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Abstract. Knowledge distillation is an effective approach to transfer-
ring knowledge from a teacher neural network to a student target network
for satisfying the low-memory and fast running requirements in practice
use. Whilst being able to create stronger target networks compared to
the vanilla non-teacher based learning strategy, this scheme needs to
train additionally a large teacher model with expensive computational
cost. In this work, we present a Self-Referenced Deep Learning (SRDL)
strategy. Unlike both vanilla optimisation and existing knowledge distil-
lation, SRDL distils the knowledge discovered by the in-training target
model back to itself to regularise the subsequent learning procedure there-
fore eliminating the need for training a large teacher model. SRDL im-
proves the model generalisation performance compared to vanilla learn-
ing and conventional knowledge distillation approaches with negligible
extra computational cost. Extensive evaluations show that a variety of
deep networks benefit from SRDL resulting in enhanced deployment per-
formance on both coarse-grained object categorisation tasks (CIFARI10,
CIFAR100, Tiny ImageNet, and ImageNet) and fine-grained person in-
stance identification tasks (Market-1501).

1 Introduction

Deep neural networks have been shown to be effective for solving many com-
puter vision tasks [22,39,42,12, 24, 31]. However, they are often computation-
ally expensive due to having very deep and/or wide architectures with millions
of parameters [49,12,39]. This leads to slow execution and the need for large
storage, reducing their deployability to situations with low memory and limited
computing budget, e.g. mobile phones. This has given rise to efforts in devel-
oping more compact models, such as parameter binarisation [35], filter pruning
[29], model compression [11], and knowledge distillation [15].

Among these existing techniques, knowledge distillation [15] is a generic ap-
proach suitable to a wide variety of networks and applications. It is based on
the observation that compared to large networks, small networks often have
similar representation capacities but are harder to define and train the param-
eters of a target function [1,3]. As a solution to this challenge, knowledge dis-
tillation first trains a deeper and/or wider “teacher” network (or an ensemble
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model), then learns a smaller “student” network to imitate the teacher’s classi-
fication probabilities [15] and/or feature representations [1,36] (Fig 1(b)). This
imposes additional information beyond conventional supervised learning signals
(Fig 1(a)), leading to a more discriminative student model than learning the
target model without the teacher’s knowledge. However, this generalisation im-
provement comes with significant extra computational cost and model training
time of the teacher model.

In contrast to knowledge distillation, fast model optimisation aims to reduce
the cost of training a target model. While it is relatively fast to train a model
on small datasets such as CIFAR10 [23] in a few hours, model training on larger
datasets like the ILSVRC dataset [37] requires a few weeks. Hence, fast optimi-
sation in deep model training has increasingly become an important problem to
be addressed. There are several different approaches to fast optimisation, such
as model initialisation [8, 34] and learning rate optimisation [20, 50, 7].
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Fig. 1. Illustration of three different deep network learning methods. (a) The vanilla
training: Optimise the target model from the supervision of training label for M epochs
in one stage. (b) The Knowledge Distillation training: Firstly learn a teacher model
in a computationally intensive manner; Then extract the learned knowledge from the
teacher model; Lastly optimise the target model by leveraging both the label data and
the teacher’s knowledge for M epochs. (c) The proposed SRDL training: In the first
stage, learn the target model by the label supervision for half (M/2) epochs (similar
to (a) but with a different learning rate strategy), and extract intermediate knowledge
from the thus-far trained model (similar to (b) but without a heavy teacher model
to train); In the second stage, continuously optimise the target model from the joint
supervision of the labelled training data and the self-discovered knowledge for another
half (M/2) epochs.

In this work, we aim to jointly solve both knowledge distillation for model
compression and fast optimisation in model learning using a unified deep learning
strategy. To that end, we propose a Self-Referenced Deep Learning (SRDL)
strategy that integrates the knowledge distillation concept into a vanilla net-
work learning procedure (Fig 1(c)). Compared to knowledge distillation, SRDL
exploits different and available knowledge without the need for additionally train-
ing an expensive teacher by self-discovering knowledge with the target model
itself during training. Specifically, SRDL begins with training the target net-
work by a conventional supervised learning objective as a vanilla strategy, then
extracts self-discovered knowledge (inter-class correlations) during model train-
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ing, and continuously trains the model until convergence by satisfying two losses
concurrently: a conventional supervised learning loss, and an imitation loss that
regulates the classification probability predicted by the current (thus-far) model
with the self-discovered knowledge. By doing so, the network learns significantly
better than learning from a conventional supervised learning objective alone, as
we will show in the experiments.

Our contributions are: (I) We investigate for the first time the problems of
knowledge distillation based model compression and fast optimisation in model
training using a unified deep learning approach, an under-studied problem al-
though both problems have been studied independently in the literature. (II)
We present a stage-complete learning rate decay schedule in order to maximise
the quality of intermediate self-discovered knowledge and therefore avoid the
negative guidance to the subsequent second-stage model optimisation. (IIT) We
further introduce a random model restart scheme for the second-stage training
with the purpose of breaking the optimisation search space constraints tied to
the self-referenced deep learning process.

Extensive comparative experiments are conducted on object categorisation
tasks (CIFAR10/100 [23], Tiny ImageNet [27], and ImageNet [37]) and person
instance identification tasks (Market-1501 [52]). These results show that the
proposed SRDL offers a favourable trade-off between model generalisation and
model capacity (complexity). It narrows down the model performance gap be-
tween the vanilla learning strategy and knowledge distillation with almost no
extra computational cost. In some cases, SRDL even surpasses the performance
of conventional knowledge distillation whilst maintaining the model learning ef-
ficiency advantage.

2 Related Work

Knowledge Distillation. Model compression by knowledge distillation was
firstly studied in [2] and recently re-popularised by Hinton et al. [15]. The ratio-
nale behind distillation is the introduction of extra supervision from a teacher
model in training the target model in addition to a conventional supervised
learning objective such as the cross-entropy loss subject to the labelled training
data. The extra supervision were typically obtained from a pre-trained powerful
teacher model in the form of classification probabilities [15], feature representa-
tion [1,36], or inter-layer flow (the inner product of feature maps) [48]. Knowl-
edge distillation has been exploited to distil easy-to-train large networks into
harder-to-train small networks [36], or transfer high-level semantics to earlier
layers [26], or simultaneously enhance and transfer knowledge on-the-fly [25].
Recently, some theoretical analysis have been provided to relate distillation to
information learning theory for which a teacher provides privileged information
(e.g. sample explanation) to a student in order to facilitate fast learning [33,
43]. Zhang et al. [51] exploited this idea for video based action recognition by
considering the computationally expensive optic flow as privileged information to
enhance the learning of a less discriminative motion vector model. This avoids
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the high cost of computing optic flow in model deployment whilst computing
cheaper motion vectors enables real-time performance.

In contrast to all the above existing works, we aim to eliminate the ex-

tra teacher model training all together. To this end, we uniquely explore self-
discovered knowledge in target model training by self-distillation, therefore more
cost-effective. Concurrent with our work, Furlanello et al. [9] independently pro-
poses training the networks in generations, in which the next generation is jointly
guided by the standard one-hot classification labels and the knowledge learned
in the previous generation. However, the training budget of each generation is
almost the same as the vanilla strategy, leading to the total cost of this method
several times more expensive than vanilla training.
Fast Optimisation. Fast optimisation of deep neural networks has gained
increasing attention for reducing the long model training time by rapid model
learning convergence [21,38]. A simple approach is by Gaussian initialisation
with zero mean and unit variance, and Xavier initialisation [10]. But these are
not scalable to very deep networks. More recent alternatives have emerged [13].
The rational is that good model initialisation facilitates model learning to rapidly
reach the global optimum with minimal vanishing and/or exploding gradients.
Additional options include improved optimisation algorithms to mitigate the
slow convergence of SGD by sidestepping saddle points in the loss function sur-
face [18], and learning rate refinement that exploits a cycle rate to train a neural
network in the context of ensembling multiple models [16]. However, model en-
semble multiplies the deployment cost by times.

In the spirit of fast model optimisation, our method aims to achieve more
generalisable model learning without extra computational cost for learning an in-
dependent teacher model. By self-distillation, the proposed method can improve
the performance of both small and large networks, so it is generally applicable.

3 Self-Referenced Deep Training

3.1 Problem Statement

For supervised model learning, we assume n labelled training samples D =
{(Ii,y:)}?. Each sample belongs to one of C classes y; € ¥ = [1,2,---,C],
with the ground-truth label typically represented as a one-hot vector. The ob-
jective is to learn a classification deep CNN model generalisable to unseen test
data through a cost-effective training process.

In this work, we formulate a novel deep learning approach that improves the
model generalisation capability through employing self-discovered knowledge as
additional supervision signal with marginal extra computational cost and hence
not hurting the computing scalability. We call this strategy Self-Referenced
Deep Learning (SRDL). We begin with revisiting the vanilla deep model train-
ing method (Fig 1(a)) before elaborating the proposed SRDL approach.
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3.2 Vanilla Deep Model Training

For training a classification deep model, the softmax cross-entropy loss function
is usually adopted. Specifically, we predict the posterior probability of a labelled
sample I over any class ¢ via the softmax criterion:

exp(z¢)

C
> =1 exp(z))
where x refers to the embedded feature vector of I, W; the j-th class predic-

tion function parameter, and 8 the neural network model parameters. We then
compute the cross-entropy loss on a labelled sample @ (in a mini-batch) as:

p(clz,0) = , =Wz, ce) (1)

Lo =log (p(yl2)) 2

where y specifies the ground-truth label class of .

Discussion. For a model subject to the vanilla training (Fig 1(a)), the cross-
entropy loss is utilised to supervise the model parameters (e.g. by the stochastic
gradient descent algorithm) iteratively in a one-stage procedure. This training
method relies only on the supervision of per-sample label, but ignores the dis-
criminative knowledge incrementally discovered by the in-training model itself. It
may lead to sub-optimal optimisation. We overcome this problem by introducing
a mechanism to exploit self-discovered intermediate knowledge in a computation-
ally economic manner.

3.3 Self-Referenced Deep Learning

SRDL Overview. The proposed SRDL approach is a knowledge referenced
end-to-end deep model training strategy. The overview of our SRDL approach
is depicted in Fig 2. This is realised through reformulating the vanilla training
process into two equal-sized stages:

1. In the first stage (Fig 2(i)), SRDL learns the target model as a vanilla algo-
rithm with a conventional supervised learning objective, while tries to induce
reliable knowledge.

2. In the second stage (Fig 2(ii)), SRDL continues to train the model by a con-
ventional supervised loss and a self-discovered knowledge guided imitation
loss concurrently.

For model training, SRDL consumes the same number of epochs as the vanilla
counterpart. The extra marginal cost is due to self-discovered knowledge extrac-
tion (see Evaluation Metrics in Sec 4). Consequently, SRDL allows to benefit
model generalisation as knowledge distillation at faster optimisation speed. Once
the target model is trained, it is deployed to the test data same as the vanilla
method.
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Fig. 2. Overview of the proposed Self-Referenced Deep Learning (SRDL). The SRDL
strategy consists of two stages training: First stage: We train the target model by
a cross-entropy loss (Eq (2)) with (a) the available label supervision for half epochs,
whilst learning to (b) extract discriminative intermediate knowledge concurrently (Eq
(5)). To maximise the quality of self-discovered knowledge, we introduce (c) a pass-
complete learning rate decay schedule (Eq (4)). Second stage: we continuously op-
timise the target model for the other half epochs by the joint supervision (Eq (7)) of
both (d) the label data and (e) self-discovered intermediate knowledge in an end-to-
end manner. We (f) randomly restart the model for the second stage to break the
optimisation search space constraint from self-referenced deep learning mechanism.

(I) First Stage Learning. In the first stage of SRDL, we train the deep model
6 by the cross-entropy loss Eq (2). Model training is often guided by a learning
rate decay schedule such as the step-decay function [12,17]:

615:60><fstep(ta-2\4)v te[lv"'vM] (3)

where ¢; denotes the learning rate at the ¢-th epoch (initialised as €g, in total M
epochs), and fsep(t, M) the step-decay function. The learning rate decay aims
to encourage the model to converge to a satisfactory local minimum without
random oscillation in loss reduction during model training. However, if applying
the conventional step-decay scheme throughout the optimisation process, SRDL
may result in premature knowledge during training. This is because, the model
still resides in an unstable local minimum due to that the learning rate drop is
not sufficiently quick [47].

To overcome this problem, we propose to deploy an individual and complete
step-decay schedule for both first and second stages of SRDL (Fig 2(c)), subject
to the condition of remaining the same training epochs (cost). Formally, this
schedule is expressed as:

€t = €0 X fstep(t,0.5M) (4)

The intuition is that, the in-training model can be temporarily pushed towards a
reasonably stable local minimum within the same number of (e.g. 0.5M) epochs
to achieve a more-ready state therefore help ensure the quality of self-discovered
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Fig. 3. Illustration of a vanilla learning rate step-decay function and the proposed
stage-complete learning rate step-decay schedule.

knowledge. We call this a stage-complete learning rate step-decay schedule
(Fig 3). Our evaluations verify the significance of this design while guaranteeing
the goodness of the self-referenced knowledge (see Table 4).

At the end of the first stage of SRDL with a “half-trained” model (denoted
as 0*), we extract the self-discovered knowledge in the form of per-sample class
probability prediction (Fig 2(b)). Formally, we compute the class probability for
each training sample by a softened softmax operation as:

exp(z./T) -
——, 2z, =W. x, ce) (5)
S exp(z/T)

where the temperature parameter T' controls the softening degree, with higher
values meaning more softened predictions. We set T'=3 in our experiments as
suggested in [15].

(IT) Second Stage Learning. To improve the generalisation performance of
the model, we use the self-discovered knowledge to provide training experience at
second stage model learning in SRDL. We quantify the imitation of the current
model to the knowledge p(j|x, 0*) with Kullback Leibler (KL) divergence (Fig
2(e)), formulated as:

plc|e, 0%) =

S Bz, 60°)

R =) p(jle,07)log ———"—. 6
2 Pl 0% log T ©
where p(j|x,0) is the class probability prediction of the up-to-date model 6
computed by Eq (5). The overall loss function for the second stage in SRDL is:

L="Le+T** Ry (7)

with the squared softening-temperature (Eq (5)) as the balance weight. The
gradient magnitudes produced by the soft targets p are scaled by %, SO we
multiply the distillation loss term by a factor T2 to ensure that the relative
contributions of ground-truth and teacher probability distributions remains. In
doing so, the network model learns to both predict the correct class label (cross-
entropy loss L) and align the class probability of previous training experience
(imitation loss Ry;) concurrently.
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Random Model Restart. A key difference between SRDL and knowledge
distillation is that SRDL enables a model to learn from its own (previously re-
vealed) knowledge through training experience rather than from an independent
teacher’s knowledge. This self-discovered knowledge is represented in the “half-
trained” model parameters 8*. If we further train the model at the second stage
from 6* by Eq (7), the learning may become less explorable for better local or
global minimum due to the stacking effect of the imitation loss and the model
parameter status. Therefore, we start the second stage training with randomly
initialised model parameters.

This scheme is based on three considerations: (1) A large proportion of the
knowledge learned in the first stage has been extracted and used in the second
stage. (2) The same training data will be used. (3) Random initialisation offers
another opportunity for the model to converge to a better local minimum. Our
experiment validates the effectiveness of this random restart scheme (see Table
5 in Sec 4.5).

SRDL model training is summarised in Alg 1. In our experiments, a SRDL
trained model is tested against both the vanilla model training strategy and the
knowledge distillation method.

Algorithm 1. Self-Referenced Deep Learning

Input: Labelled training data D; Training epochs M;
Output: Trained CNN model 6;
(I) First stage learning
Initialisation: t=1; Random model 0 initialisation;
while ¢t < 0.5% M do
(i) Update the learning rate e (Eq (4));
(ii) Update @ by cross-entropy loss (Eq (2));
end
9: Knowledge Extraction Induce per-sample class probability predictions (Eq (5));
10: (ITI) Second stage learning
11: Initialisation: t=1; Random model 0 restart;
12: while t < 0.5 % M do
13: (i) Update the learning rate e (Eq (4));
14: (ii) Update @ by soft-feedback referenced loss (Eq (7));

15: end

4 Experiments

4.1 Experimental Setup

Datasets. For experimental evaluations, we use four benchmarking datasets
including both coarse-grained object classification and fine-grained person in-
stance identification Specifically, the CIFAR10 and CIFAR100 [23] datasets
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contain 32x 32 sized natural images from 10 and 100 object classes. Both adopt
a 50,000/10,000 train/test image split. The Tiny ImageNet [27] consists of
110,000 64x64 images from 200 object classes. We adopt the standard 100,000/
1,000 train/val setting. The ImageNet [22] is a large scale 1,000-class object
image classification benchmark, providing 1.2 million images for training, and
50,000 images for validation. The Market-1501 [52] is a person re-identification
dataset. Different from image classification as tested in the above four datasets,
person re-identification is a more fine-grained recognition problem of matching
person instance across non-overlapping camera views. It is a more challenging
task due to the inherent zero-shot learning knowledge transfer from seen classes
(identities) to unseen classes in deployments, i.e. no overlap between training
and test classes. Market-1501 has 32,668 images of 1,501 different identities (ID)
captured by six outdoor cameras. We use the standard 751/750 train/test ID
split. Following [41, 30], we train the network by the cross-entropy loss (Eq (2))
and use the feature layer’s output as the representation of person bounding box
images for test by the Euclidean distance metric.

Performance Metrics. For performance measurement, we adopt the top-1
classification accuracy for image classification, the standard Cumulative Match-
ing Characteristic (CMC) accuracy (Rank-n rates) and mean Average Precision
(mAP) for person instance recognition (re-id). The CMC is computed for each
individual rank k as the cumulative percentage of the truth matches for probes
returned at ranks < k. And the Rank-1 rate is often considered as the most
important performance indicator of an algorithm’s efficacy. The mAP is to mea-
sure the recall of multiple truth matches, computed by first computing the area
under the Precision-Recall curve for each probe, then calculating the mean of
Average Precision over all probes. We measure the model optimisation com-
plexity with the FLoating-point OPerations (FLOPs): Forward-FLOPs * Epochs *
Training-Set-Size.

Neural Networks. We use 7 networks in our experiments: one typical stu-
dent net, ResNet-32 [12]; two typical teacher nets, ResNet-110 [12] and Wide
ResNet WRN-28-10 [49]; and four varying sized nets, ResNet-50, DenseNet-121,
DenseNet-201 and DenseNet-BC (L=190, k=40) [17].

Implementation Details. For all three image classification datasets, we use
SGD with Nesterov momentum and set the mini-batch size to 128, the initial
learning rate to 0.1, the weight decay to 0.0002, and the momentum to 0.9.
For Market-1501, we use the same SGD but with the mini-batch size of 32.
We assign sufficient epochs to all models to ensure convergence. On CIFAR
datasets, the training budget is 300 epochs for DenseNet, and 200 epochs for
ResNet and Wide ResNet models, same as [16]. We set 150/120 epochs on Tiny
ImageNet/Market-1501 for all models. All model optimisation methods take the
same epochs to train the target networks. We adopt a common learning rate
decay schedule [16]: the learning rate drops by 0.1 at the 50% and 75% epochs.
The data augmentation includes horizontal flipping and randomly cropping from
images padded by 4 pixels on each side with missing pixels filled by original
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image reflections [12]. We report the average performance of 5 independent runs
for each experiment.

Dataset % Param CIFARI10 CIFAR100 |Tiny ImageNet
Metrics Acc [TrCost Acc [TrCost Acc [ TrCost
ResNet-32-+vanilla 92.53 | 0.08 |69.02| 0.08 |53.33| 0.32
ResNet-32+SRDL 0.5M 93.12| 0.08 [71.63| 0.08 |55.53| 0.32
Gain (SRDL-vanilla) +0.59 0 +2.61 0 +2.20 0
WRN-28-10+vanilla 94.98 | 12.62 | 78.32 | 12.62 | 58.38 | 50.48
WRN-28-10+SRDL 36.5M |95.41| 12.62 |79.38| 12.62 |60.80| 50.48
Gain (SRDL-vanilla) +0.43 0 +1.06 0 +2.42 0
DenseNet-BC+vanilla 96.68 | 10.24 (82.83| 10.24 |62.88| 40.96
DenseNet-BC+SRDL | 25.6M |96.87| 10.24 [83.59| 10.24 |64.19| 40.96
Gain (SRDL-vanilla) +0.19 0 +0.76 0 +1.31 0

Table 1. Comparison between SRDL and the vanilla learning strategy on image clas-
sification. Metric: Accuracy (Acc) Rate (%). “Gain”: the performance gain by SRDL
over vanilla. TrCost: Model training cost in unit of 10'® FLOPs, lower is better. M:
Million. The first/second best results are in red/blue.

4.2 Comparison with the Vanilla Learning Strategy

We compared the image classification performance between SRDL and the vanilla
optimisation strategy. We make the following observations from Table 1:

1. All three networks ResNet-32, WRN-28-10, and DenseNet-BC improve the
classification performance when trained by the proposed SRDL. For example,
ResNet-32 achieves an accuracy gain of 0.59% on CIFARI1O0, of 2.61% on
CIFAR100, and of 2.20% on Tiny ImageNet. This suggests the applicability
of SRDL to standard varying-capacity network architectures.

2. SRDL achieves superior model generalisation performance with nearly zero
extra model training cost!.

3. Smaller network (ResNet-32) with fewer parameters generally benefits more
from SRDL in model generalisation performance, making our method more
attractive to resource-limited applications. Hence, our SRDL addresses the
notorious hard-to-train problem in small networks to some degree [1].

Results on ImageNet. We test the large scale ImageNet with DenseNet201
and obtain the Top-1/5 rates 77.20%/94.57% by the vanilla vs 77.72%/94.89%
by our SRDL. This suggests that SRDL generalises to large scale object classi-
fication settings.

! The computational cost of knowledge extraction required by both SRDL and Knowl-
edge Distillation [15] is marginal (less than 0.67% model training cost) and hence
omitted for analysis convenience.
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4.3 Comparison with Knowledge Distillation

We compared our SRDL with the closely related Knowledge Distillation (KD)
method [15]. With KD, we take ResNet-32 as the target model, WRN-28-10 and
ResNet-110 as the pre-trained teacher models to produce the per-sample class
probability targets (i.e. the teacher’s knowledge) for the student. From Table 2
we draw these observations:

CIFARI10 CIFAR100 |Tiny ImageNet

Target Net|Method Teacher Net Acc [’I‘rCost Acc [TrCost Acc [TrCost

Vanilla N/A 92.53| 0.08 [69.02| 0.08 |53.33| 0.32

ResNet-32| KD WRN-28-10 (36.5M)|[92.83| 12.70 {72.58| 12.70 |56.80| 50.80

ResNet-110 (1.7M) {|92.75| 0.30 [71.17| 0.30 |[55.06| 1.20

(0.5M) [SRDL N/A 93.12| 0.08 |71.63| 0.08 (55.53| 0.32

Table 2. Comparison between SRDL and Knowledge Distillation (KD) on image clas-
sification. Metric: Accuracy (Acc) Rate (%). TrCost: Model training cost in unit of 10
FLOPs, lower is better. Number in bracket: model parameter size. The first/second
best results are in red/blue.

1. KD is indeed effective to improve small model generalisation compared to
the vanilla optimisation, particularly when using a more powerful teacher
(WRN-28-10). However, this is at the price of extra 157x (12.70/0.08-1 or
50.80/0.32-1) model training cost. When using ResNet-110 as the teacher in
KD, the performance gain is less significant.

2. SRDL approaches the performance of KD(WRN-28-10) on CIFAR100 and
Tiny ImageNet, whilst surpasses it on CIFAR10. This implies that while
small model is inferior to KD in self-discovering knowledge among a large
number of classes, it seems to be superior for small scale tasks with fewer
classes.

3. SRDL consistently outperforms KD(ResNet-110) in both model performance
and training cost, indicating that KD is not necessarily superior than SRDL
in enhancing small model generalisation (teacher dependent). This may be
partly due to the overfitting of a stronger teacher model (e.g. ResNet-110)
which leads to less extra supervision information. To test this, we calcu-
lated the average cross entropy loss of the final epoch. We observed 0.0087
(ResNet-110) vs 0.1637 (ResNet-32), which is consistent with our hypothesis.

4.4 Evaluation on Person Instance Recognition

In person re-identification (re-id) experiment, we compared SRDL with the
vanilla model learning strategy using the same CNN nets, and also compared
with ten recent the state-of-the-art re-id methods. Two different networks are
tested: ResNet-50 (25.1M parameters) and DenseNet-121 (7.7M parameters).
Table 3 shows that:



12 Xu Lan et al.

Query Type Single-Query Multi-Query
Metrics (%) Rank-1 [ mAP Rank-1 [  mAP
SCS [5] 51.9 26.3 - -
G-SCNN [44] 65.8 39.5 76.0 48.4
HPN [32] 76.9 - - -
MSCAN [28] 80.3 57.5 86.8 66.7
JLML [30] 85.1 65.5 89.7 74.5
SVDNet [41] 82.3 62.1 - -
PDC [40] 84.1 63.4 - -
TriNet [14] 84.9 69.1 90.5 76.4
IDEAL [24] 86.7 67.5 91.3 76.2
DPFL 6] 88.6 72.6 92.2 80.4
BraidNet-CS+SRL [46] 83.7 69.5 - -
DaRe [45] 86.4 69.3 - -
MLFN [4] 90.0 74.3 92.3 82.4
ResNet-50+vanilla 87.5 69.9 91.4 78.5
ResNet-50+SRDL 89.3 73.5 93.1 81.5
Gain (SRDL-vanilla) +1.8 +3.6 +1.7 +3.0
DenseNet-121+-vanilla 90.1 74.0 93.6 81.7
DenseNet-121+SRDL 91.7 76.8 94.2 83.5
Gain (SRDL-vanilla) +1.6 +2.8 +0.6 +1.8

Table 3. Evaluation of person re-id (instance recognition) on Market-1501. The
first/second best results are in red/blue.

1. All CNN models benefit from SRDL on the person re-id task, boosting the
re-id performance for both single-query and multi-query settings.

2. SRDL trained CNNs show superior re-id performance over most state-of-the-
art methods. In particular, SRDL trained DenseNet-121 achieves the best
re-id matching rates among all the competitors.

Note that, this performance gain is obtained from a general-purpose network
without applying any specialised person re-id model training “bells and whis-
tles”. This is in strong contrast to existing deep re-id methods [44, 40,28, 32]
where specially designed network architectures with complex training process
are required in order to achieve the reported results.

4.5 Component Analysis and Discussion

We further conducted SRDL component analysis using ResNet-32 on CIFAR100.
Stage-Complete Schedule. Table 4 compares our stage-complete learning
rate decay schedule with the conventional stage-incomplete counterpart. It is ev-
ident that without the proposed schedule, self-referenced learning can be highly
misleading due to unreliable knowledge extracted from the “half-trained” model.
This validates the aforementioned model optimisation behaviour consideration
(see the discussion underneath Eq (4)).
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Decay Strategy [ Accuracy (%)
Stage-Incomplete 58.11
Stage-Complete 71.63

Table 4. Stage-complete schedule.

Random Model Restart. Table 5 shows that model random restart for the
second stage training in SRDL brings 1.90% (71.63%-69.73%) accuracy gain.
This verifies our design motivation that the discriminative knowledge is well
preserved in the training data and self-discovered correlation; Hence, random
model initialisation for the second stage training of SRDL enables to break the
optimisation search space constraint without losing the available information,
and eventually improving the model generalisation capability.

Random Restart H Accuracy (%)
X 69.73
v 71.63

Table 5. Random model restart.

Model Ensemble. Table 6 shows that the ensemble of “half-trained” and final
models can further boost the performance by 0.70% (72.33%-71.63%) with more
(double) deployment cost. This suggests that the two models induced sequen-
tially during training are partially complementary, which gives rise to model
ensembling diversity and results in model performance boost. Besides, we also
tested an ensemble of two randomly initialised networks each trained by the
vanilla learning strategy for M /2 epochs, obtaining the Top-1 rate 72.02% vs
72.33% by SRDL. This shows that our SRDL ensemble outperforms the vanilla
counterpart.

Model Ensemble | Accuracy (%)
X 71.63
v 72.33

Table 6. Model ensemble.

Model Generalisation Analysis. As shown in [19], model generalisation is
concerned with the width of a local optimum. We thus examined the solutions
0, and 0, discovered by the vanilla and SRDL training algorithms, respectively.
We added small perturbations as 6,.(d,v) = 0. +d - v, * € {v,s} where v is a
uniform distributed direction vector with a unit length, and d € [0, 5] controls
the change magnitude. The loss is quantified by the cross-entropy measurement
between the predicted and ground-truth labels. Figure 4 shows the robustness of
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each solution against the parameter perturbation, indicating the width of local
optima as 8, < 6,. This suggests that our SRDL finds a wider local minimum
than the vanilla therefore more likely to generalise better.

SRDL Vanilla

200
150
100

50

Loss

0 0.5 1 1.5 2 2.5 3 35 4 4.5
Magnitude

Fig. 4. The width analysis of solution local optima.

5 Conclusion

In this work, we presented a novel Self-Referenced Deep Learning (SRDL) strat-
egy for improving deep network model learning by exploiting self-discovered
knowledge in a two-stage training procedure. SRDL can train more discrimina-
tive small and large networks with little extra computational cost. This differs
from conventional knowledge distillation which requires a separate pre-trained
large teacher model with huge extra computational and model training time cost.
Conceptually, SRDL is a principled combination of vanilla model optimisation
and existing knowledge distillation, with an attractive trade-off between model
generalisation and model training complexity. Extensive experiments show that
a variety of standard deep networks can all benefit from SRDL on both coarse-
grained object categorisation tasks (image classification) and fine-grained person
instance identification tasks (person re-identification). Significantly, smaller net-
works benefit from more performance gains, making SRDL specially good for
low-memory and fast execution applications. Further component analysis gives
insights to the SRDL’s model design considerations.
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