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Abstract 

 

Habitat loss and fragmentation are global threats to biodiversity, however, their impact 

on ecological function are not well understood. The Atlantic Forest hosts high levels 

of biodiversity and has experienced a long history of deforestation and fragmentation. 

To examine the consequences of fragmentation for functional and phylogenetic 

diversity, and for key ecological interactions, I studied bat metacommunity across this 

landscape. I conducted repeated surveys of bats in forest fragments and continuous 

forest sites at the Reserva Ecológica de Guapiaçú. To characterize metacommunity 

structure and the drivers of species assembly, I combined an “elements of 

metacommunity structure” analysis with assessments of phylogenetic and functional 

diversity. I then applied a community occupancy model to evaluate the species-

specific responses to habitat fragmentation and test whether landscape configuration 

or habitat structure predicted species occurrence. Finally, by using DNA barcoding to 

identify plant species recovered in the guano of bats, I reconstructed mutualistic bat-

plant networks and determined how network architecture changed with fragmentation. 

My results revealed that while the bat metacommunity had a random structure, the 

meta-ensembles of phyllostomid and animalivorous bats showed nested and quasi-

nested metacommunity structures, respectively. Species assembly was driven by 

stochastic processes in fragments, and by environmental filters in the continuous 

forest. Species occurrence showed a positive relationship with area, but the 

community occupancy models were not precise enough to differentiate responses to 

isolation and habitat structure. The structure of bat-plant networks was maintained in 
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small fragments due to the persistence of generalists that perform seed dispersal. 

Although fragmentation of the Atlantic Forest has severe impacts on bat communities, 

this biome harbours a rich bat fauna at the metacommunity level. Small fragments 

may not support diverse bat faunas, but those surviving species still act as agents of 

seed dispersal and can contribute to forest regeneration and restoration. 
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General Introduction 

 

Human activity over the last century has led to dramatic and unprecedented 

rates of habitat modification (Ripple et al. 2017) and extinctions (Pimm et al. 1995), 

with habitat loss and fragmentation representing two of the major global threats to 

biodiversity (Turner 1996; Haddad et al. 2015). Habitat loss refers to the conversion 

of suitable habitat into unsuitable habitat (Andrén & Andren 1994; Wiegand et al. 2005) 

and its effects may be scale-dependent (Fuhlendorf et al. 2002; Blazquez-Cabrera et 

al. 2014). It can cause population declines (Sutherland & Anderson 1993; Sutherland 

& Dolman 1994) and local extinctions (Brook et al. 2003) that can cause the loss of 

ecological interactions (Spiesman & Inouye 2013) that are the core of critical 

ecological services (Bascompte 2009). Habitat loss alone can correctly predict the 

extinction rates of endemic large mammals (Grelle et al. 1999) and birds (Gaston et 

al. 2003). The loss of habitat heterogeneity can have severe impacts on biodiversity, 

as certain types of habitat can have disproportionate contributions to species richness 

and abundance (Cushman 2006). In a study of migrating birds, such as the 

oystercatcher Haematopus ostralegus, the reduction in wintering and breeding habitat 

led to significant declines in population numbers (Sutherland 1996). 

Habitat fragmentation involves habitat loss and the division of originally 

continuous habitat, thus simultaneously decreasing the absolute area of habitat 

available while increasing the number of habitat patches, and their degree of isolation 

(Fahrig 2003; Ewers & Didham 2007; Hagen et al. 2012). Long-term studies of habitat 

fragmentation have concluded that large areas of primary forest hold more biodiversity 

than fragmented and altered habitats (Laurance 2008; Haddad et al. 2015), but that 



16 
 

species have specific responses to this process (Laurance et al. 2002; Zipkin et al. 

2009; Haddad et al. 2015). While some animals thrive in these altered conditions 

(Pardini et al. 2005; Zipkin et al. 2009; Rocha et al. 2017), many animals are negatively 

affected by the fragmentation process (Laurance et al. 2002; Pardini et al. 2009; 

Haddad et al. 2015; Rocha et al. 2017) and the decline of population numbers can be 

so severe that it may lead to the local extinction of entire faunas (Gibson et al. 2013). 

Although it is possible to theoretically separate the effects of habitat loss and 

fragmentation (Fahrig 1997, 2017), these are landscape-scale processes that usually 

work in synergy, thereby making the distinction between these two processes complex 

in field experiments (Fletcher et al. 2018). Understanding the consequences of habitat 

loss and fragmentation is essential to ensure the persistence of natural environments 

on the planet (Haddad et al. 2015; Ripple et al. 2017).  

As a consequence of fragmentation, habitat patches become isolated and 

different species occupy different sites (Laurance et al. 2002; Haddad et al. 2015). As 

a result, each fragment can have its own discrete community, and these communities 

may or may not be linked by dispersal to other habitat patches of the same type. When 

these discrete communities are considered together they are referred as a 

metacommunity (Leibold et al. 2004). Analyses of metacommunities explicitly consider 

local processes, such as biotic interactions, and regional processes, such as species 

dispersal, as factors that determine composition and variability among communities 

(Hanski 1998; Leibold et al. 2004; de la Sancha et al. 2014). Although there is no 

unified theory of metacommunities, Leibold & Chase (2018) did an extensive review 

of the approaches to the metacommunity concept and recognised four 

metacommunity archetypes that provide an analysis of the importance of four general 
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processes that influence metacommunity diversity, distribution and composition: niche 

selection, dispersal, stochastic drift and speciation (Leibold & Chase 2018a).  

The four archetypes are: 

 Neutral Theory (NT): In this archetype, species are treated as having no 

differences in their traits (niche selection) or dispersal ability, with 

stochastic events of birth and death rates and dispersal determining 

metacommunity structure.  

 Species Sorting (SS): This archetype uses habitat heterogeneity, the 

ability of different species to explore different habitats and species 

interactions to explain metacommunity structure, with little importance 

given to stochastic events and dispersal. 

 Patch Dynamics (PD): Species are able to explore resources differently 

(niche selection), have colonization rates and competition trade-offs and 

are subject to stochastic local extinction and colonization events. 

 Mass Effects (ME): In this archetype habitat heterogeneity allows 

species to explore resources differently in space and time, while 

dispersal allow species to persist in sub-optimal environments because 

of immigration from adjacent patches. This generates a source-sink 

dynamic between populations in different patches. 

These four archetypes were sometimes used as alternative hypothesis in 

studies of metacommunities (Leibold & Loeuille 2015), but more recent studies have 

attempted to reconcile different archetypes in order to explain metacommunitiy 

structure and processes (Brown et al. 2017; Leibold & Chase 2018b). While some 

studies focus on the mechanisms that structure a metacommunity (Chisholm et al. 
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2011), others try to find patterns in that structure (Presley et al. 2009; Tonkin et al. 

2016). Even if it is not possible to understand the processes that creates certain 

metacommunity structures by merely studying metacommunity patterns, these 

patterns can supply evidence for metacommunity theories (Leibold & Chase 2018c). 

Leibold and Mikkelson (2002) proposed a method to identify structural patterns 

of metacommunities. This method relies on reciprocal averaging to order an incidence 

matrix of species occurrence, and, in a three-step analysis that examines three 

“elements of metacommunity structure” (EMS), to distinguish between idealised 

patterns of metacommunity organisation (Leibold & Mikkelson 2002; Presley et al. 

2010). These key elements of metacommunity structure are coherence, turnover and 

boundary clumping. The model starts with an assumption that a species has 

continuous distributions between both ends of its tolerance spectrum to an 

environmental gradient (Gaussian distribution) (Scheiner & Willig 2008). Coherence is 

a measure of the extent to which a species’ distribution matches this underlying 

assumption. The absence of coherence in a metacommunity can be interpreted as an 

evidence for stochastic processes driving species occurrence and therefore 

metacommunity will present a random structure. Species turnover describes the rate 

at which one species’ distribution substitutes that of another in the community, while 

boundary clumping measures the co-distribution of species within the metacommunity. 

If multiple species have the same response to an environmental gradient, it is 

expected that they will occupy the same habitat patches and have similar distributions 

(Leibold & Mikkelson 2002). The combination of scores for these three elements has 

been used to discriminate between six metacommunities structures (Leibold & 

Mikkelson 2002) and was later expanded to identify six other quasi-structures (Presley 
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et al. 2010). Each metacommunity structure is based on strong ecological theories 

and can be defined as: 

 Random structure: The absence of gradients or patterns of species 

distribution among sites (Leibold & Mikkelson 2002). It is characterized by non-

significant values of coherence. 

 Checkerboard distribution: Based on the observations of Diamond (1975), in 

this structure species pairs have mutually exclusive distributions among sites, 

with different pairs of species being independently distributed (Leibold & 

Mikkelson 2002). This structure has significant negative values of coherence. 

 Nested subsets:  Species-poor communities are a subset of species-rich 

communities (Patterson & Atmar 1986; Leibold & Mikkelson 2002). It is 

characterised by significant positive coherence and significant negative 

turnover. Presley et al. (2010) showed that boundary clumping can differentiate 

between three patterns of species loss in nested subsets – clumped species 

loss (significant positive boundary clumping), stochastic species loss (non-

significant boundary clumping) and hyperdispersed species loss (significant 

negative boundary clumping). 

 Clementsian structure: In this pattern, distinct communities substitute each 

other along an environmental gradient, proposed by Clements (1916). This 

structure presents significant positive values of coherence, turnover and 

boundary clumping. 

 Gleasonian structure: Species show specific responses to an environmental 

gradient, resulting in a random structure with high turnover, based on the ideas 

proposed by Gleason (1926). This structure has significant positive values of 

coherence and turnover, but non-significant boundary clumping.  
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 Evenly spaced distributions: No discrete community can be identified, but 

species distributions along an environmental gradient are more evenly 

distributed than expected by chance. Evenly spaced metacommunities have 

significant positive coherence and turnover, but significant negative boundary 

clumping. 

 Quasi-structures: An expanded EMS framework proposed by Presley et al. 

(2010), where each of the above structures has an equivalent quasi structure 

in which turnover is not significantly different from random, but with a structure 

consistent with the conceptual background of Clementsian, evenly spaced 

distribution, Gleasonian and nested subsets structures. 

Metacommunity structure is a result of a complex interplay among abiotic factors, 

biotic factors, and local and regional processes. Although the study of patterns 

does not allow direct assumptions on the mechanisms that will shape 

metacommunity, it can provide evidence for studies of metacommunity processes. 

In this study I will use the elements of metacommunity structure to assess the 

impacts of habitat fragmentation on the bat metacommunity structure and on the 

drivers of species assembly. 

A serious problem inherent to any sampling method is that not every species is 

detected, even when it is present or abundant (MacKenzie et al. 2002), introducing 

serious biases on estimations of species occurrence, abundance and richness 

(MacKenzie et al. 2006; Kéry & Royle 2008; Hein et al. 2009). This can lead to poor 

biodiversity management and conservation strategies (MacKenzie et al. 2006; Kéry & 

Royle 2008). To deal with this uncertainty MacKenzie et al. (2002) developed the 

occupancy model. Occupancy is the proportion of sites occupied by a species in a 

landscape (MacKenzie et al. 2002, 2006; Kéry & Royle 2016), or the probability that a 
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species occupies a site of interest (Kéry & Royle 2016). Repeated surveys are used 

to record the presence and absence of a species and estimate its occupancy while 

accounting for imperfect detection (MacKenzie et al. 2006). This model was initially 

developed to be used with a single species (MacKenzie et al. 2006), but alternatives 

were developed to deal with communities and metacommunities (Dorazio & Royle 

2005; Kéry & Royle 2008; Royle & Dorazio 2009) and can incorporate site and 

observational covariates affecting detection, making it a flexible tool for ecological 

assessment and management (MacKenzie et al. 2006; Royle & Dorazio 2009; Zipkin 

et al. 2009, 2010; Hines et al. 2010; Kalies et al. 2012; Kéry & Royle 2016; Mendes et 

al. 2017). Although these models have almost endless possibilities, one of its 

drawbacks is the reliability of its estimates when detection probabilities are low for 

many species, a condition that is common in many tropical environments. In this study 

I attempt to use the community occupancy model to evaluate whether landscape 

configuration or habitat structure is the better predictor of species occurrence, and to 

assess whether species show taxon-specific responses to habitat fragmentation and 

contrast this to single species models. 

Although there have been few studies that have assessed the impacts of habitat 

fragmentation on ecological services and functioning, it has been shown that the 

changes caused by fragmentation are mostly mediated by the loss of specialists in 

smaller fragments (Layman et al. 2007; Hagen et al. 2012; Valladares et al. 2012). 

Network theory is a robust mathematical framework that represents interactions 

between two or more entities as “links” between “nodes” which can represent virtually 

anything, from genes (Guet et al. 2002) and biological species (Hagen et al. 2012) up 

to fragments in a landscape (Teixeira et al. 2014). Ecologists have used networks to 

represent ecological systems for more than 75 years (Lindeman 1942; Odum 1956) 
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and the versatility of network theory allows us to explain how ecological communities 

are structured and predict how they will respond to environmental change (Bascompte 

2007; Ings et al. 2009; Albouy et al. 2014). Ecological networks can be divided into 

three broad categories: antagonistic networks (food webs) (de Ruiter et al. 2005), 

mutualistic networks (Mello et al. 2011a) and host-parasitoid networks (Pilosof et al. 

2014). In this study I will focus on mutualistic networks composed of plants and seed 

dispersers. These networks provide a vital ecosystem service of seed dispersal and 

pollination.  

Ecological network studies have been criticised for biases caused by uneven 

taxonomic resolution of their nodes (Ings et al. 2009; Hemprich-Bennett et al. 2018). 

One of the solutions to these issues is the application of new technologies such as 

DNA barcoding (Hebert et al. 2003) to identify species in the ecological network (Ma 

et al. 2018). This technique uses short predefined DNA sequences that are sufficiently 

similar to each other within a species, but are different between species, such that 

they can be used to give an unambiguous taxonomic identification. This method can 

be extremely useful in cases where interactions cannot be directly observed, but 

where evidence of these interactions can be obtained in the form of trace materials, 

such as seeds, fruit pulp and pollen contained in faeces. While networks are only 

starting to incorporate DNA-based node resolution, they have shown promise (García-

Robledo et al. 2013; Wirta et al. 2014) and in this analysis I use DNA barcoding 

approaches to identify plant genera being dispersed by bats in the fragmented Atlantic 

Forest of Brazil.  

The Atlantic Forest was once one of the largest rainforests in the world, but it 

has highly heterogeneous environmental conditions and a long history of disturbance. 

Despite this, it hosts an extraordinary biodiversity with high levels of endemism (Myers 



23 
 

et al. 2000; Ribeiro et al. 2009). Brazilian development has been heavily based on 

agriculture and livestock production, both of which have strongly impacted the Atlantic 

Forest landscape. Brazil has gone through several economic cycles since the start of 

its colonization by the Portuguese in 1500. Land conversion into monoculture fields 

(mostly sugar-cane and coffee) and exploitation (logging and mining) was so severe 

that, in the late 18th century it was almost impossible to find high quality wood in the 

southeast of the country (Dean 1996). In Rio de Janeiro, the conversion of the city’s 

surroundings into coffee plantations was so drastic that it caused a hydrological crisis 

in the city in the early 19th century and triggered one of the most amazing efforts of 

rainforest restoration to this day (Dean 1996). With the rapid industrial expansion after 

the second world-war, the process of fragmentation of the Atlantic Forest was 

intensified (Dean 1996). Today there is only 11-16% of the original forest cover left, 

distributed over more than 200,000 fragments, the vast majority of them smaller than 

50 ha (Ribeiro et al. 2009). Because of the great biodiversity it hosts and the high 

levels of threat from human activity, it is considered one of the world’s hotspots for 

biological conservation (Myers et al. 2000). It is important to understand the 

consequences of habitat fragmentation on this unique biome to guide conservation 

efforts, in the Atlantic Forest and in other parts of the world that are currently 

experiencing the same fragmentation process. 

Bats are nocturnal mammals that are globally distributed and the only mammals 

capable of self-powered flight (Reis et al. 2007). Bats are also the only mammals to 

have evolved laryngeal echolocation, which has allowed them to use sound to 

perceive their surroundings, and to occupy a nocturnal niche (Jones 2005; Jones & 

Teeling 2006). Bats are ecologically-diverse mammals; while some species are highly 

mobile (Esbérard et al. 2017), others do not disperse more than a few hundred metres 
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(Heithaus et al. 1975). Many bats provide critical ecological services (Kunz et al. 

2011), acting as pollinators and primary seed dispersers in forest restoration (Duncan 

& Chapman 1999) and they may also provide biological control of several invertebrate 

populations (Reis et al., 2007).  

In the Neotropics, bats of the family Phyllostomidae have undergone a rapid 

adaptive radiation (Shi & Rabosky 2015). There are more than 200 species described 

for this family, and in Brazil there are at least 86 species through the country. Rio de 

Janeiro State has a long tradition of research on bats and there are 44 species 

recorded in the state (Peracchi & Nogueira 2010). One of the most distinctive 

characteristics of these bas is the presence of a membrane nasal appendix called 

noseleaf, which might play a role in their echolocation (Reis et al. 2007). This family is 

the most abundant and diverse lineage of Neotropical bats, and its members have 

undergone unparalleled dietary diversification among all mammals, with species that 

feed on fruits, nectar, arthropods, amphibians, small mammals and blood (Reis et al. 

2007). In Neotropical forests, phyllostomid bats are among the primary agents of 

pollination and seed dispersal (Fleming & Muchhala 2008). In the analyses performed 

in my study, I classify phyllostomid bats into two broad dietary groups. First, species 

that feed primarily on plant matter (fruits, nectar, pollen) are termed ‘plantivorous’, and 

second, bats that feed primarily on animals (insects, vertebrates, blood) as termed 

‘animalivorous’.  

Earlier studies have shown that some bats species may benefit from the 

fragmentation process (Bianconi 2005; Rocha et al. 2017), while other species may 

suffer negative impacts (Meyer 2007; Rocha et al. 2017). Despite their apparent 

importance in habitat restoration in the Neotropics, there are significant gaps in our 
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knowledge of how these animals are affected by habitat loss and fragmentation (Meyer 

2007; Willig et al. 2007). 

 

Thesis organisation 

In this study I investigate the impacts of fragmentation on bat communities in a 

highly fragmented landscape in the Atlantic Forest of southeast Brazil. In Chapter 2, I 

use the ‘elements of metacommunity structure’ approach to characterise the structure 

of the bat metacommunity in my study region and investigate the functional and 

phylogenetic diversity to determine the drivers of species assembly and how they are 

affected by the fragmentation process. In Chapter 3, I examine the metacommunity 

and species-specific responses to landscape configuration and habitat structure to 

determine the best set of predictors of species occurrence. In Chapter 4, I assess the 

effects of fragmentation on the bat-plant mutualistic network with the use of DNA 

barcoding to identify the plants consumed and network theory. Finally, in Chapter 5 I 

summarize my findings and conclusions. 
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CHAPTER TWO 
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Bat metacommunities in a fragmented 

landscape in South-eastern Brazil 

 

ABSTRACT 

 

Habitat fragmentation is one of the most significant global threats to 

biodiversity, leading to impoverished communities with unpredictable dispersal rates 

between them. One way to measure the impact of fragmentation in ecological 

systems, specifically to understand how it affects biodiversity, is to assess 

metacommunity structure and the drivers of the process of community assembly. The 

Atlantic Forest is one of the most species-rich rainforests in the world, but severely 

threatened by a long history of fragmentation, with less than 11% of its original cover 

left, distributed in more than 200,000 fragments. This makes the Atlantic Forest an 

excellent location for assessing the process of fragmentation and its consequences 

for community assembly. To characterise metacommunity structure and the 

determinants of community assembly in the fragmented Atlantic Forest, I studied bats 

across 10 fragments and three continuous forest sites. By combining analyses of 

metacommunity structure with measures of phylogenetic and functional diversity, I 

show that bat metacommunities are randomly structured, but that the meta-ensembles 

of New World leaf-nosed bats show a nested structure, while that of the animalivorous 

bat species show a quasi-nested structure. The observed assembly process is likely 

driven by competition leading to ecological displacement between closely related 
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species in the continuous forest, while the process is random in the fragments. My 

study suggests that maintaining existing fragments, increasing the forested area, and 

bridging the gaps between fragments should be a conservation priority, in addition to 

expanding the large protected areas where possible. 
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Introduction 

 

Habitat fragmentation is one of the most significant threats to the maintenance 

of biodiversity (Fahrig 2003; Haddad et al. 2015) but it can have contrasting impacts. 

It increases the number of habitat patches, their isolation and the proportion of edge 

habitats available and may also simultaneously cause a net reduction in the area of 

natural habitat (habitat loss) (Fahrig 2003; Hagen et al. 2012). As a consequence, 

fragmented biological populations and communities may become impoverished, 

isolated, and with variable dispersal rates between them (Gonzalez 1998; Laurance 

et al. 2002). A recent discussion is whether fragmentation is detrimental or beneficial 

to biodiversity. Fahrig et al. (2018) did a meta-analysis of fragmentation studies to 

conclude that when decoupled from habitat loss, fragmentation can have positive 

effects on biodiversity. In contrast, Fletcher et al. (2018) argued that most evidence 

point to the contrary and that habitat fragmentation is rarely decoupled from habitat 

loss in the real world. Fragmentation studies have shown that species richness is 

usually positively associated with fragment size and connectivity (Haddad et al. 2015). 

It is also well-documented that intact forests host more biodiversity per unit area than 

do fragmented and altered habitats (Preston 1962; Laurance et al. 2002; Laurance 

2008), and that local extinctions may happen immediately after the fragmentation 

event, but may also increase with time (Helm et al. 2006; Haddad et al. 2015). This 

time lag between the disturbance event and subsequent extinctions is often called the 

“extinction debt” (Tilman et al. 1994; Hanski 1998) and in some cases the full impact 

may not be seen for >50 years (Metzger et al. 2009; Canale et al. 2012; Wearn et al. 

2012). For example, in a study with small mammals in Thailand, Gibson et al. (2013) 
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found that it takes an average of 13-14 years for 50% of mammal diversity to be lost 

after a severe fragmentation event, and 25-26 years for all the native species to go 

extinct.   

One way to measure the impact of fragmentation in ecological systems is to 

use a metacommunity approach (Hanski 1998). In a fragmented landscape, each 

habitat fragment or patch will have its own discrete community that may or may not be 

linked by dispersal to other habitat patches of the same type. When we consider many 

of these discrete communities together this is referred to as a metacommunity (Hanski, 

1998; Leibold et al., 2004). Models of metacommunities offer a theoretical framework 

that provides a new way to integrate information across multiple scales in ecology 

(Hanski 1998) and it is possible to identify four main families of theories, or 

archethypes, that explain the metacommunity phenomena (Box 1 for more detailed 

explanations): Neutral Theory (NT), Patch Dynamics, Species Sorting (SS) and Mass 

Effects (ME) (Leibold & Chase 2018b). Initially these archetypes were called 

“paradigms” and sometimes they were used as alternative hypothesis (Leibold & 

Loeuille 2015) but recent studies and reviews treat them as complementary 

explanations to the real world (Chase 2005; Leibold & Chase 2018a). These 

archetypes use different assumptions about four main processes that underline 

metacommunity dynamics: stochastic drift, dispersal, heterogeneity and speciation. 

While some studies focus on metacommunity patterns (Presley et al. 2009; Presley & 

Willig 2010) others examine metacommunity processes (Leibold & Chase 2018c), but 

both are needed to explain how metacommunities work (Brown et al. 2017). Although 

the study of patterns doesn’t allow us to make assumptions about the underlying 

processes that shape metacommunity it can provide evidence for metacommunity 

theories (Leibold & Chase 2018a). Chisholm & Pacala (2010) compared two 
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simulations of metacommunity structures to show that a SS-based and a NT-based 

model both provide similar explanations for a plant metacommunity in Panamá 

(Chisholm & Pacala 2010; Leibold & Chase 2018b). In another comparison, 

Sanderson et al. (2009) analysed the co-occurrence of closely related birds from 

Bismarck and Solomon Archipelago to refute the idea that the checkerboard 

distribution of these bird species could be consequence of a neutral process. 

Leibold & Mikkelson (2002) proposed a method to identify structural patterns of 

the metacommunity but without explaining the underlying mechanisms that determine 

this pattern. For distinguishing between idealized patterns of metacommunity 

arrangement, this stepwise analysis looks at three key “elements of metacommunity 

structure” (EMS), termed coherence, turnover, and boundary clumping (Leibold & 

Mikkelson 2002; Presley et al. 2010) that can be used to describe metacommunity 

structure (Figure 2.1). Briefly, coherence measures the extent to which a species’ 

distribution is continuous along an environmental gradient (Gaussian distribution), 

turnover measures the extent to which species in a metacommunity replace each other 

along this same environmental gradient, and boundary clumping measures the extent 

to which species distributions in a metacommunity are aggregated. Initially the 

framework proposed by Leibold and Mikkelson (2002) recognized six metacommunity 

structures: checkerboards distributions, nested subsets, Gleasonian, evenly-spaced 

distributions, Clementsian and random structures (for explanations of these see Box 

2).  

Later developments in the field of research led to the recognition of three 

different patterns of nested subsets according to the nature of species loss 

(hyperdispersed, random, and clumped) and of quasi-structures related to each of the 

already-recognised patterns (quasi-nested with the three patterns of species loss): 
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quasi-Gleasonian, quasi- evenly spaced, and quasi-Clementsian (Presley et al. 2010) 

(Box 2). Subsets of species within a metacommunity, termed ‘meta-ensembles’, can 

show different structures if they respond to different environmental gradients. Although 

it is possible to apply the EMS approach to different geographic scales, few studies 

have attempted to do so (Willig et al. 2007; Presley & Willig 2010; Meynard et al. 2013; 

de la Sancha et al. 2014; Tonkin et al. 2016) and the question of at what scale can the 

species assembly process be measured remains unresolved.  

An example of the application of EMS at multiple scales concerns the bats of 

the Caribbean islands (Presley & Willig 2010). Here the metacommunity appears to 

show Clementsian structure at the regional-scale, but when the compartments within 

this structure are assessed separately, only the bats of the Bahamas and Lesser 

Antilles show a Clementsian structure, while the bats of the Greater Antilles show a 

nested structure (Presley et al 2010), suggesting that the process of bat species 

assembly may vary across different scales. In the same study the herbivores meta-

ensemble showed a random distribution, while the animalivorous meta-ensemble had 

a Clementsian distribution (Presley & Willig 2010) providing evidence that meta-

ensembles respond to different assembly processes. 

Although the EMS method doesn’t allow inferences of the underlying local 

processes, metacommunity structure is a consequence of the species assembly 

process across patches of habitat (Leibold & Mikkelson 2002), and this structure is 

determined by an interplay between abiotic, ecological and evolutionary factors 

(Mouquet et al. 2012; Cadotte and Davies 2016). One way that fragmentation can alter 

metacommunity structure is by disrupting the species assembly mechanisms. 

Identifying and understanding the underlying specific processes and mechanisms that 

drive species assembly are key challenges that have been the focus of many studies 
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(e.g. Webb 2000; Muchhala & Potts 2007). Several important concepts and trends 

have emerged. First, closely related species may be more similar to each other, and 

therefore might have similar ecological niches (Mouquet et al. 2012). Thus 

phylogenetic approaches may provide insights into ecological processes that structure 

communities (Webb et al. 2002).  

These ecological processes can be studied using a mix of functional traits and 

phylogenetic diversity measurements. In cases where resources are limited, species 

will avoid competition by filling more available niches, leaving the community with an 

imprint of high functional diversity (Schluter 2000; Mouquet et al. 2012). High 

functional diversity may thus result from competitive exclusion in communities, and is 

then expected to be characterised by communities composed of phylogenetically-

distant species (overdispersion), or by character displacement of closely related 

species, which allows coexistence in communities composed of closely related 

species (phylogenetically clustered) (Schluter 2000). An example of character 

displacement among closely related plants of the genus Burmeistera was observed 

by Mucchala and Potts (2007). In this group, congeneric species exhibit changes in 

the size of their flowers to avoid competition for pollination when growing in close 

proximity to each other. On the other hand, where resources are not limited but niches 

are limited by an environmental filter (Mouquet et al. 2012), communities tend to show 

low functional diversity, because selection is for traits that enable survival under this 

environmental filter (Webb 2000). In such cases, phylogenetic overdispersion 

indicates that traits converge between distantly related species, and phylogenetic 

clustering indicates that closely related species share similar traits that enable them 

to survive under an environmental filter (Webb et al. 2002) (Figure 2.2). 
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 The Atlantic Forest has a long history of large-scale clearance and, with only 

11-16% of original forest cover left (Ribeiro et al. 2009), is one of the most threatened 

biomes in the world (Myers et al. 2000). The remaining forest is distributed across 

more than 200,000 fragments with 97% of the forest fragments smaller than 250 ha, 

and 83.4% smaller than 50 ha (Ribeiro et al. 2009). Most of the landscape has been 

modified for more than 50 years, following a rapid increase in deforestation after the 

1970s (Canale et al. 2012), and most of the extinction debts in these areas are thought 

to have been paid (Lira et al. 2012). As a consequence, species persistence is likely 

to be related to landscape structure and the amount of forest cover left (Tabarelli et al. 

2010). Such scenarios make the Atlantic Forest an ideal place for fragmentation 

research and a particularly interesting location to measure the process of community 

assembly. 

Bats in the Neotropics are characterised by both high functional and 

phylogenetic diversity, occupy many niches, and perform several key ecosystem 

services including pollination, seed-dispersal and insect population control (Kunz et 

al. 2011). Bats are the only mammals capable of self-powered flight and some species 

may be able to disperse through the surrounding matrix between fragments, and thus 

track preferred habitats across the landscape (Esbérard et al. 2017). Due to the high 

species diversity of Neotropical bat assemblages, metacommunity analysis offers an 

ideal approach to measure the impact of fragmentation on community assembly 

(Cisneros et al. 2015).  

In this study I use elements of metacommunity structure to test whether the bat 

metacommunity in a fragmented landscape of Atlantic Forest in southeast Brazil is 

structured according to the theoretical patterns predicted by an EMS approach. If 

fragments act as islands of habitat in a matrix of non-habitat, then bat communities 
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should present a nested structure, analogous to predictions of island biogeography 

and species-area curve relationships. I then test whether landscape and habitat 

structure can explain patterns of metacommunity structure. To test whether 

competition or environmental filtering drives species assembly, I use functional 

diversity (FD), phylogenetic diversity (PD) and the mean phylogenetic pairwise 

distance (MPD) between species. I test between two competing specific hypotheses. 

First, bat communities contain higher functional diversity than expected by random 

models, and limited resources drive species assembly such that species will show 

different forms and functions to exploit all of the niches available. In this case 

phylogenetic overdispersion indicates competitive exclusion, while phylogenetic 

clustering indicates character displacement between closely related species. The 

alternative scenario is that functional diversity is lower than expected under random 

models, and environmental filtering drives species assembly. Phylogenetic 

overdispersion in this case indicates trait conversion between distantly related 

species, while phylogenetic clustering indicates that closely related species share 

traits that enable them to exploit specific habitats.  
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Methods 

 

Study area 

This study took place in a fragmented landscape at the Guapiaçú River Basin, 

located in the municipalities of Guapimirim and Cachoeiras de Macacú, Rio de Janeiro 

state, southeast Brazil. The region is covered by lowland Atlantic Forest with the 

biggest continuously forested areas inside natural reserves. My study is based in and 

around one of these reserves, Reserva Ecológica de Guapiaçú (REGUA). REGUA is 

a mosaic of pristine forest and secondary forest in different stages of restoration, with 

a total protected area of 7000ha. At its northern limit, this reserve connects with the 

Serra dos Órgãos National Park and the Três Picos State Park to form one of the 

biggest remnants of Atlantic Forest in Brazil (Ribeiro et al. 2009). This is a very 

strategic region for biodiversity conservation (Jenkins et al. 2010), as it exhibits high 

levels of species richness for many taxonomic groups, such as pholcid spiders (it is 

the locality with most species recorded worldwide) (Huber & Rheims 2011), 

amphibians, reptiles (Almeida-Gomes et. al. 2014), birds (Jenkins et al. 2013), and 

mammals (de Carvalho et al. 2014; de França Souza et al. 2015).  

I selected 10 fragments near the reserve for sampling, with areas ranging from 

20ha to 243ha. The distance between fragments (measured as a straight line) ranged 

from 60m to 600m (Table 2.1, Figure 2.3). These focal fragments represent a mixture 

of primary and secondary forest patches. As with most fragments in the Atlantic Forest, 

these forest remnants are primarily confined to tops of hills and steep cliffs. As a 

control, I also sampled in three different sites of primary forest inside REGUA, 

hereafter referred to as primary sites REGUA 1, 2 and 3 (Figure 2.3). I treat all 
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fragments and primary sites as independent samples. While it is possible for some 

bats to commute between locations it is unlikely to influence analyses in this case. 

First, in the few cases where nocturnal movements of bats have been measured, 

results range from 50m (Tschapka 2004) to 380m (Heithaus et al. 1975) for medium 

sized-bats such as C. perspicillata,. which is smaller than the distance between 

fragments sampled, suggesting regular daily movement would not lead to community 

mixing. Second, within REGUA were the sampling sites were connected making 

passage between viable over time, the sampling was selected to target very different 

habitats (e.g. large area in old growth-forest, trails near river and streams, area in initial 

stages of natural restoration) so while they are geographically connected, they 

represent very independent habitats. Crucially, recapture rates were low with no bat 

recaptured in a different fragment suggesting minimal community mixing and 

supporting the independence of the fragments as distinct sites. 

I sampled inside each fragment and primary site for six nights, from May 2016 

to January 2017. At each site, mist-nets of different lengths (6, 9 and 12 metres) were 

set along trails, near to streams, and near to flowering or fruiting plants. Nets were 

monitored continuously from sunset to midnight. I used between seven and 10 nets 

and aimed for approximately equal sampling intensity at each site, with a combined 

net effort of 275.940 m2h (Table 2.1). Each net was moved to a new position every 

night to reduce the chance of bats learning their positions and avoiding the area. 

 

Bat captures 

I checked mist nets every 30 to 45 minutes, depending on bat activity, and I 

placed each captured bat into an individual cotton bag for two to six hours to give them 
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time to defecate (see Chapter 4). Pregnant females were processed as quickly as 

possible to avoid any unnecessary stress. I used field guides for Neotropical (Emmons 

and Feer 1998) and Brazilian bats (Reis et. al. 2007, 2013) to identify each bat in the 

field. I collected standard measurements (forearm, body length, body mass), gender, 

age (adult or juvenile based on level of ossification of the knuckle joints) and, for 

females, reproductive condition (pregnant, lactating, non-reproductive based on the 

condition of the abdomen and nipples). From each bat, I also collected a tissue sample 

using a biopsy punch for a subsequent study, and duplicate samples were deposited 

at the Museu Nacional/UFRJ – RJ, where specialists were consulted whenever there 

was any doubt about the identification of any individual bat. I stored tissues in silica 

gel and guano (faecal) pellets from each bat were placed in a separate tube of ethanol 

and stored at -20°C. Finally, I searched each bat for ectoparasites for at least 90 

seconds and, when present, the parasites were preserved in tubes filled with ethanol 

for a subsequent study.  

 

Landscape metrics 

To calculate the landscape characteristics for each fragment and the primary 

sites of the REGUA forest I used the software packages ArcGIS 10.1 and Fragstats 

3.1. I used the ESRI base maps available in ArcGIS and combined these with maps 

of forest cover obtained from Instituto Brasileiro de Geografia (IBGE). I then extracted 

all the areas of Atlantic Forest and combined these data with a map of forest remnants 

obtained from SOS Mata Atlântica (www.sosmataatlantica.com.br). The resulting map 

containing the remnants of Atlantic Forest in the study area was then exported as a 

geotiff file and imported into Fragstats 3.1. 
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With Fragstats 3.1 I calculated the following metrics for the selected fragments 

and REGUA (Table 2.1):  

 Fragment area: measured in hectares.  

 Perimeter/area ratio (PARA): this is a simple measure of shape 

complexity that gives the relative amount of forest edge. One of the problems 

with this index is that holding shape constant, an increase in area leads to 

smaller values. 

 Isolation: this measurement is the shortest (straight line) distance 

between two forest fragments. 

 Proximity index: this index considers the size and distance of all 

fragments of the same category that have edges inside a pre-determined buffer 

(Gustafson and Parker, 1992). It has a value of zero when no fragment of the 

same category is inside of the buffer zone and it increases with fragment area, 

proximity and contiguity in the neighbouring area of the focal point. I used a 

radius of 500m and 1000m to calculate this index. These values were selected 

based on empirical data on flight distance in the captured species. For example, 

the longest distance that the same individual of Carollia perspicillata was 

captured within the same night was 380m (Heithaus et al. 1975), and Teixeira 

et al. (2014) used 400m as a proxy for the maximum distance that an individual 

could fly without needing to stop. I decided to increase this value to 500m to 

account for differences among all the small species of bats. Since larger bats 

may move further (e.g. Artibeus spp.) I also used a second buffer of 1000m. 

 Forest cover: This is a measure of the proportion of the landscape 

that corresponds to Atlantic Forest inside a pre-determined buffer area. I used 
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the same two radius sizes from the proximity index (500m and 1000m) to 

determine the forest cover of a given point.  

 Distance to source area: this is measured as a straight line from 

a focal point of a fragment to the nearest point of contiguous forest at REGUA. 

Data were obtained from Delciellos et al. (2016). 

To choose among these metrics, and reduce variable collinearity, I first 

performed a correlation analysis and identified the least correlated variables (Table 

2.2). On this basis I chose variables for this dataset: fragment area and isolation.  

To select measurements of habitat structure I followed Delciellos et al. (2016). 

Nine habitat variables (overstory vertical vegetation density, understory horizontal 

vegetation density, predominant tree size, presence of water courses, Cecropia trees, 

lianas, grasses or bamboos, palms of Astrocaryum aculeatissimum and number of 

fallen logs) were combined and reduced to two components using a PCA with the 

function prcomp in R v. 3.4.1 (R Development Core Team 2018). For more details on 

how these measurements were obtained, see Delciellos et al. (2016). The first 

principal component (PCAhab1) showed positive associations with the abundance of 

grasses, Astrocaryum and Cecropia trees, and a negative association with the 

abundance of lianas. The second component (PCAhab2) was associated positively 

with watercourses and increased overstory, understory and fallen logs (Table 2.1, 

Figure 2.4). 

 

Phylogenetic diversity 

For each fragment and primary site in REGUA I calculated the phylogenetic 

diversity (PD) of the sampled bat community following Faith (1992). Phylogenetic 
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diversity represents the total amount of evolutionary history in the assemblage and is 

calculated as the sum of all branch length from the species phylogenetic tree (Faith 

1992). To do this I used the function pd of the package picante (Kembel et al. 2010) 

in R v.1.4.1 (R Development Core Team 2018). To extract branch length information 

I used the topology of the Chiroptera supertree published by Shi and Rabosky (2015). 

To eliminate the taxa not present in our study I used the function treedata from the 

package ape (Paradis et al. 2004; Popescu et al. 2012) for R v.1.4.1 (R Development 

Core Team 2018); this yielded a tree with 24 species. As the two species Dermanura 

cinerea and Histiotus velatus were not present in the published phylogeny, these were 

excluded from this analysis.  

 

Mean pairwise distance  

I also calculated the phylogenetic mean pairwise distance (MPD) among all the 

species in each fragment or primary site, also using the function pd in the picante 

package (Kembel et al. 2010) in R v.3.4.1 (R Development Core Team 2018). MPD is 

an average of the phylogenetic distance between all the pairs of species and can be 

used as a proxy for how phylogenetically different one assemblage is from another 

(Webb et al. 2002). MPD was measured from a distance matrix obtained from the Shi 

and Rabosky (2015) chiropteran supertree. For this analysis, I included the same 

species as used for calculating PD.  

 

Functional diversity 

Functional diversity (FD) is a measure of how different assemblages are in 

terms of functional traits and may include intrinsic measures (e.g. body mass) and 
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extrinsic measures of ecological function (e.g. roosting preferences). To calculate 

functional diversity, I used mean body mass and mean forearm length from my capture 

data. From the literature I obtained information about the number of roost categories 

used (trees, rocks/caves, leaf tents, and human-made structures), the total mandibular 

length, and the main diet (insectivore, frugivorous, vampire, nectar-feeding, omnivore). 

I built a distance matrix from the data obtained, with the function cophenetic from the 

package vegan (Oksanen et al. 2013) for R v.1.4.1 (R Core team 2018). I transformed 

this distance matrix in a functional tree using the function as.phylo from package ape 

(Paradis et al. 2004; Popescu et al. 2012) for R v.3.4.1 (R Development Core Team 

2018). Functional diversity can be measured in an analogous way to phylogenetic 

diversity, but with the branch length corresponding to the functional distance between 

two sister taxa. I used the function pd from the picante (Kembel et al. 2010) package 

to calculate the functional diversity for each bat assemblage in this study (Kembel et 

al. 2010; Cadotte and Davies 2016). 

 

Statistical analysis 

To characterise community structure, I performed an elements of 

metacommunity structure (EMS) analysis following Leibold et al. (2004). This 

approach makes no assumptions about the underlying mechanisms that contribute to 

a given community structure. I used the function Metacommunity from the package 

metacom (Dallas 2014) for R v. 1.4.1 (R Development Core Team 2018). This is a 

hierarchical analysis (Figure 2.1) and the result in each step defines one type of 

theoretical metacommunity structure. It uses a presence/absence matrix of species in 

all the areas sampled. This matrix is ordered through reciprocal averaging to maximise 
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sites with similar species composition and species with similar distributions are 

adjacent in the occurrence matrix. The primary axis presents the best ordering 

possible, while the second axis shows the second best ordination, uncorrelated with 

the primary axis (Presley et al. 2009). The steps of EMS are as follows: In the first step 

I investigated the coherence of the metacommunity. Coherence – which describes the 

extent to which a species’ distribution is continuous - is calculated by examining the 

number of embedded absences in species ranges in our matrix, with negative values 

of coherence indicating a checkerboard structure, and non-significant coherence 

indicating a random structure. If significant positive coherence is detected, then the 

turnover of species can be investigated. Turnover is the tendency of one species to 

be substituted by another over the landscape, in this case among patches of forest. 

Significant negative values of turnover indicate a nested structure, non-significant 

negative values indicate a quasi-nested structure, and significant positive values of 

turnover leads to the third step of the analysis. Boundary clumping describes the 

extent to which species are co-distributed within the metacommunity. For example, if 

multiple species respond to the same environmental gradient, then it is expected that 

they will occupy the same habitat patches and thus overlap in their distributions. The 

Morisita’s index is used to determine if the distributions are clumped. Negative values 

indicate evenly-spaced distributions, while positive values indicate a Clementsian 

structure, where distinct communities substitute for each other along a gradient. Non-

significant values are related to Gleasonian structure in which the metacommunity is 

composed of distinct communities that change at random along a gradient (Leibold et 

al. 2004; Presley et al. 2009). Boundary clumping can also be used to identify the 

pattern of species loss in nested subsets, with negative values corresponding to 

hyperdispersed species loss (i.e. species’ distribution ranges within the 
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metacommunity are different), non-significant values corresponds to random species 

loss and positive values to clumped species loss (species’ distribution range within the 

metacommunity are aggregated) (Presley et al. 2010) (Figure 2.1). 

 I calculated the elements of metacommunity structure for several different 

meta-ensembles using the package metacom (Dallas 2014) for R vers 3.4.1. (R 

Development Core Team 2018), These meta-ensembles are as follows:  

 All bats; 

 Phyllostomidae – As mist nets are biased towards captures of 

phyllostomids (Bergallo et al. 2003), I excluded all non-phyllostomids from the 

database. If bats from other families are not well sampled, these absences may 

affect the calculations of the elements of metacommunity structure; 

  Plantivores and animalivorous (see General Introduction, 

Chapter 1 for a description of these guilds) – different guilds may respond 

differently to environmental gradients and these differences may confound the 

results of EMS. To address this, I separated the bats of these two guilds, and 

tested the responses of each one. 

  I also calculated the EMS for the whole metacommunity but 

excluding species that occurred in only one fragment or primary forest site. 

For the metacommunity or meta-ensemble that presented a non-random 

structure I tested the correlation between species metacommunity and meta-

ensembles with landscape and habitat metrics using constrained correspondence 

analysis (CCA). In this analysis the incidence matrix is ordered in the same way as in 

the EMS analysis, and I used the landscape variables and principal components to 

determine the association of these factors with the metacommunity/meta-ensemble 



45 
 

structure. I used the function cca on package vegan for R v3.4.1 (Oksanen et al. 2013), 

and selected the combination of variables that performed better using the function step 

to add variables starting from the simplest model (no covariates) to the most complex 

model, and comparing them using the Akaike information criterion (AIC) (Presley et 

al. 2009; Oksanen et al. 2013; Cisneros et al. 2015).  

To test for drivers of community structure I considered extrinsic landscape and 

fragment characteristics, and intrinsic factors (phylogenetic diversity, PD, mean 

pairwise distance, MPD, functional diversity, FD). To test the significance of observed 

PD, MPD and FD, values I used the function ses.pd and ses.mpd in the package 

picante (Kembel et al. 2010) in R v.3.4.1 (R Development Core team 2018). This 

method compares the observed value with the expected value under a null model with 

10, 000 repetitions that keeps row totals constant and it is believed to minimize the 

chance of type 1 error (Kembel et al. 2010).  Positive z values and high quantiles 

(p>0.95) indicate phylogenetic evenness or a greater phylogenetic distance between 

species than expected by chance. Negative z values and low quantiles (p<0.05) 

indicate phylogenetic clustering or smaller phylogenetic distance between species 

than expected by chance (Kembel et al. 2010).  

To test whether there is a correlation between PD, MPD, FD and landscape or 

habitat complexity, I performed a linear regression between the independent variables 

(PD, MPD and FD) and area, isolation and the first and second principal components 

of habitat structure. I built models in an additive manner, starting with the simplest 

model (no covariate) to the most complex model (all covariates) using the function 

step in R v.3.4.1 (R Development Core Team 2018). I used the Akaike Information 

Criterion (AIC) to select the best fit model. I considered the models statistically 
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significant if the p-value ≤ 0.05. Due to the large difference in area between the primary 

forest sites (REGUA1, REGUA2 and REGUA3) and the fragments, I also performed 

the same linear regression analysis without the three primary sites. 
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Results 

 

Bat captures 

In 78 trap nights I captured 988 bats from 26 species. Phyllostomidae was the 

most speciose and abundant family in my study area. Carollia perspicillata was the 

most abundant species, with a total of 382 captures, or 38.6% of the total captures 

(Table 2.3). Chiroderma doriae, Micronycteris minuta, Tonatia bidens and Trachops 

cirrhosus were captured only once across all sites. Fragment F5 had the lowest 

capture rate, with only 19 captures from 7 species. In contrast, F8 had the highest 

capture rate with 133 captures from 11 different species. The control site REGUA1 

had the highest species richness with 15 species recorded, and fragment F1 had the 

lowest species richness with only 6 species (Table 2.3).  

Four species were sampled across all fragments and primary sites: Artibeus 

lituratus, Artibeus obscurus, C. perspicillata and Sturnira lilium. Seven species were 

captured in only one fragment or primary site: C. doriae (REGUA2), H. velatus (F6), 

M. minuta (F8), Peropteryx macrotis (F8), T. cirrhosis (F10), Pygoderma bilabiatum 

(REGUA1) and T. bidens (REGUA1). 

 

Elements of metacommunity structure (EMS) and predictors of metacommunity 

structure 

All bats 

The metacommunity based on all bats returned a non-significant coherence 

score (z = 1.84, p=0.06), indicating a random structure for the first axis of ordination. 
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At the second axis of ordination, coherence was also non-significant (z = -0.11, p= 

0.9) and the metacommunity structure was thus random (Table 2.4). 

Removing species with single occurrence 

If I exclude the seven species that were recorded in only one site from the full 

dataset, coherence was positive and non-significant for the first axis (z = 0.47, p = 

0.63) and negative and non-significant for the second axis (z = -0.89, p = 0.4). On both 

axes this meta-ensemble follows a random structure (Table 2.4). 

Phyllostomidae: The dominant bat family 

When only members of the Phyllostomidae were included in the analysis, coherence 

was positive and significant (z = 2.12, p = 0.03), turnover was negative and significant 

(z = -2.6, p = 0.009), and boundary clumping was positive and significant (z = 1.93, p 

= 0.01). The metacommunity thus follows a nested structured with clumped species 

loss on the first axis of ordination and a random structure on the second axis (Table 

2.4). For this meta-ensemble, the constrained correlation analysis recovered a 

gradient of fragment area, with smaller fragments being subsets of the larger areas 

(Figure 2.5a). 

Plantivores: Species consuming nectar, fruit and pollen 

Plantivores presented non-significant scores of coherence (z = 1.19, p = 0.23), 

indicating a random structure for the herbivore meta-ensemble (Table 2.4). The 

second axis of ordination also returned non-significant scores of coherence (z = 0.74, 

p = 0.45), with the metacommunity structure on the second axis also random. 

Animalivorous: Species that consume arthropods and small vertebrates  
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When only the animalivorous bats were considered, on the first axis of 

ordination coherence was positive and significant (z = 1.9, p = 0.5), turnover was 

negative but non-significant (z = -0.99, p = 0.72) and boundary clumping was 

significant and positive (z = 1.86, p = 0.008). These values correspond to a quasi-

nested structure with clumped species loss. On the second axis of ordination, the 

animalivorous meta-ensemble follows a random structure (Table 2.4). For this meta-

ensemble the constrained correlation analysis recovered a gradient along the 

fragment area, with smaller fragments being subsets of the larger areas (Figure 2.5b). 

 

Species assembly 

To test the drivers of community assembly I considered extrinsic landscape and 

forest characteristics, and intrinsic factors relating to phylogenetic diversity and 

functional diversity. Functional diversity was not different from values expected in a 

random assemblage, for all sampled areas (Table 2.5), and was not correlated with 

any of the explanatory variables (Table 2.8). Phylogenetic diversity also showed no 

deviation from random expectations for most of the sites, with the exception of 

REGUA1 and REGUA2, both of which had significantly lower PD than expected from 

random null models (Table 2.6). Phylogenetic diversity was not correlated with any of 

the explanatory variables used (Table 2.8).  Mean pairwise distance was significantly 

lower than random values in REGUA1 and REGUA2, while all other areas show no 

significant difference from random models (Table 2.7). The best-fit linear model shows 

that MPD values were significantly negatively correlated with fragment area (R2 = 0.42, 

p = 0.01) (Table 2.8, Figure 2.6). This relationship is lost when I remove the sites inside 

the reserve (Table 2.8).    
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The species assembly process appears to be random for most of the areas, 

including all the fragments. The only areas that presented scores different from 

random were REGUA1 and REGUA2, with a combination of significantly lower values 

of PD and MPD than expected by chance (REGUA1: PD = 332.14, z = -3.4, p = 0.007; 

MPD = 54.55, z = -3.11, p = 0.004. REGUA2: PD = 223.11, z = -3.23, p = 0.002; MPD 

= 50.32, z = -2.7, p = 0.004) (Tables 2.5 and 2.6), indicating an environmental filter in 

action, leading to phylogenetically clustered communities.   
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Discussion 

 

The objective of my study was to apply metacommunity analyses to determine 

whether bats in fragmented habitats of the Brazilian Atlantic Forest are arranged in 

communities that follow a predictable structure. I then tested the role of functional 

diversity, phylogenetic diversity and landscape features to assess the potential drivers 

of community assembly. The combination of these two methods allow inferences on 

local processes that drive species assembly and the metacommunity structure that 

arise from these local processes. If we want to prevent biodiversity loss and maintain 

critical ecological services, it is paramount to understand how metacommunity 

structure is shaped by ecological and evolutionary processes and how these are 

affected by landscape change. 

 My data suggest that the bat metacommunity of the Guapiaçú Basin has a 

random structure, as does the meta-ensemble containing only herbivores. In contrast, 

the Phyllostomidae and animalivorous meta-ensembles have nested and quasi-

nested structures respectively, in which the communities found in smaller fragments 

are composed of a subset of the taxa that occur in larger fragments or primary sites in 

REGUA. Occupancy estimates can be used to calculate the probability of a certain 

metacommunity structure being actually detected given  certain occurrence data 

(Mihaljevic et al. 2009), but occupancy estimates in communities with high rates of 

rare species are often not reliable (Banks-Leite et al. 2014) and can add unwanted 

uncertainty, which is the case in this study (Chapter 3) thus I do not employ occupancy 

estimates here. These communities have a core of four abundant and widespread 

species that occur in all sites sampled: Carollia perspicillata, Artibeus lituratus, 
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Artibeus obscurus and Sturnira lilium. All four are common Neotropical phyllostomid 

species and in many inventories are the most abundant species found in the Atlantic 

Forest (Muylaert et al. 2017). The diet of all four species is mostly frugivorous and they 

are considered important seed dispersers. Another well-known characteristic of these 

species is that they are very tolerant to disturbance, occurring in a range of habitats, 

from well-preserved primary forest to disturbed areas (Emmons and Feer, 1997, Reis 

et al. 2013). 

The data also suggest that when habitat area decreases the assembly process 

is driven by stochastic events but when the habitat area is large it is driven by 

environmental filtering with ancestral traits of bat species enabling survival and leading 

to phylogenetically clustered communities (Figure 2.2). All the fragments returned 

values that were not different than expected from random, while REGUA1 and 

REGUA2 had values of PD and MPD lower than expected from random. In the larger 

primary sites in REGUA it is likely that the high availability of resources leads to 

communities that are composed of many more species, which are closely related but, 

in accordance with niche theory, which show at least small differences in their 

functional use of niches to avoid competitive exclusion (Pianka 1974; McInerny & 

Etienne 2012). The phylogenetic clustering found in REGUA could be related to the 

high richness of phyllostomids, generating low MPD and PD values, but if it was the 

case, random values should have been low as well and REGUA and REGUA2 would 

not differ from them. In small areas with fewer resources only a subset of these closely 

related species exists, and thus small fragments contain only a subset of the 

communities found in larger fragments. This can be illustrated by the species from the 

subfamily Stenodermatinae. In the fragments below 100 ha, I recorded four to five 

species of Stenodermatinae bats, while in the fragments larger than 100 ha, I found at 
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least five species of Stenodermatinae, with eight Stenodermatinae bats registered at 

REGUA 2, which is nearest to intact Atlantic Forest to the west of the study region. 

This pattern is repeated for every genus or family that I examined. One could argue 

that the coexistence of fewer species in smaller areas is evidence of competition, but 

the random FD, PD and MPD values in these fragments indicate that with the reduction 

in area the pattern of species assembly begins to break down and is driven by 

stochastic events of birth/death and colonization/extinction, as described in the NT 

archetype. Even though the results did not capture any effect on FD, this may reflect 

the data available for this analysis which may not encompass all the aspects of bat 

morphology and ecology needed to differentiate these species functional space. 

Including information on wing morphology such as wing loading and wing tip index, 

which are related to how bats manoeuvre and use their niche space, may change this 

scenario.  

One of the most difficult aspects of measuring community assembly is to 

establish an appropriate scale for analysis (Meynard et al. 2013). For example, among 

the Chiroptera some species may migrate very long distances or commute over 

landscapes in a single night, while other species travel only very short distances from 

their natal roost throughout their lives. My study was conducted on a smaller scale 

than many other cases where elements of metacommunity structure (EMS) have been 

used to assess metacommunity structure. At this regional scale (this study), the abiotic 

conditions (i.e. climate, precipitation, seasonality) are much more similar than at larger 

scales (e.g. the Caribbean). This may result in random distributions, particularly 

among species that can forage over longer distances, when in larger scales would 

show distinct patterns (Presley & Willig 2010). In a study of the effects of fragmentation 

on small mammals in the Atlantic Forest, the metacommunity presented a 
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Clementsian structure (de la Sancha et al. 2014), with the different compartments in 

this metacommunity corresponding to the centres of endemism of the Atlantic Forest 

(Costa et al. 2000; Silva et al. 2004), although the structure within the Clementsian 

compartments of the metacommunity was not assessed (de la Sancha et al. 2014). 

This study suggests that even in face of severe habitat loss and fragmentation, the 

rodents still occupy habitats that follow their historical biogeographic distribution. 

Given that most studies have focused on broad geographic scales, it is interesting that 

our study shows that fragmentation even at small spatial scales can lead to disruption 

in the species assembly process.  

Here I show that the Phyllostomidae and animalivorous meta-ensembles are 

characterised by nested and quasi-nested structures, and this might be explained by 

their tolerance to disturbance and dispersal ability between forest patches (Kadmon 

1995; Esbérard et al. 2017). This pattern is consistent with the prediction of 

fragmentation studies and species-area relationships, where large areas are expected 

to harbour more species than smaller fragments (McGuinness 1984; Laurance et al. 

2002) and with an experiment involving bat communities in a complex of islands inside 

an artificial lake in Panama, where it was observed that the small island bat 

communities are a subset of the communities in bigger islands and mainland forested 

areas (Meyer 2007). In my case, forest fragments may act very much like islands. 

In this study, I observed that the functional diversity of the communities was not 

different than random expectations. In REGUA however, phylogenetic diversity and 

mean pairwise phylogenetic distances are significantly lower than expected by 

chance. FD and PD were not correlated to any of the explanatory variables, however, 

mean pairwise phylogenetic distance (MPD) was found to be significantly and 

negatively correlated with fragment area. This trend suggests that more closely related 
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species are found in larger areas, a finding that is consistent with the hypothesis that 

larger patches of forest have less resource limitation, making it possible for more 

similar species to co-exist without leading to competitive exclusion. This is also 

consistent with the hypothesis of niche theory (Levin 1970; McInerny & Etienne 2012), 

as small fragments may not have enough resources to sustain many similar species 

(Laurance et al. 2002; Haddad et al. 2015). However, this pattern is clearly driven by 

the REGUA primary sites and when they are removed the pattern is no longer 

significant. It may be that sampling of fragments of more intermediate size would 

support the trend, or that there exists a tipping point where this relationship ceases to 

exist. In my analysis I treat REGUA 1, 2 and 3 as independent sampling units based 

on distinct differences in the surrounding habitat that likely attract different species and 

because I visited them at discrete times of the year. However, while it is very unlikely 

the same individuals were caught in the three sites, it is possible that the communities 

share members (as might closely located fragments) and are thus not truly 

independent. For this reason, while I have treated these communities as independent 

data points, the conclusion around MPD should be treated cautiously. Although I did 

not observe the expected pattern of functional diversity, MPD, in accordance with the 

niche conservatism theory (Wiens et al. 2010), could be used as a proxy for how 

different species’ niches are across sites if niches are inherited from an ancestor and 

thus closely related species are expected to share similar functional traits. A study 

examining the effect of fragmentation on phylogenetic diversity of trees from the 

Atlantic Forest found that forest fragment size was the most important variable to 

predict phylogenetic diversity (Matos et al. 2017). This is consistent with my finding 

that MPD was correlated to fragment area.  
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The NT archetype explains many metacommunity patterns and processes, and 

my results of random bat metacommunity structure and the breakdown of species 

assembly in fragments can be understood under this framework. In turn, the nested 

and quasi-nested metacommunity structure of Phyllostomid and animalivorous bats 

can be understood with the Patch Dynamics archetype. As at this scale habitat 

patches are more or less homogeneous in character and as species differ in their 

colonization and extinction rates, we would hypothesise that larger areas would have 

more species due to species area relationships. To understand metacommunity 

dynamics in their totality, we should examine local processes, regional patterns and 

use the four metacommunity archetypes to describe the metacommunity phenomena. 

One example is a meta-analysis of the importance of environmental and spatial 

processes concluded that although the SS archetype was the most common one in 

real metacommunities, a combination of SS + ME and NT+PD theory can explain 

metacommunities that don’t fall into the SS archetype (Leibold & Chase 2018).  

The lack of a clear pattern of species assembly in the fragments among non-

phyllostomid bats provides evidence that small and isolated fragments in general do 

not support biodiverse communities. Despite this, I did detect the presence of several 

more sensitive species, including T. cirrhosus, P. macrotis and H. velatus in fragments 

of different sizes. These findings imply that even small fragments may provide the 

specific habitat requirements to support some bats of conservation concern, and thus 

may hold conservation value for the Atlantic Forest, even though they are not as 

species-rich as are the large protected areas. In the case of some resource specialists, 

patch size per se may not be as important as the presence of specific landscape 

characteristics (e.g. rivers, caves). In general, maintaining existing fragments, 

increasing the forested area and bridging the gaps between these fragments should 
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be a conservation priority, in addition to expanding the large protected areas where 

possible. 
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Figure 2.1: A diagram showing the steps of elements of metacommunity structure 

analysis (modified from Presley, Higgins, & Willig (2010)). At each step (coherence 

turnover and boundary clumping) the presence of a negative, non-significant or 

positive value determines the next analysis step in the hierarchical analysis. For 

example, a positive coherance outcome is followed by a test of turnover, which in turn 

leads to an analysis of nestedness or boundary clumping.  
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Figure 2.2: A decision tree of factors that may explain the observed metacommunity 

structure. In this case > indicates a value that is greater than expected by chance 

while < indicates a value that is lower than expected by chance. You start looking at 

the functional diversity (or mean pairwise distance, used here as a proxy for how 

functionally diverse communities are) to differentiate between competition and 

environmental filters. A second step is to examine the phylogenetic diverse to 

understand if communities are closely related or not. 
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Figure 2.3: Map of study area in Cachoeiras de Macacú Municipality, Rio de Janeiro 

state, Brazil. F1 to F10 correspond to forest fragments sampled and REGUA 1,2 and 

3 are the sites sampled inside the Reserva Ecológica de Guapiaçú. The inset shows 

the study area in South America map. 
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Figure 2.4: Principal Component Analysis of habitat structure in the study area. 

PCAhab1 has a positive association with grasses, Cecropia and Astrocaryum trees 

and negative association with lianas and fallen logs. PCAhab2 has positive 

association with watercourses and increased overstory and understory and negative 

association with large trees. 
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Figure 2.5: Biplot showing the constrained correlation analysis (CCA) results. 2.5a: 

CCA for the Phyllostomidae meta-ensemble; 2.5b: CCA for the Animalivorous meta-

ensemble. Black circles correspond to site scores and red crosses to species scores. 

Both ensembles are correlated with fragment area. 
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Figure 2.6: Mean pairwise phylogenetic distance x log Area (R2 = 0.42, p = 0.01). 

MPD is negative related with fragment area. In larger areas communities are 

composed by species that are in average more closely related than in small 

fragments. This relationship diseappears when REGUA 1,2 and 3 are removed.  
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Box 1:  Metacommunity Archetypes 

Neutral Theory (NT): Based on the ideas of Hubbell (Hubbell 2001), the Neutral 

Theory archetype assumes that stochastic events of birth/death rates and stochastic 

events of colonization/extinction largely overcome any effect of speciation and niche 

or habitat heterogeneity. Species from a regional pool and habitats are practically 

indifferent and metacommunity composition and structure are product of stochastic 

events of local colonization and extinction.  

+ Stochastic drift 

- Niche selection, dispersal 

Species Sorting (SS): This archetype emphasise in niche selection and species 

interactions, with little importance given to stochastic drift and dispersal. This is a 

niche-based approach and it considers that species coexistence is mediated by trade-

offs in species abilities to exploit and colonise different habitats. You can understand 

this archetype as “species can reach everywhere, and the habitat selects those that 

can survive in it” (Leibold & Chase 2018). 

+ Niche selection 

- Stochastic drift, dispersal 

Patch Dynamics: In this archetype habitat patches have homogeneous 

conditions. Species have different traits and colonization abilities, but these are not 

affected by the habitat and population persistence in the patches are driven by 

stochastic events (i.e. birth and mortality rates, disturbances). Events of local 
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extinction of superior competitors allow inferior competitors to survive in patches of 

homogeneous habitats 

+ Niche selection (trait heterogeneity), stochastic drift, dispersal 

- Niche selection (habitat heterogeneity) 

Mass Effects (ME): In this archetype species have different life-traits and 

dispersal abilities. Habitat is heterogeneous and species have different fitness in 

different habitat types. Species coexistence occurs in a source-sink dynamics, where 

dispersal from more suitable habitats allows the persistence of an inferior competitor 

in a suboptimal habitat. 

+ Niche selection, dispersal 

- Stochastic drift 
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Box 2: Metacommunity structures as defined by Leibold & Mikkelson (2002) and 

Presley et al. (2010). 

Checkerboards distributions:  This structured is characterized by pairs of species 

that do not co-occur (i.e. mutually exclusive distributions), with different pairs of 

species being independently distributed (Leibold & Mikkelson 2002) . This pattern is 

based on the observations of Diamond (1975) and it is determined by significant 

negative coherence scores (Leibold & Mikkelson 2002). 

Nested subsets: Species poor communities are a subset of species rich communities. 

This structure was first described by Patterson & Atmar (1986) and it is determined by 

significant positive values of coherence and significant negative turnover (Leibold & 

Mikkelson 2002). Presley et al. (2010) expanded the understanding of nested subsets 

using boundary clumping to distinguish between 3 patterns of species loss – clumped 

species loss (significant positive boundary clumping), stochastic species loss (non-

significant boundary clumping) and hyperdispersed species loss (significant negative 

boundary clumping). 

Clementsian structure: Distinct communities that substitute each other along an 

environmental gradient. This structure is based on the ideas proposed by Clements 

(1916) and it can be determined by significant positive values of coherence, turnover 

and boundary clumping (Leibold & Mikkelson 2002). 

Gleasonian structure: Species show specific responses to an environmental 

gradient, resulting in a random structure with high turnover. This structure is based on 

the ideas proposed by Gleason (1926) and can be identified by significant positive 

coherence and turnover and non-significant positive boundary clumping (Leibold & 

Mikkelson 2002). 
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Evenly spaced distributions: No discrete community can be identified, but species 

distribution along an environmental gradient are more evenly distributed than 

expected by chance. This structure is characterized by significant positive coherence 

and turnover while presenting significant negative values of boundary clumping 

(Leibold & Mikkelson 2002). 

Quasi-structures: According to the expanded EMS framework proposed by Presley 

et. al (2010) each of the 4 main structures have an equivalent quasi structured where 

turnover is not significantly different from random, but with a structure still consistent 

with the conceptual background of Clementsian, evenly spaced distribution, 

Gleasonian and nested subsets structures. 
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Table 2.1: Landscape metrics calculated for each fragment and the REGUA control sites.  

Fragment code Lat Long Area  Isolation PARA 
Forest cover 
(500m)  

Proximity 
index (500m) 

forest cover 
(1000m) 

Proximity 
index (1000m) PCAhab1 PCAhab2 

Distance to 
source (m) 

Sampling 
effort (m2.h) 

REGUA -22.43 -42.70 62378.64 60 19.02 92.09 112485 68.11 112494 -3.12 0.75 0 26460 

REGUA2 -22.41 -42.76 62378.64 60 19.02 100 112485 100 112494 -3.27 0.75 0 22680 

REGUA3 -22.40 -42.73 62378.64 60 19.02 100 112485 98.7 112494 -3.27 0.75 0 22680 

F1 -22.56 -42.85 21.15 600 139.0071 29.48 0 6.89 0.16 2.79 -1.94 378 20520 

F2 -22.54 -42.81 34.11 234 103.7819 44.918 101.71 18.86 115.13 1.32 1.59 241 19440 

F3 -22.58 -42.86 84.33 150 89.6478 53.7 83.577 33.58 83.75 0.82 -0.49 129 19440 

F4 -22.55 -42.90 92.34 210 96.8161 68.63 2.32 20.97 3.35 0.75 2.72 126 22680 

F5 -22.52 -42.79 41.04 85 99.41 52.82 114.52 33.38 114.68 0.82 -0.87 192 19440 

F6 -22.59 -42.79 52.11 362 120.8981 45.29 0.45 17.43 1.0424 1.79 1.17 91 20520 

F7 -22.55 -42.78 99.99 350 72.6 71.01 40.72 32.26 41.35 0.69 -2.67 302 19440 

F8 -22.47 -42.76 117.27 134 93.63 76.78 4266.11 37.89 4266 0.37 0.67 468 24300 

F9 -22.58 -42.85 184.77 175 63.322 76.28 27.55 51.54 38.52 0.12 -2.44 126 18900 

F10 -22.45 -42.80 228.78 480 54.5502 98.74 2707 59.02 2707 0.19 0.02 544 19440 
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Table 2.2: Correlation between landscape metrics. 

 Area (ha) Isolation (m) Perimeter (m) PARA Forest cover 
(500m) 

Proximity index 
(500m) 

Forest cover 
(1000m) 

Proximity index 
(1000m) Area 1.00 -0.59 0.98 -0.96 0.97 0.73 0.92 0.72 

Isolation -0.59 1.00 -0.64 0.62 -0.59 -0.77 -0.73 -0.74 
Perimeter 0.98 -0.64 1.00 -0.94 0.95 0.74 0.94 0.73 
PARA -0.96 0.62 -0.94 1.00 -0.94 -0.76 -0.94 -0.75 
Forest cover 500 0.97 -0.59 0.95 -0.94 1.00 0.77 0.94 0.76 
PROX500 0.73 -0.77 0.74 -0.76 0.77 1.00 0.85 0.99 
Forest cover 1000 0.92 -0.73 0.94 -0.94 0.94 0.85 1.00 0.83 
PROX1000 0.72 -0.74 0.73 -0.75 0.76 0.99 0.83 1.00 
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Table 2.3: Species abundance per fragment. 

  REGUA1 REGUA2 REGUA3 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 

Anoura caudifer 0 0 0 0 0 0 0 0 0 2 7 1 0 

Anoura geoffroyi 1 0 1 0 0 0 0 0 0 0 10 0 1 

Artibeus fimbriatus 7 4 2 0 0 0 0 0 0 0 1 1 1 

Artibeus lituratus 21 29 36 17 1 8 7 3 15 27 4 14 8 
Artibeus obscurus 6 18 5 1 1 1 1 2 2 12 5 3 6 
Carollia perspicillata 24 30 23 50 25 12 10 7 14 60 60 32 35 
Chiroderma doriae 0 1 0 0 0 0 0 0 0 0 0 0 0 
Dermanura cinerea 0 1 0 0 1 0 0 3 0 1 1 2 0 
Desmodus rotundus 10 8 6 0 2 0 1 1 29 4 0 0 11 
Diphylla ecaudata 1 1 0 0 0 0 0 0 0 0 0 0 0 
Eptesicus brasiliensis 0 0 0 0 1 0 2 0 2 0 0 0 1 
Glossophaga soricina 1 1 0 0 0 1 1 0 0 6 18 1 0 
Histiotus velatus 0 0 0 0 0 0 0 0 6 0 0 0 0 
Micronycteris microtis 1 0 0 0 0 0 0 0 0 0 0 0 1 
Micronycteris minuta 0 0 0 0 0 0 0 0 0 0 1 0 0 
Myotis nigricans 0 0 2 1 0 2 12 0 4 1 0 1 0 
Myotis riparius 0 0 0 0 0 2 6 1 2 1 0 0 1 
Peropteryx macrotis 0 0 0 0 0 0 0 0 0 0 6 0 0 
Phyllostomus hastatus 1 0 0 0 0 0 0 0 1 5 4 0 0 
Platyrrhinus lineatus 0 0 1 0 0 3 2 0 6 2 4 9 0 
Pygoderma bilabiatum 3 0 0 0 0 0 0 0 0 0 0 0 0 
Sturnira lilium 16 2 4 4 6 1 2 2 8 11 11 2 2 
Sturnira tildae 1 1 0 1 1 0 1 0 3 1 2 0 1 
Tonatia bidens 1 0 0 0 0 0 0 0 0 0 0 0 0 
Trachops cirrhosus 0 0 0 0 0 0 0 0 0 0 0 0 1 
Vampyressa pusilla 1 14 2 0 0 0 0 0 0 0 0 1 0 
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Table 2.4: Coherence, turnover, boundary clumping and resulting metacommunity 
structure. Meta-ensembles with non-random structures are highlighted in blue. 

Meta ensembles 
Coheren
ce Turnover Boundary 

Metacommunity structure   z p z p i p 
d
f 

all taxa - 1st axis 
1.8

4 
0.

06 

-
2.6

7 
0.0
07 

1.
57 0.01 

1
0 Random 

all taxa - 2nd axis 

-
0.1

1 
0.
9 

-
2.7

8 
0.0
05 

1.
69 

0.00
4 

1
0 Random 

Phyllostomidae - 1st 
axis 

2.1
2 

0.
03 

-
2.6 

0.0
09 

1.
93 

0.01
4 

1
0 

Nested with clumped 
species loss 

Phyllostomidae - 
2nd axis 70 

0.
73 

-
0.3

5 
0.7

2 
2.

22 
0.00

06 
1
0 Random 

Herbivores - 1st 
axis 

1.1
9 

0.
23 

-
0.4

9 
0.6

2 
1.

55 0.08 
1
0 Random 

Herbivores - 2nd 
axis 

0.7
4 

0.
45 

-
1.0

2 0.3 
2.

83 
0.00

08 
1
0 Random 

Animalivorous - 1st 
axis 1.9 

0.
05 

-
0.8

9 
0.3

7 
1.

86 
0.00

8 
1
0 

Quasi nested with clumped 
species loss 

Animalivorous- 2nd 
axis 

-
0.7 

0.
48 

-
1.0

4 
0.2

9 
2.

01 
0.00

4 
1
0 Random 

no single presence - 
1st axis 

0.4
7 

0.
63 

-
1.7

5 
0.0

7 
1.

05 0.37 
1
0 Random 

no single presence - 
2nd axis 

-
0.8

9 
0.
4 

-
2.7

1 
0.0
06 

1.
35 0.11 

1
0 Random 
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Table 2.5: Functional diversity calculated for each fragment and the REGUA control 

sites.  

  R FD 
FD random 
mean  FD z-value p 

REGUA 15 1.60 1.40 0.96 0.78 

REGUA2 12 1.10 1.23 -0.63 0.37 

REGUA3 10 1.15 1.09 0.28 0.64 

F1  6 0.72 0.79 -0.37 0.41 

F2 8 1.01 0.95 0.28 0.70 

F3 8 0.85 0.95 -0.52 0.37 

F4 11 1.05 1.17 -0.58 0.36 

F5 7 1.00 0.87 0.67 0.76 

F6 12 1.40 1.23 0.81 0.70 

F7 13 1.48 1.28 0.95 0.76 

F8 14 1.39 1.34 0.24 0.51 

F9 11 1.04 1.16 -0.61 0.37 

F10 12 1.07 1.23 -0.75 0.31 
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Table 2.6: Phylogenetic diversity calculated for each fragment and the REGUA control 

sites. 

  R PD 
PD random 
mean  

PD z-
value p 

REGUA 15 332.14 428.31 -3.40 0.007 

REGUA2 12 223.11 332.09 -3.23 0.002 

REGUA3 10 267.95 307.91 -1.24 0.112 

F1  6 174.03 199.58 -0.73 0.278 

F2 8 205.34 228.08 -0.67 0.252 

F3 8 229.45 255.44 -0.76 0.196 

F4 11 311.04 332.67 -0.67 0.219 

F5 7 196.81 199.91 -0.09 0.365 

F6 12 310.63 332.62 -0.69 0.212 

F7 13 322.76 356.12 -1.05 0.122 

F8 14 330.68 381.00 -1.66 0.052 

F9 11 261.84 308.22 -1.43 0.099 

F10 12 344.54 358.20 -0.45 0.302 
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Table 2.7: Mean phylogenetic pairwise distance calculated for each fragment and the 

REGUA control sites. 

  
Species 
richness MPD 

MPD random 
mean  

MPD z-
value p 

REGUA1 15 54.55 71.93 -3.11 0.004 

REGUA2 11 50.32 71.94 -2.7 0.004 

REGUA3 10 60.88 72.02 -1.28 0.103 

F1 6 64.8 71.78 -0.54 0.298 

F2 7 66.49 71.93 -0.47 0.261 

F3 8 74.43 71.98 0.23 0.596 

F4 11 77.92 72.02 0.73 0.774 

F5 6 70.93 71.93 -0.08 0.373 

F6 11 77.83 72 0.73 0.774 

F7 12 70.41 71.94 -0.21 0.354 

F8 13 61.38 71.93 -1.58 0.057 

F9 10 59.79 72 -1.41 0.095 

F10 12 71.62 71.95 -0.05 0.421 
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Table 2.8: Linear regression models for PD, MPD and FD 

PD DF AIC 
no covariate   105.87 
PCAhab2 1 107.75 
Isolation 1 107.8 
log Area 1 107.82 
MPD     
log Area 1 51.653 
Isolation 1 55.88 
no covariate   56.97 
PCAhab2 1 58.86 
MPD Without REGUA     
no covariate   37.93 
log Area 1 38.262 
PCAhab2 1 39.66 
Isolation 1 39.8 
FD     
no covariate   -34.3 
Isolation 1 -33.11 
log Area 1 -33.1 
PCAhab2 1 -32.4 
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CHAPTER THREE
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Habitat structure or landscape configuration as 

predictors of bat occurrence in a fragmented 

landscape of Atlantic Forest 

 

ABSTRACT 

 

Habitat fragmentation is the process by which continuous habitat is broken into 

more isolated units and it is often accompanied by habitat loss. These processes are 

considered major threats to biodiversity. This process leads to changes in the overall 

landscape configuration as well as to the habitat structure within the fragments 

themselves, with increasing “edge effects” thought to have negative impacts on 

species occurrence. A long-standing challenge in many biodiversity studies is the 

difficulty of detecting species that are present. In recent years, the development and 

application of occupancy models in ecology has offered a mathematical framework 

that accounts for imperfect detection and allows the use of site and observational 

covariates to estimate the occupancy and detection probabilities at metacommunity 

and species level. In this study I surveyed and detected the occurrence of bats at 13 

sites across a highly fragmented landscape of the Atlantic Forest by conducting six 

repeated sampling campaigns. Here I use a community occupancy model to estimate 

species occupancy and detection probabilities across my study site, and specifically, 

to determine whether species occurrence is better predicted by either landscape 

configuration (fragment area and isolation) or by habitat structure. My results show 
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that detection probability of bats is low overall, but with a number of abundant species 

that are easily detected. Accounting for imperfect detection can reduce the bias in 

estimates of species occurrence and richness, but in communities with many rare 

species, the low capture rates do not allow precise estimation of occupancy or 

covariates parameters. Fragment area had a positive relationship with bats 

occupancy, but neither single species models or the community occupancy model did 

not allow precise estimations of the effect of isolation and habitat on bat species in the 

metacommunity. 
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Introduction 

 

Habitat loss and fragmentation are some of the many threats to biodiversity 

caused by human activity (Turner 1996; Haddad et al. 2015) and together they can be 

defined as processes of landscape change where the total habitat area is reduced 

(habitat loss) (Wiegand et al. 2005) and continuous habitats are broken into smaller 

and more isolated units (fragmentation) (Fahrig 2003). Although some studies try to 

assess the relative importance of these two processes (Fahrig 1997; Fahrig et al. 

2019), in the real world habitat loss and fragmentation are often associated (Fletcher 

et al. 2018). Habitat loss can have severe impacts on biodiversity, causing population 

decline in many species (Bender et al. 1998) and loss of unique and important habitat 

features that may lead to local and regional extinction of species (Cushman 2006). 

Long-term studies of fragmentation have suggested that not all species respond to 

disturbance in the same way (Laurance et al. 2002; Pfeifer et al. 2017), with some 

species quickly disappearing from small fragments (Wells et al. 2007). In some cases, 

as reported by Gibson et al. (2013), habitat fragmentation had an impact on 

biodiversity so severe that the mammal fauna was nearly extinct 25 years after a 

severe fragmentation event. Yet despite these extinctions, some species can persist 

even in the most disturbed habitats (Gorresen & Willig 2004).  

Habitat loss and fragmentation are known to change habitat structure inside 

fragmented areas,  and can have contrasting impacts on biological species (Villard et 

al. 1999; Ewers & Didham 2007; Pfeifer et al. 2017). This reconfiguration of habitat 

can lead to the loss of specific habitats required by sensitive species (Sutherland 

1996), but increase the amount of degraded habitat, which in turn increases the 



80 
 

abundance of disturbance-loving species in these habitats or the decline of forest 

specialists (Laurance et al. 2002) causing the loss or change of animal functional 

groups (Ulrich et al. 2018), particularly seed dispersers (Galetti et al. 2006). Animals 

are responsible for 60-80% of all seed dispersal events in tropical forests (Traveset et 

al. 2014) heavily influencing the dynamics of natural forest regeneration and 

restoration (Holl et al. 2000). Habitat quality and structure have been shown to be 

good determinants of non-volant small mammal diversity in the fragmented landscape 

of the Atlantic Forest (Delciellos et al. 2016). In another study, fragment size was 

shown to be a good predictor of species richness and abundance in small mammal 

communities, while habitat structure was a better predictor for some individual species 

in the Atlantic Forest (Pardini et al. 2005).  Similarly, in south-east Asia, changes in 

forest structure because of fragmentation and selective logging caused profound 

changes in bat species assemblages, with a forest specialist species declining both in 

number and genetic diversity (Struebig et al. 2013). Habitat loss and fragmentation 

are global threats to biodiversity (Haddad et al. 2015), and identifying which species 

are at risk and what factors causes differential species survival is an enormously 

challenging yet vital aspect of developing effective conservation strategies for the 

management of biodiversity in modified landscapes (MacKenzie et al. 2006; Zipkin et 

al. 2010; Banks-Leite et al. 2013).  

Many studies use species occurrence (Presley & Willig 2010; Souza et al. 2011; 

Teixeira et al. 2014) and species richness (Grelle 2002; Pardini et al. 2005; Konopik 

et al. 2015) to direct conservation efforts to protect biodiversity. Yet one serious 

problem is that a species are not always detected even when present or abundant in 

a site of interest (MacKenzie et al. 2002; Banks-Leite et al. 2014). This uncertainty can 

introduce considerable bias in inferences about species occurrence or species 
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richness and can lead to ineffective decisions regarding biodiversity management and 

conservation (MacKenzie et al. 2006; Kéry & Royle 2008). To deal with this issue, 

several methods were developed which address detection uncertainty and one of the 

most powerful is the occupancy model, developed by MacKenzie et al. (2002).  

Occupancy can be defined as the proportion of sites occupied by species k 

(MacKenzie et al. 2002, 2006), and can be also interpreted as the probability that 

species k occupies site i (Kéry & Royle 2016). Occupancy models use the presence 

and absence of a species over repeated surveys (i.e. sampling occasions) to estimate 

species occurrence, while accounting for imperfect detection (MacKenzie et al. 2002; 

MacKenzie & Nichols 2004; Zipkin et al. 2010; Banks-Leite et al. 2014). Although 

initially developed to be used with single species (MacKenzie et al. 2006), later 

developments expanded the mathematical framework to model entire communities 

and metacommunities (Dorazio & Royle 2005; Kéry & Royle 2008; Royle & Dorazio 

2009).  

The possibility of incorporating covariates to refine estimates of occupancy and 

detection probability makes the occupancy model a powerful tool to answer many 

questions about biodiversity and species distributions. For example, Zipkin et al. 

(2009) used the community occupancy model to assess the effect of fragmentation on 

a bird community, concluding that forest interior specialists had increased occupancy 

rates in large fragments in a landscape. Another study, in northern Arizona (USA), 

used the occupancy model to assess the responses of a small mammal community to 

forest management and found that while four species had high rates of occupancy, 

eight species were highly affected by forest fire management (Kalies et al. 2012). 

Another interesting study shows that management actions to control populations of 

white-tail deer (Odocoileus virginianus) in the eastern USA have an impact on the bird 
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community, through changes caused by deer grazing on the understory (Zipkin et al. 

2010). These examples reinforce the advantages of obtaining species-specific 

estimates of occupancy to evaluate impacts on biodiversity and the species-specific 

responses to habitat modification and management. One of the main issues with 

occupancy models arises when the number of rare and undetected species is high in 

a community, which is a common situation in tropical regions (Survey et al. 2002; 

Banks-Leite et al. 2014). Although correcting for imperfect detection may yield good 

results when we model a single common/abundant species in the tropics (Mendes et 

al. 2017), the community model often returns results that are too uncertain and not 

substantially different from analysis based on presence/absence data without any 

correction for imperfect detection (Banks-Leite et al. 2014).The Atlantic Forest of Brazil 

has a long history of fragmentation that was intensified after the 1950s, when there 

was a rapid urban and industrial expansion (Dean 1996). This led to an intense impact 

on the Atlantic Forest landscape, with only around 11% of original forest cover left and 

distributed over more than 200,000 fragments (Ribeiro et al. 2009). Despite the 

negative impacts of human activity in this biome, it is still one of the most biodiverse 

regions of the world, with high rates of endemism and a “hotspot” for biology 

conservation (Myers et al. 2000). In a global study on vertebrate diversity and 

conservation, the Atlantic Forest was ranked as one of the most diverse biomes for 

birds mammals and amphibians (Jenkins et al. 2013) with the forest remnants of Rio 

de Janeiro state being one of the most threatened areas in the world with regards to 

bird diversity (Harris et al. 2005). Given the combined factors of diversity and extreme 

habitat threat, predicting species specific responses to changes in landscape 

configuration and habitat structure in the Atlantic Forest is paramount for conserving 

this biome and can provide insights into the consequences of the severe ongoing 
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fragmentation processes in other parts of the world such as Africa, Southeast Asia 

and in the Amazon. 

Bats are highly diverse in the Neotropics (Emmons and Feer 1998) and in the 

Atlantic Forest (Bolzan et al. 2010; Peracchi & Nogueira 2010), playing several 

ecological roles as pollinators, controlling insect population and, most importantly for 

forest regeneration, as primary seed dispersers particularly after disturbance (Kunz et 

al. 2011). Different species of bats can respond differently to habitat fragmentation, 

with some species suffering from the changes it causes to habitats, while others thrive 

in these altered conditions (Faria et al. 2006; Struebig et al. 2011). In Neotropical 

forests, bats are responsible for most seed dispersal and are even more important in 

fragmented landscape as they can be considered keystone species for forest 

regeneration (Duncan & Chapman 1999). Because bats have different sensitivities to 

disturbance, perform several ecosystem services (Kunz et al. 2011) and are highly 

mobile (Esbérard et al. 2017), potentially providing very long range ecological impacts, 

understanding which factors impact the bat metacommunity and which species 

specific responses can be anticipated from habitat modification, will improve 

conservation strategies for fragmented landscapes. 

In this study I use a Bayesian hierarchical modelling approach, termed the 

community occupancy model, and single species occupancy models to assess the 

impact of fragmentation on estimates of occupancy and detection probability for a bat 

metacommunity in a fragmented landscape of southeast Brazil. I used landscape 

metrics such as fragment area and isolation and habitat structure measures to 

determine which set of variables is a better predictor of species occurrence in different 

sites and which species are more at risk from human disturbance of natural 

landscapes. I predicted that both landscape and habitat structure metrics have an 
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impact on occupancy estimates, but species have more heterogeneous responses to 

habitat structure. In particular, I expected that species that are mostly associated with 

the forest interior to have lower rates of occupancy in fragments. 
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 Methods 

 

Study area and sampling methods 

Sampling locations and methods are described in Chapter 2. Following 

occupancy modelling procedures (MacKenzie et al. 2006; Kéry & Royle 2016), each 

fragment and three control sites were treated as independent sites, resulting in 13 

sites. Each of the sites had six independent sampling occasions, corresponding to 

each of the sampling nights in these areas. All sampling was considered to be done 

in a single season, and I assume bat species were independently detected and no 

new bat species colonized a site or went locally extinct during the short timeframe of 

sampling. 

Species abundance was converted to presence/absence for each sampling 

occasion to generate a detection history per species, with 1 corresponding to at least 

one detection in six sampling occasions, and 0 to no detection during that survey at 

that site. For example, let’s assume a species k was detected on the first, second and 

fifth sampling occasion, we would have a detection history that could be noted as: 

detection history (k) = 110010 

 

Occupancy modelling procedure 

The community occupancy model (Dorazio & Royle 2005; Kéry & Royle 2008; 

Zipkin et al. 2010) is a powerful class of hierarchical models that uses repeated 

sampling occasions to distinguish true absence from non-detection. The procedures 

assumes that presence of species k = 1,2…K in site i = 1,2…i, can be assigned as 
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z(k,i) = 1 if species k is present in site i, and z(k,i) = 0 if absent. Occurrence is modelled 

as a latent variable for each species identity (k) with a Bernoulli distribution. This allows 

species-specific responses on parameter estimation. Thus the site- occupancy of a 

species can be described as:  

z(k,i) ~ Bernoulli (ᴪki). ᴪki 

Or the probability of species k occurring on site i. 

In reality, the occurrence latent variable z(k,i) is rarely  observedperfectly , we 

are in fact recording the detection  of species k in site i over j sampling occasions. This 

is denoted as y(k,i) with a Binomial distribution. Therefore, the probability a species is 

detected, given that it is present at a site, takes a value of 1, and a value of 0 when 

the species is absent from a site. The detection process can be described as: 

y(k,i) ~ Binomial (zki*pk, j) 

This model fulfils the assumption of no detection when the species is absent, as zki 

must be equal to 0.  

One of the advantages using community occupancy models is the addition of 

site-specific and survey-specific covariates that be incorporated into the model in a 

linear fashion through the logit link equation. The addition of site-specific covariates 

allow differential responses to habitat variables to be included, e.g. canopy height, 

whereas, survey-specific covariates allow the effects of sampling to be included, e. g. 

time of day. Site-specific covariates can be added to the estimation of occupancy 

probability as: 

logit (ᴪki) = βok + β1k*Cov1i + β2k*Cov2i, 



87 
 

and survey-specific covariates can be included with the estimation of detection 

probability as: 

logit(pki) = α0k + α1k*Cov1i + α2k*Cov2i. 

More details about modelling community occupancy and detection probability 

can be found on Dorazio & Royle (2005), Kéry et al. (2005), Zipkin et al. (2009, 2010). 

Modelling bat metacommunity at the Macacú River Basin and around REGUA 

To compare which set of covariates better capture the variation of bat species 

occupancy in my study area, I built two sets of community occupancy models using a 

Bayesian framework: 

Model 1, Landscape level: In this model, I included covariates which differed 

across sites. I assumed that species occupancy would be affected by site area 

and isolation, as measured in Chapter 2. Detection probability was assumed to 

be constant across sites, only affected by species identity. 

 

Model 2, Habitat level: In this model, again keeping detection probability 

constant, I assumed that species occupany would co-vary habitat complexity. 

Habitat complexity is measured following Delciellos et al. (2016) and described 

in Chapter 2 as “The first principal component (PCAhab1) shows positive 

associations with the abundance of watercourses and Cecropia trees, and a 

negative association with the abundance of lianas. The second component 

(PCAhab2) is associated positively with increased overstory, understory and 

fallen logs”. 
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I chose to use two sets of models because models with the four variables did 

not converge.For each model, I used the same presence/absence matrix (Table S3.1) 

and the following definitions: 

 Sites: 13 sites, corresponding to each of the 10 forest fragments 

sampled and the three control sites inside the continuous reserve REGUA. 

 All the sampling was done in a single season, with no colonization or 

extinction from fragments happening during the course of this study. 

 Each site was sampled for six nights of mist netting, referred as six 

sampling occasions (j=6). 

 All species-specific parameters (ᴪki, pk, βok, β1k, β2k, α0k, α1k and α2k) 

were assumed to be drawn from a wide normal distribution, with mean 0 and variance 

of 1000.  

 All variance parameters were assumed to be drawn from a uniform 

distribution. 

 All covariates (area, isolation, PCA1 and PCA2) were standardised and 

have mean = 0. 

I can then state the models as: 

Model 1 (Landscape configuration): 

z(k,i) ~ Bernoulli (ᴪki) 

y(k,i) ~ Binomial (zki*pk, j) 

logit (ᴪki) = βok + β1k*(fragment area)i + β2k*(isolation)i 

and Model 2 (Habitat configuration): 

z(k,i) ~ Bernoulli (ᴪki) 
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y(k,i) ~ Binomial (zki*pk, j) 

logit (ᴪki) = αok + α1k*(PCAhab1)i + α2k*(PCAhab2)i 

All models were fitted using the software JAGS (Depaoli et al. 2016) through 

the interface of the package jagsUI (Kellner 2017) for the software R v.3.4.1 (R 

Development Core Team 2018).  

 

Modelling bat species using single species occupancy models 

Single species models are built using the same equations as the community model, 

but in these cases, k is always equal to one. I built single species occupancy models 

using a maximum likelihood approach to estimate the parameters ᴪ, p, α and β. I used 

the unmarked package for R v.3.4.1 (R Development Core Team 2018) to build a set 

of individual models using one landscape metric each time as an occupancy covariate. 

On top of the four covariates included in the community models (area, isolation, PCA1 

and PCA2) I also included 2 other landscape metrics: Proximity index with a 500m 

radius and Forest cover with 500m radius. I compared the models for each species 

using the AIC to identify the best models. When the Δ-Akaike weight was < 2, all the 

models under this threshold were considered as good models. I examined the 

parameter estimates and the p-value to assess their significance to species 

occupancy (Table S3.2). 

 

Community occupancy model comparisons 
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I considered the best set of covariates for the estimation of species occupancy and 

detection the set with narrower posterior confidence intervals and the ones to which 

species had more heterogeneous responses.  
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Results 

 

All modelled parameters converged after 100,000 iterations for both community 

models 1 and 2. Even though both models converged, my data did not allow precise 

estimations, as most of the posterior confidence intervals (CI) are too wide (Tables 3.1 

to 3.8). An overview of each of the parameters estimated for both community models 

is as follows: 

 

Detection probability 

Model 1 

Detection probability estimates from Model 1 showed that while most bat 

species have low detection probabilities, some species showed higher probabilities of 

detection rates, ranging from p = 0.04 (sd = 0.04, CI: 0.01 – 0.15) for Trachops 

cirrhosus and p = 0.79 (sd = 0.04, CI: 0.69 – 0.87) for Carollia perspicillata. At 

metacommunity level, detection probability of bats was estimated at p = 0.13 (sd = 

0.58, CI: 0.07 – 0.22) (Table 3.1, Figure 3.1). This high standard deviation and the 

posterior confidence interval reflects the variability found in this bat community. I found 

that 15 species returned very low detection probabilities: Anoura caudifer (p = 0.14), 

Anoura geoffroyi (p = 0.14), Chiroderma doriae (p = 0.05), Dermanura cinerea (p = 

0.11), Diphylla ecaudata (p = 0.09), Eptesicus brasiliensis (p = 0.08), Histiotus velatus 

(0.07), Micronycteris microtis (p = 0.07), Micronycteris minuta (p = 0.2), Peropteryx 

macrotis (p = 0.05),  Phyllostomus hastatus (p = 0.12), Pygoderma bilabiatum (p = 
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0.05), Sturnira tildae (p = 0.14), Tonatia bidens (p = 0.05) and Trachops cirrhosus (p 

=0.04) (Table 3.1 for standard deviations and posterior confidence intervals). 

Model 2 

This model returned estimates very similar to the ones from Model 1. Trachops 

cirrhosus was the species with lowest detection probability in my study area, with p = 

0.04 (sd = 0.04, CI: 0.01 – 0.15). In this model, Carollia perspicillata was the species 

with highest detection probability, with p = 0.79 (sd = 0.05, CI: 0.69 – 0.87). 

Metacommunity had a slightly higher mean detection probability in the model, p = 0.15 

(sd = 0.58, CI: 0.08 – 0.25) (Table 3.2, Figures 3.2). The high standard deviation and 

wide posterior confidence intervals are related to the heterogeneity of detection 

probabilities found in this bat metacommunity. For this model I found 13 species with 

very low detection rates (MacKenzie et al. 2002): Anoura geoffroyi (p = 0.14), 

Chiroderma doriae (p = 0.06), Dermanura cinerea (p = 0.11), Diphylla ecaudata (p = 

0.1), Eptesicus brasiliensis (p = 0.1), Micronycteris microtis (p = 0.07), Micronycteris 

minuta (p =0.07), Peropteryx macrotis (p = 0.08),  Phyllostomus hastatus (p = 0.13), 

Pygoderma bilabiatum (p = 0.06), Sturnira tildae (p = 0.14), Tonatia bidens (p = 0.06) 

and Trachops cirrhosus (p = 0.04) (Table 3.2 for standard deviations and posterior 

confidence intervals). 

 

Occupancy estimates 

Model 1 

Occupancy estimations showed great heterogeneity between species 

occurring at the Macacú river Basin (Figures 3.1). The metacommunity had an 

estimated mean occupancy of 1 with wide confidence intervals that shows how 
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imprecise this result is (sd = 0.99, CI: 0.01-1). Vampyressa pusilla had the lower 

occupancy estimation in my metacommunity (ᴪ = 0.35, sd = 0.1, CI: 0.24 – 0.52), while 

Artibeus lituratus, Artibeus fimbriatus, Artibeus obscurus, Carollia perspicillata and 

Sturnira lilium were the species with highest occupancy estimation (ᴪ = 1) (Table 3.3 

for standard deviations and posterior confidence intervals). It is important to note that 

all confidence intervals are quite wide and usually reach ᴪ = 1 for most species, which 

is a source of uncertainty in my models. 

 

Model 2 

Occupancy estimates also showed great heterogeneity between species 

occurring at the Macacú River Basin in model 2 (Figures 3.2). The metacommunity 

had an estimated occupancy of 0.99. Histiotus velatus had the lowest occupancy 

estimation in the metacommunity (ᴪ = 0.2), while Artibeus lituratus, Artibeus obscurus, 

Carollia perspicillata, Sturnira lilium and Sturnira tildae were the species with highest 

occupancy estimation (ᴪ = 1) (Table 3.4 for standard deviations and posterior 

confidence intervals). As with Model 1, it is important to note that all confidence 

intervals are quite wide and usually reach ᴪ = 1 for most species, which is a source of 

uncertainty in my community models.  

 

Covariates effects 

Model 1 

Fragment area and isolation were included as covariates affecting species-

specific occupancy estimates. All the estimates of species-specific responses have 



94 
 

large 95% confidence intervals, with most of them overlapping zero. This adds many 

uncertainties to the models, as I cannot distinguish whether the effect is positive or 

negative (Figures 3.1). However, there was an overall positive effect of fragment area 

on metacommunity occupancy probability (β1 = 37.37, 95% CI = 0.07 – 0.22) (Table 

3.5). The mean estimates for species-specific responses are all positive but many 

confidence intervals overlap zero, thus I cannot infer the direction of the relationship 

(Figure 3.1). There were 10 species for which the effect of the covariates was positive, 

but the large CRI highlight the uncertainty in the estimates: Anoura geoffroyi (β1 = 

51.27, CRI: 12.11 – 98.9), Artibeus fimbriatus (β1 = 55.02, CRI: 18.09 – 102.76), 

Chiroderma doriae (β1 = 45.88, CRI: 2.51 – 97.44), Diphylla ecaudata (β1 = 49.35, 

CRI: 8.23 – 100.92), Glossophaga soricina (β1 = 49.03, CRI: 13.89 - 94), Micronycteris 

microtis (β1 = 48.81, CRI: 3.48 – 100.89),  Platyrrhinus lineatus (β1 =42, CRI: 0.08 – 

87.78), Pygoderma bilabiatum (β1 =46.56, CRI: 3.38 – 98.54), Tonatia bidens (β1 = 

46.63, CRI: 3.47 – 99.69), and Vampyressa pusilla (β1 = 54.31, CRI: 14.99 – 105.18) 

(Table 3.6).  

 

The effect of isolation on occupancy probability cannot be reliably differentiated, 

for both the metacommunity and single species responses as they all overlap zero, 

making it impossible to distinguish positive and negative effects (Table 3.6, Figure 

3.10).  

 

Model 2 

Model 2 used the two principal components of habitat complexity measures 

(Delciellos et al. 2016) as covariates affecting species occupancy. All estimates of 

covariate effects in these models are unreliable, as they overlap zero, making it 
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impossible to distinguish positive effects from negative ones (Tables 3.7 and 3.8, 

Figures 3.2).  

Species-specific responses to PCA1 (positive association with watercourses 

and Cecropia trees, negative association with abundance of lianas) shows a decline 

in occupancy rates with the increased presence of water and Cecropia trees and 

absence of lianas (metacommunity mean α1 = -8.32, sd = 6.76, CI = -24.08 – 0.71).  

PCA2 (increased overstory, understory and fallen logs) has a positive effect on 

occupancy (metacommunity mean α2 = 3.05, sd = 3.21, CI: -1.62 – 10.74), but these 

estimates are unreliable as all the 95% confidence intervals overlap zero, making it 

impossible to separate positive from negative effects (Figure 3.2). 

 

 Single species models 

Estimates of detection probabilities ranged from very low (p = 0.01, M. minuta, 

T. bidens, T.cirrhosus) to high (p = 0.8, C. perspicillata). Anoura geoffroyi, D. cinerea, 

D. ecaudata, E. brasiliensis, M. minuta, P. bilabiatum, P. macrotis, Sturnira tildae, T. 

bidens and T. cirrhosus had detection probabilities lower than 0.2 and will not be 

discussed further as, according to MacKenzie et al. (2002), models with detection 

probabilities < 2 have too much uncertainty to be considered valid. From the remaining 

species, A. fimbriatus (p = 0.25, z = 0.004), A. lituratus (p = 0.79,     z = 0.0002), A. 

obscurus (p = 0.39, z = 0.04), C. perspicillata (p = 0.8, z = 0.001), G. soricina (p = 

0.26, z = 0.001), M. nigricans (p = 0.34, z = 0.05) and P. lineatus         (p = 0.29, z = 

0.02) had significant detection probabilities > 0.2.  

All occupancy estimates were not significant and only M. nigricans had a 

significant effect of the covariate (Proximity index) on the non-significant occupancy 

estimate.  
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Discussion 

 

I used the community occupancy model to identify predictors of species 

occupancy in a fragmented landscape of the Atlantic Forest while accounting for 

imperfect detection. Community models 1 and 2 had high variability in parameter 

estimators, as we can see from the posterior confidence intervals that overlap zero for 

many species. The single species models were also not reliable, as most species 

showed low detection rates and non-significant occupancy estimates. The uncertainty 

in the estimates of occupancy and detection probability may be caused by the dataset 

size, with a low number of detections per species. This reflects the natural state of 

these tropical bat communities, which consist of many rare and elusive species. The 

use of hierarchical models in certain situations can be advantageous as this method 

draws power from the whole dataset to enhance the estimation for rare species (Zipkin 

et al. 2009), although their estimates will be pulled towards the community means 

(Link 1999). However, in order to obtain reliable probability estimates, rare species 

need to be detected with greater frequency than in this study. Thus, improving the 

estimates for rare and rarely detected species can only be achieved by the 

accumulation of more data (MacKenzie et al. 2002). Another advantage of the 

community occupancy model is the ability to obtain estimations for every species in a 

community, which is of great value for informing decision makers on the impacts of 

landscape and habitat structure changes caused by natural events, human activity or 

management actions that may affect biodiversity (Kéry et al. 2005; Zipkin et al. 2009, 

2010), but similarly, if the uncertainty surrounding estimates are too large, there is no 

way to differentiate among these responses.  
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Detection Probability of Species in the Fragmented Atlantic Forest 

Mean community detection probability estimates were low in both models, 

averaging p = 0.13 in model 1 (landscape) and p = 0.15 in model 2 (habitat structure). 

According to MacKenzie et al. (2002) occupancy estimates should be taken with 

caution when species have low rates of detection (< 0.2) and few detections (< 7). In 

my study, many species fall into this category:  Anoura caudifer (model 1), Anoura 

geoffroyi (model 1 and 2), Chiroderma doriae (model 1 and 2), Dermanura cinerea 

(model 1 and 2), Diphylla ecaudata (model 1 and 2), Eptesicus brasiliensis (model 1 

and 2), Histiotus velatus (model 1), Micronycteris microtis (model 1 and 2), 

Micronycteris minuta (model 1 and 2), Peropteryx macrotis (model 1 and 2), 

Phyllostomus hastatus (model 1 and 2), Pygoderma bilabiatum (model 1 and 2), 

Sturnira tildae (model 1 and 2), Tonatia bidens (model 1 and 2) and Trachops 

cirrhosus (model 1 and 2). The single species models were not reliable, as either 

species had few detections or estimates were non-significant (Table S3.2). The only 

way of improving these estimates is collecting more data, and even a few additional 

detections could improve the estimates (MacKenzie et al. 2002; Zipkin et al. 2009). 

The low estimates of detection probabilities highlights the necessity for large sampling 

efforts to obtain enough data to use these models, especially in  hyperdiverse biomes 

like rainforests, where many species combine small distributional ranges, low 

detectability rates and low abundance (Gaston 1991; Banks-Leite et al. 2014).  

 

Occupancy estimates 
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Occupancy estimates were very similar between Models 1 and 2, although the 

accuracy of the models is limited as observed in the wide posterior confidence 

intervals, that for some species ranges from 0.01 to 1 (Trachops cirrhosus, Model 2, 

Table 3.4). Mean occupancy rate was high for the whole metacommunity in both 

models, but this needs to be interpreted with caution, as the mean metacommunity 

detection probability is very low (p = 0.13 in model 1, p = 0.15 in model 2) and this 

may cause some inflation of the occupancy parameter, as the model cannot 

distinguish between a species’ absence and lack of detection (MacKenzie et al. 2002). 

Species specific estimates of occupancy were more reliable for species with 

higher rates of detection and which yielded higher rates of occupancy. The correlation 

of high detection probabilities and high occupancy was described by other studies 

(Zipkin et al. 2010; Banks-Leite et al. 2014; Kéry & Royle 2016) and holds true for this 

study as well. The species that had smaller posterior confidence intervals were: 

Artibeus fimbriatus, Artibeus lituratus, Artibeus obscurus, Carollia perspicillata and 

Vampyressa pusilla. The first four species are abundant generalists and are expected 

to be found in most Neotropical bat assemblages (Esbérard 2003; Dias & Peracchi 

2008; Muylaert et al. 2017), and this is no different in my study. This is reflected in the 

high occupancy and detection probability estimates (Tables 3.1 to 3.4). Vampyressa 

pusilla is a small fig-eating phyllostomid bat of the subfamily Stenodermatinae (Lewis 

& Wilson 1987) and it was detected a total of 10 times in four sites, returning a 

detection probability of p = 0.36 in both models and occupancy  ᴪ = 0.35 and ᴪ = 0.37 

for models 1 and 2, showing that it is still possible to generate reliable inferences about 

species occupancy from a few detections. 
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Predictors of species occurrence in the fragmented Atlantic Forest  

Landscape 

Fragment size had a positive effect on all species of the bat metacommunity of 

the Macacú River Basin. This relationship is based on theories of island biogeography 

and the species-area relationships (McArthur & Wilson 1967; Connor & McCoy 1979), 

and also supports several habitat fragmentation studies that concluded that 

continuous forests and large fragments hold more biodiversity than small areas 

(Laurance et al. 2002; Haddad et al. 2015). Zipkin et al. (2009) for example, used the 

community occupancy model to find that fragment area was a good predictor of bird 

richness; of 15 forest interior birds, nine species had their occupancy estimates 

positively impacted by fragment area, while five species had the opposite trend. 

Similarly, bats in a fragmented landscape of Atlantic Forest in Paraguay were more 

abundant in larger sites (Gorresen & Willig 2004), in a scenario similar to my study. In 

general, area is correlated with species diversity and at least for some species, with 

abundance (Laurance et al. 2002; Gorresen & Willig 2004; Zipkin et al. 2009; Haddad 

et al. 2015). Although fragment area has a positive impact on species occupancy, the 

responses to fragment size is very similar for every species in this metacommunity 

and, therefore, is not a good predictor of differential species responses to 

fragmentation. 

The bat metacommunity had heterogeneous responses to the degree of 

isolation of fragments in the landscape. Although the posterior confidence intervals 

were wide and overlapped with zero for all species, and we cannot be certain of the 

real influence of these parameters, the mean values still hold some indication of the 

impact of isolation on different species. A brief examination of the direction of the 



100 
 

association between fragment isolation and occupancy rates shows that half of the 

species had negative associations, while the other half, positive associations. The 

effect of isolation is inversely proportional to a species dispersal ability and body size 

(Cosson et al. 1999), and although bats are mobile species, not all species are able 

to cross open spaces to reach new isolated areas (Meyer 2007; Rocha et al. 2017). 

Most of the species to which isolation had a negative impact includes small or forest 

specialist species like Anoura geoffroyi, Dermanura cinerea, Glossophaga soricina, 

Micronycteris minuta, Peropterix macrotis and Vampyressa pusilla. A notable 

exception is Desmodus rotundus, the vampire bat, that although abundant in most 

fragments, apparently had its occupancy estimates negatively impacted by isolation, 

but again, with such large confidence intervals, this result must be assessed with 

caution. In Mexico, abundance of bats in isolated trees immersed in a pasture matrix 

was inversely proportional to the distance of the tree to the nearest fragment (Galindo-

González & Sosa 2003). In French-Guiana, Cosson et al. (1999) found that the 

response of bats to isolation was variable among species. Although no rare canopy 

frugivores were found in any fragment, there was no increase in abundance of any of 

the taxa observed in these sites after the fragmentation event. The degree of isolation 

of fragments might be a good predictor of the effect of habitat fragmentation on bats, 

as different species have different thresholds of tolerance to the isolation of a 

fragment, but more detections are needed in order to get more reliable information. 

 

Habitat Structure as a Predictor of Occupancy 

I found that the bat metacommunity responded to the two habitat structure 

principal components in different ways. For the first axis of variation (PCA1), the 
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metacommunity occupancy estimates were negatively associated with an increase in 

the abundance of Cecropia trees and a decrease on liana abundance. Although 

Cecropia trees can indicate abundance of food for some bat species (Mello et al. 

2011b), it is also associated with areas in early successional stages (Brokaw & Busing 

2000; Pearson et al. 2003). On the second axis (PCA2), the metacommunity mean 

occupancy estimates crossed zero and therefore I can’t identify if the community had 

a positive or negative association with increased overstory, understory and decreased 

frequency of fallen logs. One of the impacts of fragmentation is a decrease of the 

overstory and understory vegetation density, and although this covariate should not 

be used as a proxy for disturbance, there are species that thrive at both ends of this 

metric (Delciellos et al. 2016). For bats, an increase of the overstory and understory 

vegetation corresponds to increased availability of resources in the form of roosts, 

fruits and prey abundance. The heterogeneous responses of bat metacommunity 

suggests that occupancy may be higher in sites with higher structural complexity, 

which might be related to the availability of food and roosts, but these are mean 

estimates and might be heavily influenced by the most abundant taxa (i.e. Carollia 

perspicillata, Artibeus lituratus) that thrive in disturbed habitat characterised by 

vegetation edges (Faria et al. 2006). On the other hand, when the species-specific 

responses in the community models are inspected, there is significant variation, as 

expected in such an ecologically-diverse metacommunity. If these results hold true 

after accumulation of more data, it would suggest that bat metacommunity diversity 

could be maximised under a regime of low disturbance level at the landscape-scale 

(the intermediate disturbance hypothesis) (Roxburgh et al. 2004; Shea et al. 2004), 

which would retain enough of the heterogeneous habitat structure for the persistence 

of most of the species in the community. This is a pattern described for many taxa 
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(Roxburgh et al. 2004), from corals (Aronson & Precht 1995) to birds (Zipkin et al. 

2009; Banks-Leite et al. 2013), and in aquatic (Townsend et al. 2014) and terrestrial 

(Molino & Sabatier 2001) environments. Villard et al. (1999) concluded that although 

fragment area is a better predictor of bird richness in Ontario, Canada, habitat 

structure influenced the occurrence of half of the species in their study, and thus 

should be incorporated in conservation planning. In the same region as my study, 

Delciellos et al. (2016) showed that habitat quality was a better predictor of small 

mammals abundance than landscape and land use metrics, because it captured most 

of the variability in the responses among different species. 

The phyllostomid bat metacommunity in the study area has a nested structure, 

with the variation following the gradient of fragment isolation (Chapter 2), while other 

studies in the Atlantic Forest showed that habitat structure is a good predictor of small 

mammal abundance and occurrence (Pardini et al. 2005; Delciellos et al. 2016). In my 

study, the wide posterior estimates do not allow a conclusion about the best predictors 

of species-specific occupancy estimates, but there is an indication that isolation and 

habitat structure have more heterogeneous responses of bat species.  In the Cerrado, 

a Neotropical savannah north of my study location in Brazil, Mendes et. al. (2017) 

assessed the effect of landscape configuration and habitat structure in the occupancy 

of eight bat species using single species occupancy models for each of them. Myotis 

nigricans, Platyrrhinus lineatus and Sturnira lilium occurrences were better predicted 

by landscape configuration, while Desmodus rotundus, Glossophaga soricina and 

Platyrrhinus incarum occurrences were better predicted by habitat configuration. 

These studies used single species models, and only with species that had enough 

detections in the sampling areas (Mendes et al. 2017). In my study, M. nigricans was 

the only species that allowed that kind of inference and it was also better predicted by 
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landscape properties, but most single species models’ results were not different from 

my community occupancy model as they both did not offer reliable estimates. The 

occupancy models, be it either at single species or community level) should then be 

used when there is a large number of sampling occasions with a big dataset of species 

occurrence, most species with detection rates > 0.2 and at least seven detections 

(MacKenzie et al. 2002). When these conditions are not met, other methods that use 

presence only might be more reliable (Kéry & Royle 2016). Although single species 

models don’t allow inferences about the whole community, they may be an option for 

most abundant species, when they can provide estimates that are precise, different 

than community occupancy models when there are many rare species.  

The results of my study indicate that the bat metacommunity is dominated by a 

few very abundant and easily detected species and many rare and elusive species. 

Accounting for imperfect detection is useful to obtain better estimates of species 

occurrence and species richness, but it needs large sampling effort in order to have 

enough detection of rare and rarely detected species to provide reliable estimates.  
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Figure 3.1: Outputs of community model 1 (landscape). 3.1A: Occupancy estimates 
for model 1. The x-axis represents the mean occupancy of each of the 26 species in 
the metacommunity. The y- axis correspond to species numbers and follows the ID 
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number from the tables. 3.2B: Detection probability estimates for Model 1. The x-axis 
represents the mean detection probability of each of the 26 species in the 
metacommunity. The y- axis correspond to species numbers and follows the ID 
number from the tables. 3.1C: Effect of area on occupancy estimates in Model 1, the 
landscape model. X-axis represents the estimates of parameter β1 on model 1 in the 
logit scale. Horizontal lines represent the posterior confidence intervals, with the blue 
lines corresponding to those estimates that do not overlap zero. The y- axis 
correspond to species numbers and follows the ID number from the tables. 3.1D: 
Effect of isolation on occupancy estimates in Model 1.  X-axis represents the 
estimates of parameter β2 on Model 1 in the logit scale. Horizontal lines represent 
the posterior confidence intervals. The y- axis correspond to species numbers and 
follows the ID number from the tables. 3.1E: Predicted values of occupancy 
depending on fragment area. Each line corresponds to one species. X-axis 
correspond to different fragment sizes, log transformed, and y-axis is the expected 
occupancy. Wide posterior confidence intervals  for individual species don’t allow 
inferences about the effect of area in occupancy estimates. 3.1F: Predicted values of 
occupancy depending on fragment isolation. Each line corresponds to one species. 
X-axis correspond to different fragment isolation and y-axis is the expected 
occupancy. Wide posterior confidence intervals  for individual species don’t allow 
inferences about the effect of isolation in occupancy estimates. 
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Figure 3.2: Outputs of community model 2 (habitat structure). 3.2A: Occupancy 
estimates for model 2. The x-axis represents the mean occupancy of each of the 26 
species in the metacommunity. The y- axis correspond to species numbers and 
follows the ID number from the tables. 3.2B: Detection probability estimates for 
model 2. The x-axis represents the mean detection probability of each of the 26 
species in the metacommunity. The y- axis correspond to species numbers and 
follows the ID number from the tables. 3.2C: Effect of PCA1 on occupancy estimates 
in model 2.  X-axis represents the estimates of parameter β1 on model 2 in the logit 
scale. Horizontal lines represent the posterior confidence intervals. The y- axis 
correspond to species numbers and follows the ID number from the tables. 3.2D: 
Effect of PCA2 on occupancy estimates in model 2. X-axis represents the estimates 
of parameter β2 on model 2 in the logit scale. Horizontal lines represent the posterior 
confidence intervals. The y- axis correspond to species numbers and follows the ID 
number from the tables. 3.2E: Predicted values of occupancy depending on PCA1 
value. Each line corresponds to one species. X-axis correspond to PCA1 values and 
y-axis is the expected occupancy. Wide posterior confidence intervals for individual 
species don’t allow inferences about the effect of habitat structure in occupancy 
estimates. 3.2F: Predicted values of occupancy depending on PCA2 value. Each line 
corresponds to one species. X-axis correspond to PCA2 values and y-axis is the 
expected occupancy. Wide posterior confidence intervals for individual species don’t 
allow inferences about the effect of habitat structure in occupancy estimates. 
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Table 3.1: Mean detection probability estimates with their standard deviation (sd) 
and posterior confidence interval from community model 1 (landscape). Rhat is the 
"potential scale reduction factor”, values < 1.1 indicates that the model converged. 

ID Detection probability - Model 1 mean sd 2.50% 97.50% Rhat 

 metacommunity 0.13 0.58 0.07 0.22 1 

1 Anoura caudifer 0.14 0.05 0.06 0.26 1 

2 Anoura geoffroyi 0.14 0.05 0.05 0.28 1 

3 Artibeus fimbriatus 0.23 0.06 0.11 0.38 1 

4 Artibeus lituratus 0.71 0.05 0.61 0.81 1 

5 Artibeus obscurus 0.36 0.05 0.26 0.47 1 

6 Carollia perspicillata 0.79 0.04 0.69 0.87 1 

7 Chiroderma doriae 0.05 0.04 0.01 0.17 1 

8 Dermanura cinerea 0.11 0.03 0.05 0.19 1 

9 Desmodus rotundus 0.38 0.06 0.27 0.51 1 

10 Diphylla ecaudata 0.09 0.06 0.01 0.25 1 

11 Eptesicus brasiliensis 0.08 0.03 0.03 0.15 1 

12 Glossophaga soricina 0.25 0.05 0.14 0.37 1 

13 Histiotus velatus 0.07 0.08 0.02 0.35 1.07 

14 Micronycteris microtis 0.07 0.04 0.01 0.18 1 

15 Micronycteris minuta 0.07 0.03 0.02 0.16 1 

16 Myotis nigricans 0.2 0.04 0.12 0.31 1 

17 Myotis riparius 0.15 0.04 0.07 0.25 1 

18 Peropteryx macrotis 0.05 0.04 0.01 0.14 1.01 

19 Phyllostomus hastatus 0.12 0.04 0.06 0.22 1 

20 Platyrrhinus lineatus 0.21 0.05 0.12 0.33 1 

21 Pygoderma bilabiatum 0.05 0.04 0.01 0.17 1 

22 Sturnira lilium 0.48 0.05 0.37 0.59 1 

23 Sturnira tildae 0.14 0.03 0.08 0.23 1 

24 Tonatia bidens 0.05 0.04 0.01 0.17 1 

25 Trachops cirrhosus 0.04 0.03 0.01 0.13 1 

26 Vampyressa pusilla 0.36 0.09 0.18 0.56 1 
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Table 3.2: Mean detection probability estimates with their standard deviation (sd) 
and posterior confidence interval from community model 2. Rhat is the "potential 
scale reduction factor”, values < 1.1 indicates that the model converged. 

ID 
Detection probability - Model 
2 mean sd 2.50% 97.50% Rhat 

  metacommunity 0.15 0.58 0.08 0.25 1.00 

1 Anoura caudifer 0.17 0.11 0.05 0.47 1.00 

2 Anoura geoffroyi 0.14 0.06 0.05 0.29 1.00 

3 Artibeus fimbriatus 0.17 0.06 0.07 0.31 1.00 

4 Artibeus lituratus 0.71 0.05 0.61 0.81 1.00 

5 Artibeus obscurus 0.36 0.05 0.26 0.47 1.00 

6 Carollia perspicillata 0.79 0.05 0.69 0.87 1.00 

7 Chiroderma doriae 0.06 0.06 0.01 0.24 1.00 

8 Dermanura cinerea 0.11 0.04 0.05 0.20 1.00 

9 Desmodus rotundus 0.45 0.08 0.29 0.61 1.00 

10 Diphylla ecaudata 0.10 0.07 0.01 0.27 1.00 

11 Eptesicus brasiliensis 0.10 0.05 0.03 0.24 1.00 

12 Glossophaga soricina 0.19 0.05 0.11 0.32 1.00 

13 Histiotus velatus 0.32 0.19 0.03 0.71 1.00 

14 Micronycteris microtis 0.07 0.05 0.01 0.19 1.00 

15 Micronycteris minuta 0.07 0.04 0.02 0.17 1.00 

16 Myotis nigricans 0.21 0.06 0.12 0.37 1.00 

17 Myotis riparius 0.20 0.07 0.09 0.37 1.00 

18 Peropteryx macrotis 0.08 0.09 0.01 0.38 1.00 

19 Phyllostomus hastatus 0.13 0.07 0.05 0.33 1.01 

20 Platyrrhinus lineatus 0.19 0.05 0.11 0.32 1.00 

21 Pygoderma bilabiatum 0.06 0.06 0.01 0.23 1.00 

22 Sturnira lilium 0.48 0.06 0.37 0.59 1.00 

23 Sturnira tildae 0.14 0.04 0.08 0.23 1.00 

24 Tonatia bidens 0.06 0.06 0.01 0.23 1.00 

25 Trachops cirrhosus 0.04 0.04 0.01 0.15 1.00 

26 Vampyressa pusilla 0.36 0.10 0.17 0.56 1.00 
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Table 3.3: Mean occupancy estimates with their standard deviation (sd) and 
posterior confidence interval from community model1. Rhat is the "potential scale 
reduction factor”, values < 1.1 indicates that the model converged. 

ID Occupancy - Model 1 mean sd 2.50% 97.50% Rhat 

 metacommunity 1 0.99 0.99 1 1.02 

1 Anoura caudifer 0.68 0.26 0.19 1 1.01 

2 Anoura geoffroyi 0.57 0.21 0.37 1 1.00 

3 Artibeus fimbriatus 0.5 0.14 0.36 0.76 1.02 

4 Artibeus lituratus 1 0.02 0.96 1 1.03 

5 Artibeus obscurus 1 0.02 0.96 1 1.01 

6 Carollia perspicillata 1 0.02 0.96 1 1.01 

7 Chiroderma doriae 0.53 0.34 0.23 1 1.00 

8 Dermanura cinerea 0.96 0.1 0.74 1 1.02 

9 Desmodus rotundus 0.93 0.09 0.78 1 1.01 

10 Diphylla ecaudata 0.43 0.3 0.23 1 1.00 

11 Eptesicus brasiliensis 0.93 0.18 0.55 1 1.01 

12 Glossophaga soricina 0.71 0.12 0.58 0.99 1.01 

13 Histiotus velatus 0.83 0.33 0.01 1 1.01 

14 Micronycteris microtis 0.56 0.31 0.27 1 1.00 

15 Micronycteris minuta 0.71 0.26 0.39 1 1.02 

16 Myotis nigricans 0.93 0.13 0.71 1 1.00 

17 Myotis riparius 0.9 0.2 0.54 1 1.01 

18 Peropteryx macrotis 0.72 0.31 0.1 1 1.01 

19 Phyllostomus hastatus 0.87 0.17 0.6 1 1.01 

20 Platyrrhinus lineatus 0.83 0.14 0.68 1 1.02 

21 Pygoderma bilabiatum 0.53 0.34 0.23 1 1.01 

22 Sturnira lilium 1 0.02 0.96 1 1.01 

23 Sturnira tildae 0.99 0.05 0.86 1 1.01 

24 Tonatia bidens 0.52 0.34 0.23 1 1.00 

25 Trachops cirrhosus 0.65 0.36 0.05 1 1.01 

26 Vampyressa pusilla 0.35 0.1 0.24 0.52 1.02 
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Table 3.4: Mean occupancy estimates with their standard deviation (sd) and 
posterior confidence interval from community model 2. Rhat is the "potential scale 
reduction factor”, values < 1.1 indicates that the model converged. 

ID Occupancy - Model 2 mean sd 2.50% 97.50% Rhat 

 metacommunity 0.99 0.99 0.71 1 1.02 

1 Anoura caudifer 0.73 0.37 0.04 1.00 1.01 

2 Anoura geoffroyi 0.59 0.27 0.26 1.00 1.01 

3 Artibeus fimbriatus 0.73 0.24 0.33 1.00 1.01 

4 Artibeus lituratus 0.99 0.03 0.93 1.00 1.02 

5 Artibeus obscurus 0.99 0.03 0.93 1.00 1.02 

6 Carollia perspicillata 0.99 0.03 0.93 1.00 1.02 

7 Chiroderma doriae 0.52 0.39 0.06 1.00 1.01 

8 Dermanura cinerea 0.93 0.15 0.50 1.00 1.01 

9 Desmodus rotundus 0.81 0.19 0.43 1.00 1.00 

10 Diphylla ecaudata 0.44 0.34 0.14 1.00 1.01 

11 Eptesicus brasiliensis 0.74 0.32 0.20 1.00 1.01 

12 Glossophaga soricina 0.95 0.13 0.53 1.00 1.03 

13 Histiotus velatus 0.20 0.31 0.00 1.00 1.04 

14 Micronycteris microtis 0.60 0.34 0.20 1.00 1.01 

15 Micronycteris minuta 0.73 0.30 0.25 1.00 1.01 

16 Myotis nigricans 0.95 0.14 0.47 1.00 1.02 

17 Myotis riparius 0.68 0.27 0.25 1.00 1.01 

18 Peropteryx macrotis 0.64 0.42 0.00 1.00 1.00 

19 Phyllostomus hastatus 0.93 0.19 0.23 1.00 1.03 

20 Platyrrhinus lineatus 0.96 0.12 0.55 1.00 1.02 

21 Pygoderma bilabiatum 0.53 0.39 0.06 1.00 1.01 

22 Sturnira lilium 0.99 0.03 0.93 1.00 1.02 

23 Sturnira tildae 0.99 0.06 0.84 1.00 1.02 

24 Tonatia bidens 0.53 0.39 0.06 1.00 1.01 

25 Trachops cirrhosus 0.68 0.39 0.01 1.00 1.00 

26 Vampyressa pusilla 0.37 0.18 0.18 0.77 1.01 
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Table 3.5: Effect of area on occupancy estimates with their standard deviation (sd) 
and posterior confidence interval from community model 1. Rhat is the "potential 
scale reduction factor”, values < 1.1 indicates that the model converged. 

ID β1 Model 1 mean sd 2.50% 97.50% Rhat 

  metacommunity 37.47 14.34 12.62 67.95 1.03 

1 Anoura caudifer 44.72 26.21 -18.65 93.91 1 

2 Anoura geoffroyi 51.27 22.15 12.11 98.9 1 

3 Artibeus fimbriatus 55.02 21.77 18.09 102.76 1 

4 Artibeus lituratus 23.15 20.17 -10.21 66.13 1 

5 Artibeus obscurus 23.11 20.15 -10.04 66.15 1 

6 Carollia perspicillata 23.31 20.2 -10.12 66.3 1 

7 Chiroderma doriae 45.88 24.22 2.51 97.44 1 

8 Dermanura cinerea 27.14 20.76 -8.82 70.79 1 

9 Desmodus rotundus 32.94 20.42 -0.98 76.98 1 

10 Diphylla ecaudata 49.35 23.97 8.23 100.92 1.01 

11 Eptesicus brasiliensis 21.35 26.72 -32.56 70.17 1 

12 Glossophaga soricina 49.03 20.35 13.89 94 1 

13 Histiotus velatus 27.13 26.29 -24.76 76.57 1.01 

14 Micronycteris microtis 48.81 24.8 3.48 100.89 1.01 

15 Micronycteris minuta 44.64 23.48 -0.04 93.31 1.01 

16 Myotis nigricans 28.47 21.49 -10.72 72.57 1.01 

17 Myotis riparius 19 31.9 -38.74 75.15 1 

18 Peropteryx macrotis 39.33 26.65 -17.39 91.16 1 

19 Phyllostomus hastatus 36.3 21.99 -4.78 81.78 1 

20 Platyrrhinus lineatus 42 21.47 0.08 87.78 1 

21 Pygoderma bilabiatum 46.56 24.19 3.38 98.54 1 

22 Sturnira lilium 23.28 20.22 -10.14 66.25 1 

23 Sturnira tildae 24.1 20.23 -9.9 67.13 1 

24 Tonatia bidens 46.63 24.61 3.47 99.69 1 

25 Trachops cirrhosus 43.04 26.71 -12.79 96.41 1 

26 Vampyressa pusilla 54.31 23.43 14.99 105.18 1.01 
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Table 3.6: Effect of isolation on occupancy estimates with their standard deviation 
(sd) and posterior confidence interval from community model 1. Rhat is the "potential 
scale reduction factor”, values < 1.1 indicates that the model converged. 

ID β2 - Model1 mean sd 2.50% 97.50% Rhat 

 metacommunity 0.19 2.86 -5.41 6.21 1 

1 Anoura caudifer 0.6 5.01 -9.55 10.43 1 

2 Anoura geoffroyi -0.94 4.49 -9.4 8.4 1 

3 Artibeus fimbriatus -1.49 3.69 -9 5.92 1 

4 Artibeus lituratus 1 5.05 -8.24 12.64 1 

5 Artibeus obscurus 1.07 5.17 -8.15 13.03 1 

6 Carollia perspicillata 1.03 5.08 -8.16 12.67 1 

7 Chiroderma doriae -0.05 5.9 -11.94 13.03 1 

8 Dermanura cinerea -1.24 6.05 -15.22 10.59 1 

9 Desmodus rotundus -2.47 5.18 -14.26 7.19 1.01 

10 Diphylla ecaudata -0.33 5.69 -12.14 11.69 1 

11 Eptesicus brasiliensis 0.47 6.34 -11.17 15.29 1 

12 Glossophaga soricina -0.92 4.1 -9.66 6.56 1.01 

13 Histiotus velatus 1.39 6.6 -10.16 17.62 1 

14 Micronycteris microtis 1.32 5.71 -8.73 14.47 1 

15 Micronycteris minuta -0.44 5.04 -10.2 10.58 1 

16 Myotis nigricans 3.22 6.07 -6.96 16.77 1.01 

17 Myotis riparius -0.25 5.47 -11.04 11.89 1 

18 Peropteryx macrotis -1.01 6.11 -14.42 10.57 1 

19 Phyllostomus hastatus 1.31 6.06 -10.27 14.78 1 

20 Platyrrhinus lineatus 1.19 4.96 -8.94 11.48 1 

21 Pygoderma bilabiatum -0.02 5.91 -11.8 12.63 1 

22 Sturnira lilium 1.07 5.1 -8.08 12.8 1 

23 Sturnira tildae 1.85 6 -7.84 16.99 1 

24 Tonatia bidens -0.2 5.88 -12.34 12.22 1 

25 Trachops cirrhosus 1.12 5.73 -9.09 14.48 1 

26 Vampyressa pusilla -2.92 5.19 -14 6.86 1 
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Table 3.7: Effect of PCA hab1 on occupancy estimates with their standard deviation 
(sd) and posterior confidence interval from community model 2. Rhat is the "potential 
scale reduction factor”, values < 1.1 indicates that the model converged. 

ID α1 - Model 2 mean sd 2.50% 97.50% Rhat 
  metacommunity -8.32 6.76 -24.08 0.71 1.04 

1 Anoura caudifer -3.73 19.12 -48.72 34.35 1.02 
2 Anoura geoffroyi -13.95 14.45 -51.78 1.46 1.01 
3 Artibeus fimbriatus -15.72 16.61 -57.29 4.43 1.01 
4 Artibeus lituratus -4.07 10.05 -28.85 14.68 1 
5 Artibeus obscurus -4.15 10.12 -29.27 14.57 1 
6 Carollia perspicillata -4.2 10.09 -28.97 14.48 1 
7 Chiroderma doriae -12.67 14.54 -50.72 5.09 1.01 
8 Dermanura cinerea -8.31 13.73 -43.1 13.12 1 
9 Desmodus rotundus -6.14 8.26 -27.28 5.58 1.01 

10 Diphylla ecaudata -14.25 14.45 -51.59 1.71 1 
11 Eptesicus brasiliensis 1.25 11.52 -23.52 28.82 1 
12 Glossophaga soricina -6.28 11.35 -34.55 13.67 1 
13 Histiotus velatus 7.61 9.23 -5.67 29.6 1.01 
14 Micronycteris microtis -14.31 16.17 -56.06 5.54 1.01 
15 Micronycteris minuta -11.67 14.56 -49.76 7.46 1.01 
16 Myotis nigricans -2.79 10.49 -28.08 17.17 1 
17 Myotis riparius 6.02 10.82 -14.58 31.81 1 
18 Peropteryx macrotis -4.72 15.85 -43.72 25.31 1.01 
19 Phyllostomus hastatus -3.82 10.03 -28.7 13.99 1 
20 Platyrrhinus lineatus -3.13 10.57 -28.88 16.97 1 
21 Pygoderma bilabiatum -13.06 15.03 -52.19 5.16 1.01 
22 Sturnira lilium -4.26 10.14 -29.1 14.57 1 
23 Sturnira tildae -4.2 10.15 -29.34 14.48 1 
24 Tonatia bidens -12.57 14.52 -49.98 5.88 1.01 
25 Trachops cirrhosus -10.11 16.97 -52.27 18.93 1.01 
26 Vampyressa pusilla -11.06 11.15 -42.3 -1.32 1.01 
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Table 3.8: Effect of PCA hab2 on occupancy estimates with their standard deviation 
(sd) and posterior confidence interval from community model 2. Rhat is the "potential 
scale reduction factor”, values < 1.1 indicates that the model converged. 

ID α2 - Model 2 mean sd 2.50% 97.50% Rhat 

  community 3.05 3.21 -1.62 10.74 1.02 

1 Anoura caudifer 0.29 5.18 -11.03 11.85 1.01 

2 Anoura geoffroyi 5.23 6.99 -3.34 23.43 1.01 

3 Artibeus fimbriatus 1.38 5.06 -9.46 13.1 1 

4 Artibeus lituratus 2.13 5.65 -8.56 15.97 1 

5 Artibeus obscurus 2.18 5.48 -7.88 15.92 1 

6 Carollia perspicillata 2.07 5.48 -8.5 15.34 1 

7 Chiroderma doriae 2.52 6.7 -8.8 19.53 1 

8 Dermanura cinerea 1.74 5.52 -9.46 14.1 1 

9 Desmodus rotundus 3.03 4.33 -3.02 13.7 1.01 

10 Diphylla ecaudata 2.06 6.19 -8.77 17.02 1.01 

11 Eptesicus brasiliensis 5.8 8.42 -4.19 28.84 1.01 

12 Glossophaga soricina 1.4 5.5 -9.56 14.92 1 

13 Histiotus velatus 2.58 4.85 -3 14.51 1.02 

14 Micronycteris microtis 3.04 6.96 -7.61 21.26 1.01 

15 Micronycteris minuta 4.46 7.14 -5.67 22.9 1 

16 Myotis nigricans 1.84 5.46 -8.54 15.17 1 

17 Myotis riparius 5.95 7.94 -3.69 26.67 1 

18 Peropteryx macrotis 4.25 7.29 -6.3 23 1 

19 Phyllostomus hastatus 1.5 6.31 -11.55 14.48 1.01 

20 Platyrrhinus lineatus 2.01 5.4 -8.14 15.11 1 

21 Pygoderma bilabiatum 2.49 6.84 -8.84 18.99 1 

22 Sturnira lilium 2.18 5.58 -8.34 15.86 1 

23 Sturnira tildae 2.18 5.49 -8.18 15.65 1 

24 Tonatia bidens 2.15 6.42 -9.58 17.89 1 

25 Trachops cirrhosus 2.55 6.84 -10.03 19.31 1.01 

26 Vampyressa pusilla -3.24 4.75 -15.87 1.58 1.01 
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The effects of habitat loss and 

fragmentation on bat-plant mutualistic 

networks 

 

ABSTRACT 

 

Network theory offers a robust mathematical framework to characterise 

ecological systems and predict how they will respond to environmental disturbances. 

Habitat fragmentation reduces habitat amount available and causes a reorganization 

of the landscape, resulting in smaller habitat patches and increased isolation between 

them. These landscape changes have cascading effects on ecological systems and 

can cause the loss of biodiversity and a reduction in ecological services. Of particular 

conservation interest is the role of seed dispersal within modified landscapes. Animals 

are responsible for most of seed dispersal in rainforests, and bats are of notable 

importance in the Neotropics. One of the challenges of interactions studies is the 

identification of all the species taking part in the interaction network, as the direct 

observation of an interaction can be difficult, resulting in a lack of taxonomic resolution. 

One solution to this problem is the adoption of new methodologies like DNA barcoding, 

which uses short standardised DNA sequences, or a combination of sequences, to 

give an unambiguous identification. This method can be used to identify species from 

traces material, such as hairs, degraded tissues and faecal matter, excluding the need 

to directly observe an interaction. To assess the changes in network structure caused 
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by fragment area reduction and increased isolation, I reconstructed mutualistic 

networks involving bats and plants in a fragmented landscape of Atlantic Forest using 

DNA barcode to identify plant material contained in bat guano. I found that network 

structure is largely maintained, but that network nestedness increases with area and 

isolation. These results show that although smaller fragments have a species poor bat 

fauna, the seed dispersal process is still ensured by generalist species that persist in 

these highly altered sites and consume a wide range of fruits. 
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Introduction 

 

The use of networks in ecological systems was pioneered by Odum and 

Lindenman, who used the approach to represent food webs in riverine habitats more 

than 75 years ago (Lindeman 1942; Odum 1956). Network theory has advanced 

considerably and today provides a robust mathematical framework to study a broad 

range of subjects. The elements that form a network are represented as nodes and 

can correspond to a wide variety of biological entities, from genes (Guet et al. 2002), 

proteins, individuals, families and social groups (Bascompte & Jordano 2007) through 

to biological species (Hagen et al. 2012), functional groups (Kratina et al. 2014) and 

habitat fragments in a landscape (Teixeira et al. 2014). Interactions between nodes 

are represented as “links” and nodes and links can be weighted to represent 

frequencies, abundances, or strengths of the interactions. Networks can be used to 

measure the structure of a system (Bastolla et al. 2009) or monitor changes to the 

dynamics of the system over time (Olesen et al. 2011a; Rasmussen et al. 2013). 

The use of network theory in ecology can help us understand how complex 

ecological communities are structured, and networks can be used to predict how these 

communities will respond to environmental perturbations (Bascompte 2007; Ings et al. 

2009; Albouy et al. 2014). Ecological networks can be separated into three main types; 

these are “traditional” food webs that usually involve predator-prey interactions (Ings 

et al. 2009), host-parasitoid webs that involve interactions between parasites and their 

hosts (Ings et al. 2009), and mutualistic networks that have interactions that are 

beneficial for both parties (Bascompte 2009). Mutualistic networks can comprise some 

of the most important ecological services attributed to natural systems (Costanza et 
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al. 1998; Kunz et al. 2011), with the two most commonly studied mutualisms in a 

network context being pollination and seed dispersal (Bascompte 2009; Ings et al. 

2009). These networks tend to have a nested structure (Krishna et al. 2008), with a 

few generalist species that dominate the links, forming hubs that connect different 

parts of the network. Specialists have fewer links, usually a subset of the links from a 

generalist species (Montoya et al. 2006; Ings et al. 2009). A long-standing debate in 

ecology is whether the complexity of interactions imposed by a large number of 

specialists also brings stability to the ecosystems (McCann 2000) by spreading links 

among a larger number of species rather than concentrating these among a few 

central connecting species. This functional redundancy is thought to buffer the system 

against species loss. In general, the stability of ecosystems, and the services they 

provide, appears to depend on the preservation of species and functional groups 

capable of different responses to perturbations (McCann 2000; Ings et al. 2009). In 

this way, the maintenance of specific functional modules is an important measure of 

an ecosystem. 

Until recently most ecological network studies have focused mainly on ‘global’ 

(i.e. network-wide) descriptors (Bascompte 2007), such as connectance (Memmott et 

al. 2000), linkage density (Sole & Montoya 2001), modularity (Fortuna et al. 2010; 

Mello et al. 2011b) and centrality (Memmott et al. 2000; Sole & Montoya 2001; 

Woodward & Hildrew 2002), with less emphasis on node-specific characteristics. One 

of the main criticisms of network ecology is the lack of resolution and the related 

taxonomic biases in the identification of nodes included in the network (Symondson 

2002; Ings et al. 2009). For example, Hemprich-Bennett et al. (2018) recently 

demonstrated that even small changes in node resolution can have drastic effects on 

network quantification with most common network metrics showing strong 
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dependency on the degree of network resolution. In this study the authors also suggest 

that absolute values for most network metrics are likely more dependent on node 

resolution than on actual network and biological properties, and advocate for relative 

quantification instead (Hemprich-Bennett et al. 2018). Connectance, for example, is a 

metric that can be heavily influenced by the node resolution, with the clustering of a 

node changing the number of possible links and the strength of interactions 

(Hemprich-Bennett et al. 2018). Another known issue in network ecology studies is 

how networks are sampled and reconstructed. Many studies were based on 

unrepilcated designs, with data aggregated from different points in time and space or 

just based on the presence or absence of species in an area. Replicated networks 

along an environmental gradient can advance our understanding of community 

change and ecosystem function in face of disturbances (Ma et al. 2018). The challenge 

then is to provide well resolved and replicated networks that can be scaled up to study 

landscape level processes.  

Habitat loss and fragmentation are major processes affecting landscapes 

across the globe, and typically involve loss of suitable habitats and the breaking apart 

of once-continuous habitats, respectively. When co-occurring, these processes lead 

to a decrease in absolute habitat area, while simultaneously increasing the number of 

patches, their degree of isolation, and the proportion of edges (Fahrig 2003). These 

dual impacts have become a major issue in conservation due to their predominantly 

negative impacts on biodiversity (Fahrig 2003; Fletcher et al. 2018). Although we can 

assess the relative impacts of these two processes separately in mathematical models 

and controlled experiments (Fahrig 1997), in the real world habitat loss and 

fragmentation are usually correlated (Fletcher et al. 2018). In a meta-analysis of the 

relationship of habitat loss and population decline, Bender et al. (1998) predict that 
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populations of edge specialists and generalist species that use both edge and forest 

interior habitats will be affected by habitat loss but when habitat loss is associated with 

fragmentation, the impact on forest specialists populations will be greater, than the 

impact on edge specialists.   

A few studies argue that when fragmentation is decoupled from habitat loss it 

may have positive effects on biodiversity (Fahrig 2017; Fahrig et al. 2018), but Fletcher 

et al. (2018) refuted these arguments and suggest that habitat fragmentation can 

directly impact diversity (genetic diversity, species’ abundance or richness), and also 

lead to alterations to ecological dynamics (species interactions, population growth, 

predation rates, and reductions in ecological services) (Fahrig 2003; Struebig et al. 

2011; Hagen et al. 2012; Haddad et al. 2015). Long-term studies of habitat 

fragmentation have revealed that intact forest tends to host higher levels of biodiversity 

than fragmented and altered areas (Laurance et al. 2002; Laurance 2008). Results 

from the Biological Dynamics of Forest Fragments Project in the Brazilian Amazon 

show that many large mammals, primates, understory birds and even several species 

of highly mobile insects are significantly affected by the fragmentation processes 

(Laurance et al. 2002). In this study many species were absent even in the largest 

fragments studied while others persisted even in the smaller fragments demonstrating 

species-specific responses to fragmentation with a tendency towards survival of only 

edge and matrix habitats specialists (Laurance et al. 2002; Martensen et al. 2008). In 

the Argentinean Chaco, a study assessing the vulnerability of plants, leaf-miners and 

parasotoids found that habitat loss and fragmentation had different effects in species 

with different ecological niche breadth (specialists and generalists), rarity (common 

and rare) and in species from different trophic levels. Specialists, rare species and 
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species from higher trophic levels were more affected by habitat loss than generalists, 

common species and species from lower trophic levels (Cagnolo et al. 2009).  

While changes in species composition and abundance due to fragmentation 

will certainly have an impact on the interaction between species (Valiente-Banuet et 

al. 2015), it is not always clear how network structure changes in the face of habitat 

loss and fragmentation (Evans et al. 2013).  

In a study assessing the effect of habitat loss on the structure of plant-animal 

mutualistic networks, Fortuna & Bascompte (2006) found that real communities 

decline faster in face of habitat loss than random communities, but real communities 

have a tendency to persist longer than random ones because they contain a few 

species with a disproportionate number of connections which contribute to the 

robustness of real networks. Evans et al. (2013) studied how interaction networks 

change in a heterogenous farmland landscape and concluded that networks are 

robust to habitat loss, but different habitat types may have a disproportionate 

contribution to regional network structure. Pollinator-plant networks in sandhill habitats 

in north Florida showed that habitat loss may affect network architecture by changing 

species richness, composition and abundance within habitat patches, with reduced 

species richness and abundance being correlated with reduced nestedness and 

increased modularity (Spiesman & Inouye 2013).  

In a study in a fragmented area of the Atlantic Forest of northeast Brazil Girão 

et al. (2007) concluded that fragmentation led to a decline in the number of pollinator-

plant interactions, and in some cases the complete disappearance of some of the 

modules of the mutualistic networks present in the control area. A study in a 

fragmented aquatic ecosystem using stable isotopes to measure niche breadth of top 
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predators showed a collapse of niche breadth related to a significant reduction of prey 

availability (Layman et al. 2007). In another case involving herbivores, parasitoids and 

plants, fragmentation and patch size reduction led to impoverished plant-herbivore 

and host parasitoid food webs and changes in network properties, most notably an 

increase in connectance due to the loss of specialists, and an increase in generalism 

with fewer links in the network concentrated around a few generalist species. These 

changes in network properties were mostly driven by species loss in smaller fragments 

(Valladares et al. 2012).  

The Atlantic Forest of Brazil was once one of the largest rainforests in the world, 

with highly heterogeneous environmental conditions (Myers et al. 2000; Ribeiro et al. 

2009). Because of its exceptional biodiversity and endemism levels the Atlantic Forest 

was classified as a global hotspot for biological conservation (Myers et al. 2000). 

However, this forest has a long history of large-scale clearance and only 11-16% of 

forest cover is left, distributed over 200,000 fragments, with 97% of the forest patches 

smaller than 250 ha and 83.4% smaller than 50 ha (Ribeiro et al. 2009). Many of these 

fragments are several decades old and, in a few cases, date from the early 1800s 

(Ribeiro et al. 2009). As a result, the Atlantic Forest can provide insights into the long-

term impacts of habitat loss and fragmentation on biodiversity and ecosystem function, 

which in turn have important implications for understanding the consequences of 

current clearance in Amazonia and SE Asia. In addition to the history of land-use 

modification, the loss of Atlantic Forest continues today, in particular, due to the 

expansion of agricultural land and pasture, and illegal logging (Dean 1996). As such, 

there is an urgent need to understand the impact of on-going fragmentation on this 

unique biome, which will help to guide conservation efforts.  



125 
 

Of particular conservation interest is the status of seed dispersal within modified 

landscapes, including those that are highly fragmented, such as the Atlantic Forest. 

Seed dispersal is a fundamental process in forest ecology and the most common way 

for plants to colonize new areas and is thus seen as critical for the maintenance of 

biodiversity (Wunderle 1997; Wright 2002). (Zahawi et al. 2013). Moreover, seed 

dispersal ensures the movement of progeny away from the mother plant into suitable 

areas for plant recruitment, thus also facilitating gene flow (Ricklefs 1977; Traveset et 

al. 2014). Animals are responsible for the seed dispersal of the majority of plant 

species (Traveset et al. 2014), and this is particularly important in wet tropical forests, 

where humidity is high and wind is often light. These animals - which range from 

insects to vertebrates - are thus important agents in the process of forest regeneration, 

such as  following tree falls or larger-scale disruptions(Holl et al. 2000), and in the 

context of ecological restoration (Holl et al. 2000; Zahawi et al. 2013).  

The Chiroptera (bats) is one of the most ecologically-diverse orders of 

mammals, consuming small vertebrates, arthropods, fruits, nectar, pollen, grains, 

leaves and blood (Reis et al. 2013; Emmons and Feer 1997). Bats provide critical 

ecological services, acting as pollinators and primary seed dispersers in forest 

restoration (Kunz et al. 2011; Mello et al. 2011a) and they may also provide biological 

control of invertebrates pests (Kunz et al. 2011). Roles in pollination and seed 

dispersal are likely to be particularly important in the Neotropics due to the rapid 

diversification of the New World leaf-nosed bats (family Phyllostomidae) (Shi & 

Rabosky 2015) and of critical importance in fragmented landscapes as bats are often 

the keystones species in Neotropical forest regeneration (Duncan & Chapman 1999; 

Kunz et al. 2011; Neuschulz et al. 2016). Although some studies have shown that a 

few bat species may benefit from the fragmentation process (Bianconi 2005), other 
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species may suffer negative impacts (Meyer 2007). Struebig et al. (2011) showed that 

the bat species most negatively impacted by fragmentation were the forest interior 

specialists.  

Despite the importance of bats for forest regeneration, and their potential for 

mitigating fragmentation-effects, the mechanisms that control these responses are not 

clear and there are significant gaps in our knowledge of how these animals are 

affected by habitat loss and fragmentation (Martins et al. 2007; Willig et al. 2007) and 

subsequently how their ecosystem services are affected. Yet significant challenges 

exist in resolving the mutualistic interactions among bats and plants. A particular 

difficulty for identifying the plants is that bats are nocturnal, and visits are rarely seen. 

Instead, we can examine plant material that has been egested in faecal samples, 

which is sometimes possible for seeds, but is more problematic for pollen or pulp.  

Recent technological advances have suggested a solution to the problem. DNA 

barcoding (Hebert et al. 2003) is a tool developed to help identify species using short 

standardized gene regions including the mitochondrial cytochrome c oxidase subunit 

1 (COI) gene for animals (Hebert et al. 2003), the internal transcribed spacer for fungi 

(Schoch et al. 2012) and a variety of gene regions for plant life (CBOL Plant Working 

Group et al. 2009). The ability to identify and differentiate species using DNA is 

extremely useful in ecology (Yoccoz 2012) especially when morphological traits are 

not enough to identify species, or the only evidence available is composed of trace 

material such as hairs or degraded tissues (Deiner et al. 2017). DNA barcoding with 

short standardized sequences (or sets of sequences) has the potential to discriminate 

among species if sequences are more similar within than between species. Under this 

condition, DNA barcoding can permit the unambiguous identification of even the most 

degraded materials when compared to a reference collection of known barcoded 
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materials (Hebert et al. 2003; Hajibabaei et al. 2006). Indeed this method has been 

successfully applied in a large range of organisms and environments such as 

mammals (Clare et al. 2007; Hajibabaei et al. 2007; Haarsma et al. 2016), birds 

(Hebert et al. 2004; Kerr et al. 2007; Ward 2009), reptiles (Jeong et al. 2013; Murphy 

et al. 2013), fishes (Ward et al. 2009; Pereira et al. 2013), insects (Gan et al. 2015; 

Bittleston et al. 2016) and plants (Gonzalez et al. 2009; Kuzmina et al. 2012; Fazekas 

et al. 2013) among many other taxonomic groups where active reference library 

building is on-going.  

Over the last decade DNA barcoding has been transformed from a taxonomic 

tool to a method in applied ecological analysis through the assessment of diet 

(Symondson 2002; Pompanon et al. 2012; Clare 2014) and has been widely used to 

identify the diets of bats, and to characterise their associated ecological niches. For 

example Salinas-Ramos et al. (2015) used DNA barcodes to describe the diet of three 

sympatric mormoopids bats in a tropical dry forest in Mexico. These three bats showed 

significant dietary overlap, indicating a resource driven use of the dietary niche 

(Salinas-Ramos et al. 2015). While most such molecular dietary studies of bats to date 

have focused on insectivorous lineages, other feeding guilds are now being targeted. 

Lim et al. (2018) assessed the impact of urbanisation and agriculture on the diet of 

Cynopterus brachyotis, a fruit bat in Peninsular Malaysia, using DNA barcodes for 

plants. These authors identified plants that were not previously reported as part of the 

diet of this species and revealed the tremendous capacity for foraging flexibility of this 

bat in the face of landscape conversion.  

Despite the increasingly wide use of DNA barcoding by researchers as a 

standard tool in dietary studies, only a few studies have started to broaden the scope 

of analysis to communities and ecological networks. The first case to strongly 
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demonstrate the power of resolving nodes with DNA barcodes was the use of this 

method to clarify parasite networks. In this study, Wirta et al. (2014) found that the 

number of interactions recovered surpassed other traditional methods leading to much 

higher resolution networks and fundamentally different measurements of network 

properties. For example, the presumed host specificity of parasitoids and the 

parasitoid load of host species were both significantly altered with the use of molecular 

methods (Wirta et al. 2014). Many others have advocated for the integration of DNA 

into ecological networks (Toju 2015; Evans et al. 2016; Roslin et al. 2016), although 

few ecological network studies have employed DNA technologies. One of the most 

comprehensive examples of this integration was the study of seed dispersal by birds, 

where González-Varo et al. (2014) used DNA barcode sequences to accurately 

identify and estimate the strength of interactions between seed dispersers and four 

plant species in a Mediterranean woodland. 

In this study I use plant DNA barcodes (ITS2 and rbcL) to build interaction 

networks among bats and the fruits they consumed across the highly fragmented 

landscape of the Atlantic Forest in southeast Brazil. The use of DNA barcode allows 

the identification of seeds and pulp consumed by bats to the level of genus, while 

using morphological traits, seeds can be usually identified up to families (Barroso 

1999) and pulp are often not even detected and thus larger fruits may not be detected 

as dietary items. I built separate networks for 13 sites, which included both fragments 

and control zones of continuous habitat. I assessed how three key network metrics 

(connectance, modularity and nestedness) change with area reduction and increased 

isolation. I made several predictions. First, I predicted that connectance would not be 

affected, because the loss of interactions will occur together with the loss of species. 

Second, I predicted that nestedness would decrease with area and increased 
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isolation, because specialist tend to be the first ones to disappear after environmental 

disturbance such as fragmentation (Haddad et al. 2015). Third, I expected modularity 

to not be affected, because of the strong genus-to-genus relationship between bats 

and their preferred fruits.   
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Methods 

 

Bat captures 

Sampling fragments and control sites, times and methods are described in 

Chapter 2. In brief, I captured individual bats across 10 forest fragments and at 3 sites 

in a control area of intact forest (hereafter fragments and control sites). I identified all 

bats to species and allocated each bat to an individual cotton bag for 2-6 hours in 

order to give them time to defecate. I placed guano (faecal) pellets from each bat in a 

separate tube of ethanol and stored these at -20 degrees Celsius. 

 

Seed and pollen identification 

To identify the plants visited by bats, I examined each faecal sample under 

magnification and separated out those containing seeds and fruit pulp. From each of 

these I selected 3 seeds of each species or a piece of pulp. This material was placed 

in tubes for molecular analysis and sent to the Canadian Centre for Biodiversity 

Genomics, Biodiversity Institute of Ontario (BIO) at the University of Guelph, Canada 

where all molecular protocols were performed. DNA extraction, PCR and sequencing 

followed established protocols from the Canadian Centre for DNA barcoding (CCDB) 

(Kuzmina et al. 2012). All protocols were carried out by the CCDB staff. In brief seeds 

were ground using stainless steel beads and DNA was extracted in 96 well glass fibre 

plates using CTAB and eluted in ddH2O (Kuzmina et al. 2012, CCDB Protocols Glass 

Fiber Plate DNA Extraction Protocol, see appendix 1). I selected the regions ITS2 and 

rbcL for amplification, recommended for plant DNA barcoding for species identification 
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(Kuzmina et al. 2012). For the amplification of ITS2 the CCDB used primers ITS_S2F 

(Chen et al. 2010) and ITS 4 (White et al. 1990) and for rbcL they used primers rbcLa-

F (Levin et al. 2003) and rbcLa-R (Kress & Erickson 2007). PCR amplification followed 

Kuzmina et al. (2012) and was assessed using 96-well precast E-gels (Invitrogen) and 

samples producing a single clear band were sequenced using the same primers and 

following the protocols outlined by Prosser et al. (2013). The samples were 

consolidated into 384 well plates and cleaned using the ALINE PureSEQ (Aline 

Biosciences) following manufacturer’s instructions and sequenced on an ABI 3730 

capillary sequencer following standard barcode protocols for plants (Fazekas et al. 

2013). Forward and reverse sequences were aligned and assembled, primers were 

removed and ambiguous bases were resolved manually using CodonCode Aligner v. 

2.7.1 (CodonCode Co, USA) and the MUSCLE algorithm (Edgar 2004) as 

implemented within CodonCode Aligner. See Kuzmina et al. (2012) for further details 

on sequence editing. All sequences, collection and protocol details were uploaded to 

the project BCRS REGUA Seed Dispersal in the BOLD database (barcodinglife.org) 

for further analysis at QMUL. 

 

Data processing 

I compared all sequences with the reference databases in the Barcode of Life 

Data System (BOLD) and GenBank to retrieve an identification. I followed the same 

identification protocol described by Lim et al. (2018) with some modifications for this 

dataset as follows. All the matches above 95% similarity were recorded and a decision 

is made depending on the match percentage. First, I checked if any sequence returned 

a 100% match with any species and I excluded any match to a species not known 
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from the Atlantic Forest of southeast Brazil. The next step was to record the 

subsequent highly similar matches and check if they had any record for the Atlantic 

Forest of southeast Brazil. Again, any species without any record were excluded. With 

the matches remaining for each gene region sequenced (ITS2 and rbcL) I checked if 

they were assigned to one or more genera present in the study area. If all the matches 

were in one genus only, the samples were assigned to this genus. If more than one 

genus were present in the top matches, I did not assign this sample to any genus, as 

I could not be certain of the match. I then compared the identification for both genes 

and if they were the same, I would register only one interaction. If the gene matches 

did not match, I assumed that each gene amplified different plant DNA and registered 

two interactions for that sample (See a decision tree schematic for matching in Figure 

4.1). Plant identifications were kept at genus-level to minimize problems related to 

different taxonomic resolution in the network (Hemprich-Bennett et al. 2018) and 

because species within several genera (Ficus, Piper, Cecropia) cannot be reliably 

differentiated by DNA barcoding. 

 

Network construction 

For each forest fragment or control site, I recorded every plant genus identified 

in each faecal sample as one interaction and the number of times this interaction was 

found in each fragment or control site as the interaction strength. This generated a 

frequency-based matrix of bat species and the genera of seeds that they dispersed. I 

then built 13 bipartite interaction networks (one for each fragment or control site) using 

the bipartite package (Dormann et al. 2008) for R v. 3.4.1 (R Development Core Team 

2018) with bats as the higher level and plants as the lower level of the bipartite 
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network. For each network I calculated the following metrics with the function 

networklevel from the bipartite package (Dormann et al. 2008) for R v. 3.4.1. (R 

Development Core Team 2018), unless noted otherwise: 

 Weighted connectance: calculated as the number of realised links 

divided by the number of possible links in the network. 

 Nestedness: this is a measure of how much of the interactions of 

the least connected nodes are a subset of the links of the most connected 

nodes (Dormann et al. 2009). I measured nestedness with two different metrics, 

as they have different responses to sample size. Nestedness temperature (T) 

was proposed by Atmar & Patterson (1993) and it measures the “temperature” 

(T) of an interaction matrix as the departure from a perfectly nested matrix. T=0 

is defined as maximum nestedness and T=100 correspond to no nestedness. 

This index of nestedness is reasonably consistent between small and large-

sized networks (Fründ et al. 2016). Weighted NODF was proposed by Almeida-

Neto et al. (2008) and it considers the decreasing fill of the interaction matrix 

and the paired overlap between the interactions. This metric has the advantage 

of being theoretically less sensitive to sample size than the alternative metrics 

of nestedness (Almeida-Neto et al. 2008). Ecologically, a community with high 

nestedness (T) and one with high NODF should have similar structures though 

the approaches to the measurements are different. 

 Modularity: It is calculated using the fast algorithm for Modular 

Maximization (Leger et al. 2015) with the function fast.greedy from the package 

igraph for R v 3.4.1. (R Development Core Team 2018). This metric estimate 

how many modules are present in the network. A module is a group of species 
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that interact more with other members of the module than with members of 

another module (Olesen et al. 2007). 

 Niche overlap: I examined the overlap of the dietary dimension of 

the ecological niche of bats using Pianka’s index (Pianka 1974) with the 

function niche.overlap.boot from package spaa (Zhang 2016) for R v.3.4.1 (R 

Development Core Team 2018). I recorded the niche overlap between the three 

most common species of bats (Artibeus lituratus, Carollia perspicillata and 

Sturnira lilium), each of which had enough capture records to make meaningful 

comparisons across all fragments and control sites, and between A. lituratus 

and other ecologically similar bats from Stenodermatini tribe (Table 2.3, Table 

4.1). 

 

Similarity between networks 

To help visualize the differences between the networks, I generated an 

NMDS plot using the selected network metrics (weighted connectance, NODF and 

modularity) with the vegan (Oksanen et al. 2013) package for R. v. 3.4.1. (R 

Development Core Team 2018) which measures the pairwise distance between 

every fragment or control site. I used these metrics to generate Figure 4.4, that 

shows the pairwise distance of the network metrics between all sampling areas.   

 

Statistical analysis 

To test the effects of fragmentation and landscape configuration on 

mutualistic networks among bats and the plants they consumed, I performed linear 
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regressions between the selected metrics and the same landscape and habitat 

complexity metrics (area, isolation and the principal components of habitat 

complexity (Delciellos et al. 2016) as the ones used in Chapter 2 (Table 2.1). I used 

the function step from R v.3.4.1 (R Development Core Team 2018) to build models 

starting with the simplest (no covariate) and adding one covariate at a time until 

the most complex model (all covariates). I compared these models using the 

Akaike information criterion (AIC) to select the model with the best fit. 
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Results 

 

Sample collections and sequence data 

I collected a total of 843 seed dispersing and pollinating bats. REGUA 2 was 

the site with most captures of seed dispersers (100 bats), and C. perspicillata the most 

abundant species in my study area, with 382 captures across all sites. From these I 

collected in total 653 faecal samples, with C. perspicillata contributing 348 samples 

(53% of all faecal samples). In total, 475 seed samples were processed for DNA 

barcoding. Of these, ITS2 sequences were recovered for 253 (53%) and rbcL 

sequences were recovered for 335 (70%). By comparing my sequences to those on 

GenBank and BOLD, I was able to assign a genus-level identification to 227 ITS2 

sequences (89% of samples successfully sequenced, 47% of total). I was able to 

assign a genus-level identification to 327 rbcL sequences (97% of the samples 

sequenced, 68% of total). In total I was able to assign a plant genus identification to 

367 samples (77% of collected material), of which 23 samples were assigned by ITS2 

only, 123 samples by rbcL only, and 205 samples by both genes. Of the latter, there 

were 7 cases where the genes produced different genus-level identifications; in these 

cases, I assumed that two plant DNA sources were present. For a decision tree of 

identifications see Figure 4.1.  

 

Seed disperses and pollinator diversity 

Seed disperser and pollinator richness ranged from five species in fragments 

F01 and F03 to ten species in fragment F08 (Table 4.2). Control site REGUA 2 had 
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the highest number of bat species with successful plant identifications (8 species, 53 

samples with plant identification) (Table 4.1). The smallest networks recorded had 6 

nodes (F02 and F03) and the largest had 13 nodes (REGUA 2, F07 and F09) (Table 

4.2, Figure 4.2). Network metrics are presented in Table 4.2. Figure 4.4 shows the 

pairwise distance between all sampling areas, and fragments F1, F2, F3, F4 and F5 

are the most divergent fragments in their network structure and also the smallest 

fragments in this study. It is interesting to note that these fragments are more different 

to each other than with medium-large areas (Figure 4.4). 

 

Network characteristics across fragments 

To determine which landscape characteristics explained network properties I 

used linear models comparing network properties to fragment area and isolation. I 

determined that weighted connectance, modularity and niche overlap are not 

explained by any of the landscape metrics. Isolation explained a significant amount of 

the variation in nestedness (T) (Figure 4.5); nestedness increases with increased 

fragment isolation (R2 = 0.33 p= 0.04, with f-value = 5.445 in 1 and 11 DF). Weighted 

NODF, was also significantly explained by forest cover amount and isolation (Figure 

4.6), with nestedness increasing with forest cover (R2 = 0.52, p= 0.2) and also with 

isolation (R2 = 0.52, p= 0.04). Nestedness (T) is measured from 0 (perfect nestedness) 

to 100 (no nestedness), while NODF is interpreted with the opposite values (0= no 

nestedness, 100 = perfect nestedness).  

Niche overlap between species was typically low, with C. perspicillata and S. 

lilium showing the highest rates of overlap. A. lituratus and C. perspicillata presented 

low levels of niche overlap, except in the case of fragment T13 where they had a large 
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overlap (0.94) (Table 4.3). A. lituratus showed large overlap with most of the other 

species from the genera Artibeus, Chiroderma, Dermanura, Platyrrhinus and 

Vampyressa, whenever they were present in the same area (Table 4.3). 
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Discussion 

 

In this study I used DNA barcoding to resolve the seed dispersal relationship of 

bats and the plants they visit across a matrix of fragmented landscape in the Brazilian 

Atlantic Forest. I was able to identify 77% of the seed samples to genus which 

represents a substantial increase in resolution compared to the reported rate of 

assignments in a traditional morphological analyses which is often limited to family in 

hyper diverse tropical forests (Barroso 1999). DNA barcoding also made it possible to 

identify fruit pulp from the gut system and record seed dispersal of plants such as 

Sygidium spp., that usually are not recorded in faecal samples through morphological 

analysis because only the pulp, nectar or pollen are eaten, and the seeds are 

discarded (Mello et al. 2005).  

 

Connectance and modularity of fragmented networks 

In the networks that I constructed I observed low connectance in all fragments 

and control sites, ranging from 0.16 to 0.29, and found that connectance was not 

correlated with area, isolation or habitat complexity. One explanation for this is that 

with the expected loss of biodiversity in smaller and isolated areas, the number of 

possible links in the network decreases proportionally with the decrease in 

interactions, thus the values do not show much variation despite significant changes 

in network content. The low values of connectance are consistent with other studies 

where mutualistic networks have been found to be less connected than expected by 

chance (Olesen et al. 2011b; Vidal et al. 2014). It is interesting that for all fragments, 

the constructed networks comprised 2-4 modules, even when those networks had 
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been reduced to only a few species. In most fragments and control sites bats from the 

genus Artibeus fed on Cecropia or Ficus fruits, C. perspicillata was the most generalist 

species, but mostly fed on Piper fruits, while bats from the Sturnira genus consumed 

mostly Solanum fruits. Previous work has also revealed strong genus-level 

relationships between neotropical frugivorous bats and their preferred plants (Mello et 

al. 2011b), and this pattern has also been observed in other communities, such as 

figs-wasps mutualisms or in the Galapagos finches (Abbott et al. 1977; Machado et 

al. 2005). It is particularly interesting that these relationships are maintained even in 

the most depauperate communities. One plausible explanation is that there may be 

functional constraints on the foraging behaviour of these species, for example in 

relation to bite force required to carry and consume certain fruits and seeds (Santana 

& Dumont 2009; Santana et al. 2011), and it is this which limits the flexibility of species 

to change to novel fruit and seed types.  

 

Nestedness of fragmented networks 

I observed that nestedness (T) was negatively correlated with isolation, with 

more isolated fragments having the most nested networks (Figure 4.5). Weighted 

NODF increased with fragment isolation and forest cover (Figure 4.6). Note that these 

metrics are interpreted with alternative scales, so the results are consistent. Previous 

observations have suggested that nestedness decreases with isolation and increases 

with area (Hagen et al. 2012). This lack of consistency with my own findings could 

stem from aspects of the network topology and species composition in my focal 

fragments. Specifically, networks were mostly represented by extremely generalist 

species, with C. perspicillata representing the most abundant species in my study 
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area. Although this taxon shows marked preference for Piper spp. fruits, it is also the 

most generalist or flexible of all the focal species, eating most of the resources 

available and overlapping in this function with the few other frugivorous species left in 

these small and isolated fragments. This results in high nestedness in these areas. In 

larger areas, we might expect more bat richness, with the additional presence of 

specialists that feed on a subset of plants consumed by the generalists, thus 

generating high values of nestedness. This is a similar conclusion to the one obtained 

by Lewinsohn et al. (2006) in a study of the structure of plant-animal networks in which 

the authors observed that in nested assemblages, plants with few interactions will be 

associated with generalist consumers, while specialist consumers will be connected 

to plants linked to many consumers. It is apparent that many of these bats can make 

use of novel food sources, within some functional constraints, and when species do 

make this switch, nestedness increases. For example, the most nested fragment is 

also the smallest and most isolated fragment, which is surrounded by guava (Psidium 

spp.) plantation, which was widely consumed by many bats in this fragment (Figure 

4.2M, network F1), which increased nestedness values and indicates that local 

conditions and fruit availability play an important role in determining network structure. 

Similarly, in small fragments, and in those sites that are surrounded by cattle ranching 

pastures, I observed very small values of nestedness, possibly because there was no 

access to novel food sources to supplement the natural resources of the fragment 

(Table 4.2) and that functional constraints may dominate these communities.  

 

Loss of specialists and niche overlap in small fragments 
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When subject to environmental stresses, specialists are known to disappear 

from species assemblages more rapidly than the generalists (Davies et al. 2004; 

Struebig et al. 2011). In my study, this observed trend may be directly linked to the 

structure of the phyllostomid bat metacommunity, which was determined to be nested 

along a gradient of increased isolation (results from Chapter 2). The observed loss of 

specialists that I reported in Chapter 2 causes the loss of redundant interactions in the 

networks. These changes in the community structure may have implications for 

network stability and the seed dispersal processes (McConkey et al. 2012). 

Generalists usually have more interactions with a variety of species, but weaker 

interactions with any one plant consumed (Bascompte et al. 2003). Because of the 

generalists feeding behaviour and movement inside forest fragments, they may not 

deposit all the seeds in favourable places for seed germination (Jordano 2014). Within 

small isolated fragments, the smallest networks were characterized by the 

maintenance of the same distinctive modules but less redundancy of interactions, with 

only the generalist species surviving in these fragments. This community structure 

maintains the ecological services of seed dispersal in these highly altered 

environments with a combination of moderate nestedness and modularity suggesting 

a highly resilient network structure as also demonstrated by Mello et al. (2011a), 

however, the loss of all redundancy of function makes these networks vulnerable to 

any further plant or bat species loss. 

Niche overlap was typically low between the most abundant species, and this 

can also be related to the modular structure of the networks, as each of these species 

was placed in a different module of the interaction network. On the other hand, 

members of the tribe Stenodermatini showed high niche overlap across all fragments 

and control sites, implying greater flexibility and potentially more resilience to the loss 
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of plant species. This result is similar to other studies with Neotropical bats (Heithaus 

et al. 1975; Marinho-Filho 1991; Willig et al. 1991; Lopez & Vaughan 2007). For 

example, in Costa Rica, bats from different genera showed low niche overlap, while 

congeners showed much higher levels of niche overlap (Lopez & Vaughan 2007). 

These results support the predictions of niche theory and resource partitioning, where 

niche theory predicts that the maximal tolerable niche overlap decreases with 

increasing intensity of competition, and that in order to coexist species need to exploit 

different resources to avoid competition (Pianka 1974). If niche overlap is inversely 

proportional to competition (Pianka 1974), then my results suggests that food in these 

habitats is not a limiting factor (as many species can feed on the same resources and 

not be excluded by competition) and that closely related species have traits that allow 

them to survive in smaller and altered fragments (Chapter 2) and are likely to differ in 

other aspects of their ecological niches that allows them to coexist (Tamsitt 1967; 

Pianka 1974). 

Habitat Loss and fragmentation are threats to biodiversity, mostly causing the 

local extinction of more sensitive and specialist species (Fortuna & Bascompte 2006; 

Hagen et al. 2012; Haddad et al. 2015) and increasing the abundance of generalist 

and edge-loving taxa (Laurance et al. 2002). In order to fight the biodiversity crisis of 

our time (Ripple et al. 2017), it is necessary to conserve not only certain species, but 

also the interactions between them (Forup et al. 2008; Ribeiro da Silva et al. 2015) if 

we want to keep ecosystem services such as seed dispersal and pollination at 

sustainable levels. Habitat reduction can lead to species poor communities (Haddad 

et al. 2015) and small networks (Valladares et al. 2012), while increased isolation will 

affect dispersal between habitat patches, which may magnify this effect (Hagen et al. 

2012). Low species richness and changes in species abundance may lead to networks 
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with reduced nestedness and increased modularity (Fortuna & Bascompte 2006). In 

our study, bat-plant interaction networks are resilient to habitat loss and fragmentation, 

as even with the loss of specialists and increased abundance of generalists, networks 

retain most of their modular and nested structure, which will maintain the ecological 

dispersion of most groups of plants that depend on bats. This finding highlights the 

importance of bats in forest regeneration. Not only do these species disperse pioneer 

plants into areas following disturbance (De La Peña-Domene et al. 2014) but they are 

also able survive and perform roles in seed dispersal in small and isolated fragments. 

Therefore, even with reduced species richness, small fragments still have 

conservation and strategic value, as they can serve as stepping stones for the initiation 

of forest regeneration.  

However, it is also apparent that while basic dispersal of common plants by 

resilient generalist bats is maintained on these fragments, specialists of both plants 

and bats have been lost. Although network structure is largely maintained even in the 

most disturbed habitats, vital redundancy of functions and specialist interactions are 

missing. This trend of network robustness was also observed in other fragmented 

systems and shows the potential of fragmented landscapes to the conservation of 

biodiversity (Resasco et al. 2017). To mitigate the effects of habitat loss and 

fragmentation on biodiversity, I suggest that it is important to maintain and protect the 

largest areas of forest, which contain most of the diversity and also the interactions 

mediated by specialist bats, as well as increase the connectivity between forest 

patches. This approach will allow larger areas to act as a source of sensitive species 

to move across the landscape and add redundant interactions to the networks of small 

fragments, buffering the whole system against local extinctions. Because of the ability 

of some bats to survive in degraded habitats in small fragments and their role 
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dispersing pioneer plants, restoration projects should consider nucleation strategies 

to attract bats to forests in early stages of development (Zahawi et al. 2013). This is 

supposed to enhance seed dispersal processes and the diversity of plant recruitment 

in these areas, accelerating the forest recovery.  
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Figure 4.1: Decision tree for assigning plant DNA barcode sequences based on 

matches returned by BLAST searches on Genbank, NCBI database and BOLD 

database. 
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Figure 4.2: Bipartite networks for sites: A. REGUA1; B. REGUA2; C. REGUA 3; D. F1; 

E. F2; F. F3; G. F4; H. F5, I. F6; J. F7; K. F8; L. F9; M. F10. Black bars represent bat 

nodes and green bars plant nodes. The width of nodes is proportional to abundance 

while the width of grey connecting lines is proportional to interaction frequency. 

Network from smaller fragments are simpler than networks from larger fragments and 
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inside the reserve, but all networks show a modular and nested structure, driven 

mostly by the most generalist species, C. perspicillata. 

  



150 
 

 

Figure 4.4: Similarity between networks based on the pairwise distance of weighted 

connectance, NODF and modularity between any two fragments. Fragment area is 

given under each fragment name in hectares. In this case, smaller fragments (e.g. F01 

and F02) are more dissimilar between themselves than with larger fragments, showing 

that stochastic events can lead to very different network structures in face of habitat 

loss and fragmentation.   
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Figure 4.5: Relationship between nestedness (T) and isolation. R2 = 0.46; p= 0.01. 

From this analysis, as fragments become more isolated from each other and the 

remaining preserved habitats, nestedness increases (T=0 perfect nestedness, T= 

1 no nestedness) This suggest that isolated communities may be dominated by 

super generalist species that consume most of the resources available in these 

areas, creating a highly nested network. 
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Figure 4.6: Relationship between forest cover (fc.1000), isolation and weighted 

NODF. The x-axis represents the fragment isolation, the y-axis represents 

fragment forest cover percentage in a radius of 1km surrounding the fragment and 

the circle diameter is scaled by the NODF value. This analysis shows that 

nestedness (NODF) increases both with fragment isolation and with surrounding 

forest cover. In isolated fragments networks may become dominated by a 

generalist species in a generalist community, leading to high nestedness as one 

species (e.g. Carollia perspicillata) consumes most of the resources. Similarly, an 

increase in suitable habitat in the surrounding landscape, may cause communities 

to be more diverse through immigration, and the addition of specialists that 

consume a subset of generalists diet will increase redundancy and thus 

nestedness.
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Table 4.1: Species richness (R), number of herbivores, number with seeds identified and numbers of sequences identified. 

  R Herbivores Sps with seeds Id 
Samples sent for 
sequencing ITS recovered RBCL recovered Seeds identified 

REGUA 15 10 7 30 10 28 29 

REGUA2 12 10 8 55 45 52 53 

REGUA3 10 8 5 12 6 9 10 

F01 6 5 4 46 19 42 42 

F02 7 5 3 8 4 8 8 

F03 11 10 7 44 26 36 42 

F04 12 6 4 21 11 19 19 

F05 14 11 4 37 27 31 32 

F06 8 6 3 14 11 13 14 

F07 13 9 6 52 29 46 47 

F08 11 7 4 11 6 11 11 

F09 8 6 4 12 9 9 12 

F10 12 7 5 29 15 25 26 
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Table 4.2: Network metrics calculated for three control areas (REGUA, REGUA2 and REGUA3) and 10 fragments and their 
landscape characteristics. 

  
number of 
nodes 

weighted 
connectance nestedness weighted NODF modules modularity Area  logArea Isolation 

REGUA 11 0.18 50.68 16.67 3 0.52 62378.6 4.79 60 

REGUA2 13 0.16 26.64 27.19 3 0.43 62378.6 4.79 60 

REGUA3 10 0.19 27.54 10 2 0.44 62378.6 4.79 60 

F01 9 0.26 0 29.17 3 0.49 21.15 1.32 600 

F02 6 0.2 24.21 0 3 0.23 34.11 1.53 234 

F03 6 0.29 24.63 0 3 0.28 41.04 1.61 84.85 

F04 9 0.18 34.08 18.75 3 0.51 52.11 1.71 362.49 

F05 8 0.18 40.03 8.33 4 0.3 84.33 1.92 150 

F06 9 0.2 25.58 12.5 3 0.38 92.34 1.96 210 

F07 14 0.18 30.1 21.76 4 0.41 99.99 1.99 349.85 

F08 9 0.18 35.89 12.5 3 0.33 117.27 2.06 134.16 

F09 13 0.16 17.92 1.39 3 0.49 184.77 2.26 174.92 

F10 8 0.21 25.34 15.38 3 0.26 228.78 2.35 480 
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Table 4.3: Niche overlap between most abundant species (Artibeus lituratus, Carollia perspicillata and Sturnira lilium) and Artibeus 
lituratus and other bats in the Stenodermatini tribe. 

  
C. perspicillata -
S. lilium A. lituratus - 

A. lituratus - 
S. lilium 

A. lituratus -
A. fimbriatus 

A. lituratus - 
A. obscurus 

A .lituratus - 
C. doriae 

A. lituratus - 
D. cinerea 

A. lituratus - 
P. lineatus A. lituratus-  

A. lituratus - 
S. tildae 

A. lituratus -
V. pusilla 

  C. perspicillata       P. bilabiatum   

  0.24 0.03 0.362 0 0.8 NA NA NA 0.53 NA 0.535 

REGUA 0.07 0.006 0.08 0.412 0.9 0.907 0.907 NA NA NA 0.902 

REGUA2 0.577 0 0 NA 0.7 NA NA NA NA NA 0.7 

REGUA3 NA 0.56 NA NA NA NA NA 0.577 NA 0 NA 

F01 NA 0.319 NA NA 0.6 NA NA NA NA 0.6 NA 

F02 NA 0.236 NA NA NA NA 0 NA NA NA NA 

F03 NA 0.052 0.164 NA 0.988 NA 0 0.969 NA NA 0 

F05 0.595 0.01 0.263 NA 0 NA NA NA NA NA NA 

F06 0.707 0 0 NA NA NA NA NA NA NA NA 

F07 0 0 0.707 NA NA NA NA 0.97 NA NA NA 

F08 0.663 0.08 0.295 NA 0.277 NA NA 0.928 NA NA NA 

F09 NA 0.949 NA NA NA NA NA 0 NA NA NA 

F10 0.242 0.06 0 1 NA NA NA NA NA 0 NA 
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CHAPTER FIVE 
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General Discussion 

 

The ecological impacts of human activity are severe (Ripple et al. 2017) and 

one of the most obvious effects is deforestation and habitat fragmentation caused by 

urban expansion and land conversion for pastures and monoculture farming (Fahrig 

2003; Haddad et al. 2015; Ripple et al. 2017). In this thesis I have investigated the 

effects of habitat loss and fragmentation on the bat metacommunity in a highly 

fragmented landscape of Atlantic Forest.  

My study is based in the Macacú River Basin, an area of lowland Atlantic Forest, 

composed mainly of small- to medium-sized fragments that show different levels of 

isolation. These forest patches are in close proximity to a large area of protected 

continuous forest that stretches across three different reserves. The private reserve 

Reserva Ecológica de Guapiaçú (REGUA) connects with Três Picos State Park and 

Serra dos Órgãos National Park to form the third largest area of the Atlantic Forest 

(Ribeiro et al. 2009). For my study of the impacts of forest fragmentation on bat 

communities, I surveyed bats and collected their guano at three control sites inside 

the continuous forest of REGUA and 10 adjacent fragments, visiting each of these for 

six nights. I used the “elements of metacommunity structure” (Leibold & Mikkelson 

2002; Presley et al. 2010) and a mix of phylogenetic  and functional  diversity 

measures (Faith 1992; Webb et al. 2002; Cadotte & Davies 2016) to characterize the 

metacommunity structure and investigate the drivers of species assembly. With the 

community occupancy model (Dorazio & Royle 2005), I evaluated the use of 

landscape properties and habitat structure as predictors of species occurrence and 
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the species-specific responses to changes in the landscape, while accounting for the 

imperfect detection of bats. Using DNA barcoding (Hebert et al. 2003) and network 

theory (Bascompte 2007), I described the mutualistic networks involving bats and 

plants to assess the impacts and consequences of habitat fragmentation on network 

topology and niche overlap (Pianka 1974). 

The bat metacommunity in my study area was found to have a random structure 

(Leibold & Mikkelson 2002), but when meta-ensembles were considered, the 

Phyllostomidae and animalivorous groups showed a nested and quasi-nested 

structure, respectively (Leibold & Mikkelson 2002; Presley et al. 2010), while the 

herbivores showed a random structure. The nested and quasi-nested structures are 

distributed along an isolation gradient, with communities in smaller fragments 

composed of a subset of the species in larger fragments. Other studies evaluating 

metacommunity structure have been conducted on a broad regional scale and have 

reported that mammal metacommunity in the Atlantic Forest (de la Sancha et al. 

2014), bat metacommunity in the Caribbean (Presley & Willig 2010) and vertebrate 

metacommunity along an elevational gradient in the Andes (Presley et al. 2012) have 

a Clementsian structure, with distinct communities substituting each other along an 

environmental gradient. My study used a unique approach by focussing on a smaller 

spatial scale, at which the abiotic conditions such as temperature, precipitation and 

seasonality were relatively uniform. It is interesting then that patterns of 

metacommunity structure exist at this scale suggesting that meta-ensemble structures 

may be scale dependent.  

In general my results were similar to those of other studies of habitat 

fragmentation (Laurance et al. 2002; Haddad et al. 2017; Rocha et al. 2017), where 

larger and connected fragments harbour more biodiversity than small and isolated 
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fragments. The non-significant values of phylogenetic diversity (PD), mean pairwise 

phylogenetic distance (MPD) and functional diversity (FD) in all fragments suggest that 

at these sites the species assembly is driven by stochastic events. When I examine 

the sites inside the reserve, REGUA1 and REGUA2 had lower scores of PD and MPD, 

indicating that the species assembly is driven by an ecological filter and survival is 

mediated by inherited traits.  

This is one of the first attempts to model bat community occupancy in fragmented 

landscape using the community occupancy model and although estimates of 

occupancy (MacKenzie et al. 2006; Kéry & Royle 2016) were not precise and they 

allowed few inferences about the bat metacommunity. Detection probability estimates 

for most bats were low, and a few more detections (>7) (MacKenzie et al. 2002) of 

rare species should allow for better predictions. Confidence intervals for occupancy 

estimates and the effects of covariates were so wide that they do not allow any 

conclusion about the importance of landscape metrics and habitat structure for bat 

communities. Only the accumulation of data, with many more sampling occasions 

could improve these estimations, and for communities with many rare species this may 

be a drawback in the use of the community occupancy. Area had a positive association 

with species occurrence for the whole metacommunity and all of the species within it.  

Other studies with birds in the Neotropics showed different results, with area having a 

positive effect on species persistence and isolation having a less obvious effect, with 

some species responding positively and others negatively (Ferraz et al. 2007). Habitat 

structure is important in determining the species occurring in a site of interest for birds 

(Pardini et al. 2005; Zipkin et al. 2009, 2010) and mammals (Vieira et al. 2009; Pfeifer 

et al. 2017).  
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Beyond simple presence and absence of species on a landscape, 

understanding the consequences of habitat fragmentation on ecosystem functioning 

and services is vital to understanding a community level response to this disruption. 

This project is one of the first network-based studies of the impacts of fragmentation 

on mutualistic interactions among frugivorous vertebrates and plants, and the first 

such study focused on bats. In my study, the use of DNA barcoding (Hebert et al. 

2003) provided the means to uncover the interactions between bats and the plants 

that they consume, as well as reveal how these interactions are affected by the 

fragmentation process. Overall bat-plant interaction networks were seen to be resilient 

to habitat fragmentation, and even in the smaller and defaunated fragments, network 

structure appears to be maintained with no detectable change in its modules and 

connectance. Isolation and area positively impacted network nestedness, caused by 

the presence of specialists in larger fragments and a species-poor community 

dominated by generalists in smaller fragments. This resilience of bat-plant interaction 

networks (Mello et al. 2011a) suggests that even in the smallest and most isolated 

fragments, bats act as active agents of seed dispersal and promote forest 

regeneration. Thus, managing landscapes for bats should be considered an important 

element in any programme of forest restoration. 

In this study, I concluded that habitat fragmentation has a profound effect on 

the bat metacommunity via its impacts on taxa within two dominant Neotropical meta-

ensembles. Area reduction along with increased fragment isolation disrupts the 

species assembly process, leading to a domination of generalist bats such as Artibeus 

lituratus, Carollia perspicillata and Sturnira lilium and the loss of sensitive and rare 

species like Chiroderma doriae, Diphylla ecaudata, Histiotus velatus, Micronycteris 

microtis, Micronycteris minuta, Peropteryx macrotis and Pygoderma bilabiatum. Each 
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of these species was detected at only one site and, as exemplified by the 

heterogeneous species-specific responses to isolation and habitat structure, it is 

possible that they need specific conditions (roosts, prey, specific fruits or flowers, 

presence of water) to persist in a specific site. In the reserve, which represents the 

original condition of the habitat in terms of landscape configuration, vegetation 

structure and resource availability, the assembly process appears to be driven by 

competition and character displacement. The most abundant species in my study 

area, A. lituratus, C. perspicillata and S. lilium, showed little overlap in the dietary 

dimension of their ecological niche, which is expected by their membership in different 

modules of the bat-plant interaction network. On the other hand, A. lituratus showed 

greater niche overlap with related species from the Stenodermatini tribe. This suggest 

that food is not necessarily a limiting factor, as niche overlap should be negatively 

associated with the intensity of competition (Pianka 1974). As the community is 

expected to be shaped by inherited traits, and this could explain the coexistence of 

closely related species in natural conditions of landscape configuration and habitat 

structure. With the maintenance of network structure, seed dispersal by bats is an 

ecosystem service that is maintained even in the most small, isolated and species 

poor fragments which is a critically important factor in conservation management of 

these areas and any attempt at habitat restoration. 

Although habitat fragmentation is a serious threat for biodiversity, we are still 

far from understanding all of its longer-term consequences (Laurance et al. 2002, 

2018; Haddad et al. 2017). Future studies should consider the role of environmental 

filters and the traits that allows  the coexistence of closely related and ecologically 

similar species, and the consequences of the disruption of the assembly process in 

small fragments. The metacommunity concept is a useful tool for linking different 
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scales in ecology and comparing how metacommunity structure differs across these 

scales may help to explain the changes caused by habitat fragmentation. Similarly, 

the use of DNA is a useful tool, and offers an accessible way to identify taxa in the 

diets of animals that would be extremely difficult to achieve using more traditional 

approaches based on morphological examination. The creation of a local DNA 

barcode library could enhance the resolution of plant identification, but this is an 

expensive and time-consuming task, and unlikely to help resolve some of the rapidly 

radiating and common taxa (e.g. Ficus) where taxonomy remains a problem for any 

identification system. Applying DNA barcoding more widely in the context of habitat 

fragmentation, to investigate pollinator-plant networks, host-parasitoid networks, and 

food webs, would likely allow a better understanding of the status of ecosystem 

function and services in fragmented landscapes. 

The impacts of habitat fragmentation occur at multiple dimensions and scales 

(Banks-Leite et al. 2013). While fragment area is expected to be a good predictor of 

species richness, it does not capture all the heterogeneous responses of species in a 

metacommunity that are seen in relation to isolation and habitat structure. Although 

small fragments in a severely threatened and fragmented biome such as the Atlantic 

Forest do not harbour a diverse bat fauna, these remaining generalist species still act 

as active agents of seed dispersal and contribute to the processes of forest 

regeneration (Reid 2013; De La Peña-Domene et al. 2014). Fragmented landscapes 

are composed of sites that represent different levels of disturbance and habitat 

structure, which collectively have the potential to host a rich and diverse regional fauna 

(Townsend et al. 2014). To ensure this, large areas should be protected and expanded 

whenever possible, to permit the persistence of those species that are sensitive to the 

changes caused by habitat fragmentation. These areas could function as sources for 
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smaller fragments, as long they are connected or are sufficiently near to allow 

dispersal. My study traces the impact of forest fragmentation from the drivers of the 

metacommunity assembly process to the individual species responses through to the 

impact on ecological functions related to forest regeneration. The results of my study 

will contribute to the growing body of research of habitat fragmentation and provide 

directions to help us mitigate the impacts of large-scale habitat fragmentation that is 

ongoing in other parts of the world such as the Amazon, Africa and Southeast Asia. 
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SUPPLEMENTARY MATERIALS 

Figure S2.1: Histograms showing the observed value of functional diversity against 

1000 null values.  
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Figure S2.2: Histograms showing the observed value of phylogenetic diversity 

against 1000 null values.
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Figure S2.3: Histograms showing the observed value of mean pairwise phylogenetic 

distance against 1000 null values. 
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Table  S3.1: Presence (1) and absence (0) of bats in the sampled sites on each of the sampling occasions. All fragments use the same codes as used through 
this thesis, except for: R1 = REGUA1, R2 = REGUA2, R3 = REGUA3. Numbers after the fragment code corresponds to the sampling night. 

Species R1_1 R1_2 R1_3 R1_4 R1_5 R1_6 R2_1 R2_2 R2_3 R2_4 R2_5 R2_6 R3_1 R3_2 R3_3 R3_4 R3_5 R3_6 

Anoura caudifer 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Anoura geoffroyi 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

Artibeus fimbriatus 0 1 0 1 1 0 1 1 0 0 0 0 1 0 0 0 0 0 

Artibeus lituratus 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

Artibeus obscurus 0 0 1 1 1 0 1 1 1 1 1 1 1 0 0 1 0 1 

Carollia perspicillata 0 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 

Chiroderma doriae 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

Dermanura cinerea 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

Desmodus rotundus 1 1 1 1 0 1 0 1 1 0 1 1 1 0 1 1 0 0 

Diphylla ecaudata 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 

Eptesicus brasiliensis 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Glossophaga soricina 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 

Histiotus velatus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Micronycteris microtis 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Micronycteris minuta 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Myotis nigricans 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 

Myotis riparius 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Peropteryx macrotis 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Phyllostomus hastatus 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Platyrrhinus lineatus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

Pygoderma bilabiatum 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Sturnira lilium 0 1 1 1 1 0 0 1 1 0 0 0 1 1 0 1 1 0 

Sturnira tildae 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 

Tonatia bidens 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

Trachops cirrhosus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Vampyressa pusilla 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 1 
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Species T2_1 T2_2 T2_3 T2_4 T2_5 T2_6 T10_1 T10_2 T10_3 T10_4 T10_5 T10_6 T11_1 T11_2 T11_3 T11_4 T11_5 T11_6 

Anoura caudifer 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Anoura geoffroyi 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Artibeus fimbriatus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Artibeus lituratus 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 1 1 0 

Artibeus obscurus 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 

Carollia perspicillata 1 1 0 1 1 0 1 1 1 1 1 1 1 0 1 0 1 1 

Chiroderma doriae 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Dermanura cinerea 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 

Desmodus rotundus 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 

Diphylla ecaudata 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Eptesicus brasiliensis 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

Glossophaga soricina 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Histiotus velatus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Micronycteris microtis 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Micronycteris minuta 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Myotis nigricans 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 

Myotis riparius 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 

Peropteryx macrotis 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Phyllostomus hastatus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Platyrrhinus lineatus 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Pygoderma bilabiatum 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Sturnira lilium 0 0 0 0 0 1 1 0 1 1 0 1 0 0 0 0 1 1 

Sturnira tildae 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

Tonatia bidens 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Trachops cirrhosus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Vampyressa pusilla 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Species T12_1 T12_2 T12_3 T12_4 T12_5 T12_6 T13_1 T13_2 T13_3 T13_4 T13_5 T13_6 T19_1 T19_2 T19_3 T19_4 T19_5 T19_6 

Anoura caudifer 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 

Anoura geoffroyi 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 

Artibeus fimbriatus 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 

Artibeus lituratus 1 1 0 1 1 1 1 1 0 0 0 1 0 1 1 1 0 0 

Artibeus obscurus 1 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 

Carollia perspicillata 1 0 0 1 1 0 1 1 0 1 0 0 1 1 1 1 1 1 

Chiroderma doriae 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Dermanura cinerea 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

Desmodus rotundus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Diphylla ecaudata 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Eptesicus brasiliensis 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Glossophaga soricina 1 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 1 1 

Histiotus velatus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Micronycteris microtis 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Micronycteris minuta 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

Myotis nigricans 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

Myotis riparius 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 

Peropteryx macrotis 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 

Phyllostomus hastatus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 

Platyrrhinus lineatus 1 0 0 1 1 0 1 0 0 1 0 0 0 0 1 0 0 1 

Pygoderma bilabiatum 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Sturnira lilium 0 0 0 0 1 0 1 0 0 0 0 0 1 1 1 0 1 1 

Sturnira tildae 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 

Tonatia bidens 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Trachops cirrhosus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Vampyressa pusilla 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Species T21_1 T21_2 T21_3 T21_4 T21_5 T21_6 T23_1 T23_2 T23_3 T23_4 T23_5 T23_6 T25_1 T25_2 T25_3 T25_4 T25_5 T25_6 

Anoura caudifer 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Anoura geoffroyi 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

Artibeus fimbriatus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

Artibeus lituratus 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 1 1 

Artibeus obscurus 1 1 0 0 0 0 0 0 1 1 0 0 0 1 1 0 1 1 

Carollia perspicillata 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 

Chiroderma doriae 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Dermanura cinerea 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Desmodus rotundus 1 1 0 1 0 0 1 1 1 1 1 1 1 1 0 0 1 1 

Diphylla ecaudata 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Eptesicus brasiliensis 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 

Glossophaga soricina 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

Histiotus velatus 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 

Micronycteris microtis 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

Micronycteris minuta 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

Myotis nigricans 0 0 1 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 

Myotis riparius 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 

Peropteryx macrotis 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Phyllostomus hastatus 1 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

Platyrrhinus lineatus 0 0 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 

Pygoderma bilabiatum 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Sturnira lilium 1 1 1 1 1 0 1 0 0 1 1 1 0 0 0 0 1 1 

Sturnira tildae 0 0 0 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 

Tonatia bidens 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Trachops cirrhosus 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

Vampyressa pusilla 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Species T26_1 T26_2 T26_3 T26_4 T26_5 T26_6 

Anoura caudifer 0 0 0 0 0 0 

Anoura geoffroyi 0 0 0 0 0 0 

Artibeus fimbriatus 0 0 0 0 0 0 

Artibeus lituratus 1 1 1 1 1 1 

Artibeus obscurus 0 0 1 0 0 0 

Carollia perspicillata 1 1 1 1 1 1 

Chiroderma doriae 0 0 0 0 0 0 

Dermanura cinerea 0 0 0 0 0 0 

Desmodus rotundus 0 0 0 0 0 0 

Diphylla ecaudata 0 0 0 0 0 0 

Eptesicus brasiliensis 0 0 0 0 0 0 

Glossophaga soricina 0 0 0 0 0 0 

Histiotus velatus 0 0 0 0 0 0 

Micronycteris microtis 0 0 0 0 0 0 

Micronycteris minuta 0 0 0 0 0 0 

Myotis nigricans 0 0 0 1 0 0 

Myotis riparius 0 0 0 0 0 0 

Peropteryx macrotis 0 0 0 0 0 0 

Phyllostomus hastatus 0 0 0 0 0 0 

Platyrrhinus lineatus 0 0 0 0 0 0 

Pygoderma bilabiatum 0 0 0 0 0 0 

Sturnira lilium 1 1 1 0 0 0 

Sturnira tildae 1 0 0 0 0 0 

Tonatia bidens 0 0 0 0 0 0 

Trachops cirrhosus 0 0 0 0 0 0 

Vampyressa pusilla 0 0 0 0 0 0 
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Table S3.2: Single species occupancy model. The models are named for the covariates used in it. I present the AIC, delta AIC, AIC 
weight and cumulative weight. Models with delta AIC < 2 have their parameter estimates shown. 

Anoura caudifer 
number of 
parameters 

AIC delta AIC weight 
cummulative 

weight 
model occupancy z covariate (α) z detection z 

PCAhab2 3 40.03 0 0.471 0.47 PCAhab2 0.323 0.09 -1.54 0.1 0.4 0.31 

none 2 41.74 1.71 0.2 0.67               

Area 3 43.19 3.16 0.1 0.77               

PCAhab1 3 43.56 3.53 0.08 0.85               

Prox500 3 43.68 3.65 0.07 0.93               

Isolation 3 43.73 3.7 0.07 1               

Anoura geoffroyi           model occupancy z covariate (α) z detection z 

Prox500 3 36.04 0 0.6 0.6 Prox500 0.001 0.63 37.6 0.66 0.2 0.002 

PCAhab1 3 38.45 2.41 0.18 0.79               

Area 3 38.51 2.46 0.17 0.96               

PCAhab2 3 42.18 6.14 0.02 0.99               

none 2 44.85 8.81 0.01 1               

Isolation 3 46.49 10.45 0.003 1               

Artibeus fimbriatus           model occupancy z covariate (α) z detection z 

PCAhab1 3 46.5 0 0.5 0.5 PCAhab1 1 0.68 -72 0.66 0.25 0.004 

Area 3 46.56 0.06 0.48 0.99 Area 1 0.45 148.8 0.45 0.25 0.004 

Prox500 3 55.51 9.01 0.005 1               

none 2 59.15 12.65 0.001 1               

Isolation 3 59.71 13.21 0.001 1               

PCAhab2 3 61.03 14.53 0.001 1               
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Artibeus lituratus 
number of 
parameters 

AIC delta AIC weight 
cummulative 

weight 
model occupancy z covariate (α) z detection z 

none 2 96.8 0 0.35 0.35 none 1 0.79 * * 0.72 0.0002 

Isolation 3 98.8 2 0.13 0.48               

Prox500 3 98.8 2 0.13 0.61               

Area 3 98.8 2 0.13 0.74               

PCAhab1 3 98.8 2 0.13 0.87               

PCAhab2 3 98.8 2 0.13 1               

Artibeus obscurus           model occupancy z covariate (α) z detection z 

none 2 107.94 0 0.35 0.35 none 1 0.79 * * 0.39 0.04 

PCAhab2 3 109.94 2 0.13 0.48               

Isolation 3 109.94 2 0.13 0.61               

PCAhab1 3 109.94 2 0.13 0.74               

Area 3 109.94 2 0.13 0.87               

Prox500 3 109.94 2 0.13 1               

Carollia perspicillata           model occupancy z covariate (α) z detection z 

none 2 80.337 0 0.35 0.35 none 1 0.86 * * 0.8 0.001 

Isolation 3 82.37 2 0.13 0.48               

Prox500 3 82.37 2 0.13 0.61               

PCAhab2 3 82.37 2 0.13 0.74               

Area 3 82.37 2 0.13 0.87               

PCAhab1 3 82.37 2 0.13 1               
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Dermanura cinerea 
number of 
parameters 

AIC delta AIC weight 
cummulative 

weight 
model occupancy z covariate (α) z detection z 

Prox500 3 53.14 0 0.37 0.37 prox500 1 0.6 35 0.6 0.13 0.001 

Isolation 3 53.19 0.04 0.364 0.74 Isolation 1 0.49 -104 0.5 0.13 0.001 

none 2 55.53 2.39 0.112 0.85               

PCAhab2 3 56.78 3.64 0.06 0.91               

Area 3 57.28 4.13 0.04 0.95               

PCAhab1 3 57.35 4.2 0.04 1               

Diphyla ecaudata           model occupancy z covariate (α) z detection z 

Isolation 3 16.92 0 0.4   Isolation 0.01 0.45 -238 0.45 0.16 0.03 

Area 3 18.56 1.64 0.18   area 0.01 0.94 11.65 0.03 0.11 0.005 

PCAhab1 3 18.56 1.64 0.18   PCAhab1 0.01 0.92 -10.96 0.88 0.11 0.005 

Prox500 3 18.57 1.65 0.18                 

PCAhab2 3 22.08 5.17 0.03                 

none 2 22.6 5.69 0.02   model occupancy z covariate (α) z detection z 

Desmodus rotundus           area 0.74 0.34 2.04 0.28 0.56 0.41 

Area 3 85.38 0 0.34 0.34 PCAhab 0.69 0.31 -1.5 0.19 0.56 0.41 

PCAhab1 3 85.74 0.36 0.28 0.62 none 0.62 0.39 * * 0.55 0.43 

none 2 87 1.62 0.15 0.77               

PCAhab2 3 88.06 2.68 0.08 0.86               

Prox500 3 88.35 2.96 0.07 0.74               

Isolation 3 88.72 3.34 0.06 1               
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Epitesicus brasiliensis 
number of 
parameters 

AIC delta AIC weight 
cummulative 

weight 
model occupancy z covariate (α) z detection z 

Isolation 3 35.02 0 0.67 0.67 Isolation 1 0.73 58.8 0.7 0.13 0.001 

PCAhab2 3 38.47 3.45 0.12 0.79               

Prox500 3 39.34 4.32 0.08 0.87               

PCAhab1 3 40.22 5.2 0.05 0.98               

Area 3 40.42 5.4 0.04 0.97               

none 2 41 5.98 0.03 1               

Glossophaga soricina           model occupancy z covariate (α) z detection z 

Area 3 67.83 0 0.67 0.67 area 1 0.53 67 0.59 0.26 0.001 

PCAhab1 3 70.03 2.2 0.22 0.89               

Isolation 3 73 5.18 0.05 0.94               

none 2 73.87 6.04 0.03 0.97               

Prox500 3 35.68 7.85 0.01 99               

PCAhab2 3 35.81 7.98 0.01 1               

Histiotus velatus           model occupancy z covariate (α) z detection z 

Prox500 3 14.33 0 0.78 0.78 PROX500 0.01 0.66 -41.7 0.66 0.5 0.99 

none 2 19.34 5.01 0.06 0.85               

PCAhab1 3 19.74 5.41 0.05 0.9               

Area 3 20.49 6.16 0.036 0.93               

PCAhab2 3 20.63 6.3 0.03 0.97               

Isolation 3 20.71 6.38 0.03 1               
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Micronycteris minuta 
number of 
parameters 

AIC delta AIC weight 
cummulative 

weight 
model occupancy z covariate (α) z detection z 

Prox500 3 25.51 0 0.41 0.41 PROX500 0.001 0.77 45.7 0.77 0.1 0.001 

PCAhab1 3 26.66 1.15 0.22 0.64 PCAhab1 1 0.71 -69.9 0.7 0.08 0.001 

Area 3 27.01 1.5 0.19 0.83 Area 1 0.4 73.2 0.4 0.08 0.001 

PCAhab2 3 28.45 2.94 0.09 0.92               

none 2 29.43 3.92 0.05 0.98               

Isolation 3 31.43 5.92 0.02 1               

Myotis nigricans           model occupancy z covariate (α) z detection z 

Prox500 3 70.66 0 0.76 0.76 PROX500 0.63 0.54 -2.2 0.05 0.34 0.05 

none 2 75.5 4.83 0.06 0.83               

Isolation 3 76.19 5.53 0.04 0.88               

PCAhab1 3 76.35 5.68 0.04 0.92               

PCAhab2 3 76.54 5.88 0.04 0.96               

Area 3 76.81 6.15 0.03 1               

Pygoderma bilabiatum           model occupancy z covariate (α) z detection z 

Isolation 3 12.92 0 0.27 0.27 Isolation 0.001 0.57 -293 0.57 0.08 0.02 

Area 3 13.72 0.8 0.18 0.45 Area 0.001 0.92 8.61 0.9 0.05 0.005 

PCAhab1 3 13.72 0.8 0.18 0.63 PCAhab1 0.001 0.91 -10.31 0.89 0.05 0.005 

Prox500 3 13.74 0.82 0.18 0.81 Prox500 0.001 0.73 31 0.73 0.05 0.008 

none 2 14.7 1.78 0.11 0.92 none 0.32 0.23 * * 0.39 0.35 

PCAhab2 3 15.45 2.53 0.076 1               
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Pyllostomus hastatus 
number of 
parameters 

AIC delta AIC weight 
cummulative 

weight 
model occupancy z covariate (α) z detection z 

none 2 49.72 0 0.35 0.35 none 0.35 0.36 * * 0.29 0.08 

Area 3 51.68 1.97 0.13 0.48 Area 0.35 0.67 0.12 0.85 0.29 0.08 

PCAhab1 3 51.71 1.99 0.13 0.61 PCAhab1 0.35 0.36 -0.005 0.93 0.29 0.08 

PCAhab2 3 51.72 2 0.13 0.74               

Isolation 3 51.72 2 0.13 387               

Prox500 3 51.72 2 0.13 1               

Platyrrhinus lineatus           model occupancy z covariate (α) z detection z 

none 2 73.87 0 0.29 0.29 none 0.61 0.5 * * 0.29 0.02 

Prox500 3 74.37 0.5 0.23 0.52 Prox500 0.64 0.5 -0.95 0.3 0.29 0.02 

Isolation 3 15.56 1.7 0.13 0.65 Isolation 0.62 0.5 -0.42 0.59 0.29 0.02 

Area 3 75.6 1.73 0.13 0.65 Area 0.62 0.5 -0.3 0.6 0.29 0.02 

PCAhab1 3 75.71 1.84 0.12 0.89 PCAhab1 0.62 0.5 0.29 0.69 0.29 0.02 

PCAhab2 3 75.86 1.99 0.11 1 PCAhab2 0.62 0.5 -0.06 0.92 0.29 0.02 

Peropteryx macrotis           model occupancy z covariate (α) z detection z 

none 2 18.47 0 0.3 0.3 none 1 0.7       0.82 

Prox500 3 19.28 0.78 0.2 0.5 Prox500             

Isolation 3 20.02 1.56 0.14 0.64 Isolation             

PCAhab2 3 20.25 1.78 0.12 0.77 PCAhab2             

Area 3 20.28 1.181 0.12 0.89 Area             

PCAhab1 3 20.42 1.96 0.11 1 PCAhab1             
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Sturnira lilium 
number of 
parameters 

AIC delta 
AIC 

weight 
cummulative 

weight 
model occupancy z 

covariate 
(α) 

z detection z 

none 2 112 0 0.35 0.35 none 1 0.7 * * 0.48 0.82 

PCAhab1 3 114.08 2 0.13 0.48               

Prox500 3 114.08 2 0.13 0.61               

Isolation 3 114.08 2 0.13 0.74               

PCAhab2 3 114.08 2 0.13 0.87               

Area 3 114.08 2 0.13 1               

Sturnira tildae           model occupancy z 
covariate 

(α) 
z detection z 

none 2 67.46 0 0.35 0.35 none 1 0.85 * * 0.14 0.001 

Isolation 3 69.35 1.89 0.14 0.49 Isolation 0.96 0.42 1.82 0.58 0.15 0.001 

PCAhab1 3 69.46 2 0.13 0.61               

Prox500 3 69.46 2 0.13 0.74               

Area 3 69.46 2 0.13 0.87               

PCAhab2 3 69.46 2 0.13 1               

Tonatia bidens           model occupancy z 
covariate 

(α) z detection z 

Isolation 3 13.7 0 0.2 0.2 Isolation 0.001 0.69 -40.6 0.68 0.06 0.03 

Area 3 13.72 0.02 0.2 0.4 Area 0.001 0.92 8.61 0.9 0.05 0.005 

PCAhab1 3 13.72 0.02 0.2 0.6 PCAhab1 0.001 0.91 -10.3 0.89 0.05 0.005 

Prox500 3 13.14 0.03 0.2 0.8 Prox500 0.001 0.73 31 0.73 0.05 0.008 

none 2 14.7 1 0.12 0.92 none 0.93 0.93 * * 0.01 0.001 

PCAhab2 3 15.45 1.75 0.08 1 PCAhab2 0.32 0.23   0.93 0.39 0.35 
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Trachops cirrhosus 
number of 
parameters 

AIC delta AIC weight 
cummulative 

weight 
model occupancy z covariate (α) z detection z 

Isolation 3 12.89 0 0.41 0.41 Isolation 0.001 0.83 22 0.83 0.08 0.02 

none 2 14.7 1.82 0.17 0.58 none 0.99 0.93 * * 0.01 0.001 

Prox500 3 14.77 1.89 0.16 0.74 Prox500 0.001 0.8 43.9 0.79 0.03 0.001 

PCAhab2 3 2.84 2.84 0.1 0.84               

PCAhab1 3 3.29 3.29 0.08 0.92               

Area 3 3.29 3.29 0.08 1               

Vampyressa pusila           model occupancy z covariate (α) z detection z 

PCAhab1 3 38.72 0 0.86 0.86 PCAhab1 1 0.41 -199 0.4 0.4 0.41 

Area 3 42.6 3.88 0.12 0.98               

Isolation 3 47.31 8.59 0.01 1               

Prox500 3 50.89 12.17 0.001 1               

none 2 52.29 13.57 0.001 1               

PCAhab2 3 54.83 15.57 0.0001 1               
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Figure S4.1: Rarefaction curves for each of the sampled sites, showing that most of 

curves reached a plateau of diversity. 
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Figure S4.2: Changes in connectance metric according to sample size. Each metric 

was simulated with a subset of the data of each site 500 times. This shows that small 

sample sizes can lead to different estimations of connectance, but with increased 

sample size estimations are more precise. 
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Figure S4.3: Changes in NODF metric according to sample size. Each metric was 

simulated with a subset of the data of each site 500 times. This analysis shows that 

NODF values are highly dependent of network structure and that random network 

structures can give a wide range of values for this metric. 
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Figure S4.4: Changes in nestedness (T) metric according to sample size. Each metric 

was simulated with a subset of the data of each site 500 times. This analysis shows 

that nestedness values are highly dependent of network structure and that random 

network structures can give a wide range of values for this metric. 
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Figure S4.5: Changes in modularity metric according to sample size. Each metric was 

simulated with a subset of the data of each site 500 times. This analysis shows that 

modularity values are highly dependent of network structure and that random network 

structures can give a wide range of values for this metric. 

 

 

 


