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Abstract

Existing logo detection methods usually consider a small number of logo classes, lim-

ited images per class and assume fine-gained object bounding box annotations. This

limits their scalability to real-world dynamic applications. In this work, we tackle

these challenges by exploring a web data learning principle without the need for ex-

haustive manual labelling. Specifically, we propose a novel incremental learning ap-

proach, called Scalable Logo Self-co-Learning (SL2), capable of automatically self-

discovering informative training images from noisy web data for progressively improv-

ing model capability in a cross-model co-learning manner. Moreover, we introduce a

very large (2,190,757 images of 194 logo classes) logo dataset “WebLogo-2M” by de-

signing an automatic data collection and processing method. Extensive comparative

evaluations demonstrate the superiority of SL2 over the state-of-the-art strongly and

weakly supervised detection models and contemporary web data learning approaches.

Keywords: Object Detection; Logo Recognition; Logo Dataset; Web Data Mining;

Self-Learning; Co-Learning.

1. Introduction

Automated logo detection from unconstrained “in-the-wild” images benefits a wide

range of applications, document image logo retrieval [1] and vehicle logo recognition

in intelligent transportation [2]. This is inherently a challenging task due to the pres-

∗Corresponding author; Phone, +44 7576498032; London E1 4NS, UK
Email addresses: hang.su@qmul.ac.uk (Hang Su), s.gong@qmul.ac.uk (Shaogang Gong),

eddy.zhuxt@gmail.com (Xiatian Zhu)

Preprint submitted to Pattern Recognition August 22, 2019



Figure 1: Logo detection challenges: significant variations in scale, illumination, background, and occlusion.

ence of many logos in diverse context with uncontrolled illumination, varying scales,5

occlusion, low-resolution, and background clutter (Fig. 1).

Existing logo detection methods typically consider a small number of logo classes

with the need for large scale labelled training data at the object instance level [3].

Whilst this controlled setting allows for a straightforward adoption of the state-of-the-

art object detection models such as Faster R-CNN [4] and YOLO [5], it is non-scalable10

to real-world logo detection applications when a much larger number of logo classes

are targeted. This is due to two reasons: (1) Extremely high cost for constructing large

scale dataset with exhaustive logo instance bounding box labelling [6]; (2) Lacking

the incremental model learning ability to progressively update and expand the model

to increasingly more training data without fine-grained labelling. Existing models are15

mostly one-pass trained with limited generalisation to new classes.
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In this work, we consider the problem of scalable logo detection learning in a

very large collection of unconstrained images without exhaustive fine-grained instance

level labelling. Given that the existing datasets mostly have small numbers of logo

classes, one possible strategy is to learn from a small set of labelled training classes20

and then adopt the model to other novel (test) logo classes, that is, Zero-Shot Learning

(ZSL) [16]. This class-to-class model transfer and generalisation in ZSL is achieved

by knowledge sharing through an intermediate semantic representation for all classes,

such as mid-level attributes [16] or a class name embedding space [17]. However, they

are limited as many logos do not share attributes or other forms of semantic represen-25

tations due to their unique A lack of large scale logo datasets (Table 1), in both class

size and per-class image number severely limits the scalability of current logo detection

models. This study explores a web data learning principle for both large scale dataset

construction and incremental logo detection model learning without exhaustive manual

annotation on increasing logo data. The aim is to scale up the limited logo detection30

capacity to large dynamic real-world applications by exploiting the rich multimedia

data from the Internet. We call this setting scalable logo detection.

The contributions of this work are three-fold: (1) We investigate the scalable logo

detection problem, characterised by modelling a large quantity of logo classes with-

out exhaustive bounding box annotation. This is different from the existing methods35

typically considering only a small number of logo classes with the need for manual

labelling. This scalability problem is under-studied in the literature. (2) We propose

a novel incremental learning approach to scalable logo detection by exploiting multi-

class detection with context enhancement. We call this method Scalable Logo Self-co-

Learning (SL2), since it automatically discovers potential positive logo images from40

noisy web data to progressively improve the model discrimination and generalisation

capability in a self-learning and co-learning manner. (3) We introduce a large logo

dataset including 2,190,757 images from 194 logo classes, called WebLogo-2M, created

by automatically sampling web logo images from the Twitter website. Importantly, our

construction method allows to further expand the dataset easily with new logo classes45

and images, therefore offering a favourable solution for Extensive experiments demon-

strate the superiority of SL2 over the state-of-the-art strongly (Faster R-CNN [4], SSD
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[18], RetinaNet [19], YOLOv2 [5], and YOLOv3 [20]) and weakly (WSL [21], PCL

[22]) supervised detection models, and webly learning methods (WLOD [23]) on the

WebLogo-2M dataset1.50

The preliminary version of this has been reported in [24]. Compared with the

earlier study, there are several key differences introduced: (i) This study presents a

more advanced method by introducing a joint co-training and self-learning concept into

the scalable logo detection model formulation. This enables mining the complementary

advantages of two different detection models, making self-learning significantly more55

effective. (ii) We conduct more comprehensive evaluations and analysis on incremental

model learning in this study for giving more insights. (iii) We further expand the large

WebLogo-2M dataset by additional data collection and manual labelling.

2. Related Works

Logo Detection Early logo detection methods are established on hand-crafted visual60

features (e.g. SIFT [25] and HOG [3]) and conventional classification models (e.g.

BoW [26]). These methods were only evaluated by small logo datasets with a limited

number of logo images and classes. Recently, Convolutional Neural Networks (CNN)

have emerged as stronger solutions [27]. A few deep logo detection methods [7, 28, 29]

have been recently proposed by exploiting the state-of-the-art object detection models65

such as Faster R-CNN [4]. This leads to a need for a large number of labelled training

data. To this end, a couple of works leverage many synthetic logo imagery with the

bounding boxes obtained at zero annotation cost [28, 7]. To better generalise logo de-

tection, the notions of universal logo detection [29, 14] and open set logo retrieval [14]

have been formulated respectively. Meanwhile, this also inspires large data construc-70

tion [13]. However, all these existing models are not scalable to real world deploy-

ment due to two stringent requirements: (1) Accurately labelled training data per logo

class; (2) Strong object-level bounding box annotations. This is because, both require-

ments give rise to time-consuming training data collection and annotation, which is

1 The WebLogo-2M benchmark is released publicly at: https://weblogo2m.github.io/.
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not scalable to a very large number of logo classes given limited human labelling bud-75

get. In contrast, our method eliminates both needs by enabling model learning from

image-level weakly annotated and noisy web images. As such, we enable automated

introduction of any quantity of new logos for both dataset construction/expansion and

model update without exhaustive manual labelling.

Logo Datasets A number of logo detection datasets exist in the literature (Table 1).80

All existing datasets are constructed manually and typically small in both sample and

category thus insufficient for deep learning. Recently, Hoi et al. [13] attempt to create

a large scale logo dataset LOGO-NET. However, it is still not publicly accessible. To

address this scalability problem, we propose to collect logo images automatically from

the social media. This brings about two unique benefits: (1) Weak image level labels85

can be obtained for free; (2) We can easily upgrade the dataset by expanding the logo

category set and collecting new logo images without human labelling therefore scalable

to any quantity of logo images and categories. To our knowledge, this is the first attempt

to construct a large scale logo dataset by exploiting inherently noisy web data.

Model Self-Learning Self-training is a special type of incremental learning where90

the new training data are labelled by the model itself – predicting logo positions and

class labels in weakly labelled or unlabelled images before converting the most con-

fident predictions into the training data [30]. A similar approach to our model is the

detection model by Rosenberg et al. [31]. This model also explores the self-training

mechanism. However, this method needs a number of per-class strongly and accu-95

rately labelled training data to initialise the detection model. Also, it assumes unla-

belled images drawn from the target categories. Such assumptions severely limit the

model usability and scalability when only noisy web training data are available. Model

Co-Learning Model co-learning is a generic learning strategy originally designed for

semi-supervised learning, based on two sufficient and conditionally independent fea-100

ture representations with a single model algorithm [32]. Later on, co-learning was

further developed into the variants of using different model parameter settings [33] or

models [34] on the same feature representation. Recently, this strategy is also applied

for hyperspectral data classification by co-training of spectral and spatial information
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[35], and multi-source domain adaptation by co-regression [36]. Overall, the key is105

that both models in co-learning need be independently effective and complementary

to each other. Beyond these, we further extend the co-learning concept from semi-

supervised learning to web data learning for scalable logo detection. In particular, we

unite co-learning and self-learning in a single detection deep learning framework with

the capability of incrementally improving logo detection models. To our knowledge,110

this is the first attempt of exploiting such a self-co-learning approach in the logo detec-

tion literature.

3. WebLogo-2M Logo Detection Dataset

We present a scalable method to automatically construct a large logo dataset, called

WebLogo-2M, including 2,190,757 web images from 194 classes (Table 2).115

Table 2: WebLogo-2M statistics. Numbers in parentheses: the minimum/median/maximum per class.

Logos Raw Images Filtered Images Noise Rate (%)

194 4,941,317 2,190,757 Varying

- - (6/2583/179,789) (25.0/90.2/99.8)

3.1. Logo Image Collection and Filtering

Logo Selection A total of 194 logo classes from 13 different categories are selected in

the WebLogo-2M dataset (Fig. 4). They are popular logos and brands in our daily life,

including 32 logo classes of FlickrLogo-32 [10] and 10 logo classes of TopLogo-10

[7]. Specifically, the logo class selection was guided by an extensive review of social120

media reports regarding to brand popularity 234 and market-value56.

Image Source Selection We selected the social media website Twitter as the data

source of WebLogo-2M. Twitter offers well structured multi-media data stream sources

2http://www.ranker.com/crowdranked-list/ranking-the-best-logos-in-the-world
3http://zankrank.com/Ranqings/?currentRanqing=logos
4http://uk.complex.com/style/2013/03/the-50-most-iconic-brand-logos-of-all-time
5http://www.forbes.com/powerful-brands/list/#tab:rank
6http://brandirectory.com/league tables/table/apparel-50-2016
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and more critically, unlimited data access permission therefore facilitating the collec-

tion of large scale logo images. We also attempted with Google and Bing search en-125

gines, and three other social media websites (Facebook, Instagram, and Flickr). How-

ever, all of them are more restricted in data access and limiting incremental big data

collection, for example, Instagram allows only 500 times of image downloading per

hour through the official web API. The Amazon website provides a rich logo imagery

source but limited to constrained product images with clean background.130

Image Collection We collected 4,941,317 web logo images. Specifically, through

the Twitter API, one can automatically retrieve images from tweets by matching query

keywords. In our case, we query the logo names so that images in tweets containing

the query words can be extracted. The collected images are then labelled with the

corresponding logo name at the image level, i.e. weakly labelled.135

Logo Image Filtering We obtained a total of 2,190,757 images after conducting a

two-steps auto-filtering: (1) Noise Removal: We removed images of small width and/or

height (e.g. less than 100 pixels), statistically we observed that such images are mostly

without any logo objects (noise). (2) Duplicate Removal: We identified and discarded

duplicates. Specifically, given a reference image, we removed those with identical140

width and height. This image spacial size based scheme is not only computationally

cheaper than the appearance matching alternative [37], but also effective. For example,

we manually examined the de-duplicating process on 50 randomly selected reference

images and found that over 90% of the images are true duplicates.

3.2. Properties of WebLogo-2M145

Compared to existing logo datasets like FlickrLogos-32 [10], LOGO-NET [13] and

TopLogo-10 [7], this web logo image dataset presents three distinct properties inherent

to large scale data exploration for learning scalable logo models:

(I) Weak Annotation All WebLogo-2M images are weakly labelled at the image level.

Since the labels are obtained automatically, it is much more scalable than those with150

the need for manual annotation of logo bounding boxes, particularly when logo images

and classes are at large scales.
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(II) Noisy (False Positives) Web images are inherently noisy with most presenting no

logo classes, therefore exhibiting plenty of false positive samples. For estimating the

noise degree, we sampled randomly and examined manually up to 1,000 web images155

per class7. As shown in Fig. 2, the true logo image ratio varies significantly over

classes, e.g. 75% for “Rittersport” vs. 0.2% for “3M”. On average, only 21.26% of the

examined imagery are true positives. Such noisy images pose significant challenges to

model learning, even though there are plenty of training data.

3M 0.2%(500/1) 

Rittersport 
75% (12/9) 

Average 
21.26% 

Figure 2: True logo image ratios (%). This was estimated from up to 1,000 random images per class.

(III) Class Imbalance The WebLogo-2M dataset presents a natural logo object oc-160

currence imbalance in public scenes. Specifically, logo images collected from web

streams exhibit a power-law distribution (Fig. 3). This property is often artificially

eliminated in most existing logo datasets by careful manual filtering, which not only

requires extra labelling effort but also renders the model learning challenges unreal-

istic. We preserve the inherent class imbalance nature for achieving fully automated165

dataset construction and retaining realistic model learning challenges. This requires

minimising model learning bias towards densely-sampled classes [38].

Further Remarks Since the proposed dataset construction method is completely au-

tomated, new logo classes can be easily added without human labelling. This per-

mits scalability for facilitating dataset expansion, in contrast to existing methods of170

ImageNet [6], PASCAL VOC [39], MSCOCO [40] that require exhaustive human la-

7 For sparse logo classes with <1,000 web images, we examined the whole.
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Soundrop Logo Image YouTube Logo Image 

Figure 3: Imbalanced logo image class distribution, ranging from 6 images (“Soundrop”) to 179,789 images

(“Youtube”), with the imbalance ratio as severe as 1:29,965.

belling. This automation is particularly more important for object detection datasets

with expensive needs for labelling bounding boxes, beyond cheaper image-level class

label annotation [41]. While being more scalable, WebLogo-2M poses more realis-

tic challenges to model learning due to weaker label information, noisy image data,175

unknown scene context, and significant class imbalance.

3.3. Benchmarking Training and Test Data

We define a benchmarking logo detection setting here. In the scalable webly learn-

ing context, we deploy the whole WebLogo-2M dataset (2,190,757 images) as the

training data. For performance evaluation, a set of images with bounding box annota-180

tion groundtruth is required. To that end, we construct an independent test set of 6,558

logo images with logo bounding box labels by (1) assembling 2,870 labelled images

from the FlickrLogo-32 [10] and TopLogo [7] datasets and (2) manually labelling 3,688

images independently collected from the Twitter website. Note that, the test set is only

for model performance evaluation, independent of WebLogo-2M auto-construction.185

4. Training A Multi-Class Logo Detector

We aim to automatically train a multi-class logo detection model from noisy and

weakly labelled web images. Different from existing methods building a detector in a

one-pass “batch” learning procedure, we propose to incrementally enhance the model

10



(a) (b) 

(c) 

Figure 4: A glimpse of the WebLogo-2M dataset. (a) Example webly (Twitter) logo images randomly

selected from the class “Adidas” with logo instances manually labelled by green dashed bounding boxes

only for facilitating viewing. Most images contain no “Adidas” object, i.e. false positives. This suggests a

high noise degree in such webly collected data without exhaustive filtering and selection. (b) Clean images

of 194 logo classes automatically collected from the Google Image Search, used in synthetic training images

generation and context enhancement. (c) Examples of true positive web images per logo class, totally 194

images, showing the rich and diverse context in unconstrained images where typical logo objects reside in

practice, as compared to those clean logo images in (b).
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capability in a joint spirit of self-learning [30] and co-learning [32]. This is due to190

the unavailability of sufficient accurate fine-grained training data. In particular, the

model must self-select reliable images from the noisy WebLogo-2M to progressively

develop and refine itself. This is a catch-22 problem: The lack of sufficient good-

quality training data leads to a suboptimal model that is error-prone during inference.

This may cause model drift – the errors in model prediction will be propagated and cu-195

mulated through the iterations therefore have the potential to corrupt the model knowl-

edge structure. Also, the inherent class imbalance may make model learning biased

towards only a few number of majority classes whilst neglecting the minority classes.

The two problems above are intrinsically interfered. It is non-trivial to solve these

challenges without exhaustive fine-grained manual annotations of training data.200

Formulation Rationale In this work, we present a scalable logo detection solution

capable of addressing the aforementioned two issues in a self-co-learning manner. The

intuition is that, web knowledge provides ambiguous and useful image level logo anno-

tations, self-learning offers a scalable learning mechanism to explore such information

and co-learning allows for mining the complementary advantages of different models205

in order to further improve the effectiveness of self-learning. Note that self-mining

of training data may introduce label errors which can further propagate and expand

through training. To better leverage co-learning, it is favoured that two learners differ

significantly with certain conditional independence and respective specificity. As such,

they can achieve jointly high complementary effects to mutually benefit each other. We210

call the proposed method Scalable Logo Self-co-Learning (SL2).

Model Design To establish a more effective SL2 framework, we select strongly-

supervised rather than weakly-supervised object detection models for two reasons: (1)

Weakly-supervised models [42] are much inferior; (2) The noisy labels may further

hamper the efficacy of weakly supervised learning. In our self-co-learning instantia-215

tion, we choose the Faster R-CNN [4] and YOLOv2 [5] models based on two consid-

erations: (1) Faster R-CNN and YOLOv2 are formulated by different design principles

with good complementary hence suitable for co-learning. (2) We empirically found that

the two models perform superiorly for scalable logo detection as compared to arguably

12



Synthetic Dataset

Initial

Model

Model 

Bootstrap

WebLogo-2M Dataset
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Incremental Self-Mining Noisy Web Images Incremental Model Co-Learning

Self-Mined New Training

Data by Each Detector
Data 

Merging

Updated

YOLOv2
Updated

Faster-RCNN

Faster-RCNN 

Discovered Data

YOLOv2 

Discovered Data

Balance Training Data 

by Synthetic Context 

Augmentation

Figure 5: Overview of the Scalable Logo Self-co-Learning (SL2) method. (a) Model initialisation by using

synthetic logo training images (Sec. 4.1). (b) Incrementally self-mining positive logo images from noisy

web data pool (Sec. 4.2). (c) Incrementally co-learning the detection models by mined web images and

context-enhanced synthetic data (Sec. 4.3). This process is repeated iteratively for progressive training data

mining and model update.

stronger alternatives RetinaNet with FPN [19], YOLOv3 [20] and SSD [18] (see Table220

3). Note, this model selection is conceptually independent of the SL2 formulation. A

schematic overview of SL2 is depicted in Fig. 5.

4.1. Model Bootstrap

To start the SL2 process, we feed logo detection model co-learning with bootstrap-

ping training data. Both Faster R-CNN and YOLOv2 need supervised learning from225

bounding box annotations to achieve detection discrimination, which however is not

available in our webly learning setting.

To address this problem above in our context, we exploit the idea of synthesising

fine-grained training logo images for maintaining model learning scalability for accom-

modating large quantity of logo classes. In particular, this is achieved by generating230

synthetic training images as in [7]: Overlaying logo icon images at random locations

of non-logo background images so that bounding box annotations can be automati-

cally and completely generated. The logo icon images are automatically collected from

Google Image Search by querying logo class names (Fig. 4 (b)). The background

images can be chosen flexibly, e.g. non-logo images in FlickrLogo-32 [10] and oth-235

ers retrieved by irrelevant query words from search engines. To enhance appearance

variations in synthetic logos, colour and geometric transformation can be applied [7].

13



Training Details We synthesised 1000 training images per class, totally 194,000 im-

ages. This is estimated based on the cost-effectiveness of YOLOv2 (Table 7). For

learning the Faster R-CNN and YOLOv2 models, we set the learning rate at 0.0001240

and the learning iterations at 6, 000. Following [7], we pre-trained the models on Ima-

geNet [6] for model warmup.

4.2. Incremental Self-Mining Noisy Web Images

After logo detectors are bootstrapped, we proceed to improve their detection ca-

pability with self-mined positive (likely) logo images from WebLogo-2M. To identify

the most compatible training images, we define a selection function using the detection

score of up-to-date model:

S(Mt,x, y) = Sdet(y|Mt,x) ∈ [0, 1] (1)

whereMt denotes the t-th iteration model (Faster R-CNN or YOLOv2), x represents a

training image with the label y ∈ Y = {1, 2, · · · ,m}, and m represents the logo class245

number. Sdet(y|Mt,x) specifies the maximal detection score of x on a logo class

y inferred by the model Mt. For reliable logo image discovery, we consider a high

threshold detection confidence (0.9 in our experiments) [43] for mitigating the impact

of model detection errors. The proposed training data discovery and model incremental

learning process is summarised in Algorithm 1.250

Through the same self-mining process, we obtain a separate set of updated training

data for Faster R-CNN and YOLOv2, denoted as T f
t and T y

t respectively. This lever-

ages the unique characteristics of different model formulations, region proposal based

Faster R-CNN versus grid regression based YOLOv2. It hence creates a satisfactory

condition for cross-model co-learning.255

4.3. Incremental Model Co-Learning

Given the two up-to-date training sets T f
t and T y

t , we conduct co-learning for de-

tection models (Fig. 5(c)). Specifically, we incrementally update Faster R-CNN model

using the set T y
t mined by YOLOv2, and vice versa. As such, the complementary

advantages can be propagated incrementally in a cross-model manner.260

14



Algorithm 1 Incremental self-mining noisy web logo images
Input: Current model Mt−1, Unexplored logo training data Dt−1, Self-discovered

logo training data Tt−1 (T0 = ∅);

Output: Updated self-discovered training data Tt, Updated unlabelled data pool Dt;

Initialisation: Tt = Tt−1, Dt = Dt−1;

for image i in Dt−1

ApplyMt−1 to get the detection results;

Evaluate image i as a potential positive logo image;

if Meeting selection criterion

Tt = Tt ∪ {i};

Dt = Dt \ {i};

end if

end for

Return Tt and Dt.

Recall that the logo images are imbalanced across classes (Fig. 3). This causes

biased learning favoured towards well-sampled classes [38]. To address this problem,

we propose an idea of cross-class context enhancement. It aims for both exploring the

rich context of WebLogo-2M and addressing the imbalanced class problem.

Specifically, we ensure that at least Ncls images will be newly introduced into the

training data pool in each self-discovery iteration for each detection model. Suppose

N i
sf web images are self-discovered for the logo class i (Alg. 1), we generate N i

syn

synthetic images where

N i
syn = max(0, Ncls −N i

sf). (2)

Therefore, we only perform synthetic context enhancement for those classes with less265

than Ncls real web images mined in the current iteration. We set Ncls = 500 consider-

ing that too many synthetic images may bring in negative effects due to the imperfect

logo appearance rendering. Besides, we set logo images of other classes (j 6= i) as

background scenes for enriching context diversity of class i (Fig. 6). We utilise the

SCL synthesising method [7] as in the model bootstrap (Sec. 4.1).270
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Figure 6: Example logo images with the synthetic context enhancement. Red box: model detection; Green

box: synthetic logo ground truth.

Once we have self-mined web training images and generated context enriched syn-

thetic data, we perform detection model fine-tuning at the learning rate of 0.0001 by

6, 000 ∼ 14, 000 iterations depending on the training data size at each iteration. We

adopt the original deep learning loss formulation for both Faster R-CNN and YOLOv2.

Model generalisation is expected to improve when the training data quality is sufficient275

in terms of label accuracy and context richness.

4.4. Incremental Learning Stop Criterion

We conduct incremental model self-co-learning until some stop criterion is met,

for example, the model performance gain becomes marginal or zero. We adopt the

YOLOv2 as the deployment logo detection model due to its superior efficiency and280

accuracy (see Table 5). In practice, we can assess the model performance on an inde-

pendent validation set.

5. Experiments

Competitors We compared the proposed SL2 model against four types of state-of-the-

art object detection methods. (1) Fully supervised object detection, including a total of285

five deep learning models (Faster R-CNN [4], SSD [18], YOLOv2 [5], YOLOv3 [20],

and RetinaNet [19]). For training, we used the synthetic training data generated by

SCL [7], same as SL2. (2) Weakly supervised object detection, in particular the Weakly

Supervised object Localisation (WSL) [21] and Proposal Cluster Learning (PCL) [22]
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models, designed for training detectors with image-level class label annotations. There-290

fore, we can directly utilise the WebLogo-2M data to train a Weakly supervised object

detection logo model. Note, noisy logo labels may pose extreme challenges. (3) Webly

supervised object detection, in particular Webly Learning Object Detection (WLOD)

[23]. It is a state-of-the-art weakly supervised object detection method where clean

Google images are used to train exemplar classifiers which is deployed to classify re-295

gion proposals by EdgeBox [44]. In our implementation, we further improved the clas-

sification component by exploiting an ImageNet and PASCAL trained VGG-16 [45]

model as the feature extractor and L2 distance as the matching metric. We adopted

the nearest neighbour classification model with the logo icon images (Fig. 4(b)) as

labelled data. Additionally, we considered a variant of WLOD by synthesising context300

enhanced logo icon instances with SCL [7]. (4) Universal logo detection [29, 14] that

collectively treats all logo classes as the positive class. Following [29, 14], we refor-

mulated the original multi-class regional proposal learning into a binary-class version.

We used the same synthetic training data as our model.

Performance Metrics To measure logo detection performance, we used the Average305

Precision (AP) for each individual logo class, and the mean Average Precision (mAP)

for all classes [46]. A detection is considered being correct when the Intersection over

Union (IoU) between the predicted and groundtruth exceeds 50%.

5.1. Comparative Evaluations

We compared the scalable logo detection performance on the test data of WebLogo-310

2M in Table 3. It is evident that the proposed SL2 model significantly outperforms all

other alternative methods, e.g. surpassing the best baseline WLOD by 27.6% (46.9%-

19.3%) in mAP. SL2 also surpasses our preliminary model SLST due to joint benefits

of self-learning and co-learning. Specifically, we have the following observations:

(1) The weakly supervised learning models, WSL [21] and PCL [22], produce the315

worst results, due to the joint effects of complex logo appearance variations and large

proportions of false positive images (Fig. 2).

(2) The WLOD method performs reasonably well, suggesting that the joint auxiliary

knowledge from clean logo icon images and general object data of ImageNet and Pas-
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(a) 

(b) 

         Superman                    Caterpillar                     Dannone 

Figure 7: Qualitative evaluations of the (a) WLOD and (b) SL2 models. Green dashed boxes: ground truth.

Red solid boxes: detected. The WLOD fails to detect visually ambiguous (1st column) logo instance, success

on relatively clean (2nd column) logo instances, while only fires partially on the salient one (3rd column).

The SL2 model can correctly detect all these logo instances with varying context and appearance quality.
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Table 3: Logo detection performance on WebLogo-2M.

Method mAP (%)

SSD [18] 8.8

Faster R-CNN [4] 14.9

YOLOv2 [5] 18.4

YOLOv3 [20] 11.0

RetinaNet [19] 4.1

WSL [21] 3.6

PCL [22] 0.2

WLOD [23] 19.3

WLOD [23] + SCL [7] 7.8

ULD [29, 14] 13.2

SLST [24] 36.8

SL2 (Ours) 46.9

cal VOC is transferable.320

(3) By using the synthetic training data with rich context, fully supervised detection

models YOLOv2 and Faster R-CNN are able to achieve relatively strong results. This

suggests that context enhancement is critical for object detection, and the combination

of strongly supervised learning model + training data synthesising is superior to weakly

supervised learning. Interestingly, unlike the previous findings [20], it is observed dif-325

ferently that two arguably stronger models YOLOv3 and RetinaNet yield even weaker

results. We consider that this is due to two reasons: (a) The existence of noisy training

labels that bring about more severe harm to methods with more discriminative learning

capabilities; (b) A higher sensitivity to the gap between synthetic and real logo images

resulted from stronger fitting to potentially noisy training data.330

(4) Another supervised one-stage model SSD yields weak detection performance. This

is similar to the original finding that SSD is more sensitive to object size with weaker

detection performance on small objects as in-the-wild logo instances [18].
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(5) WLOD+SCL gives a weaker result (7.8%) than WLOD (19.3%). This indicates

that joint supervised learning is critical for exploiting enhanced context.335

(6) ULD gives a weaker performance (13.2%) compared to the standard Faster R-CNN

(14.9%). This implies that it is not scalable to cases with a large number of logo classes

– A multi-class detection learning can already well mine the class agnostic property.

Qualitative Evaluation For visual comparison, we show a number of qualitative logo

detection examples from three classes by the SL2 and WLOD models in Fig. 7.340

5.2. Further Analysis and Discussions

5.2.1. Effects of Incremental Model Self-Co-Learning

We evaluated the effects of incremental model self-co-learning on discovered train-

ing data and context enriched synthetic images by examining the model performance

of SL2 at individual iterations. Table 4 and Fig. 8 show that SL2 improves consistently345

from the 1st to 8th iterations of self-co-learning. In particular, the starting data min-

ing brings about the maximal mAP gain of 10.2% (28.6%-18.4%) with per-iteration

benefit dropping gradually. This suggests that our model design is capable of effec-

tively addressing the notorious error propagation challenge thanks to (1) a proper de-

tection model initialisation by logo context synthesising for providing a sufficiently350

good starting-point detection; (2) a strict selection on self-evaluated detections for re-

ducing the amount of false positives and suppressing the likelihood of error propaga-

tion; and (3) cross-model co-learning with cross-class context enhancement with the

capability of addressing the class imbalanced data learning problem whilst enhancing

the model robustness against unconstrained background. We also observed that more355

images are mined along the process, indicating that SL2 effectively improves over time

in the capability of tackling more complex context. However, false positives with simi-

lar/confusing appearance can be inevitably introduced during automated self-discovery

of new training data in the iterative learning process, causing failure cases during model

inference (Fig. 9).360
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Table 4: Model performance development over incremental SL2 iterations.

Iteration mAP mAP Gain Training Images

0 18.4 N/A 5,862

1st 28.6 10.2 21,610

2nd 33.2 4.6 41,314

3rd 39.1 5.9 54,387

4th 42.2 3.1 74,855

5th 44.4 2.2 86,599

6th 45.6 1.2 98,055

7th 46.9 1.3 107,327

8th 46.9 0.0 Stop

Table 5: Co-learning versus self-learning.

Method mAP (%)

Self-Learning (Faster R-CNN) 36.8

Self-Learning (YOLO) 39.4

Co-Learning (Faster R-CNN) 44.2

Co-Learning (YOLO) (SL2) 46.9

5.2.2. Effects of Cross-Model Co-Learning

We assessed the benefits of cross-model co-learning between Faster R-CNN and

YOLOv2 in SL2 in comparison of the single-model self-learning strategy. In contrast

to co-learning, the self-learning exploits self-mined new training data for incremental

model update without the benefit of cross-model complementary advantages. Table 5365

and Fig. 8 show that both models benefit clear performance gains from co-learning, e.g.

7.4% (44.2-36.8) for Faster R-CNN, and 7.5% (46.9-39.4) for YOLOv2. This verifies

our motivation of exploiting the co-learning principle for maximising the complemen-

tary advantages of distinct model formulations in the scalable logo model optimisation.
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Figure 8: Evaluating the model co-learning and self-learning strategies, and the effect of Context Enhance-

ment (CE) based training data class balancing.

5.2.3. Effects of Synthetic Context Enhancement370

We evaluated the impact of context enhancement (i.e. the cross-class context en-

riched synthetic training data) on model performance. Table 6 shows that context en-

hancement not only provides a clear model improvement across iterations due to the

suppression of negative imbalance learning effect, but also simultaneously enlarges the

data mining capacity due to potentially less noisy training data aggregation. Without375

context enhancement and training class balancing, the model stops to improve by the

4th learning iteration, resulting in weaker performance at 28.9% vs. 46.9% by the full

SL2 model. This verifies the importance of context enhancement and class balancing

for detection model learning, validating our model design considerations.

Table 6: Effects of training data Context Enhancement (CE). Metric: mAP (%).

Iteration 0 1st 2nd 3rd 4th 5th

With CE 18.4 28.6 33.2 39.1 42.2 44.4

Without CE 18.4 25.3 27.7 28.7 28.9 28.0
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Figure 9: Randomly selected images self-discovered in the (a) 1st, (b) 4th, and (c) 8th iterations for the logo

class “Android”. Red box: SL2 model detection. Red cross: false detection. The images mined in the 1st

iteration have clean logo instances and background, whilst those discovered in the 4th and 8th iterations have

more diverse logo appearance variations in richer and more complex context. More false positives are likely

to be produced in the 4th and 8th self-discovery.
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5.2.4. Estimating the Bootstrap Synthetic Data Size380

For efficiency, we estimated the synthetic data size in model bootstrap with YOLOv2.

Table 7 shows that whilst more synthetic training data generally lead to higher mAP

rates, the benefit is rapidly diminishing with size increasing. Besides, this gain comes

with drastically higher model training cost. According to the resource limit, we gener-

ated 1,000 synthetic images per class in our main experiments.385

Table 7: Estimating the bootstrap synthetic data size using YOLOv2.

Number of Images Per Class mAP (%)

100 15.6

300 17.2

1,000 18.4

6. Conclusion and Future Work

In this work, we presented a scalable logo detection method including dataset estab-

lishment and model learning. This is realised by exploring the web data learning prin-

ciple without a tedious need of manually labelling fine-grained logo bounding boxes.

Specifically, we proposed a new incremental learning method named Scalable Logo390

Self-co-Learning (SL2). It uniquely enables reliable self-discovery and auto-labelling

of new training images from unconstrained in-the-wild web data to progressively im-

prove the model detection capability in a cross-model co-learning manner. We con-

structed a very large logo benchmark WebLogo-2M by automatically collecting and

processing free web data in a scalable manner. This facilitates the community for fur-395

ther investigation of scalable logo detection in the future. We have conducted extensive

comparative evaluations and analysis on the benefits of incremental model training and

context enhancement on the WebLogo-2M benchmark. The results show the advan-

tages and superiority of our SL2 method over the state-of-the-art alternative methods,

ranging from strongly-supervised and weakly-supervised detection models to webly400

learning models. We finally provided in-depth model component analysis and evalua-
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tions for giving insights on model performance gain and formulation.

As an early attempt for scalable logo detection in deep learning, our approach still

has a number of limitations that need be addressed in the future work. First, the web

imagery data we collected are over noisy, imposing an extreme challenge for data se-405

lection during self-labelling. Therefore, developing superior data collection is one of

the most effective methods. Second, the proposed SL2 model relies heavily on the

detection scores of object instances which is error prone partly due to the model over-

confident on unknown classes. How to mitigate this effect is worth more investigation.

Third, the detection models we leveraged in designing SL2 are not sufficiently efficient410

to process millions of images. An important future research is to develop more cost-

effective object detection models. We reckon that with dedicated development in the

above directions, the scalability of logo detection can be advanced significantly.
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