process as a cycle to make

X ≈ X ′ after one cycle X → Y → X
′
. The cycle structural combines two weak modules and

strengthen them using a loop which is vital for the unpaired image translation. By minimising
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the difference between X and X
′
, the network will be able to learn the shared features. The

original cycle loss defined as [171] :

Lcyc(Genc, Gdec, x, y) = Ex∼p(x)[||Gdec(Genc(x))− x||1]

+Ey∼p(y)[||Genc(Gdec(y))− y||1]
(5.13)

During the cycle process, the outputs of the classifiers S should be identical as well. Thus

the classification cycle loss is defined with L1 loss:

Lclcyc(Senc,Sdec,x,y) = E(x,y)∼p(x,y|c)[||Senc(x)−Sdec(y)||1] (5.14)

The cycle consistency of the classification information is of signification importance to final

results as well.

Identity loss, photorealism loss and structural similarity Loss

To rectify the output in the middle of the process is in the right track, three more loss functions

are employed to ensure the structure information unchanged and to enhance the original

cycle-GAN network. The identity loss and photorealism loss, introduced in Sec. 5.2, for the

proposed network are:

Lidt(Genc, Gdec, x, y) = Ex∼p(x)[||(Genc(y)− x||1]+Ey∼p(y)[||Gdec(y)− y||1] (5.15)

Lpho(Genc, Gdec, , x, y) = Pho(Genc(x), x)+Pho(Gdec(y), y) (5.16)

SSIM has been used for assessing the image quality in many related studies [176]. In this

task, for each pixel in the image, the SSIM is defined as:

Ssim(x,y) =
2µxµy +Q1

µ2
x +µ2

y +Q1
+

2σxy +Q2

σ2
x +σ2

y +Q2
(5.17)
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where µx, µy are the mean of a fixed window centred as the pixel, σx, σy are the standard

derivations. Q1, Q2 are the regularisation term for division stabilisation. Hence, the loss

function of SSIM of the whole network can be formulated as:

Lsim(Genc, Gdec, x, y) = (1−Ssim(Genc(x), x))+(1−Ssim(Gdec(y), y)) (5.18)

Proposed Approach

Our full objective can be achieved by a weighted linear combination of different losses:

L (G, D, S, x, y, c) = LcGAN(Genc, Denc, x, y, c)+LcGAN(Gdec, Ddec, x, y, c)

+λLcyc(Genc, Gdec, x, y)+δLid(Genc, Gdec, x, y)

+γLclass(Senc, Sdec, x, y, c)+ γLclcyc(Senc, Sdec, x, y)

+αLssim(Genc, Gdec, x, y)+βLpho(Genc, Gdec, x, y)

(5.19)

The parameters λ , γ, δ , α, β in the loss function regulate the importance of different losses

to the overall objective. By solving the following equation,

G, D, S = argmin
G, S

max
D

L (G, D, S, x, y, c) (5.20)

optimal models can be found for the generators Genc, Gdec , the decoders Denc, Ddec and the

classifiers Senc, Sdec.

5.3.2 Dataset and implementation

Dataset preparation

The WSIs used for this task is from the same collection as explained in Sec. 5.2. However,

as stated before, the virtual re-staining task is more challenging than the virtual registration

task. The different datasets are used in this section. As demonstrated in Fig. 5.11, they
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Fig. 5.11 Example of the unpaired training dataset

are Hepatocyte (H), Fibrosis (F), Necrosis (N), Tumour & Fibrosis (TF), Hepatocyte &

Fibrosis (HF), Hepatocyte & Blood (HB), Tumour & Necrosis (TN) and Background (BG).

The training dataset is cropped from aligned WSIs with a patch size of 256×256 pixels on

20× magnification. The number of patches that are used for training is listed in Table 5.2.

Network Architecture This section describes the implementation details including the net-

work structure and the parameters set-up. The generator networks have the same architecture

as proposed in [177]. Two convolutional layers at the beginning for down-sampling and
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two deconvolutional layers for up-sampling. In the middle, there are 9 Resnet blocks [138].

Both the discriminators and classifiers are composed in a fully convolutional fashion. For the

discriminators, there are 5 layers inside, while for the classifiers, the number of convolutional

layers is 8.

Training Details During the training, the history of generated images is used to reduce model

oscillation. However, to fit with the conditional generative network, the image query process

is applied on condition as well. For the parameters λ ,γ,δ ,α,β in the loss functions Eq.5.19,

λ is set to a fixed value of 10, γ is set to 0.5 and the other three (δ ,α,β ) are set to different

values to compare the performances. The rest of the parameters are identical with the original

CycleGAN.

5.3.3 Results and discussion

Evaluating the results of the generated images for tasks like style transfer and image re-

colourisation is a well-known challenge for a long time. For the virtual staining tasks, two

aspects should be considered. The semantic meaning of each re-colourised regions and the

structure/content information. The semantic meaning refers to the colour coding of the virtual

stained and IHC stained should be the same and it denotes how well the model can translate

the original images. It would be very definitely wrong if a hepatocyte area is virtually stained

with brown which is the colour of the tumour area. The structure information relates to the

location and texture of the pixel in the tissue patches. If the location of the nucleus or the

existence of a certain nucleus is changed, it means the result is not satisfying.

Subjective evaluation

One of the wide adopted methods is to use Amazon Mechanical Turk (AMT) perceptual

study that asks human observers to differentiate the fake from the true ones. However, in

our study, well-trained histopathology experts are hired to distinguish them. Meanwhile, the
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Fig. 5.12 Proposed cCGAN model results with different parameters settings
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computer vision experts are asked to assess on the image by a visual quality error score. For

the computer vision researchers, all the patches (real and fake) from different classes are

mixed together and the observers need to make decisions based on the image quality. While,

for professional assessment, both of the original HE stained and virtual stained patches will

be provided. The experts will give a staining score that indicates if the patches have been

properly virtual stained. Two pathology experts and ten computer vision researchers are

invited to perform the evaluation. 240 patches are generated from the evaluation dataset (30

patches per class). The results of experts are listed in Table 5.2. The results of different

settings are demonstrated in Fig. 5.12. In this figure, for each HE stained patch, the patch

from the same location on the roughly aligned IHC images are used as references. Comparing

to the results by CycleGAN, the results of the proposed method greatly improve the results

especially in the class with mixed components and limited training examples such as TN, HF,

HB. From the experiments, it can be observed the γ = 0.5,α = 0.5 and β = 1 output the best

results. Hence, the results from this model are employed for further evaluations. Further

results are listed in Table 5.2.

Table 5.2 Quantitative evaluation results of the models for virtual restaining

H TF N F HF TN HB BG All
No. Annotated
patches (HE)

1828 950 538 798 212 48 394 2016 3392

No. Annotated
patches(IHC)

1440 738 438 1184 210 52 88 1252 2711

No. Test patches
(HE)

30 30 30 30 30 30 30 30 240

Vision experts on
CycleGAN*

3% 26% 1% 4% 3% 0% 18% 0% 7%

Vision experts on
cCGAN*

0% 10% 4% 0% 0% 0% 0% 0% 2%

Pathologists on
CycleGAN*

34% 71% 22% 11% 83% 95% 97% 0% 52%

Pathologists on
cCGAN*

23% 39% 23% 4% 76% 86% 99% 0% 44%

* The number indicates the visual quality error rate and staining error rate. The larger the
number indicate a worse performance.
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The results from the non-experts view demonstrated that the proposed method is better to

preserve the image contents than the original CycleGAN. The introduction of the structural

losses to the model greatly suppresses the “imaginary” ability, especially when encountering

new features. The class TF has the highest fake rate, which has a strong relationship

with its complex features. The poor performance in the classes HB, HF, and TN is due to

the insufficient and unbalanced training data in different classes. By inspecting the failed

transformation cases, it can be observed that mapping to the wrong domain is the main cause

for the failure. Some examples are illustrated in Fig. 5.13. The patch from H is mapped to F,

while for the HB, N, and TN, the staining style is N, F and H respectively.

Fig. 5.13 Unsuccessful mapping examples of the virtual restaining model

Visual assessment

Visual assessment is one of the most straightforward way to assess the results from the virtual

staining. Instead of demonstrating results from the testing dataset as in Fig. 5.12, the virtual

staining results on large patches (1024px×1024px on 20× magnification level) and on the

WSIs are demonstrated in Fig. 5.14 and Fig. 5.15.
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Fig. 5.14 Virtual restaining results on the large patches

In Fig. 5.14, patches with different morphologies (H, HF, F, FT) are demonstrated, the

first row is the original HE stained patches, the second row is the virtual restained images. In

Fig. 5.15, there are 4 thumbnails of the WSIs. (A) and (D) are the physical stained images,

(B) and (C) are the virtually stained results. Hence, from (A) to (B) is the virtual restaining

process, from (D) to (C) is the virtual registration process. Although, (A) and (D) look similar

to each other, they are not exactly the same slide, (D) is actually a neighbouring slide of (A).

Both of the results are obtained with the cCGAN model (ρ = 0.5,α = 0.5 and β = 1) using

sliding window method, the window size set as 256px×256px . However, the results on the

patch level have been smoothed, which means there are overlaps between different windows

and the final output is the average results on multiple windows. While the results on the

WSIs have no post-processing operations, the window size is equal to the patch size, that is,

simply stitching patches together. As it can be observed, with smoothing, the results are very

consistent on the large patch; there is no obvious edge between the small tiles. Conversely,

the images from Fig. 5.15 (B, C) have mosaic on them. The edges between different tiles

make the image have a noisy overall appearance. Regardless of the artefacts, the results on

the WSIs reveals that the model has good stability and excellent generalisability.
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Fig. 5.15 Virtual restaining and virtual registration results on the whole slide image

Objective Evaluation

The pixel level segmentation can be considered as a special kind of virtual staining, vice

versa, the virtual staining can be evaluated with segmentation metric as well. To evaluate the

results by virtual restaining, the 50 ROIs for assessing different segmentation approaches are

virtually stained. Then the virtual stained images will be processed with the same pipeline

as mentioned in the last section, where the IHC stained images are used to generate HE

stained images and masks. The final quantitative results are listed in Table 5.3. However, the
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evaluation method for this objective evaluation is different from the previous ones since the

necrosis is not considered, which can be observed from Fig. 5.18.

Table 5.3 Segmentation results (PA & MIoU) based on virtual restained image

CycleGAN (a) cCGAN (b)
PA 83.71% 88.49%

MIoU 61.82% 65.76%

(a): Virtual stained results with cycle GAN model. (b): Virtual stained result with cCGAN model.
Same post-processing method applided on (c) and (d)

The quantitative results in the table indicate that the objective of virtual staining and pixel

level segmentation are identical. Both of them tend to analysis the histopathology image

based on pixel level information. Besides, it also can be observed that the proposed cCGAN

model performs better than the original cycle GAN model in the segmentation task, which

can be considered as a subjective evaluation of virtual restaining task. However, the results

based on the virtual restaining is not as good as the results from the model using supervised

training methods. The main possible reason is that the ground truth from the experts is mainly

from the semantic perspective, which is an approximation to the real border. While, the

virtual staining result will try to locate the real edge and the details, even though it can be

noisy.

Discussion The results indicate that the proposed virtual staining method is capable of

virtually staining the HE stained images into IHC stained style image based on the under-

lying mutual features in the two kinds of images. In other words, IHC stained WSI are

distinguishable enough for guiding the cross-domain translation.

With the help of virtual staining, the laborious and expensive experts’ manual annotation

can be minimised. In fact, the presented method for computerised virtual staining entails

great potential for a wide range of clinical diagnostic and AI related applications. A few of

these are listed below:
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Fig. 5.16 Example results for image registration and multipixel. The three images are from
the same region but with different stainings, IHC (CD7/CD20), HE, IHC (CD18/CD19),
from left to right.

1. Fast and low-cost generation of IHC staining for improved tumour diagnosis. Currently,

pathologists devote a great amount of time and efforts in the error-prone eyeball work

of searching for tumour cells within the low-contrast HE slides. Virtual IHC of tumour

cells, by enabling high-contrast visualisation, may contribute to greatly reducing visual

screening time and improving the accuracy of cancer detection.

2. Virtual multiplex IHC staining for spatial mapping and objective quantification of

intertwined cell types. As a generalisation, GAN based model can be trained to

classify and virtually stain multiple cell types of interest, provided virtual multiplex

immunostainings. Fig. 5.16 demonstrates a potential use case of the virtual multiplex.

3. WSI registration for colocation analysis in multiple IHC stainings. Registration of

multiple serial sections is another challenge of increasing interest in the diagnosis

and biomedical research. In clinical practice, the pathologists employ multiple IHC

stainings (biomarkers) to detect relevant features in cells and tissues within the WSIs.

As it is often not feasible to align the samples during lab processing, image registration

is the only option to accomplish this task, but very difficult to achieve. By exploiting

virtual staining’s high accurate matching of image pairs, multiple aligned IHC stainings
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Fig. 5.17 Colour deconvolution examples using virtual staining framework

can be combined into a new staining style achieving increasing levels of multiplex

immunostaining far beyond current laboratory techniques.

4. Color deconvolution and nuclei detection. Virtual staining can also be used to decouple

the information of the HE stained image to obtain only the H channel of the image.

By using HE, H-only, and E-only stained WSIs as training data, the model will learn

to “unmix” the two colour components in the HE images. The H/E-only images can

then be easily normalised. This may facilitate nuclei detection tasks, especially in cell

dense and cancerous areas. Some preliminary results are demonstrated in Fig. 5.17.

One of the limitations of the current study is the low number of samples for training and

the significant imbalance on the amount of annotated patches among different classes. In

future work, attempts will be paid to minimise or discarding the labelling information that is

used as input in order to pursue unsupervised image translation.
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5.4 Summary

In this chapter, the histopathology image analysis is processed from another perspective -

virtual staining. With the presence of the IHC stained image, the analysis of HE stained

image can be converted a virtual staining problem. The virtual staining framework, which

can be treated as a bridge connecting different tasks. To this end, it could provide a unique

and universal solution for different histopathology image analysis problems.
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Chapter 6

Conclusion

This thesis investigates the problem of quantitative analysis of histopathology images. Several

algorithms or frameworks are proposed to enhance the results in different tasks and address

the challenges of insufficient data annotations. In this chapter, the findings and limitations

identified in the previous chapters are summarised.

6.1 Findings and Limitations

The findings and limitations of this thesis can be summarised from three aspects, which

correspond to the three main chapters.

In Chapter 3, patch-based tissue type classification and segmentation are explored. Dif-

ferent networks are evaluated with different patch size and magnification levels. Extensive

experiments reveal that a larger patch size will lead to better performance due to more

contextual information being included. An approximate segmentation result through the

sliding window method can be obtained, but the limitation of the classification based results

is that the results are of low resolution. Furthermore, a PatchCNN model is proposed to

enhance the resolution of the output through data synthesis. Then, the segmentation based

method is implemented to further enhance the segmentation results. The limitation of both
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the classification based and segmentation based methods is that the algorithms are not very

sensitive to small tumour regions.

Chapter 4 sought to facilitate cell level information for tissue segmentation since the

numerous nuclei inside the WSI can be clearly observed. The findings described in this

chapter can be considered from two aspects. From the cell level, this research confirms that

it is possible to classify the nuclei with weakly supervised methods. In terms of detection

and segmentation, the experiments here demonstrate that it is possible to transfer the model

between different kinds of dataset. For the fusion model, the main findings are that the

morphology and location information can help to refine the border between different tissues.

To this end, the insufficient data annotation problem can be solved by using the abundant

information at the cell level. The limitation of this method is the long processing time for

large patches.

Transformation is the main guideline of Chapter 5. The conception of virtual restaining,

virtual registration and virtual magnification are proposed. The pixel level image segmentation

problem is solved through the transformation between HE stained and IHC stained images.

The high contrast feature of the IHC images can help to generate pixel-level masks which are

essential for supervised learning. Through the virtual registration, the pairs of generated HE

stained images and their corresponding masks can acquired, the model is further trained to

conduct the semantic segmentation task. The virtual restaining, whereas, can be considered

as an auxiliary visualisation method. However, the limitation for the promising application

on the histopathology images is the feasibility to make a qualified evaluation.

6.2 Future Work

In this research, most of the research has been conducted from a computer vision researcher’s

point of view. More work should be conducted with close collaboration from the clinical side.

Further ideas for future research are highlighted as follows:
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Link with clinical data. The main purpose of the histopathology image analysis is to assist

the pathologists, reducing their workload or improving the work quality. In the context

histopathological image analysis, the images are an important reflection of disease progres-

sion. Together with the survival data, the quantitative analysis of the tissue components in

the WSI can be used to predict the progress of the disease. Furthermore, by analysing the

survival data, it is possible to identify the related features that are mostly likely to determine

the progression of disease, such as the patterns of the invasive front.

Super virtual staining. The idea of super-resolution is to solve all the histopathological

image analysis related tasks in one model based on the virtual re-staining framework. One

of the most challenging problems of most medical related image analysis is the difficulty in

obtaining sufficient annotations. However, if there are opportunities to encourage the model

to transform different types of images based on structural features and high-level semantic

features, the problems that need supervised training will be transferred to weakly supervised

methods.

3D histology image analysis. The nature of the histopathology image of the specimens is

based on the cross sections of 3D objects. This is the same for the cell or nuclei as well.

Hence, there should be more information or multi-dimensional information to acquire from

the 3D objects, which means that 2D section images will contain some biases for analysis. If

it were possible to combine multiple slides to reconstruct the 3D object, the growing pattern

of the tissue could be analysed in 3D dimensions. Furthermore, the model can provide a

more dedicated 3D model of the objects, illustrating their inner structure.

Integrate with genomics data. Genome analysis is a common technique in biomedical

related research. In clinical research, genomics data are closely related to the clinical index,

which can provide another source to support disease diagnosis from another perspective.

Both can be considered a part of the “micro-environment” since the visual appearance or the

structure of the tissue in histopathology images is a result of gene expression. In this case,
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the mechanisms of how the disease develops and the signal that can be used for diagnosis are

heated research topics. With the combination of these two kinds of data, especially if they

can be linked, this will lead to a great breakthrough in the biomedical research field.
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