
A Bounded Model Checking Technique for
Higher-Order Programs

Yu-Yang Lin and Nikos Tzevelekos

Queen Mary University of London

Abstract. We present a Bounded Model Checking technique for higher-
order programs based on defunctionalization and points-to analysis. The
vehicle of our study is a higher-order calculus with general references.
Our technique is a symbolic state syntactical translation based on SMT
solvers, adapted to a setting where the values passed and stored during
computation can be functions of arbitrary order. We prove that our algo-
rithm is sound and provide a prototype implementation with experimental
results showcasing its performance. The first novelty of our technique
is a presentation of defunctionalization using nominal techniques, which
provides a theoretical background to proving soundness of our technique,
coupled with SSA adapted to higher-order values. The second novelty is
our use of defunctionalization and points-to analysis to directly encode
general higher-order functional programs.

1 Introduction

Bounded Model Checking [3] (BMC) is a model checking technique that allows for
highly automated and scalable SAT/SMT-based verification and has been widely
used to find errors in C-like languages [5,15,8,1]. BMC amounts to bounding
the executions of programs by unfolding loops only up to a given bound, and
model checking the resulting execution graph. Since the advent of Cbmc [5], the
mainstream approach additionally proceeds by symbolically executing program
paths and gathering the resulting path conditions in propositional formulas which
can then be passed on to SAT/SMT solvers. Thus, BMC performs a syntactic
translation of program source code into a propositional formula, and uses the
power of SAT/SMT solvers to check the bounded behaviour of programs. Being
a Model Checking technique, BMC has the ability to produce counterexamples,
which are execution traces that lead to the violation of desired properties. A
specific advantage of BMC over unbounded techniques is that it avoids the full
effect of state-space explosion at the expense of full verification. On the other
hand, since BMC is inconclusive if the formula is unsatisfiable, it is generally
regarded as a bug-finding or underapproximation technique.

The above approach has been predominantly applied to imperative, first-
order languages and, while tools like Cbmc can handle C++ (and, more recently,
Java bytecode), the treatment of higher-order programs is currently limited. In
particular, there is no direct analogue of the syntactic translations available for
imperative languages in the higher-order case. This is what we address herein. We

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queen Mary Research Online

https://core.ac.uk/display/237088309?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Yu-Yang Lin and Nikos Tzevelekos

propose a symbolic BMC procedure for higher-order functional and imperative
programs that may contain free variables of ground type based on defunction-
alization [20] and points-to analysis [2]. Our contributions include: (a) a novel
syntactical translation to apply BMC to languages with higher-order methods
and state; (b) a proof that the approach is sound; (c) an optimisation based on
points-to analysis to improve scalability; (d) and a prototype implementation of
the procedure with experimental results showcasing its performance.

As with most approaches to software BMC, we translate a given program
into a propositional formula for an SMT solver to check for satisfiability, where
formulas are satisfiable only if a violation is reachable within a given bound.
Where in first-order programs BMC places a bound on loop unfolding, in the
higher-order setting we place the bound on nested method applications. The
main challenge for the translation then is the symbolic execution of paths which
involve the flow of higher-order terms, by either variable binding or use of the
store. We first solve the problem of higher-order store by adapting the standard
technique of Static Single Assignment (SSA) to a setting where variables and
references can be of higher-order. To handle higher-order terms in particular, we
use an approach from operational semantics, whereby each method is uniquely
identified by a name. Here, defunctionalization occurs at the semantics level,
with methods being passed and stored as unique values, called names, during
execution. This acts as a form of defunctionalization by applying each method
through a repository. The following section will describe this in more detail. We
capture program behaviour by also uniquely identifying every sub-term in the
program tree with a return variable; analogous to how Cbmc [5] captures the
behaviour of sequencing commands in ANSI-C programs.

To give a simple example of our approach, consider the following code, where
r is a reference of type int → int, f is a variable bound to a method of type
int → (int → int) → (int → int) → (int → int), g, h are variables of type
int→ int, and n, x are variables of type int.

1 let f = λ x,g,h. if (x <= 0) then g else h
2 in
3 r := f n (λ x. x−1) (λ x. x+1);
4 assert(!r n >= n)

In the code above, a function is assigned to reference r. In a symbolic setting, it
is not immediately obvious which function to call when dereferencing r in line 4.
Luckily, we know that when calling f in line 3, its value can only be the one
bound to it in line 1. Thus, a first transformation of the code could be:

3 r := if (n <= 0) then (λ x. x−1) else (λ x. x+1);
4 assert(!r n >= n)

The assignment in line 3 can be facilitated by using a return variable ret and
method names for (λx.x− 1) and (λx.x+ 1):

1 let m1 = λ x. x−1 in let m2 = λ x. x+1 in
2 let ret = if (n <= 0) then m1 else m2 in
3 r := ret;

A Bounded Model Checking Technique for Higher-Order Programs 3

4 assert(!r n >= n)

Here lies the challenge as we now need to decide how to symbolically dereference
r. The simplest solution is try to match !r with all existing functions of matching
type, in this case m1 and m2:

1 let m1 = λ x. x−1 in let m2 = λ x. x+1 in
2 let ret = if (n <= 0) then m1 else m2 in
3 r := ret;
4 let ret ’ = match !r with
5 | m1 −> m1 n
6 | m2 −> m2 n in
7 assert(ret’ >= n)

Performing the substitutions of m1,m2, we can read off the following formula for
checking falsity of the assertion:

(ret′ < n) ∧ (r = m1⇒ ret′ = n− 1) ∧ (r = m2⇒ ret′ = n+ 1) ∧ (r = ret)
∧ (n <= 0⇒ ret = m1) ∧ (n > 0⇒ ret = m2)

The above is true e.g. for n = 0, and hence the code violates the assertion.
These ideas underpin the core of our BMC translation, which is presented

in Section 3 and proven sound later on. The language we examine, HORef, is
a higher-order language with general references and integer arithmetic. While
correct, one can quickly see that the translation is inefficient when trying to
resolve the flow of functions to references and variables. In effect, it explores
all possible methods of the appropriate type that have been created so far, and
relies on the solver to pick the right one. This is why a data-flow analysis is
required, which we present in Section 4. We optimise the translation by restricting
such choices according to a simple points-to analysis. In Section 5 we present an
implementation of our technique in a BMC tool for a higher-order OCaml-like
syntax extending HORef, and test it on several example programs adapted from
the MoCHi benchmark [13]. Finally, we compare our tool with MoCHi and an
implementation of our bounded operational semantics in Rosette [24].

Related Work

While common in symbolic evaluation, defunctionalization with points-to analysis,
to our knowledge, has not been used to translate entire general higher-order
programs into SAT/SMT-based BMC encodings. As such, we believe we present
a different and sound approach to model checking higher-order terms. BMC being
a common technique, there exist several similar encodings. For example, [10,7,6]
are bounded approaches based on relational logic that verify Java programs
using SAT/SMT solvers. Being applied to Java, and especially prior to JDK 8,
these approaches do not cope with terms and store of arbitrary order. In every
case, methods are inlined statically, which is not always possible with function
abstractions. In [6] we observe a case of exhaustive method application that
restricts concrete method invocations by their type. This is similar in concept to
our approach, but is only applied to resolve dynamic dispatch.

4 Yu-Yang Lin and Nikos Tzevelekos

More common are verification tools for general higher-order programs that
are not based on a direct syntactical BMC encodings. Two main techniques
followed are higher-order recursion schemes modelling [12,18], and symbolic
execution [21,9,11]. In the first category, MoCHi [13] performs full verification of
OCaml programs by translating them into higher-order recursion schemes checked
with specialised tools. In the second category, Rosette [24], Kaplan [14], and
Rubicon [16] perform symbolic evaluation for Racket and Ruby respectively by
using solver-aided languages for functional and imperative higher-order programs.
On the other hand, the tool implemented in [17] performs a contracts-based
symbolic execution that allows evaluating symbolically arbitrarily open higher-
order programs. From these approaches, we choose MoCHi and Rosette as
representatives for a comparison in Section 5.

Finally, tools based on Cbmc are inherently similar to our BMC encoding
and procedure as we take inspiration from the Cbmc translation, and add
symbolic defunctionalization to cope with higher-order syntax. Overall, tools
based on symbolic execution are able to produce the most extensionally similar
implementations, while intentionally, our approach is closer in idea to Cbmc with
defunctionalization.

2 The Language: HORef

Here we present a higher-order language with higher-order global state. The
syntax consists of a call-by-value λ-calculus with global references. Its types are
given by the grammar: θ ::= unit | int | θ × θ | θ → θ.

We use countably infinite sets Meths, Refs and Vars for methods, global
references and variables, ranged over by m, r and x respectively, and variants
thereof; while i is for ranging over the integers. Each of these sets is typed, that is, it
can be expressed as a disjoint union as follows: Meths =

⊎
θ,θ′ Methsθ,θ′ , Refs =⊎

θ Refsθ, Vars =
⊎
θ Varsθ.

The syntax and typing rules are given in Figure 1. We assume a set of
arithmetic operators ⊕, which we leave unspecified as they do not affect the
analysis. Assertions are used for the specification of safety properties to be
checked. We extend the syntax with usual constructs: r++ is r := !r + 1, and
T ;T ′ stands for let _ = T in T ′. Booleans are represented by 0 and i 6= 0.

As usual, a variable occurrence is free if it is not in the scope of a matching
(λ/let/letrec)-binder. Terms are considered modulo α-equivalence and, in partic-
ular, we may assume that no variable occurs both as free and bound in the same
term. We call a term closed if it contains no free variables.

Remark 1. By typing variable, reference and method names, we do not need to
provide a context in typing judgements, this choice made for simplicity.

The references we use are global: a term can use references from the set Refs
but not create them locally or pass them as arguments, and in particular there is
no ref type. Adding ML-like local references is orthogonal to our analysis and it
does not seem to present inherent difficulties (we would be treating the dynamic
creation of references similarly to how we deal with method names).

A Bounded Model Checking Technique for Higher-Order Programs 5

Terms 3 T ::= assert(T) | x | m | i | () | 〈T, T 〉 | T ⊕ T | r := T | !r | π1 T | π2 T | λx.T

| T T | if T then T else T | let x = T in T | letrec x = λx.T in T

Vals 3 v ::= x | m | i | () | 〈v, v〉

ECxts 3 E ::= • | assert(E) | r := E | E ⊕ T | v ⊕ E | 〈E, T 〉 | 〈v,E〉 | πjE | E T | v E

| let x = E in T | if E then T else T | LEM

CForms 3 M ::= assert(v) | v | r := v | !r | v ⊕ v | π1 v | π2 v | x v | m v | λx.M

| if v then M else M | let x = M in M | letrec x = λx.M in M

T : int

assert(T) : unit () : unit i : int

x ∈ Varsθ

x : θ

m ∈ Methsθ,θ′

m : θ → θ′

T : int T0, T1 : θ

if T then T1 else T0 : θ

T1, T2 : int

T1 ⊕ T2 : int

T1 : θ1 T2 : θ2

〈T1, T2〉 : θ1 × θ2

〈T1, T2〉 : θ1 × θ2
πi〈T1, T2〉 : θi

r ∈ Refsθ

!r : θ

r ∈ Refsθ T : θ

r := T : unit

T ′ : θ → θ′ T : θ

T ′ T : θ′
T : θ′ x : θ

λx.T : θ → θ′
x, T : θ T ′ : θ′

let x = T in T ′ : θ′

x, λy.T : θ → θ′′ T ′ : θ′

letrec x = λy.T in T ′ : θ′

Fig. 1. Grammar and typing rules for HORef.

On the other hand, methods are dynamically created during execution, and
for that reason we will be frequently referring to them simply as names. The
terminology comes from nominal techniques [19]. On a related note, λ-abstractions
are not values in our language. This is due to the fact that in the semantics these
get evaluated to method names.

Bounded Operational Semantics We next present a bounded operational
semantics for HORef, which we capture with our bounded BMC routine. The
semantics is parameterised by a bound k which, similarly to loop unwinding
in procedural languages, limits the depth of method (i.e. function) calls within
an execution. A bound k = 0 in particular means that, unless no method calls
are made, execution will terminate with no return value. Consequently, in this
bounded operational semantics, all programs must halt. Note at this point that the
unbounded semantics of HORef, allowing arbitrary recursion, can be obtained
e.g. by allowing bound values k =∞.

The bounded operational semantics is given in Figure 2. It is defined by means
of a small-step transition relation with transitions of the form:

(T,R, S, k)→ (T ′, R′, S′, k′)

It uses values and evaluation contexts, which are in turn defined in Figure 1.
By abuse of notation, we extended the term syntax to be able to mark nested
method calls explicitly, by use of evaluation boxes of the form L...M. We use this
to correctly bound nested function calls.

A configuration is a quadruple (T,R, S, k) where T is a typed term and:

6 Yu-Yang Lin and Nikos Tzevelekos

(assert(j), R, S, k)→ ((), R, S, k) (!r,R, S, k)→ (S(r), R, S, k)

(r := v,R, S, k)→ ((), R, S[r 7→ v], k) (πi〈v1, v2〉, R, S, k)→ (vi, R, S, k)

(i1 ⊕ i2, R, S, k)→ (i, R, S, k) (i = i1 ⊕ i2) (λx.T,R, S, k)→ (m,R[m 7→ λx.T], S, k)

(if j then T1 else T0, R, S, k)→ (T1, R, S, k) (if 0 then T1 else T0, R, S, k)→ (T0, R, S, k)

(let x = v in T ,R, S, k)→ (T{v/x}, R, S, k) (LvM, R, S, k)→ (v,R, S, k + 1)

(mv,R, S, k)→ (LT{v/x}M, R, S, k − 1) (R(m) = λx.T)

(letrec f = λx.T in T ′, R, S, k)→ (T ′{m/f}, R[m 7→ λx.T], S, k)

(E[T], R, S, k)→ (E[T ′], R′, S′, k′) where (T,R, S, k)→ (T ′, R′, S′, k′)

Fig. 2. Bounded operational semantics rules. In all cases, k 6= nil and j 6= 0.

– R : Meths⇀ Terms is a finite map, called a method repository , such that
for all m ∈ dom(R), if m ∈ Methsθ→θ′ then R(m) = λx.T : θ → θ′.

– S : Refs⇀ Vals is a finite map, called a store , such that for all r ∈ dom(S),
if r ∈ Refsθ then S(r) : θ.

– k ∈ {nil} ∪ N is the nested calling bound, where decrementing k beyond
zero results in nil.

A closed configuration is one whose components are all closed. We call a configu-
ration (T,R, S, k) valid if all methods and references appearing in T,R, S are
included in dom(R) and dom(S) respectively. We also call a transition sequence
(T,R, S, k) � (T ′, R′, S′, k′) valid, where � is the reflexive and transitive closure
of→, if T ′ is a value. Note that failing an assertion results to a stuck configuration.
Thus, no assertions can be violated in a valid transition sequence. Moreover, we
can see that all terms must eventually evaluate to a value, or fail an assertion, or
consume the bound and reach nil.

3 A Bounded Translation for HORef

We next present an algorithm which, given an initial configuration, produces a
tuple containing propositional formulas and context components that capture
its bounded semantics. Without loss of generality, we define the translation on
terms in canonical form , ranged over by M and variants, which are presented
in Figure 1. This provision is innocuous as transforming a term in canonical form
can be achieved in linear time with standard methods.

The algorithm receives a valid configuration (M,R, S, k) as input, where M
is in canonical form and may only contain free variables of ground type, and
proceeds to perform the following sequence of transformations:

(M,R, S, k)
init7−−→ (M,R,CS , CS , φS ,>,>, k)

J·K7−→ (ret, φ,R′, C,D, α, pc)

The first step is an initialisation step that transforms the tuple in the form
appropriate for the main translation J·K, which is the essence of the entire
bounded translation. We proceed with J·K and will be returning to init later on.

A Bounded Model Checking Technique for Higher-Order Programs 7

J·K operates on symbolic configurations of the form (M,R,C,D, φ, α, pc, k),
where M and R are a term and a repository respectively, k is the bound, and:

– C,D : Refs ⇀ SSAVars are single static assignment (SSA) maps where
SSAVars is the set of variables of the form ri (for each r ∈ Refs), such that
i is the number of times that r has been assigned to so far. The map C is
counting all the assignments that have taken place so far, whereas D only
counts those in the current path. E.g. C(r) = r5 if r has been assigned to
five times so far in every path looked at. We write C[r] to mean update C
with reference r: if C(r) = ri, then C[r] = C[r 7→ ri+1], where ri+1 is fresh.

– φ is a propositional formula containing the (total) behaviour so far.
– α is a propositional formula consisting of a conjunction of statements repre-

senting assertions that have been visited by J·K so far.
– pc is the path condition that must be satisfied to reach this configuration.

The translation returns tuples of the form (ret, φ,R,C,D, α, pc), where:

– φ,R,C,D, α, pc have the same reading as above, albeit for after reaching the
end of all paths from the term M .

– ret is a propositional variable representing the return value of the initial
configuration.

Finally, returning to init, we have that:

– the initial SSA maps CS simply map each r in the domain of S to the SSA
variable r0;

– φS stipulates that each r0 be equal to its corresponding value S(r);
– since there is no computation preceding M , its α and pc are simply > (true).

The BMC translation is given in Figure 3. In all cases in the figure, ret is a
fresh variable and k 6= nil. We also assume a common domain Π = dom(C) =
dom(D) ⊆ Refs, which contains all references that appear in M and R.

The translation stops when either the bound is nil, or when every path
of the given term has been explored completely. The base cases add clauses
mapping return variables to actual values of evaluating M . Inductive cases build
the symbolic trace of M by recording in φ all changes to the store, and adding
clauses for return variables at each sub-term of the program, thus building a
control flow graph by relating said return variables and chaining them together
in the formula. Wherever branching occurs, the chaining is guarded.

In the translation, defunctionalization occurs because every method call is
replaced with a call to the repository using its respective name as an argument.
Because this is a symbolic setting, however, it is possible to lose track of the
specific name desired. Particularly, when applying variables as methods (xv, with
x : θ), we encode in the behaviour formula an n-ary decision tree where n is the
number of methods to consider. In such cases, we assume that x could be any
method in the repository R. We call this case exhaustive method application .
This case seems to be fundamental for applying BMC to higher-order terms with

8 Yu-Yang Lin and Nikos Tzevelekos

state, and is necessary for defunctionalization. To explore plausible paths only,
we restrict R to type θ (denoted R � θ). In Section 4) we will be applying a
points-to analysis to restrict this further.

To illustrate the algorithm, we look at a few characteristic cases:
[nil case] When the translation consumes its bound, we end up translating

some JM,R,C,D, φ, nilK. In this case, we simply return a fresh variable ret
representing the final value, and stipulate in the program behaviour that ret is
equal to some default value (the latter is needed to ensure a unique model for
ret). The breaching of the bound is recorded as an assertion violation, and a
reserved propositional variable inil us used for that purpose. The returned path
condition is set to false.

[let case] In Jlet x = M inM ′, R, C,D, φ, kK, we first compute the translation
of M . Using the results of said translation, we can substitute in M ′ the fresh
variable ret1 for x, and compute its translation. In the latter step, we also feed the
updated repository R1, SSA maps C1 and D1, program behaviour φ1, assertions
α1 (actually, a conjunction of assertions), and the accumulated path condition
pc∧pc1. To finish, we return ret2 and the newly updated repository R2, SSA maps,
C2 and D2, assertions α2. The path condition returned is pc1 ∧ pc2, reflecting
the new path conditions gathered.

[xv case] In Jxv,R,C,D, φ, kK we see exhaustive method application in ac-
tion. We first restrict the repository R to type θ to obtain the set of names
identifying all methods of matching type for x. If no such methods exist, this
means that the binding of x had not succeeded due to breaching the bound earlier
on, so defval is returned. Otherwise, for each method mi in this set, we obtain
the translation of applying mi to the argument v. This is done by substituting
v for yi in the body of mi. After translating all method applications, all paths
are joined in ψ, by constructing an n-ary decision tree that includes the state
of the store in each path. We do this by incrementing all references in Cn, and
adding the clauses C ′n = Di(r) for each path. These paths are then guarded
by the clauses (x = mi). Finally, we return a formula that includes ψ and the
accumulation of all intermediate φi’s, the accumulation of repositories, the final
SSA map, accumulation of assertions and new path conditions. Note that we
return C ′n as both the C and D resulting from translating this term. This is
because all branches have been joined, and any term sequenced after this one
should have all updates available to it.

Remark 2. The difference between reading (D) and writing (C) is noticeable when
branching. Branching can occur in two ways: through a conditional statement,
and by performing symbolic method application where we have lost track of
the concrete method; more precisely, when M is of the form xv. In the former
case, we branch according to the return value of the condition (denoted by retb),
and each branch translates M0 and M1 respectively. In this case, both branches
read from the same map Db, but may contain different assignments, which we
accumulate in C. The formula ψ0 ∧ψ1 then encodes a binary decision node in the
control flow graph through guarded clauses that represent the path conditions.
Similar care is taken with branching caused by symbolic method application.

A Bounded Model Checking Technique for Higher-Order Programs 9

Base Cases:

– Jassert(v), R, C,D, φ, α, pc, kK = (ret, (ret = ()) ∧ φ,R,C,D, (pc =⇒ (v 6= 0)) ∧ α,>)
– JM,R,C,D, φ, α, pc, nilK = (ret, (ret = defval) ∧ φ,R,C,D, α ∧ (pc =⇒ inil),⊥)
– Jv,R,C,D, φ, α, pc, kK = (ret, (ret = v) ∧ φ,R,C,D, α,>)
– J!r,R,C,D, φ, α, pc, kK = (ret, (ret = D(r)) ∧ φ,R,C,D, α,>)
– Jλx.M,R,C,D, φ, α, pc, kK = (ret, (ret = m) ∧ φ,R′, C,D, α,>)

where R′ = R[m 7→ λx.M] and m fresh

– Jπi v,R,C,D, φ, α, pc, kK = (ret, (ret = πi v) ∧ φ,R,C,D, α,>)
– Jv1 ⊕ v2, R, C,D, φ, α, pc, kK = (ret, (ret = v1 ⊕ v2) ∧ φ,R,C,D, α,>)
– Jr := v,R,C,D, φ, α, pc, kK = let C′ = C[r] in let D′ = D[r 7→ C′(r)] in

(ret, ((ret = ()) ∧ (D′(r) = v)) ∧ φ,R,C′, D′, α,>)

Inductive Cases:

– Jlet x = M in M ′, R, C,D, φ, α, pc, kK =

let (ret1, φ1, R1, C1, D1, α1, pc1) = JM,R,C,D, φ, α, pc, kK in

let (ret2, φ2, R2, C2, D2, α2, pc2) = JM ′{ret1/x}, R1, C1, D1, φ1, α1, pc ∧ pc1, kK in

(ret2, φ2, R2, C2, D2, α2, pc1 ∧ pc2)

– Jletrec f = λx.M in M ′, R, C,D, φ, α, pc, kK =

let m, f ′ be fresh in

let R′ = R[m 7→ λx.M{f ′/f}] in JM ′{f ′/f}, R′, C,D, φ ∧ (f ′ = m), α, pc, kK
– Jmv,R,C,D, φ, α, pc, kK =

let R(m) be λx.N in JN{v/x}, R, C,D, φ, α, pc, k − 1K
– Jif v then M1 else M0, R, C,D, φ, α, pc, kK =

let (ret0, φ0, R0, C0, D0, α0, pc0) = JM0, R, C,D, φ, α, pc ∧ (v = 0), kK in

let (ret1, φ1, R1, C1, D1, α1, pc1) = JM1, R0, C0, Db, φ0, α0, pc ∧ (v 6= 0), kK in

let C′ = C1[r1] · · · [rn] (Π = {r1, . . . , rn}) in

let ψ0 = (v = 0) =⇒ ((ret = ret0) ∧
∧

r∈Π
(C′(r) = D0(r))) in

let ψ1 = (v 6= 0) =⇒ ((ret = ret1) ∧
∧

r∈Π
(C′(r) = D1(r))) in

(ret, ψ0 ∧ ψ1 ∧ φ1, R, C
′, C′, α1, ((pc0 ∧ (v = 0)) ∨ (pc1 ∧ (v 6= 0))))

– Jxθ v,R,C,D, φ, α, pc, kK =

if R � θ = ∅ then (ret, (ret = defval) ∧ φ,R,C,D, α,⊥) else

let R � θ be {m1, ...,mn} and (R,C, φ, α) be (R0, C0, φ0, α0) in

for each i ∈ {1, ..., n} :

let R(mi) be λyi.N in let (reti, φi, Ri, Ci, Di, αi, pci) =

JNi{v/yi}, Ri−1, Ci−1, D, φi−1, αi−1, pc ∧ (x = mi), k − 1K in

let C′n = Cn[r1] · · · [rj] (Π = {r1, . . . , rj}) in

let ψ =

n∧
i=1

(
(x = mi) =⇒ ((ret = reti) ∧

∧
r∈Π

(C′n(r) = Di(r)))
)

in

let pc′n =
n∨
i=1

(pci ∧ (x = mi)) in (ret, ψ ∧ φn, Rn, C′n, C′n, αn, pc′n)

Fig. 3. The BMC translation.

10 Yu-Yang Lin and Nikos Tzevelekos

r := r0;
letrec f =
λ x. if x then (r++; f (x − 1))
else (λ y. assert (y = !r + x))

in let g = f n in g n

φ = (r1 = r0) ∧ (ret4 = m2)∧
(ret3 = (n = 0)?ret4 : ret5)∧
(r2 = r1 + 1) ∧ (ret6 = m3)∧
(ret5 = (n− 1 = 0)?ret6 : ret7)∧
(r3 = r2 + 1) ∧ (ret7 = defval)∧
(ret3 = defval) =⇒ (ret = ())∧
(ret3 = m3) =⇒ (ret = ())∧
(ret3 = m2) =⇒ (ret = ())

α = ((ret3 = m3) =⇒ (n = r2 + n− 1))∧
((ret3 = m2) =⇒ (n = r1 + n− 1))∧
((ret3 = defval) =⇒ inil)

let r1 = r0 in
new m1 =
λ x. if x then (r++; m1 (x−1))
else (λ y. assert(y = !r + x)) in

let ret3 =
if n then (let r2 = r1 + 1 in
if n−1 then (let r3 = r2 + 1 in defval)
else (new m3 =

λ y. assert(y = r2+n−1) in m3))
else (new m2 =

λ y. assert(y = r1 + n) in m2)
in match ret3 with
| defval → defval
| m3 → assert(n = r2 + n−1)
| m2 → assert(n = r1 + n)

Fig. 4. Translation example (clockwise from top left): original program, unwound
program, constraints produced.

Example 3. To illustrate the intuition of our translation, consider the example in
Figure 4 for k = 2. We build a model φ, where, for economy, we directly return
variables instead of renaming them, and properties α. To construct the formula, we
traverse the term in order, and add clauses in order of traversal. Note that the else
branch is always explored first. The program is first unwound and transformed
to SSA form with exhaustive method application (at match ret3 with). Note
that all assignments have been replaced with let-bindings. This is because we
convert references to SSA variables. In addition, we use keyword new to add
fresh names to the repository.

Bounded Model Checking with the Translation The steps to do a k-
bounded model checking of some initial configuration using the bounded transla-
tion algorithm described previously are as follows. First, given a valid configuration
(M,R, S, k), let us set:

CS = {r 7→ r0 | r ∈ dom(S)} φS =
∧

r∈dom(S)
(r0 = S(r))

Thus, starting from (M,R, S, k):

1. Build init(M,R, S, k) = (M,R,CS , CS , φS ,>,>, k).
2. Compute the translation: JM,R,CS , CS , φS ,>,>, kK = (ret, φ, R′, C,D, α, pc).
3. Check φ ∧ inil ∧ ¬α for satisfiability:

(a) If satisfiable, we have a model for φ ∧ inil ∧ ¬α that provides values for
all open variables ~x and, therefore, a reachable assertion violation.

(b) Otherwise, check φ ∧ ¬inil ∧ ¬α for satisfiability:1

1 Thus, the role of inil is to switch off/on the recording of reaching the bound as an
assertion violation.

A Bounded Model Checking Technique for Higher-Order Programs 11

i. If satisfiable, the bound was reached, so we increment k by one, and
repeat from step (2).

ii. Otherwise, the bound was not reached, so the program has been fully
verified.

Soundness In this section we prove that our BMC algorithm is sound for input
terms that are closed or contain open variables of ground type.

We start off with some definitions. An assignment σ : Vars ⇀ CVals is a
finite map from variables to closed values. Given a term M , we write M{σ} for the
term obtained by applying σ to M . On the other hand, applying σ to a method
repository R, we obtain the repository R{σ} = {m 7→ R(m){σ} | m ∈ dom(R)} –
and similarly for stores S. Then, given a valid configuration (M,R, S, k), we have
(M,R, S, k){σ} = (M{σ}, R{σ}, S{σ}, k).

Given a formula ψ and an assignment σ, we say σ represents ψ, and write
σ ' ψ, if σ satisfies ψ (written σ � ψ) and ψ implies σ (∀x ∈ dom(σ). ψ =⇒
x = σ(x)). Given an assignment σ, we define a formula σ◦ representing it by:
σ◦ =

∧
x∈dom(σ)(x = σ(x)).

We define JM,R, S, kK = Jinit(M,R, S, k)K.

Theorem 4 (Soundness). Given a valid configuration (M,R, S, k) whose open
variables are of ground type, suppose JM,R, S, kK = (ret, φ, R′′, C,D, α, pc). Then,
for all assignments σ0 closing (M,R, S, k), 1 and 2 are equivalent:

1. ∃E,R′, S′.(M,R, S, k){σ0}� (E[assert(0)], R′, S′, k′)
2. ∃σ′ ⊇ σ0. σ′ |= φ ∧ inil ∧ ¬α.

Moreover, if φ ∧ inil ∧ ¬α is not satisfiable then 3 and 4 are equivalent:

3. ∃M ′, R′, S′.(M,R, S, k){σ0}� (M ′, R′, S′, nil)
4. ∃σ′ ⊇ σ0. σ′ |= φ ∧ ¬inil ∧ ¬α.

Proof. (1) =⇒ (2) and (3) =⇒ (4) follow directly from Lemma 5 below. For
the reverse directions, we rely on the fact that the semantics is bounded so, in
every case, (M,R, S, k){σ0} should either reach a value, or a failed assertion, or
hit the bound. Moreover, the semantics is deterministic, in the sense that the
configurations that can be eventually reached may only differ in the choice of
fresh names used in the transition sequence (see Appendix A). These two facts
allow us to employ Lemma 5 also for the reverse directions. ut

Lemma 5 (Correctness). Given M,R,C,D, φ, α, pc, k, σ such that σ ' φ,
(M,R,D, k){σ} is valid, and JM,R,C,D, φ, α, pc, kK = (ret, φ′, R′, C ′, D′, α′, pc′)
there exists σ′ ⊇ σ such that σ′ ' φ′ and:

– if (M,R,D, k){σ} � (v, R̂, Ŝ, k̂) then σ′ � (pc =⇒ (pc′ ∧ (ret = v))) ∧
((inil ∧ α ∧ pc) =⇒ α′), R′{σ′} ⊇ R̂, and D′{σ′} = Ŝ.

– if (M,R,D, k){σ}� (E[assert(0)], R̂, Ŝ, k̂) then σ′ � ((inil ∧ α ∧ pc) =⇒
¬α′)

– if (M,R,D, k){σ}� (M̂, R̂, Ŝ, nil) then σ′ � (pc =⇒ ¬pc′) ∧ ((inil ∧ α ∧
pc) =⇒ α′) ∧ ((¬inil ∧ α ∧ pc) =⇒ ¬α′).

12 Yu-Yang Lin and Nikos Tzevelekos

Base Cases:

PT (M,R, pt, nil) = (ret,∅, R, pt) PT (〈v1, v2〉, R, pt, k) = (ret, 〈pt(v1), pt(v2)〉, R, pt)
PT (m,R, pt, k) = (ret, {m}, R, pt) PT (λx.M,R, pt, k) = (ret, {m}, R[m 7→ λ.M], pt)
PT (x,R, pt, k) = (ret, pt(x), R, pt) PT (r := v,R, pt, k) = (ret,∅, R, pt[r 7→ pt(v)])
PT (!r,R, pt, k) = (ret, pt(r), R, pt) PT (πi v,R, pt, k) = (ret, πi (pt(v)), R, pt)
PT (v1 ⊕ v2, R, pt, k) = (ret,∅, R, pt) PT (v,R, pt, k) = (ret,∅, R, pt) where v = i, ()
PT (assert(v), R, pt, k) = (ret,∅, R, pt)

Inductive Cases:

PT (let x = M in M ′, R, pt, k) =

let (ret1, A1, R1, pt1) = PT (M,R, pt, k) in PT (M ′{ret1/x}, R1, pt1[ret1 7→ A1], k)

PT (letrec f = λx.M in M ′, R, pt, k) =

let m, f ′ be fresh in PT (M ′{f ′/f}, R[m 7→ λx.M{f ′/f}], pt[f ′ 7→ {m}], k)

PT (mv,R, pt, k) = let R(m) be λx.N in PT (N{v/x}, R, pt, k)

PT (if v then M1 else M0, R, pt, k) =

let (ret0, A0, R0, pt0) = PT (M0, R, pt, k) in

let (ret1, A1, R1, pt1) = PT (M1, R0, ptb, k) in (ret, A0 ∪A1, R1,merge(pt0, pt1))

PT (xθ v,R, pt, k) =

let R be R0 and pt(x) be {m1, ...,mn} in

if n = 0 then (ret, ∅, R0, pt) else: for each i ∈ {1, ..., n} :

let R(mi) be λyi.N inlet (reti, Ai, Ri, pti) = PT (Ni{v/yi}, Ri−1, pt, k) in

(ret, A1 ∪ ... ∪An, Rn,merge(pt1, . . . , ptn))

Fig. 5. The points-to analysis algorithm.

4 A Points-to Analysis for Names

The presence of exhaustive method application in our BMC translation is a
primary source of state space explosion. As such, a more precise filtering of R is
necessary for scalability. In this section we describe a simple analysis to restrict
the number of methods considered. We follow ideas from points-to analysis, which
typically computes an overapproximation of the points-to set of each variable
inside a program, that is, the set of locations that it may point to.

Our analysis computes the set of methods that may be bound to each variable
while unfolding and. We do this via a finite map pt : (Refs ∪ Vars) ⇀ Pts where
Pts contains all points-to sets and is given by: Pts 3 A ::= X | 〈A,A〉 where
X ⊆fin Meths. Thus, a points-to set is either a finite set of names or a pair of
points-to sets. These need to be updated whenever a method name is created,
and are assigned to references or variables according to the following cases:

r := M add in pt: r 7→ pt(M)
let x = M inM ′ add in pt: x 7→ pt(M)
xM add in pt: ret(M) 7→ pt(M)

where ret(M) is the variable assigned to the result of M . The letrec binder
follows a similar logic. The need to have sets of names, instead of single names, in

A Bounded Model Checking Technique for Higher-Order Programs 13

the range of pt is that the analysis, being symbolic, branches on conditionals and
applications, so the method pointed to by a reference cannot be decided during
the analysis. Thus, when joining after branching, we merge the pt maps obtained
from all branches.

The points-to algorithm is presented in Figure 5. Given a valid configuration
(M,R,S, k), the algorithm returns PT (M,R,S, k) = (ret,A,R, pt), where A is
the points-to set of ret, and pt is the overall points-to map computed.

The merge of points-to maps is given by:

merge(pt1, . . . , ptn) = {x 7→
⋃

i
p̂ti | x ∈

⋃
i
dom(pti)}

where p̂ti(x) = pti(x) if x ∈ dom(pti), ∅ otherwise, and A ∪ B is defined by
〈A1 ∪B1, A2 ∪B2〉 if A,B = 〈A1, A2〉, 〈B1, B2〉, and just A ∪B otherwise.

The optimised BMC translation We can now incorporate the points-to
analysis in the BMC translation to get an optimised translation which operates
on symbolic configurations augmented with a points-to map, and returns:

JM,R,C,D, φ, α, pc, pt, kKPT = (ret, φ′, R′, C ′, D′, α, pc, A, pt′)

The optimised BMC translation is defined by lock-stepping the two algorithms
presented above (i.e. J K and PT ()) and letting J K be informed from PT () in
the xM case, which now restricts the choices of names for x to the set pt(x). Its
soundness is proven along the same lines as the basic algorithm.

letrec f = λ x.
if x ≤ 0 then 0
else let g = (λ y.x + y) in
g (f (x−1))

in
letrec f ’ = λ x.if x ≤ 0 then 0

else x + (f’ (x−1))
in assert(f n = f’ n)

To illustrate the significance of reducing the
set of names, consider the program on the right
which recursively generates names to compute
triangular numbers. Without points-to analysis,
since f creates a new method per call, and the
translation considers all methods of matching
type per recursive call, the number of names to
apply at depth m ≤ n when translating f(n) is
approximately m!. This means that the number
of paths explored grows by the factorial of n, with the total number of methods
created being the left factorial sum !n, and total number of names considered
being the derangement of n. In contrast, f ′(n) only considers n names with a
linear growth in number of paths. With points-to analysis, the number of names
considered and created in f is reduced to that of f ′.

5 Implementation and Experiments

We implemented the translation algorithm in a prototype tool to model check
higher-order programs called BMC-2. The implementation and benchmarks can
be found at:

https://github.com/LaifsV1/BMC-2

https://github.com/LaifsV1/BMC-2

14 Yu-Yang Lin and Nikos Tzevelekos

The tool takes program source code written in an ML-like language, and produces
a propositional formula in SMT-LIB 2 format. This is then be fed to an SMT
solver such as Z3. Syntax of the input language is based on the subset of OCaml
that corresponds to HORef. Differences between OCaml and our concrete
syntax are for ease of parsing and lack of type checking. For instance, all input
programs must be either written in “Barendregt Convention”, meaning all bound
variables must be fresh, or such that variables have the same type globally.
Additionally, all bound variables are annotated with types. Internally, BMC-2
implements an abstract syntax that extends HORef with vector arguments and
integer lists. This means that functions can take multiple arguments at once.
Lists are handled for testing, but not discussed here as they are not relevant to
the theory. BMC-2 itself was written in OCaml.

Methods:
mc91 (x:Int) :(Int) =

if x >= 101 then x + −10
else mc91 (mc91 (x + 11));

Main (n:Int) :(Unit):
if n <= 102
then assert((mc91 n)==91)
else skip

To illustrate our input language, on the right
is sample program mc91-e from [13] translated
from OCaml to our syntax. The keyword Meth-

ods is used to define all methods in the repos-
itory. The keyword Main is used to define the
main method. For this sample program, our tool
builds a translation with k = 1 for which Z3 cor-
rectly reports that the assertion fails if n = 102.
Details about experiments will be provided later.

Benchmarks We tested our implementation on a set of 40 programs that include
a selection from the MoCHi benchmark [13]; a set of higher-order programs
written in OCaml, originally used to test the higher-order model checking tool
MoCHi [13], and subsequently used for benchmarking [23,4,22]. We added custom
samples with references (ref-1, ref-1-e, ref-2, ref-2-e, ref-3), as well as programs
of varying lengths–100, 200 and 400 lines of code–constructed by combining the
other samples. To combine programs, we refactored and concatenated methods
and main methods from different files into a single file, and switch between the
methods based on user input, thus forcing BMC-2 to consider all mains. In
this set we have of safe and unsafe programs denoted by the -e termination in
their filename. Unsafe programs were constructed by slight modifications to the
assertions of the original safe programs. For our experiment, the programs were
manually translated to our input language and checked using our tool and Z3.
Care was taken to keep all sample programs as close to the original source code as
our concrete syntax allows. All experiments ran on an Ubuntu machine equipped
with an Intel Core i7-6700 CPU clocked at 3.40GHz and 16GB RAM. All tests
were set to time-out after 3 minutes, and up to a maximum bound k = 15.
These limits were chosen due to the combinatorial nature of model checking and
the sample programs used. BMC-2 ran twice per program per bound, and the
average was recorded.

Figure 6 plots the average time taken for BMC-2 to check all the benchmark
programs. We can observe that performance of BMC-2 heavily depends on the
program it is checking, making the possibility of full verification entirely dependent
on the nature of the program. For example, ack, which is an implementation of

A Bounded Model Checking Technique for Higher-Order Programs 15

Fig. 6. Average execution time (s) for BMC-2 on bounds k = 1..15.

the Ackermann function, is a deeply recursive program that diverges rapidly, and
thus cannot be translated by our algorithm any better than its normal growth.
This agrees with the intuition that BMC is not appropriate to find bugs in deep
recursion. As mentioned before, however, BMC has been shown to be effective on
shallow bugs in industry. This can be seen with our examples for 100 to 400 lines
of code, which were correctly shown to have bugs, with little difficulty despite
the increase in program size.

4 7 10 13 15 MoCHi

100 1-e 0.034 0.173 1.661 84.130 - c
100 2 0.020 0.028 0.032 0.053 0.071 c
100 3-e 0.021 0.027 0.028 0.040 0.051 10.734
200 1-e 0.034 0.188 1.572 71.296 - m
200 2-e 0.033 0.063 0.151 0.259 0.372 -
200 3-e 0.034 2.849 - - m 1.742
400 1-e 0.108 3.805 - - m m
400 2-e 0.061 0.196 0.696 1.321 1.991 -
ack 0.027 11.519 - - - 0.525
a-cppr 0.031 0.020 0.026 0.027 0.028 28.584
a-init 0.018 0.016 0.032 0.042 0.053 c
e-fact 0.009 0.014 0.016 0.021 0.022 0.629
e-simple 0.010 0.008 0.007 0.009 0.009 0.098
hrec 0.020 0.075 26.175 - - 0.867
r-lock-e 0.009 0.013 0.013 0.007 0.011 0.216
ref-2 0.013 0.008 0.011 0.012 0.010 u
ref-2-e 0.011 0.013 0.010 0.013 0.011 u
ref-3 0.019 0.018 0.047 0.211 0.211 u

Table 1. Time taken (s) for BMC-2
(k = 1..15) and MoCHi, where −, c,
m and u respectively indicate timeout,
crash, out-of-memory and unsupported

In addition to testing BMC-2, we also
ran comparison experiments on prior tools
MoCHi [13] and Rosette [24]. All ex-
periments ran on the same machine used
to test BMC-2. These tools will be de-
scribed in more detail in the following
section. For Rosette, we used an imple-
mentation of our bounded semantics in
Rosette provided to us by an anonymous
reviewer. With the semantics implemented,
we compare Rosette’s symbolic execution
of HORef, to BMC-2 with Z3’s transla-
tion and solving of the same terms.

Comparison with MoCHi Though the
goals of each tool are different, we at-
tempted to compare our approach to
MoCHi. Being unable to build from source,
we decided to used the Dockerfile on the Ubuntu machine from before. In Table 1,
we have the time taken for BMC-2 and MoCHi for a smaller set of programs–
the full range of results can be found in Appendix C. We noticed that MoCHi
is very sensitive to the operators and functions used in the assertions, while

16 Yu-Yang Lin and Nikos Tzevelekos

BMC-2 appears to be less dependent on these. For instance, checking mult-e

with assert(mult m m <= mult n n) was three orders of magnitude slower than
the original, while, at k = 1, BMC-2 takes 0.012 seconds; an increase of 20% from
the original 0.010s to find a bug. We also noticed that MoCHi is less consistent
with larger programs. For 100 to 400 lines of code, MoCHi correctly found bugs
in 4 out of 12 samples, but halted unexpectedly on the remaining 8. BMC-2
found all 11 bugs of the 12 programs, and found no bugs in the safe program.
Finally, we included 5 examples with references, which BMC-2 correctly checked.
Attempting to check them with MoCHi suggests references are unsupported.

Comparison with Rosette for Racket We found that BMC-2 and Rosette
are very similar in their ability to check higher-order programs. Since Racket is a
stateful higher-order language like HORef, and Rosette employs a symbolic vir-
tual machine with symbolic execution techniques for Racket, we can expect this
similarity. Fundamentally, Rosette and BMC-2 provide different approaches
to verification as the former is related to symbolic evaluation, while the latter
is a monolithic BMC translation. We were particularly interested in Rosette’s
ability to implement bounded verification for higher-order programs. We defined
our bounding mechanism in Rosette, and compared its symbolic evaluation to
BMC-2 on the Ubuntu machine. Figure 7 showcases this comparison. We found

Fig. 7. Execution time (s) of k = 1 . . . 15 for Rosette (left) and BMC-2 (right).

that Rosette and BMC-2 are comparable in scalability, with BMC-2 being less
optimised for some diverging programs such as ack. This could be due to the way
Rosette performs type-driven state merging, which provides opportunities for
concretization. In contrast, we perform a suboptimal SSA transformation which
could benefit from dominance frontiers for optimal merging of control flow. BMC,
however, has the theoretical advantage of faster compilation time over symbolic
execution [24]. Since testing in Rosette involves manually (re)translating our
examples into Racket, our comparison is based on a sample of 8 programs from
the MoCHi benchmarks.

A Bounded Model Checking Technique for Higher-Order Programs 17

References

1. N. Amla, R. P. Kurshan, K. L. McMillan, and R. Medel. Experimental analysis
of different techniques for bounded model checking. In H. Garavel and J. Hatcliff,
editors, Tools and Algorithms for the Construction and Analysis of Systems, 9th
International Conference, TACAS 2003, Proceedings, volume 2619 of Lecture Notes
in Computer Science, pages 34–48. Springer, 2003.

2. L. O. Andersen. Program Analysis and Specialization for the C Programming
Language. PhD thesis, DIKU, University of Copenhagen, May 1994. (DIKU report
94/19).

3. A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic model checking without
bdds. In R. Cleaveland, editor, Tools and Algorithms for Construction and Analysis
of Systems, 5th International Conference, TACAS ’99, Proceedings, volume 1579 of
Lecture Notes in Computer Science, pages 193–207. Springer, 1999.

4. T. C. Burn, C. L. Ong, and S. J. Ramsay. Higher-order constrained horn clauses
for verification. PACMPL, 2(POPL):11:1–11:28, 2018.

5. E. M. Clarke, D. Kroening, and F. Lerda. A tool for checking ANSI-C programs.
In K. Jensen and A. Podelski, editors, Tools and Algorithms for the Construction
and Analysis of Systems, 10th International Conference, TACAS 2004, Proceedings,
volume 2988 of Lecture Notes in Computer Science, pages 168–176. Springer, 2004.

6. G. Dennis, F. S. Chang, and D. Jackson. Modular verification of code with
SAT. In L. L. Pollock and M. Pezzè, editors, Proceedings of the ACM/SIGSOFT
International Symposium on Software Testing and Analysis, ISSTA 2006, Portland,
Maine, USA, July 17-20, 2006, pages 109–120. ACM, 2006.

7. J. Dolby, M. Vaziri, and F. Tip. Finding bugs efficiently with a SAT solver. In
I. Crnkovic and A. Bertolino, editors, Proceedings of the 6th joint meeting of the
European Software Engineering Conference and the ACM SIGSOFT International
Symposium on Foundations of Software Engineering, 2007, Dubrovnik, Croatia,
September 3-7, 2007, pages 195–204. ACM, 2007.

8. V. D’Silva, D. Kroening, and G. Weissenbacher. A survey of automated techniques
for formal software verification. IEEE Trans. on CAD of Integrated Circuits and
Systems, 27(7):1165–1178, 2008.

9. W. E. Howden. Symbolic testing and the dissect symbolic evaluation system.
Software Engineering, IEEE Transactions on, SE-3:266– 278, 08 1977.

10. J. P. Galeotti, N. Rosner, C. G. L. Pombo, and M. F. Frias. TACO: efficient
sat-based bounded verification using symmetry breaking and tight bounds. IEEE
Trans. Software Eng., 39(9):1283–1307, 2013.

11. J. King. A new approach to program testing. 10:228–233, 06 1975.
12. N. Kobayashi. Types and higher-order recursion schemes for verification of higher-

order programs. In Proceedings of the 36th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’09, pages 416–428,
New York, NY, USA, 2009. ACM.

13. N. Kobayashi, R. Sato, and H. Unno. Predicate abstraction and CEGAR for
higher-order model checking. In M. W. Hall and D. A. Padua, editors, Proceedings
of the 32nd ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2011, pages 222–233. ACM, 2011.

14. A. S. Köksal, V. Kuncak, and P. Suter. Constraints as control. In J. Field and
M. Hicks, editors, Proceedings of the 39th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2012, Philadelphia, Pennsylvania,
USA, January 22-28, 2012, pages 151–164. ACM, 2012.

18 Yu-Yang Lin and Nikos Tzevelekos

15. J. Morse, M. Ramalho, L. C. Cordeiro, D. Nicole, and B. Fischer. ESBMC 1.22
- (competition contribution). In E. Ábrahám and K. Havelund, editors, Tools
and Algorithms for the Construction and Analysis of Systems - 20th International
Conference, TACAS 2014, Proceedings, volume 8413 of Lecture Notes in Computer
Science, pages 405–407. Springer, 2014.

16. J. P. Near and D. Jackson. Rubicon: bounded verification of web applications. In
W. Tracz, M. P. Robillard, and T. Bultan, editors, 20th ACM SIGSOFT Symposium
on the Foundations of Software Engineering (FSE-20), SIGSOFT/FSE’12, Cary,
NC, USA - November 11 - 16, 2012, page 60. ACM, 2012.

17. P. C. Nguyễn and D. Van Horn. Relatively complete counterexamples for
higher-order programs. In Proceedings of the 36th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’15, pages 446–456, New
York, NY, USA, 2015. ACM.

18. C. . L. Ong. On model-checking trees generated by higher-order recursion schemes.
In 21st Annual IEEE Symposium on Logic in Computer Science (LICS’06), pages
81–90, Aug 2006.

19. A. M. Pitts. Nominal Sets: Names and Symmetry in Computer Science. Cambridge
University Press, New York, NY, USA, 2013.

20. J. C. Reynolds. Definitional interpreters for higher-order programming languages.
Higher-Order and Symbolic Computation, 11(4):363–397, 1998.

21. R. S. Boyer, B. Elspas, and K. Levitt. Select—a formal system for testing and
debugging programs by symbolic execution. ACM SIGPLAN Notices, 10:234–245,
06 1975.

22. R. Sato, H. Unno, and N. Kobayashi. Towards a scalable software model checker
for higher-order programs. In E. Albert and S. Mu, editors, Proceedings of the
ACM SIGPLAN 2013 Workshop on Partial Evaluation and Program Manipulation,
PEPM 2013, pages 53–62. ACM, 2013.

23. T. Terao and N. Kobayashi. A zdd-based efficient higher-order model checking
algorithm. In J. Garrigue, editor, Programming Languages and Systems - 12th
Asian Symposium, APLAS 2014, Singapore, November 17-19, 2014, Proceedings,
volume 8858 of Lecture Notes in Computer Science, pages 354–371. Springer, 2014.

24. E. Torlak and R. Bod́ık. A lightweight symbolic virtual machine for solver-aided
host languages. In M. F. P. O’Boyle and K. Pingali, editors, ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI ’14,
Edinburgh, United Kingdom - June 09 - 11, 2014, pages 530–541. ACM, 2014.

A Bounded Model Checking Technique for Higher-Order Programs 19

Appendix A Nominal determinacy

While the operational semantics is bounded in depth, the reduction tree of a given
term can still be infinite because of the non-determinacy involved in evaluating
λ-abstractions: the rule non-deterministically creates a fresh name m and extends
the repository with m mapped to the given λ-abstraction. This kind of non-
determinism, which can be seen as determinism up to fresh name creation, is
formalised below.

Let us consider permutations π : Meths → Meths such that, for all m, if
m ∈ Methsθ→θ′ then π(m) ∈ Methsθ→θ′ . We call such a permutation π finite if
the set {a | π(a) 6= a} is finite. Given a syntactic object X (e.g. a term, repository,
or store) and a finite permutation π, we write π ·X for the object we obtain
from X if we swap each name a appearing in it with π(a). Put otherwise, the
operation · is an action from finite permutations of Meths to the set of objects X.
Given a set ∆ ⊆ Meths and objects X,X ′, we write X ∼∆ X ′ whenever there
exists a finite permutation π such that:

π ·X = X ′ ∧ ∀a ∈ ∆. π(a) = a

and say that X and X ′ are nominally equivalent up to ∆.
In the following lemma we write �n for the n-step composition of →.

Lemma 6 (Nominal determinacy). Let (T,R, S, k) be a valid configuration,
(T,R, S, k) �n (T ′, R′, S′, k′), and let ∆ = dom(R) ∪ dom(S). Then, for all
(T ′′, R′′, S′′, k′′) we have (T,R, S, k) �n (T ′′, R′′, S′′, k′′) iff (T ′, R′, S′, k′) ∼∆
(T ′′, R′′, S′′, k′′).

Appendix B Proof of Correctness Lemma

Lemma 5 [Correctness] Given M,R,C,D, φ, α, pc, k, σ such that σ ' φ,
(M,R,D, k){σ} is valid, and:

JM,R,C,D, φ, α, pc, kK = (ret, φ′, R′, C ′, D′, α′, pc′)

there exists σ′ ⊇ σ such that σ′ ' φ′ and:

– if (M,R,D, k){σ} � (v, R̂, Ŝ, k̂) then σ′ � (pc =⇒ (pc′ ∧ (ret = v))) ∧
((inil ∧ α ∧ pc) =⇒ α′), R′{σ′} ⊇ R̂, and D′{σ′} = Ŝ.

– if (M,R,D, k){σ}� (E[assert(0)], R̂, Ŝ, k̂) then σ′ � ((inil ∧ α ∧ pc) =⇒
¬α′)

– if (M,R,D, k){σ}� (M̂, R̂, Ŝ, nil) then σ′ � (pc =⇒ ¬pc′) ∧ ((inil ∧ α ∧
pc) =⇒ α′) ∧ ((¬inil ∧ α ∧ pc) =⇒ ¬α′)

where � is the reflexive transitive closure of →.

Proof. Consider σ ' φ, a valid configuration (M,R,D, k){σ}, and its correspond-
ing translation JM,R,C,D, φ, α, pc, kK = (ret, φ′, R′, C ′, D′, α′, pc′).

Now, by induction on the length of the transition sequence produced by the
operational semantics, and, lexicographically, by induction on the size of the
term, we have the following cases for configurations in canonical form.

20 Yu-Yang Lin and Nikos Tzevelekos

Terminal configurations:

– k = nil.
From the operational semantics we have (M,R,D, nil){σ} as a struck con-
figuration. From the translation we have

JM,R,C,D, φ, α, pc, kK =

(ret, (ret = defval) ∧ φ,R,C,D, α ∧ (pc =⇒ inil),⊥)

We thus want show that ∃σ′ ⊇ σ such that (σ′ ' ((ret = defval) ∧ φ)) and

σ′ �(pc =⇒ ¬⊥)

∧ ((inil ∧ α ∧ pc) =⇒ (α ∧ (pc =⇒ inil)))

∧ ((¬inil ∧ α ∧ pc) =⇒ ¬(α ∧ (pc =⇒ inil)))

Let us choose σ′ = σ[ret 7→ defval]. Since σ ' φ, and since ret is the only
new variable in φ′, we know that σ′ ' φ′. We also know that σ′ � (pc =⇒
>) ∧ ((inil ∧ α ∧ pc) =⇒ (α ∧ (pc =⇒ inil))) ∧ ((¬inil ∧ α ∧ pc) =⇒
¬(α ∧ (pc =⇒ inil))) holds.

– M = assert(0).
From the operational semantics we have (assert(0), R,D, k){σ} as a struck
configuration. From the translation we have

Jassert(0), R, C,D, φ, α, pc, kK =

(ret, (ret = ()) ∧ φ,R,C,D, α ∧ (pc =⇒ (0 6= 0)),>)

We thus want show that ∃σ′ ⊇ σ such that (σ′ ' ((ret = ()) ∧ φ)) and

σ′ � ((inil ∧ α ∧ pc) =⇒ ¬(α ∧ (pc =⇒ (0 6= 0))))

Let us choose σ′ = σ[ret 7→ ()]. Since σ ' φ, and ret is the only new variable
in φ′, we know that σ′ ' φ′. We also know that σ′ � ((inil ∧ α ∧ pc) =⇒
¬(α ∧ (pc =⇒ ⊥))) holds.

– M = v.
From the operational semantics we have (v,R,D, k){σ} as a struck configu-
ration. From the translation we have

Jv,R,C,D, φ, α, pc, kK =

(ret, (ret = v) ∧ φ,R,C,D, α,>)

We thus want show that ∃σ′ ⊇ σ such that (σ′ ' ((ret = v) ∧ φ)) and

σ′ � (pc =⇒ (> ∧ (ret = v))) ∧ ((inil ∧ α ∧ pc) =⇒ α)

R{σ′} ⊇ R{σ′} and D{σ′} = D{σ′}

Let us choose σ′ = σ[ret 7→ v]. Since σ ' φ, and ret is the only new variable
in φ′, we know that σ′ ' φ′. We also know that σ′ � (pc =⇒ (> ∧ (ret =
v))) ∧ ((inil ∧ α ∧ pc) =⇒ α) holds. Additionally, R{σ′} ⊇ R{σ′} and
D{σ′} = D{σ′} hold trivially.

– M = LvM. Similar to the case above.

A Bounded Model Checking Technique for Higher-Order Programs 21

Non-terminal configurations:

– M = assert(i) where i 6= 0.

From the operational semantics we have

(assert(i), R,D, k){σ} → ((), R,D, k){σ}

From the translation we have

Jassert(i), R, C,D, φ, α, pc, kK =

(ret, (ret = ()) ∧ φ,R,C,D, α ∧ (pc =⇒ (i 6= 0)),>)

We thus want show that ∃σ′ ⊇ σ such that (σ′ ' ((ret = ()) ∧ φ)) and, since
this is a valid transition sequence, we want

σ′ � (pc =⇒ (ret = ())) ∧ ((inil ∧ α ∧ pc) =⇒ (α ∧ (pc =⇒ (i 6= 0))))

R{σ′} ⊇ R{σ′} and D{σ′} = D{σ′}

Let us choose σ′ = σ[ret 7→ ()]. Since σ ' φ, and ret is the only new variable
in φ′, we know that σ′ ' φ′. We also know that σ′ � (pc =⇒ (ret = ()))
holds because σ′ maps ret to (), and σ′ � ((inil ∧ α ∧ pc) =⇒ α) holds.
Additionally, R{σ′} ⊇ R{σ′} and D{σ′} = D{σ′} hold trivially.

– M = r := v.

From the operational semantics we have

(r := v,R,D, k){σ} → ((), R,D[r 7→ v], k){σ}

From the translation we have

Jr := v,R,C,D, φ, α, pc, kK =

let C ′ = C[r] in let D[r 7→ C ′(r)] in

(ret, (ret = ()) ∧ (D′(r) = v) ∧ φ,R,C ′, D′, α,>)

We thus want show that ∃σ′ ⊇ σ such that (σ′ ' ((ret = ())∧(D′(r) = v)∧φ))
and, since this is a valid transition sequence, we want

σ′ � (pc =⇒ (ret = ())) ∧ ((inil ∧ α ∧ pc) =⇒ (α ∧ (pc =⇒ (i 6= 0))))

R{σ′} ⊇ R{σ′} and D[r 7→ C ′(r)]{σ′} = D[r 7→ v]{σ′}

Let us choose σ′ = σ[ret 7→ (), C ′(r) 7→ v]. Since σ ' φ, ret is the only
new variable in φ′, and D′ maps r to C ′(r), which σ′ maps to v, we know
that σ′ ' φ′. We also know that σ′ � (pc =⇒ (ret = ())) holds because
σ′ maps ret to (), and σ′ � ((inil ∧ α ∧ pc) =⇒ α) holds. Additionally,
R{σ′} ⊇ R{σ′} holds trivially, and D[r 7→ C ′(r)]{σ′} = D[r 7→ v]{σ′} holds
because σ′ maps C ′(r) to v.

22 Yu-Yang Lin and Nikos Tzevelekos

– M = !r.
From the operational semantics we have

(!r,R,D, k){σ} → (v,R{σ}, D{σ}, k) where v = D{σ}(r) = σ(D(r))

From the translation we have

J!r,R,C,D, φ, α, pc, kK =

(ret, (ret = D(r)) ∧ φ,R,C,D, α,>)

We thus want show that ∃σ′ ⊇ σ such that (σ′ ' ((ret = D(r)) ∧ φ)) and,
since this is a valid transition sequence, we want

σ′ � (pc =⇒ (ret = v)) ∧ ((inil ∧ α ∧ pc) =⇒ α)

R{σ′} ⊇ R{σ′} and D{σ′} = D{σ′}

Let us choose σ′ = σ[ret 7→ D(r)]. Since σ ' φ, and ret is the only new variable
in φ′, we know that σ′ ' φ′. We also know that σ′ � (pc =⇒ (ret = v))
holds because σ′ ⊃ σ, σ(D(r)) = v and σ′(ret) = D(r), and we know
σ′ � ((inil ∧ α ∧ pc) =⇒ α) holds. Additionally, R{σ′} ⊇ R{σ′} and
D{σ′} = D{σ′} hold trivially.

– M = v1 ⊕ v2.
From the operational semantics we have

(v1 ⊕ v2, R,D, k){σ} → (v,R{σ}, D{σ}, k) where v = σ(v1)⊕ σ(v2)

From the translation we have

Jv1 ⊕ v2, R, C,D, φ, α, pc, kK =

(ret, (ret = (v1 ⊕ v2)) ∧ φ,R,C,D, α,>)

We thus want show that ∃σ′ ⊇ σ such that (σ′ ' ((ret = (v1⊕ v2))∧ φ)) and,
since this is a valid transition sequence, we want

σ′ � (pc =⇒ (ret = v)) ∧ ((inil ∧ α ∧ pc) =⇒ α)

R{σ′} ⊇ R{σ′} and D{σ′} = D{σ′}

Let us choose σ′ = σ[ret 7→ v]. Since σ ' φ, and ret is the only new variable
in φ′, we know that σ′ ' φ′. We also know that σ′ � (pc =⇒ (ret = v))
holds because σ′ ⊇ σ, σ(v1) ⊕ σ(v2) = v and σ′ maps ret to v. Lastly, we
know σ′ � ((inil ∧ α ∧ pc) =⇒ α) holds. Additionally, R{σ′} ⊇ R{σ′} and
D{σ′} = D{σ′} hold trivially.

– M = πi v.
From the operational semantics we have

(πi v,R,D, k){σ} → (vi, R{σ}, D{σ}, k) where σ(v) = 〈v1, v2〉

From the translation we have

Jπi v,R,C,D, φ, α, pc, kK =

A Bounded Model Checking Technique for Higher-Order Programs 23

(ret, (ret = (πi v)) ∧ φ,R,C,D, α,>)

We thus want show that ∃σ′ ⊇ σ such that (σ′ ' ((ret = (πi v)) ∧ φ)) and,
since this is a valid transition sequence, we want

σ′ � (pc =⇒ (ret = vi)) ∧ ((inil ∧ α ∧ pc) =⇒ α)

R{σ′} ⊇ R{σ′} and D{σ′} = D{σ′}

Let us choose σ′ = σ[ret 7→ vi]. Since σ ' φ, and ret is the only new variable
in φ′, we know that σ′ ' φ′. We also know that σ′ � (pc =⇒ (ret = v))
holds because σ′ ⊇ σ, σ(πi v) = vi and σ′ maps ret to vi. Lastly, we know
σ′ � ((inil ∧ α ∧ pc) =⇒ α) holds. Additionally, R{σ′} ⊇ R{σ′} and
D{σ′} = D{σ′} hold trivially.

– M = λx.N .
From the operational semantics we have

(λx.N,R,D, k){σ} → (m̂,R[m̂ 7→ λx.N]{σ}, D{σ}, k)

From the translation we have

Jλx.N,R,C,D, φ, α, pc, kK =

(ret, (ret = m) ∧ φ,R[m 7→ λx.N], C,D, α,>)

We thus want show that ∃σ′ ⊇ σ such that (σ′ ' ((ret = m) ∧ φ)) and, since
this is a valid transition sequence, we want

σ′ � (pc =⇒ (ret = m̂)) ∧ ((inil ∧ α ∧ pc) =⇒ α)

R[m 7→ λx.N]{σ′} ⊇ R[m̂ 7→ λx.N]{σ′} and D{σ′} = D{σ′}

Let us choose σ′ = σ[ret 7→ m]. Since σ ' φ and ret is the only new variable
in φ′, and choosing m̂ such that m̂ = m by Lemma 6 (nominal determinism
of the operational semantics), we know that σ′ ' φ′. We also know that σ′ �
(pc =⇒ (ret = m̂)) holds because σ′ ⊃ σ, m = m̂ by Lemma 6, and σ′ maps
ret to m. Lastly, we know σ′ � ((inil ∧ α ∧ pc) =⇒ α) holds. Additionally,
D{σ′} = D{σ′} holds trivially, and R[m 7→ λx.N]{σ′} ⊇ R[m̂ 7→ λx.N]{σ′}.

– M = mv.
From the operational semantics we have

(mv,R, S, k){σ} → (N{v/x}, R, S, k − 1){σ}

where R(m) = λx.N .
From the translation we have

Jmv,R,C,D, φ, α, pc, kK = JN{v/x}, R, C,D, φ, α, pc, k − 1K

As such, this case holds directly from the inductive hypothesis.

24 Yu-Yang Lin and Nikos Tzevelekos

– M = letrec f = λx.N in M ′.
From the operational semantics we have

(letrec f = λx.N in M ′, R, S, k){σ} → (M ′{m/f}, R[m 7→ λx.N], S, k){σ}

where R(m) = λx.N .
From the translation we have

Jletrec f = λx.N in M ′, R, C,D, φ, α, pc, kK =

JM{f ′/f}, R[m 7→ λx.N{f ′/f}], C,D, φ ∧ (f ′ = m), α, pc, kK

Let σ′ = σ[f ′ 7→ m] such that σ′ ' (φ ∧ (f ′ = m)). As such, this case holds
directly from the inductive hypothesis.

– M = (let x = v in M ′). Similar to the case above.
– M = if v then M1 else M0.

From the operational semantics we have

(if v then M1 else M0, R, S, k){σ} → (Mi, R, S, k − 1){σ}

where i = 0 if σ(v) = 0, and i = 1 otherwise.
From the translation we have

Jif v then M1 else M0, R, C,D, φ, α, pc, kK =

let (ret0, φ0, R0, C0, D0, α0, pc0) = JM0, R, C,D, φ, α, pc ∧ (v = 0), kK in

let (ret1, φ1, R1, C1, D1, α1, pc1) = JM1, R0, C0, Db, φ0, α0, pc ∧ (v 6= 0), kK in

let C ′ = C1[r1] · · · [rn] (Π = {r1, . . . , rn}) in

let ψ0 = (v = 0) =⇒ ((ret = ret0) ∧
∧
r∈Π

(C ′(r) = D0(r))) in

let ψ1 = (v 6= 0) =⇒ ((ret = ret1) ∧
∧
r∈Π

(C ′(r) = D1(r))) in

(ret, ψ0 ∧ ψ1 ∧ φ1, R, C ′, C ′, α1, ((pc0 ∧ (v = 0)) ∨ (pc1 ∧ (v 6= 0))))

We now have two cases for σ(v):
1. σ(v) = 0.

(1) By the inductive hypothesis we have σ0 ⊇ σ, where σ0 ' φ0, and all
necessary conditions P0 are satisfied.
(2) By Lemma 7, we know ∃σ1 ⊇ σ0.(σ1 ' φ1).
Let σ′ = σ1[ret 7→ ret0, C

′(r) 7→ D0(r)]. Since σ′ ⊃ σ1 ⊇ σ0, we know
that P0 is also satisfied. Thus, this case holds by (1) and (2).

2. σ(v) 6= 0.
(1) By Lemma 7, we know ∃σ0 ⊇ σ.(σ0 ' φ0).
By Lemma 8, we know R must be preserved in R0, so R0{σ0} ⊇ R. Thus,
by the inductive hypothesis:
(2) we have σ1 ⊇ σ0 ⊇ σ, where σ1 ' φ1, and all necessary conditions P1

are satisfied.
Let σ′ = σ1[ret 7→ ret1, C

′(r) 7→ D1(r)]. Since σ′ ⊃ σ1, we know that P1

is also satisfied. Thus, this case holds by (1) and (2).

A Bounded Model Checking Technique for Higher-Order Programs 25

– M = xv.
From the operational semantics we have

(xv,R, S, k){σ} → (Ni{v/yi}, R, S, k − 1){σ}

where σ(x) = mi and R(mi = λyi.Ni).
Let σ0 = σ.
From the translation we have

Jxθ v,R,C,D, φ, α, pc, kK =

if R � θ = ∅ then (ret, (ret = nil) ∧ φ,R,C,D, α, pc) else

let R � θ be {m1, ...,mn} and (R,C, φ, α) be (R0, C0, φ0, α0) in

for each i ∈ {1, ..., n} :

let R(mi) be λyi.N in

let (reti, φi, Ri, Ci, Di, αi, pci) =

JNi{v/yi}, Ri−1, Ci−1, D, φi−1, αi−1, pc ∧ (x = mi), k − 1K in

let C ′n = Cn[r1] · · · [rj] (Π = {r1, . . . , rj}) in

let ψ =

n∧
i=1

(x = mi) =⇒
((ret = reti)∧∧
r∈Π

(C ′n(r) = Di(r)))

 in

let pc′n =

n∨
i=1

(pci ∧ (x = mi)) in

(ret, ψ ∧ φn, Rn, C ′n, C ′n, αn, pc′n)

Since R � θ = {m1, . . . ,mn}, it must be the case that i ∈ {1 . . . n}.
It must be the case then that either (1) i = 1 or (2) 1 < i ≤ n.
1. (1) By the inductive hypothesis, we have ∃σ1 ⊇ σ0.(σ1 ' φ1), and all

necessary properties P0 hold.
(2) By Lemma 7 applied repeatedly, we have ∃σn ⊇ · · · ⊇ σ1.(σn ' φn).
Since σn ⊇ σ1, properties P0 hold, so this case holds by (1) and (2).

2. (1) By Lemma 7 applied repeatedly, we know ∃σi−1 ⊇ · · · ⊇ σ0.(σi−1 '
φi−1) ∧ · · · ∧ (σ0 ' φ0).
(2) By Lemma 8 applied repeatedly, we also know Ri−1 ⊇ · · · ⊇ R0.
(3) By the inductive hypothesis, we know ∃σi ⊇ σi−1.(σi ' φi) and the
necessary properties Pi hold.
(4) By Lemma 7 again applied repeatedly, we know ∃σn ⊇ · · · ⊇ σi.(σn '
φn) ∧ · · · ∧ (σi ' φi).
Since σn ⊇ σi, properties Pi hold, so this holds by (1), (2), (3) and (4).

– M = (let x = M ′ in M ′′), with M ′ not a value.
Let us write M as E[M ′]. From the operational semantics we have

(E[M ′], R, S, k){σ} → (E[M̂], R̂, Ŝ, k̂){σ}� . . .

26 Yu-Yang Lin and Nikos Tzevelekos

where (M ′, R, S, k){σ} → (M̂, R̂, Ŝ, k̂){σ}.
We now have the following translation.

JE[M ′], R, C,D, φ, α, pc, kK =

let (ret1, φ1, R1, C1, D1, α1, pc1) = JM ′, R, C,D, φ, α, pc, kK in

let (ret2, φ2, R2, C2, D2, α2, pc2) = JE[ret1], R1, C1, D1, φ1, α1, pc ∧ pc1, kK in

(ret2, φ2, R2, C2, D2, α2, pc1 ∧ pc2)

Since E[M ′] can lead to either (1) some value, (2) an assertion assert(0),
or (3) a stuck configuration where the bound is nil, we have three cases to
consider.
1. (E[M ′], R, S, k){σ} → (E[M̂], R̂, Ŝ, k̂){σ}� (E[v̂1], R̂1, Ŝ1, k̂1).

(1) By the inductive hypothesis: σ1 � (pc =⇒ (pc1 ∧ (ret1 = v̂1))) ∧
((pc ∧ α ∧ inil) =⇒ α1) and R1{σ1} ⊇ R,D1{σ1} = Ŝ.

(E[v̂1], R̂1, Ŝ1, k̂1) � (v̂′, R̂′, Ŝ′, k̂)′.
(2) By the inductive hypothesis: σ2 � (pc1 =⇒ (pc2 ∧ (ret2 = v̂′))) ∧
((pc1 ∧ α1 ∧ inil) =⇒ α2) and R2{σ2} ⊇ R̂1, D{σ1} = Ŝ.

Since σ2 ⊇ σ, we know σ2 ' φ2.
From (1) and (2), we know σ2 � (pc =⇒ (pc1 ∧ pc2 ∧ (ret = v̂)))∧ ((pc∧
α ∧ inil) =⇒ α2). Case holds.

2. (a) (E[M ′], R, S, k){σ} → (E[M̂], R̂, Ŝ, k̂){σ}� (E[assert(0)], R̂1, Ŝ1, k̂1).
(1) By the inductive hypothesis: σ1 � ((pc ∧ α ∧ inil) =⇒ ¬α1)
such that σ1 ' φ1.
(2) By Lemma 7, we know ∃σ2 ⊇ σ1.σ2 ' φ2

By Lemma 9, and (1) and (2), we know α2 =⇒ α1, thus ¬α1 =⇒
¬α2. We therefore have σ1 � ((pc ∧ α ∧ inil) =⇒ ¬α2). Case holds.

(b) (E[M ′], R, S, k){σ} → (E[M̂], R̂, Ŝ, k̂){σ}� (E[v̂1], R̂1, Ŝ1, k̂1).
(1) By the inductive hypothesis: σ1 � (pc =⇒ (pc1 ∧ (ret1 =
v̂1))) ∧ ((pc ∧ α ∧ inil) =⇒ α1) and R1{σ1} ⊇ R,D1{σ1} = Ŝ.

(E[v̂1], R̂1, Ŝ1, k̂1) � (E′[assert(0)], R̂′, Ŝ′, k̂)′

(2) By the inductive hypothesis: σ2 � ((pc∧pc1∧α1∧inil) =⇒ ¬α2)
such that σ2 ' φ2.

From (1) and (2) we have σ2 � (pc =⇒ ¬(pc1 ∧ pc2)) ∧ (α ∧
pc ∧ inil) =⇒ ¬α2. Case holds.

3. (a) (E[M ′], R, S, k){σ} → (E[M̂], R̂, Ŝ, k̂){σ}� (E[M̂1], R̂1, Ŝ1, nil).
(1) By the inductive hypothesis: σ1 � (pc =⇒ ¬pc1) ∧ ((inil ∧ α ∧
pc) =⇒ α1) ∧ ((¬inil ∧ α ∧ pc) =⇒ ¬α1) such that σ1 ' φ1.
(2) By Lemma 7, we know ∃σ2 ⊇ σ1.σ2 ' φ2.
(3) By Lemma 9, we know α2 =⇒ α1, so ¬α1 =⇒ ¬α2.

From (1) we have that σ1 � (pc =⇒ ¬(pc1 ∧ pc2)).

A Bounded Model Checking Technique for Higher-Order Programs 27

From (1) and (3) we have that σ1 � ((inil ∧ α ∧ pc) =⇒ α2) ∧
((¬inil ∧ α ∧ pc) =⇒ ¬α2).
From (2) we have that σ2 � (pc =⇒ ¬(pc1 ∧ pc2)) ∧ ((inil ∧ α ∧
pc) =⇒ α2) ∧ ((¬inil ∧ α ∧ pc) =⇒ ¬α2) such that σ2 ' φ2. Case
holds.

(b) (E[M ′], R, S, k){σ} → (E[M̂], R̂, Ŝ, k̂){σ}� (E[v̂1], R̂1, Ŝ1, k̂1).
(1) By the inductive hypothesis: σ1 � (pc =⇒ (pc1 ∧ (ret1 =
v̂1))) ∧ ((pc ∧ α ∧ inil) =⇒ α1) and R1{σ1} ⊇ R,D1{σ1} = Ŝ.

(E[v̂1], R̂1, Ŝ1, k̂1) � (E′[M̂ ′], R̂′, Ŝ′, nil)′

(2) By the inductive hypothesis: σ2 � ((pc∧pc1) =⇒ ¬pc2)∧((inil∧
α1 ∧ pc ∧ pc1) =⇒ α2) ∧ ((¬inil ∧ α1 ∧ pc ∧ pc1) =⇒ ¬α2) such
that σ2 ' φ2.

From (1) and (2) we have σ2 � (pc =⇒ ¬(pc1 ∧ pc2)) ∧ ((inil ∧ α ∧
pc) =⇒ α2) ∧ ((¬inil ∧ α ∧ pc) =⇒ ¬α2) such that σ2 ' φ2. Case
holds.

Lemma 7 (Uniqueness of the translation). Given an assignment σ and
formula φ such that σ ∼= φ, and a translation

JM,R,C,D, φ, α, pc, kK = (ret, φ′, R′, C ′, D′, α′, pc′)

we know there exists some σ′ ⊇ σ such that σ′ ∼= φ′.

Proof. Assuming σ ∼= φ, by induction on k and then by structural induction on
M , we have the base cases:

1. k = nil: shown by choosing σ′ = σ[ret 7→ defval].
2. M = assert(()v) and k 6= nil: shown by choosing σ′ = σ[ret 7→ ()].
3. M = v and k 6= nil: shown by choosing σ′ = σ[ret 7→ v].
4. M =!r and k 6= nil: shown by choosing σ′ = σ[ret 7→ D(r)].
5. M = λx.N and k 6= nil: shown by choosing σ′ = σ[ret 7→ m].
6. M = πi v and k 6= nil: shown by choosing σ′ = σ[ret 7→ πi v].
7. M = v1 ⊕ v2 and k 6= nil: shown by choosing σ′ = σ[ret 7→ v1 ⊕ v2].
8. M = r := v and k 6= nil: shown by choosing σ′ = σ[ret 7→ (), D′(r) = v].

With base cases done, we have the following inductive cases:

1. M = let x = M ′ in M ′′:
(1) By the inductive hypothesis on JM,R,C,D, φ, α, pc, kK, we have σ1 ' φ1.
(2) By the inductive hypothesis on JM ′{ret1/x}, R1, C1, D1, φ1, α1, pc∧pc1, kK,
we have σ2 ' φ2.
This case holds by (1) and (2).

2. M = letrec f = λx.N in M ′:
Let σ′ = σ[f ′ 7→ m] such that σ′ ' (φ ∧ (f ′ = m)).
(1) By the inductive hypothesis on JM ′{f ′/f}, R′, C,D, φ∧(f ′ = m), α, pc, kK,
we have σ1 ' φ1.
This case holds by (1).

28 Yu-Yang Lin and Nikos Tzevelekos

3. M = mv:
(1) By the inductive hypothesis on JN{v/x}, R′, C,D, φ, α, pc, kK, we have
σ1 ' φ1.
This case holds by (1).

4. M = if v then M1 else M0:
(1) By the inductive hypothesis on JM0, R,C,D, φ, α, pc ∧ (v = 0), kK, we
have σ0 ' φ0.
(2) By the inductive hypothesis on JM1, R0, C0,D0, φ0, α0, pc ∧ (v 6= 0), kK,
we have σ1 ' φ1.
We now have two cases on σ1(v):
(a) σ1(v) = 0. Choose σ′ = σ1[ret 7→ ret0, C

′(r) 7→ D0(r)] for all r ∈ Π.
(b) σ1(v) = i 6= 0. Choose σ′ = σ1[ret 7→ ret1, C

′(r) 7→ D1(r)] for all r ∈ Π.
5. M = xv:

(1) By the inductive hypothesis on JN1, R0, C0, . . .K to JNn, Rn−1, Cn−1, . . .K,
we have ∃σn ⊇ · · · ⊇ σ1 ⊇ σ0.(σn ' φn) ∧ · · · ∧ (σ1 ' φ1) ∧ (σ0 ' φ0).
Since σ(x) ∈ R, let σ(x) = mi for i ∈ {1..n}.
Let σ′ = σn[ret 7→ reti, C

′
n(r) 7→ Di(r)] for all r ∈ Π.

This case holds by (1).

Lemma 8 (Preservation of the repository). Given a translation

JM,R,C,D, φ, α, pc, kK = (ret, φ′, R′, C ′, D′, α′, pc′)

we know the input repository must be preserved; i.e. R′ ⊇ R.

Proof. By inspection of the translation rules.

Lemma 9 (Propagation of preconditions). Given a translation

JM,R,C,D, φ, α, pc, kK = (ret, φ′, R′, C ′, D′, α′, pc′)

we know that preconditions φ and α must be propagated and included in φ′

and α′; i.e. φ′ = ψ ∧ φ and α′ = β ∧ α where JM,R,C,D,>,>,>, kK =
(ret, ψ,R′, C ′, D′, β, pc′′)

Proof. By inspection of the translation rules.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 MoCHi

100_1-e 0.018 0.018 0.028 0.034 0.029 0.056 0.173 0.312 0.605 1.661 5.640 22.778 84.130 - - c

100_2 0.013 0.017 0.017 0.020 0.018 0.029 0.028 0.032 0.036 0.032 0.050 0.053 0.053 0.062 0.071 c

100_3-e 0.013 0.016 0.015 0.021 0.024 0.018 0.027 0.022 0.025 0.028 0.034 0.035 0.040 0.056 0.051 10.734

100_4-e 0.012 0.019 0.017 0.022 0.026 0.025 0.026 0.037 0.034 0.036 0.037 0.047 0.040 0.046 0.063 13.547

100_5-e 0.007 0.015 0.019 0.025 0.028 0.048 0.168 0.344 0.576 1.520 5.911 18.821 90.544 - - 2.345

200_1-e 0.016 0.020 0.021 0.034 0.054 0.074 0.188 0.348 0.660 1.572 4.635 20.209 71.296 - - m

200_2-e 0.012 0.023 0.019 0.033 0.042 0.063 0.063 0.094 0.106 0.151 0.175 0.201 0.259 0.298 0.372 -

200_3-e 0.015 0.020 0.030 0.034 0.110 0.453 2.849 19.257 - - - - - - m 1.742

200_4-e 0.030 0.034 0.047 0.051 0.102 0.401 2.661 18.285 - - - - - - m 47.022

200_5-e 0.043 0.036 0.037 0.040 0.047 0.046 0.065 0.085 0.111 0.146 0.168 0.218 0.282 0.388 0.428 m

400_1-e 0.019 0.034 0.060 0.108 0.232 0.814 3.805 24.594 - - - - - - m m

400_2-e 0.036 0.057 0.050 0.061 0.080 0.129 0.196 0.350 0.523 0.696 0.789 1.033 1.321 1.594 1.991 -

ack 0.011 0.011 0.018 0.027 0.138 1.403 11.519 168.670 - - - - - - - 0.525

a-cppr 0.033 0.021 0.028 0.031 0.018 0.020 0.020 0.018 0.018 0.026 0.026 0.023 0.027 0.026 0.028 28.584

a-init-me 0.018 0.023 0.031 0.027 0.027 0.024 0.015 0.017 0.021 0.025 0.029 0.029 0.034 0.040 0.038 c

a-init 0.014 0.011 0.013 0.018 0.021 0.015 0.016 0.021 0.018 0.032 0.026 0.040 0.042 0.053 0.053 c

a-max-me 0.008 0.013 0.020 0.023 0.017 0.021 0.018 0.016 0.016 0.017 0.015 0.019 0.019 0.018 0.022 5.348

a-max 0.012 0.011 0.010 0.014 0.015 0.017 0.019 0.020 0.015 0.014 0.018 0.016 0.018 0.017 0.017 0.636

copy_intro 0.016 0.019 0.016 0.016 0.019 0.012 0.020 0.020 0.021 0.022 0.020 0.023 0.020 0.024 0.017 c

e-fact 0.010 0.008 0.008 0.009 0.013 0.011 0.014 0.014 0.015 0.016 0.015 0.016 0.021 0.020 0.022 0.629

e-simple 0.010 0.010 0.013 0.010 0.011 0.011 0.008 0.012 0.012 0.007 0.012 0.012 0.009 0.010 0.009 0.098

hors 0.010 0.007 0.010 0.010 0.013 0.013 0.009 0.012 0.012 0.013 0.012 0.011 0.012 0.012 0.014 0.321

hrec 0.012 0.015 0.020 0.020 0.024 0.028 0.075 0.362 3.284 26.175 - - - - - 0.867

intro1 0.014 0.015 0.014 0.013 0.013 0.013 0.008 0.007 0.014 0.013 0.011 0.011 0.012 0.007 0.009 0.123

intro3 0.011 0.013 0.015 0.011 0.012 0.011 0.013 0.009 0.010 0.009 0.011 0.010 0.008 0.012 0.007 0.110

l-zipmap 0.009 0.012 0.015 0.016 0.012 0.018 0.021 0.019 0.026 0.026 0.026 0.023 0.031 0.031 0.033 c

l-zipunzip 0.013 0.011 0.008 0.009 0.016 0.017 0.019 0.022 0.014 0.025 0.030 0.037 0.048 0.049 0.062 c

max 0.012 0.009 0.011 0.008 0.011 0.009 0.013 0.011 0.011 0.013 0.013 0.011 0.011 0.013 0.013 0.172

mc91-e 0.010 0.013 0.010 0.012 0.017 0.052 0.177 0.330 0.895 3.513 12.128 71.434 - - - 5.119

mc91 0.012 0.011 0.013 0.018 0.021 0.054 0.179 0.348 0.890 3.565 12.137 73.717 - - - 0.173

mult-e-m2 0.009 0.012 0.012 0.011 0.012 0.012 0.013 0.019 0.018 0.015 0.019 0.021 0.022 0.024 0.021 0.426

mult-e-m3 0.012 0.014 0.014 0.012 0.012 0.016 0.018 0.014 0.018 0.018 0.014 0.012 0.018 0.018 0.017 0.152

mult-e 0.015 0.012 0.015 0.018 0.012 0.016 0.018 0.016 0.018 0.017 0.021 0.021 0.017 0.017 0.016 c

mult 0.013 0.015 0.016 0.016 0.016 0.016 0.015 0.017 0.016 0.014 0.014 0.016 0.012 0.014 0.011 0.153

repeat-e 0.011 0.013 0.013 0.014 0.012 0.013 0.013 0.011 0.013 0.011 0.016 0.012 0.014 0.014 0.012 0.189

r-lock-e 0.009 0.009 0.013 0.009 0.013 0.011 0.013 0.012 0.013 0.013 0.009 0.010 0.007 0.011 0.011 0.216

r-lock 0.007 0.012 0.009 0.009 0.010 0.013 0.013 0.010 0.011 0.010 0.010 0.011 0.012 0.012 0.006 0.135

sum-e 0.008 0.013 0.009 0.013 0.012 0.014 0.015 0.013 0.017 0.015 0.010 0.014 0.015 0.016 0.013 0.145

sum-mult-e 0.007 0.011 0.013 0.016 0.019 0.022 0.050 0.146 0.218 0.207 0.237 0.286 0.323 0.328 0.301 0.238

sum 0.011 0.010 0.013 0.013 0.013 0.014 0.012 0.012 0.011 0.013 0.013 0.016 0.016 0.015 0.017 0.330

ref-1 0.007 0.009 0.014 0.013 0.011 0.007 0.007 0.011 0.012 0.013 0.010 0.011 0.012 0.011 0.011 u

ref-1-e 0.023 0.007 0.019 0.016 0.020 0.020 0.008 0.010 0.013 0.014 0.013 0.014 0.014 0.012 0.009 u

ref-2 0.011 0.007 0.011 0.013 0.009 0.010 0.008 0.011 0.012 0.011 0.010 0.010 0.012 0.009 0.010 u

ref-2-e 0.011 0.008 0.009 0.011 0.009 0.012 0.013 0.013 0.013 0.010 0.008 0.011 0.013 0.011 0.011 u

ref-3 0.012 0.013 0.015 0.019 0.016 0.015 0.018 0.022 0.028 0.047 0.099 0.209 0.211 0.211 0.211 u

A Bounded Model Checking Technique for Higher-Order Programs 29

Appendix C Time Taken (s) for BMC-2 and MoCHi

	A Bounded Model Checking Technique for Higher-Order Programs

