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Abstract 1 

Music ranks among the greatest human pleasures. It consistently engages the reward system, and 2 

converging evidence implies it exploits predictions to do so. Both prediction confirmations and errors 3 

are essential for understanding one’s environment, and music offers many of each as it manipulates 4 

interacting patterns across multiple timescales. Learning models suggest that a balance of these 5 

outcomes, i.e., intermediate complexity, optimizes the reduction of uncertainty to rewarding and 6 

pleasurable effect. Yet evidence of a similar pattern in music is mixed, hampered by arbitrary measures 7 

of complexity. In the present studies, we applied a well-validated information-theoretic model of 8 

auditory expectation to systematically measure two key aspects of musical complexity: predictability 9 

(operationalized as information content, IC), and uncertainty (entropy). In Study 1, we evaluated how 10 

these properties affect musical preferences in 43 male and female participants; in Study 2, we 11 

replicated Study 1 in an independent sample of 27 people and assessed the contribution of veridical 12 

predictability by presenting the same stimuli seven times. Both studies revealed significant quadratic 13 

effects of IC and entropy on liking that outperformed linear effects, indicating reliable preferences for 14 

music of intermediate complexity. An interaction between IC and entropy further suggested 15 

preferences for more predictability during more uncertain contexts, which would facilitate uncertainty 16 

reduction. Repeating stimuli decreased liking ratings but did not disrupt the preference for intermediate 17 

complexity. Together, these findings support long-hypothesized optimal zones of predictability and 18 

uncertainty in musical pleasure with formal modeling, relating the pleasure of music listening to the 19 

intrinsic reward of learning.  20 
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Significance Statement  21 

Abstract pleasures like music claim much of our time, energy, and money despite lacking any clear 22 

adaptive benefits like food or shelter. Yet as music manipulates patterns of melody, rhythm, and more, 23 

it proficiently exploits our expectations. Given the importance of anticipating and adapting to our ever-24 

changing environments, making and evaluating uncertain predictions can have strong emotional 25 

effects. Accordingly, we present evidence that listeners consistently prefer music of intermediate 26 

predictive complexity, and that preferences shift towards expected musical outcomes in more uncertain 27 

contexts. These results are consistent with theories that emphasize the intrinsic reward of learning, both 28 

by updating inaccurate predictions and validating accurate ones, which is optimal in environments that 29 

present manageable predictive challenges, i.e. reducible uncertainty.  30 
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Introduction 31 

 Though rewards like food or socializing provide clear adaptive benefits, abstract pleasures with 32 

aesthetic value like music have long stumped scholars (Darwin, 1871). Music is particularly adept at 33 

establishing and manipulating patterns of melody, rhythm, and other features, and is often most 34 

pleasurable after sudden and dramatical changes (Sloboda, 1991; Grewe et al., 2007). Activity in the 35 

nucleus accumbens, a central node of the brain’s reward system, reflects how much a listener enjoys a 36 

musical stimulus overall (Salimpoor et al., 2011, 2013) and increases after pleasurable musical 37 

surprises (Shany et al., 2019), suggesting that much of music’s power stems from the predictions it 38 

engenders and exploits (Meyer, 1956; Huron, 2006). 39 

 Yet surprises are often unpleasant. A study based on a naturalistic concert found that listeners 40 

responded negatively to the most surprising musical phrases, most of which occurred during a complex 41 

and stylistically unfamiliar piece (Egermann et al., 2013). Listeners also tend to dislike surprises during 42 

short, experimenter-controlled stimuli, where context is lacking (Koelsch et al., 2008; Brattico et al., 43 

2010), but seem most likely to enjoy them in naturalistic and familiar music (Sloboda, 1991; Grewe et 44 

al., 2007). These findings imply that musical events are pleasurable when the surrounding musical 45 

context allows for relatively certain predictions – which may be related to evidence of caudate 46 

dopamine transmission preceding moments of peak musical pleasure (Salimpoor et al., 2011). 47 

 Surprises are generally important feedback signals that guide belief updates and adaptive 48 

behavior in ever-changing environments (den Ouden et al., 2010; Friston, 2010). Inevitably, 49 

completely predictable events preclude learning because they offer no new information, but 50 

unforeseeable, seemingly random surprises are equally unhelpful because they’re indecipherable. An 51 

intermediate degree of predictability – i.e., a manageable challenge – therefore enhances learning, 52 

piquing curiosity and attention in the process (Kang et al., 2009; Abuhamdeh and Csikszentmihalyi, 53 

2012a, 2012b; Gottlieb et al., 2013; Kidd et al., 2014; Baranes et al., 2015; Daddaoua et al., 2016; 54 

Oudeyer et al., 2016; Brydevall et al., 2018). Learning engages the dopaminergic reward system like 55 
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other adaptive benefits, often making manageable challenges highly motivational and pleasurable 56 

(Bromberg-Martin and Hikosaka, 2009; Kang et al., 2009; Abuhamdeh and Csikszentmihalyi, 2012b, 57 

2012a; Jepma et al., 2012; Ripollés et al., 2014; Brydevall et al., 2018). Could the manageable 58 

challenge of foreseeable musical surprises help explain musical pleasure? 59 

Berlyne described the appeal of manageable challenges with an inverted U-shaped “Wundt” 60 

effect, named for the scholar who first linked pleasure to intermediate levels of arousal (Wundt, 1874; 61 

Berlyne, 1974). Across aesthetic domains, Berlyne proposed that intermediate complexity – concerning 62 

features like predictability, surprise, or uncertainty – optimizes curiosity and liking. Yet evidence for 63 

musical Wundt effects is mixed: a review of 57 studies found them in only fifteen (Chmiel and 64 

Schubert, 2017), while many others suggested greater preferences for prototypical or familiar music 65 

that was subjectively simpler (see Zajonc, 1968; Hargreaves et al., 2005). Although these fifteen 66 

studies provide some support for Wundt effects, the evidence is weak because of their different and 67 

arbitrary measures of complexity; a critical test of this effect requires both well-defined independent 68 

variables and heterogeneous sampling of them to identify potential curvilinear effects. 69 

We designed the present two studies to address these problems. First, we formally measure the 70 

unpredictability and uncertainty of unaltered real-world music to encapsulate these aspects of musical 71 

complexity and relate them to pleasure. Using information-theoretic modeling (Pearce, 2005), we 72 

express unpredictability as the negative log probability (or information content) of a musical event 73 

given the preceding context and the prior long-term exposure of the model, and the uncertainty of the 74 

prediction as the entropy of the corresponding probability distribution. Second, we ensure quantifiably 75 

wide ranges of these variables to test the Wundt effect rigorously. In Study 1, we investigate how 76 

musical unpredictability and uncertainty affect liking and the musical features that contribute to them. 77 

In Study 2, we replicate the key findings of Study 1 and explore the additional influence of veridical 78 

familiarity. 79 

 80 
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Study 1 81 

 82 

Materials & Method 83 

 84 

Participants and procedure 85 

 Forty-four healthy volunteers with normal hearing (25 females, mean age ± standard deviation 86 

= 21.56 ± 3.31 years) participated in this experiment. Since our model of the information-theoretic 87 

properties of the stimuli is based on Western tonal folk and classical music, we excluded three 88 

additional volunteers who listed atonal or jazz music – which frequently deviate from the structures of 89 

folk and classical music – among their five favorite genres in an open-ended screening questionnaire 90 

during recruitment. 91 

To learn more about the participants’ individual backgrounds and differences, we asked them to 92 

complete three questionnaires after providing informed consent. The Goldsmiths Musical 93 

Sophistication Index (Gold-MSI) measured their abilities to engage with music, with questions about 94 

their musical recognition, discernment, education, and more (Müllensiefen et al., 2014). It has five 95 

subscales, distinguishing active engagement, perceptual abilities, musical training, emotions, and 96 

singing abilities. The Barcelona Music Reward Questionnaire (BMRQ) scored the degree to which the 97 

participants associate music with reward, focusing on music seeking, emotion evocation, mood 98 

regulation, sensory-motor, and social reward (Mas-Herrero et al., 2013). Finally, the Big Five 99 

Inventory assessed their personality traits for extraversion, neuroticism, openness, agreeableness, and 100 

conscientiousness (Caprara et al., 1993), though these results are not reported here. 101 

After the questionnaires, participants listened to each stimulus over professional monitor 102 

headphones (Audio-Technica Corp., Tokyo, Japan), pre-set to a comfortable volume, via a computer 103 

running Presentation® software (Neurobehavioral Systems, Inc., Berkeley, CA, USA) while a fixation 104 

cross appeared on the screen. Afterwards they rated how much they liked it on a Likert scale from 1 105 
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(very little) to 7 (very much), and indicated whether they recognized the stimulus (not necessarily by 106 

name, but by the music) so that we could exclude these trials from our analyses to avoid confounding 107 

music-syntactic predictability with effects of familiarity. Since one participant rated every single trial 108 

as familiar, we excluded this participant from all analyses. Another participant withdrew from the study 109 

approximately halfway through, for reasons unexplained, but the existing data were maintained. The 110 

resulting sample of 43 volunteers recognized the music in 431 (18.44%) of 2,337 trials, with a mean ± 111 

standard deviation of 10.02 ± 7.81 per participant; these familiar trials were therefore excluded, leaving 112 

1,906 trials for analysis. Pairwise correlations showed that stimuli with lower mean duration-weighted 113 

information content (see below) were more likely to be rated as familiar [Pearson’s r(53) = -0.28, p = 114 

0.04]. There was no significant relationship between exclusions and mean duration-weighted entropy 115 

[Pearson’s r(53) = -0.11, p = 0.43]. 116 

Prior to the listening task, participants experienced two practice trials using stimuli that did not 117 

occur during the experiment for familiarization and to ensure that they understood the instructions. To 118 

avoid anchoring effects, we sorted the stimuli into five clusters of mean duration-weighted information 119 

content (see below) using k-means clustering, and randomly selected one stimulus from each cluster to 120 

constitute the first five stimuli of the experiment. This procedure allowed the participants to acclimate 121 

to the range of mean duration-weighted information contents present in the experiment. After these five 122 

stimuli, the remaining 50 occurred in a random and participant-specific order. 123 

 To ensure the participants’ attention, we included an orthogonal task in which they had to press 124 

the ‘Enter’ key as soon as they heard the timbre of a stimulus change. A practice “attention trial” 125 

warned the participants about this task and allowed them to practice; afterwards, they occurred pseudo-126 

randomly every 6 ± 2 trials during the experiment. The participants responded to every timbre change 127 

within the two seconds allotted, with a mean ± standard deviation reaction time of 0.82 ± 0.23 seconds, 128 

indicating that they were attentive throughout the task. Moreover, linear regression models indicated 129 

that these reaction times did not significantly vary with musical sophistication [F(1,41) = 1.01, p = 130 
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0.32], musical reward sensitivity scores [F(1,41) = 0.25, p = 0.62], or any of their subscales (all other 131 

ps > 0.40), suggesting that these factors did not affect task attention. 132 

 133 

Stimuli 134 

 All 55 stimuli, plus the two for the rating practice trials and the nine for the “attention trials,” 135 

were excerpts of real, pre-composed music collected from public Musical Instrument Digital Interface 136 

(MIDI) databases. Most stimuli came from the following websites: 137 

www4.osk.3web.ne.jp/~kasumitu/eng.htm, www.classicalarchives.com/midi.html, and 138 

www.baldwinsmusic.com. We opted for real music instead of custom-built stimuli to more faithfully 139 

represent naturalistic listening experiences and the greater range of subjective responses it engenders.  140 

 To this same end, the stimuli contained examples of several musical genres from a wide range 141 

of time periods, composers, tonalities, and meters (Table 1). We used only monophonic stimuli (i.e., 142 

containing only one tone at a time) to avoid the confounding effects of harmony (i.e., chordal 143 

relationships) and polyphony (i.e., multiple voices), and we reduced other confounds by normalizing 144 

their peak amplitudes to the same level with Audacity® (© 1999-2018 Audacity Team), limiting the 145 

stimuli to 30 ± 2 seconds, and synthesizing the MIDI stimuli into Waveform Audio File (WAV) 146 

format. We also standardized the tempo of each stimulus to either 96, 120, or 144 bpm – whichever 147 

sounded most musically appropriate – with MuseScore (© 2018 MuseScore BVPA). These 148 

considerations constrained our stimuli to excerpts that were either solo pieces or solo melodic lines 149 

from polyphonic pieces. 150 

 We converted these well-controlled stimuli into naturalistic-sounding WAV files with the 151 

Kontakt 5 synthesizer (© 2018 Native Instruments GmbH) within the Ableton Live 9 digital audio 152 

workstation (© 2018 Ableton). We generated each excerpt with a flute digital synthesizer (except for 153 

the “attention trials” stimuli, which switched from flute to piano timbre during the excerpt), digitally 154 

filtered them to resemble the acoustics of a music studio, and randomly shifted the note onsets on the 155 
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order of milliseconds using Ableton’s Groove Pool with 25% randomization for “humanization” – i.e., 156 

to prevent the stimuli from sounding mechanistic and unnatural.  157 

 158 

Information-theoretic modeling 159 

 We used the Information Dynamics of Music model (IDyOM, Pearce, 2005, 2018) to 160 

characterize both the unpredictability and uncertainty of our stimuli. Across many different 161 

experimental paradigms and musical samples, IDyOM has proven to provide reliable computational 162 

measures of pitch unpredictability/surprise (as represented by information content) and uncertainty (as 163 

represented by entropy) in Western listeners (Pearce, 2005; Pearce and Wiggins, 2006; Pearce et al., 164 

2010; Omigie et al., 2012; Egermann et al., 2013; Hansen and Pearce, 2014; Sauvé et al., 2018), 165 

significantly outperforming similar models and explaining up to 83% of the variance in listeners’ pitch 166 

expectations (Pearce, 2005, 2018; Pearce et al., 2010; Hansen and Pearce, 2014). IDyOM has also 167 

successfully predicted several electrophysiological measures of expectancy violation (Carrus et al., 168 

2013; Omigie et al., 2013), and even psychophysiological and subjective emotional responses 169 

(Egermann et al., 2013; Sauvé et al., 2018). 170 

 Before modeling our stimuli, we trained IDyOM on a large corpus of Western tonal music, 171 

including 152 Canadian folk songs (Creighton, 1966), 566 German folk songs from the Essen folk song 172 

collection (Schaffrath, 1992), and 185 chorale melodies harmonized by Bach (Riemenschneider, 1941) 173 

as in other applications of IDyOM (e.g., Pearce, 2005; Pearce and Wiggins, 2006; Egermann et al., 174 

2013; Hansen and Pearce, 2014). This training set allowed IDyOM to learn the statistical structure of 175 

Western tonal music via variable-order Markov modeling (Pearce, 2005), emulating the implicit 176 

statistical learning that human listeners are also thought to undertake during long-term enculturation in 177 

a musical style (reviewed in Pearce, 2018). The trained model therefore represents the musical syntax 178 

that listeners learn over years of exposure to Western music (see Figure 1). 179 
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 Since listeners further learn and update their expectations on-line while listening to individual 180 

pieces of music (Castellano et al., 1984; Kessler et al., 1984; Oram and Cuddy, 1995; Loui et al., 181 

2010), IDyOM also dynamically learns the statistical structure of each stimulus in its test set (reviewed 182 

in Pearce, 2018). The models we used here were configured to integrate these respective “long-term” 183 

and “short-term” probabilities, weighting each according to its entropy such that the higher-entropy 184 

model (i.e., that with a flatter probability distribution, reflecting greater predictive uncertainty) is 185 

discounted relative to the lower-entropy model. Our models therefore measured the information content 186 

of each note (as its negative log probability to the base 2) given prior learning of the structure of the 187 

training corpus and the preceding musical context within the piece at hand. Information content 188 

indicates the unpredictability of a note and therefore reflects the degree to which a stored memory of 189 

that event may be compressed by discarding redundancies; compression and redundancy reduction are 190 

thought to contribute to psychological processes such as pattern recognition and similarity perception 191 

(Chater and Vitányi, 2003). The models similarly measure the entropy of each predictive context (as 192 

the expected value of the information content across all possible continuations) based on learning of 193 

long- and short-term structure, yielding higher values when there were many equally unlikely 194 

continuations (i.e., the context is uncertain/unstable) and lower values when there were only a few very 195 

likely continuations. 196 

 Note-by-note information content and entropy can be computed using different musical features 197 

as input to IDyOM: one could model the probability of the next pitch, registral direction, time, inter-198 

onset-interval ratio, etc., and one could model these “viewpoints” independently or simultaneously. 199 

Motivated by both music theory and empirical findings that illustrate the role of representing and 200 

predicting rhythmic information (e.g., Clarke, 2005; Lumaca et al., 2019) and pitch information such as 201 

pitch intervals and scale degrees (Dowling, 1978; Pearce and Müllensiefen, 2017) in perceiving and 202 

responding to music, we selected four alternative viewpoints to use with IDyOM: inter-onset-interval 203 

ratio, chromatic pitch, chromatic pitch interval, and chromatic scale degree.  204 
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We then generated seven IDyOM configurations from these viewpoints. Three of these 205 

configurations used the sole timing viewpoint (inter-onset-interval ratio) to compute the probability of 206 

a note’s onset while one of the three pitch-based viewpoints (chromatic pitch, chromatic pitch interval, 207 

or chromatic scale degree) computed the pitch probability before combining these as the joint 208 

probability of the note. Three other configurations computed note probabilities in the same way, but 209 

predicted both onset time and pitch using a single viewpoint that linked the respective timing and pitch 210 

viewpoints. In the seventh implementation, we combined the timing viewpoint with the linked 211 

chromatic pitch interval and chromatic scale degree viewpoints, based on the known role of pitch 212 

intervals and scale degrees, and their relationship, in music perception (Dowling, 1978; Krumhansl, 213 

1990; Pearce and Müllensiefen, 2017). We also considered versions of these models that weighted the 214 

information content of each note by its duration as an indicator of salience, as in Krumhansl (1990). 215 

We selected between these models by comparing the information content output of each to the 216 

unexpectedness ratings of an independent sample of 24 participants (17 females and 7 males, mean age 217 

± standard deviation = 22.08 ± 2.70 years, mean musical experience ± standard deviation = 2.89 ± 4.52 218 

years) who did not participate in the present studies. These listeners were all neurologically healthy and 219 

with normal hearing, and they rated 52 of the 57 possible stimuli (see Table 1) in real time, a few 220 

minutes after providing informed consent and hearing them once each (unpublished data). Comparisons 221 

used linear mixed-effects models with random slopes and intercepts for each subject to separately fit 222 

the fixed effects of either mean (averaged across each stimulus) information content or mean duration-223 

weighted information content (mDW-IC). We also examined the effects of mean entropy as a control 224 

condition, to ensure that the chosen model would be able to distinguish between mean information 225 

content – i.e., the unpredictability or unexpectedness of a melody (see above) – and the related but 226 

discernable phenomenon of mean entropy, which is more directly associated with the uncertainty or 227 

instability of a melody than its unexpectedness (Pearce, 2005; Hansen and Pearce, 2014). 228 
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Comparisons with unexpectedness ratings revealed that the best-fitting IDyOM implementation 229 

was that based on an independent combination of inter-onset-interval ratio and chromatic pitch, and 230 

that the variable that best explained subjective unexpectedness ratings (measured by Akaike 231 

information criteria and F tests of the model’s fixed effect) was mDW-IC (R2 = 0.13, p < 0.001). See 232 

Table 2 for more details on the models tested. 233 

 To better understand the mDW-IC variable, we investigated its pitch and timing contributions 234 

with partial correlations based on the separate probability distributions for chromatic pitch and onset 235 

time that IDyOM generated before combining them for overall note IC. Using Spearman’s non-236 

parametric partial correlations to account for non-normal data, we found that mDW-IC was correlated 237 

both with mean duration-weighted chromatic-pitch IC after controlling for the effect of mean duration-238 

weighted onset IC [Spearman’s ρp(52) = 0.72, pp < 0.001] and with mean duration-weighted onset IC 239 

after controlling for the effect of mean duration-weighted chromatic-pitch IC [Spearman’s ρp(52) = 240 

0.77, pp < 0.001]. These results verify that both pitch and timing features contribute to music 241 

predictability, as detected by our measure of mDW-IC. We also found that mDW-IC positively 242 

correlated with mean duration-weighted entropy (mDW-Ent) [Pearson’s r(53) = 0.44, p < 0.001, Figure 243 

2], even though the model selection procedure had shown that mean entropy was not significantly 244 

associated with subjective unexpectedness ratings (p = 0.11, Table 2). 245 

 246 

Experimental Design and Statistical Analysis 247 

 The 43 participants analyzed (24 females and 19 males) listened to the stimuli and rated their 248 

familiarity and liking after each one, as described above. Several prior studies of musical preferences 249 

have averaged results across participants, even though musical preferences are highly subjective and 250 

variable (reviewed in Brattico & Jacobsen, 2009). Rather than blending together the ratings of different 251 

listeners and potentially blurring over meaningful effects in the process, we opted for linear mixed-252 

effects models, enhancing our power to detect group-level results by accounting for the random effect 253 
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of subject (Diggle et al., 2002; Zuur et al., 2009). Excluding stimuli rated as familiar (see above), we 254 

leveraged the remaining trials for linear mixed-effects models with the fitlme function in Matlab. 255 

Following the procedure recommended in Diggle et al. (2002) and Zuur et al. (2009), we first 256 

optimized the random-effects structure of a “beyond-optimal” model (including all relevant fixed 257 

effects and interactions) according to the Akaike information criterion via restricted maximum 258 

likelihood estimation, then optimized the fixed-effects structure via likelihood ratio tests of nested 259 

models and Akaike information content of other models using maximum likelihood estimation, and 260 

finally evaluated the model with restricted maximum likelihood estimation. Separate mixed-effects 261 

models evaluated the main effects of mDW-IC and mDW-Ent, using z-scored values of these variables 262 

to allow for comparisons between their linear and quadratic effects. 263 

 MDW-IC and mDW-Ent represent distinct, albeit related, aspects of complexity, with mDW-IC 264 

reflecting the surprise of a piece and mDW-Ent its uncertainty or instability (see above). We therefore 265 

explored how musical surprise might interact with the uncertainty/instability of its context to affect 266 

liking ratings. To avoid the collinearity of these related variables and to simplify the complex 267 

interactions of potentially linear and quadratic effects, we classified each stimulus according to its 268 

mDW-Ent and mDW-IC using Matlab’s k-means clustering algorithm to obtain data-driven and well-269 

balanced groups. Starting with six points roughly corresponding to stimuli of low or high mDW-Ent 270 

and low, medium, or high mDW-IC (see below), this algorithm identified six stimulus clusters through 271 

Euclidean distance minimization without using any information about the participants’ liking ratings.. 272 

The category with low mDW-IC and low mDW-Ent contained six stimuli, while there were seventeen 273 

stimuli with low mDW-IC and high mDW-Ent, thirteen with medium mDW-IC and low mDW-Ent, 274 

eight with medium mDW-IC and high mDW-Ent, seven with high mDW-IC and low mDW-Ent, and 275 

four with high mDW-IC and high mDW-Ent (Figure 3C). Although these groups are not perfectly 276 

balanced, they represent an unbiased and robust classification of our stimuli that allows for a 277 

rmANOVA. We then conducted a repeated-measures analysis of variance (rmANOVA) on the average 278 
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liking ratings in each of these categories, testing for main effects of mDW-IC and mDW-Ent as well as 279 

their interaction. We additionally planned to investigate the nature of any interactions with post-hoc 280 

Tukey-Kramer Honest Significant Difference tests. 281 

Finally, we tested whether the hypothesized Wundt effect between mDW-IC and liking would 282 

vary according to individual differences in music reward sensitivity and music sophistication. In this 283 

case, accounting for subject as a random effect would obscure the subjective effects of interest, and so 284 

we used simple linear regression models rather than mixed effects. To evaluate the shape of each 285 

individual’s Wundt effect, we collapsed the curve between mDW-IC and liking into a distribution by 286 

weighting the mDW-IC of each stimulus by the participant’s rating. This procedure represented greater 287 

preferences for stimuli with mDW-IC values as more positively skewed distributions (i.e., with more 288 

mass on the lower mDW-IC end and flatter tails on the positive end), and greater preferences for 289 

stimuli of higher mDW-ICs as more negatively skewed distributions. Likewise, sharper preferences 290 

produced distributions with greater kurtosis, and flatter preferences yielded distributions with less 291 

kurtosis. Excluding stimuli the participants rated as familiar, we compared these Wundt-effect 292 

parameters to total scores on the Barcelona Music Reward Questionnaire (Mas-Herrero et al., 2013) 293 

and the Goldsmiths Musical Sophistication Index (Müllensiefen et al., 2014). In the case of a 294 

significant relationship, we explored the effects of the relevant questionnaire’s subscales with stepwise 295 

linear regression using Matlab’s stepwiselm function to identify those that best explained the variance 296 

in the Wundt effect’s parameters. 297 

 298 

Results 299 

 There was a significant Wundt effect between liking ratings and mDW-IC (Figure 3A), 300 

indicated by the optimal model of mDW-IC which contained significant negative linear (β = -0.21, p < 301 

0.001) and quadratic effects (β = -0.09, p < 0.001). The overall model had significant random intercepts 302 

and mDW-IC slopes across subjects (intercept 95% CI = 0.54 – 0.86, slope 95% CI = 0.11 – 0.29), and 303 
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it explained 26.3% of the variance in liking ratings (p < 0.001). Comparable models with only the 304 

linear or quadratic term explained 25.3% and 26.0% of the variance, respectively, and the optimal 305 

model (which combined these terms) fit the data significantly better than each of these alternatives 306 

[linear-only model likelihood ratio test χ2(1, N = 43) = 22.23, p < 0.001; quadratic-only model 307 

likelihood ratio test χ2(1, N = 43) = 17.20, p < 0.001]. 308 

 There was also a significant Wundt effect between liking ratings and mDW-Ent (Figure 3B), 309 

and the optimal mDW-Ent model also contained significant negative linear (β = -0.09, p = 0.009) and 310 

quadratic effects (β = -0.06, p = 0.003). The overall model had significant subject-varying random 311 

intercepts (95% CI = 0.54 – 0.86), and it explained 19.1% of the variance in liking ratings (p = 0.03). 312 

This model fit the data significantly better than alternative models that were identical except for their 313 

exclusion of either the linear or quadratic mDW-Ent term, which explained 19.1% and 19.0% of the 314 

variance, respectively [linear-only model likelihood ratio test χ2(1, N = 43) = 8.31, p = 0.004; 315 

quadratic-only model likelihood ratio test χ2(1, N = 43) = 6.21, p = 0.01]. 316 

We used k-means clustering to categorize the stimuli (Figure 3C). The rmANOVA model 317 

reaffirmed the main effect of mDW-IC [F(1.70,69.63) = 34.45, partial η2 = 0.51, p < 0.001, using 318 

Greenhouse-Geisser correction since Mauchly’s test of sphericity was violated], but not that of mDW-319 

Ent [F(1,41) = 2.84, p = 0.10]. This analysis also suggested an interaction between the two 320 

[F(1.71,70.21) = 3.17, partial η2 = 0.07, p = 0.06, Figure 3D]. Planned comparisons of this interaction 321 

resembled the Wundt effect of mDW-IC when mDW-Ent was low (high mDW-IC < low mDW-IC: p < 322 

0.001, high mDW-IC < medium mDW-IC: p < 0.001, low mDW-IC vs. medium mDW-IC: p = 0.35), 323 

but not when mDW-Ent was high, when liking ratings for low mDW-IC were significantly greater than 324 

those for medium mDW-IC (p = 0.01, high mDW-IC < low mDW-IC: p < 0.001, high mDW-IC < 325 

medium DW-IC: p < 0.001). Likewise, there was a significant preference for stimuli with high mDW-326 

Ent over low mDW-Ent when mDW-IC was low (p = 0.001), but not when mDW-IC was medium (p = 327 
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0.60) or high (p = 0.85). This analysis therefore implies that predictability is more desirable in more 328 

uncertain contexts. 329 

 Despite the strong group-level Wundt effects, linear models fit to individual participants 330 

exhibited considerable inter-subject variability. These models’ R2 values ranged from 0.005 to 0.42, 331 

with a mean of 0.12 and a standard deviation of 0.09, and had negative quadratic coefficients for 31 of 332 

the 43 participants. We also observed substantial differences in the participants’ music sophistication 333 

(Gold-MSI mean ± standard deviation = 71.65 ± 21.68) and musical reward sensitivity (BMRQ mean ± 334 

standard deviation = 80.79 ± 8.97). While this sample was consistent with other reports of musical 335 

reward sensitivity scores (Mas-Herrero et al., 2013), and individuals within the sample scored from the 336 

2nd to 91st percentile of normative musical sophistication scores (Müllensiefen et al., 2014), the average 337 

musical sophistication score was at approximately the 30th percentile of the norm. 338 

Nonetheless, measuring the kurtosis and skewness of each participant’s Wundt effect (Figure 339 

4A) revealed a significant positive regression between musical sophistication and the Wundt effect’s 340 

kurtosis (Figure 4B), such that relatively more sophisticated participants had sharper distributions, i.e. 341 

more focused preferences [F(1,41) = 7.43, p = 0.009, β = 0.02, R2 = 0.15]. A follow-up stepwise 342 

regression on the five Gold-MSI subscales selected only “Perceptual Abilities” [F(1,41) = 6.50, p = 343 

0.01, β = 0.04, R2 = 0.14], indicating that music-listening skills drove the overall effect. This subscale 344 

includes questions about the respondent’s ability to recognize different versions of the same song, 345 

detect out-of-tune or out-of-time events, and so on, thus reflecting fine-grained musical perceptual 346 

skills that may emerge from musical training and listening but also from incidental exposure, genetics, 347 

etc. (Müllensiefen et al., 2014). Kurtosis and skewness were strongly correlated [r(41) = 0.94, p < 348 

0.001], and musical sophistication also positively correlated with the Wundt effect skewness (Figure 349 

4C), as relatively more sophisticated listeners exhibited more positively skewed ratings, i.e. greater 350 

preferences for stimuli of lower mDW-IC [F(1,41) = 4.76, p = 0.03, β = 0.003, R2 = 0.10]. Once again, 351 

a follow-up stepwise regression selected only the “Perceptual Abilities” subscale [F(1,41) = 5.89, p = 352 
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0.02, β = 0.009, R2 = 0.13]. Parsing the independent contributions of kurtosis and skewness with partial 353 

correlations, we found a stronger effect of kurtosis after controlling for skewness [ρp(40) = 0.27, pp = 354 

0.08] than vice-versa [ρp(40) = -0.14, pp = 0.38], though neither partial correlation was significant. 355 

The total BMRQ score was not significantly related to the kurtosis of the Wundt effect [F(1,41) 356 

= 0.25, p = 0.62] or its skewness [F(1,41) = 0.05, p = 0.83], and a t test did not differentiate between 357 

the participants with and without significant Wundt effects on this scale [t(41) = 0.15, p = 0.88]. 358 

Together, these findings illustrate that systematically measuring predictability and uncertainty yields 359 

reliable Wundt effects for both variables, as well as individual differences that might arise from the 360 

listeners’ musical sophistication. In Study 2, we tested the reliability of these results in another sample 361 

with a subset of the stimuli, and examined how the listener’s immediate experience with a musical 362 

excerpt – i.e., hearing it multiple times in one sitting – might affect these patterns. 363 

 364 

Study 2 365 

 366 

Materials & Method 367 

 368 

Participants and procedure 369 

 This experiment had 27 healthy participants (14 females, mean age ± standard deviation = 370 

23.96 ± 5.72 years) with normal hearing, none of whom participated in Study 1. They had 8.07 ± 6.40 371 

years of musical training, and 12 of them were still active musicians. After providing informed consent, 372 

they listened to each stimulus over speakers set to a comfortable volume via a computer running 373 

Presentation® software (Neurobehavioral Systems, Inc., Berkeley, CA) while a fixation cross appeared 374 

on the screen. The procedure was very similar to Study 1’s, but with a few key differences: in Study 2, 375 

we used only a subset of the stimuli from Study 1 (see below and Table 1). Participants rated 376 

continuously how much they liked each stimulus as they listened, using keyboard buttons 1 to 4, and 377 
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were instructed to have one of these buttons down whenever a stimulus was playing. Participants also 378 

rated how much they liked the stimulus, the overall arousal they felt from it, and their familiarity with 379 

it after it ended, again from 1 to 4; the results of these post-stimulus ratings are not reported here. The 380 

familiarity ratings were simply to ensure that participants were aware of hearing the same stimuli 381 

repeated – no trials were excluded for familiarity in this experiment as the stimuli were presented 382 

multiple times each. Each participant was assigned a random stimulus order, and the stimuli were 383 

presented in this order seven times in a row. There were no breaks between repetition blocks other than 384 

the few seconds that separated each trial. Instead of beginning with stimuli across five clusters of the 385 

stimulus subset, we avoided anchoring effects in Study 2 by selecting the two practice stimuli to have 386 

moderately low and high mDW-IC (see Table 1). Study 2 had no “attention trials” task since providing 387 

real-time ratings was already an engaging and active task, and although we do not report the data here, 388 

we also recorded psychophysiological responses (skin conductance, heart rate, pulse amplitude, 389 

breathing rate, and respiratory amplitude). Finally, based on research suggesting that musical playing 390 

and listening experience especially affect music processing (Gold et al., 2013; Hansen and Pearce, 391 

2014; Pearce, 2014), we streamlined Study 2’s questionnaires to focus on the participants’ years (if 392 

any) of playing music and approximate weekly  hours of music listening, instead of asking about 393 

musical sophistication, music reward sensitivity, or personality.  394 

 395 

Stimuli 396 

 The stimuli for this experiment were a subset of those used in Study 1 (see Table 1). We chose 397 

these 12 stimuli to represent the full range of mDW-IC, yet with fewer stimuli so that we could repeat 398 

them several times without dramatically lengthening the task. We processed and modeled the 399 

information-theoretic properties of these stimuli exactly as in Study 1. The only difference was that 400 

three of the stimuli were presented in the original clarinet timbre rather than flute (see Table 1). 401 

Wilcoxon rank-sum tests of participants’ responses, standardized to the rating scales of the two studies 402 
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(see above), verified that this timbre difference had no significant effect on overall liking ratings 403 

(Seven Variations on a Theme from Silvana median = 0.50 in Study 1 and 0.47 in Study 2, Z = 734.50, 404 

p = 0.19; Drei Fantasiestücke median = 0.33 in Study 1 and 0.48 in Study 2, Z = 995.00, p = 0.43; Solo 405 

de Concours not analyzed because it was a practice stimulus in Study 1, yielding unreliable ratings).  406 

 407 

Experimental Design and Statistical Analysis 408 

 The 27 participants of this study (14 females and 13 males) listened to the stimuli and rated 409 

them as described above. As in Study 1, we used linear mixed-effects models to detect generalizable 410 

effects while accounting for the subjectivity of the participants. We built mixed-effects models using 411 

the same method as in Study 1. Four separate mixed-effects models evaluated how liking ratings 412 

changed according to the main effect of mDW-IC, the main effect of mDW-Ent, the main effect of 413 

repetition, and the interaction between mDW-IC and repetition. We did not assess interactions between 414 

mDW-IC and mDW-Ent in this study due to the limited stimulus set. To allow for comparisons 415 

between linear and quadratic effects of mDW-IC, mDW-Ent, and repetition, we standardized these 416 

variables as z scores before conducting any analyses. 417 

 418 

Results 419 

 The best-fitting model of liking and mDW-IC (p < 0.001) explained 41.6% of the variance with 420 

a negative quadratic mDW-IC term (β = -0.18, p < 0.001) illustrating a Wundt effect (Figure 5A). This 421 

model had no fixed linear term for mDW-IC, but significant random intercepts for each subject (95% 422 

CI = 0.31 – 0.58) as well as random slopes for each subject’s effects of mDW-IC (95% CI = 0.15 – 423 

0.29), mDW-IC2 (95% CI = 0.10 – 0.19) and Repetition (95% CI = 0.05 – 0.09). Comparing AICs 424 

showed that this model described the data more parsimoniously than a model with only a linear mDW-425 

IC term (AIC with mDW-IC2 = 4657.9, AIC with mDW-IC = 4681.4), but a likelihood ratio test was 426 
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not possible because the models were not nested. Similarly, adding a linear mDW-IC term to the best-427 

fitting model did not yield a significantly better fit [likelihood ratio test χ2(1, N = 27) = 1.08, p = 0.30]. 428 

 We observed a similar Wundt effect between liking and mDW-Ent (Figure 5B), with the 429 

optimal model of these variables explaining 34.9% of the variance with significant negative linear (β = 430 

-0.31, p < 0.001) and quadratic effects (β = -0.25, p < 0.001). Like the mDW-IC model above, this 431 

model allowed for randomly varying intercepts (95% CI = 0.30 – 0.58) and slopes of mDW-Ent (95% 432 

CI = 0.26 – 0.49), mDW-Ent2 (95% CI = 0.82 – 0.97), and Repetition (95% CI = 0.05 – 0.09) for each 433 

subject (p < 0.001). Compared to alternative models with only the linear or quadratic mDW-Ent term, 434 

this model fit the data significantly better [linear-only model likelihood ratio test χ2(1, N = 27) = 19.95, 435 

p < 0.001; quadratic-only model likelihood ratio test χ2(1, N = 27) = 13.91, p < 0.001]. 436 

 The best-fitting model of liking and Repetition (R2 = 0.81, p < 0.001) also had a negative 437 

quadratic effect (β = -0.003, p < 0.001), with liking ratings decreasing from the first to seventh 438 

presentation of the stimuli. This model allowed for randomly varying intercepts for each stimulus (95% 439 

CI = 0.22 – 0.56) as well as randomly varying intercepts (95% CI = 0.56 – 0.69) and Repetition slopes 440 

(95% CI = 0.08 – 0.11) for each combination of stimulus and subject. 441 

 The Wundt effect of mDW-IC on liking ratings did not significantly change across repetitions, 442 

as the optimal model of liking that included an interaction of mDW-IC and repetition effects showed 443 

no significant interaction (p = 0.38; Figure 5C). Although this overall model was significant (R2 = 0.42, 444 

p < 0.001), it was not significantly better than a model that was identical except that it excluded the 445 

fixed effects of Repetition [likelihood ratio test χ2(1, N = 27) = 3.42, p = 0.18]. 446 

 As in Study 1, the strong group-level Wundt effect comprised significant inter-individual 447 

variability. Individual-participant R2 values ranged from 0.001 to 0.54, with a mean of 0.24 and a 448 

standard deviation of 0.17, while 23 of 27 had negative quadratic terms. Once again, kurtosis and 449 

skewness were positively correlated [r(25) = 0.95, p < 0.001], but these parameters did not 450 
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significantly vary with participants’ musical backgrounds [years of music playing kurtosis F(1,25) = 451 

0.01, p = 0.92; hours of weekly listening kurtosis F(1,25) = 0.18, p = 0.68; years of music playing 452 

skewness F(1,25) = 0.08, p = 0.78; hours of weekly listening skewness F(1,25) = 0.22, p = 0.65]. 453 

Likewise, the participants with and without significant Wundt effects did not meaningfully differ in 454 

years of musical training [t(25) = -0.43, p = 0.67] or hours of weekly music listening [t(25) = 0.45, p = 455 

0.66], as measured with independent-samples t tests. 456 

 457 

General Discussion 458 

 The present studies represent a diligent test of the controversial Wundt effect, validating an 459 

inverted U-shaped relationship between complexity and liking. Using rigorous definitions of 460 

complexity and entropy as independent variables, based on computational modeling of real-world 461 

music, we find reliable evidence of the Wundt effects in aesthetic musical judgments . Linking 462 

aesthetic pleasure to information-theoretic measures, we also implicate models of motivation, 463 

information seeking, and learning (Abuhamdeh and Csikszentmihalyi, 2012a; Oudeyer et al., 2016) in 464 

aspects of music listening including attention (cf. Gottlieb et al., 2013; Baranes et al., 2015; Daddaoua 465 

et al., 2016), anticipation (cf. Bromberg-Martin and Hikosaka, 2009; Salimpoor et al., 2011), and 466 

pleasure (cf. Meyer, 1956; Salimpoor et al., 2011). 467 

 Our information-theoretic approach provides a systematic model of unpredictability, 468 

operationalized as mean duration-weighted information content (mDW-IC), and uncertainty, as mean 469 

duration-weighted entropy (mDW-Ent) (cf. Pearce, 2005, 2018). We chose model parameters by 470 

identifying the best-fitting correlation with a separate sample of unexpectedness ratings (Table 2), 471 

yielding a quantified measure of unpredictability that incorporates pitch and timing information. 472 

 We leveraged our systematic complexity measures and wide-ranging, natural stimuli to 473 

replicate Wundt effects across two separate samples of participants (Figures 3A, 3B, 5A, 5B). This 474 

nonlinear pattern explained between 19%-42% of liking ratings and fit significantly better than purely 475 
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linear effects. In addition to quadratic terms, three of the four regression models contained significant 476 

negative linear components: a relatively common finding, sometimes even occurring without a Wundt 477 

effect (Hargreaves et al., 2005; reviewed in Chmiel and Schubert, 2017). These results could indicate 478 

hierarchical preferences wherein listeners like medium complexity more than simple (i.e., prototypical) 479 

music (see Hargreaves et al., 2005; Chmiel and Schubert, 2017), and then highly complex music. This 480 

interpretation would be better supported, however, if we had included very simple stimuli such as 481 

isochronous repeating tones or musical scales. Like others, the present studies excluded such stimuli in 482 

favor of real-world pieces, leaving the simpler end of the complexity distribution relatively under-483 

sampled. 484 

In Study 2, repeating stimuli multiple times progressively reduced preferences across the mDW-485 

IC spectrum while leaving the Wundt effect unchanged (Figure 5C). While other studies have 486 

described pleasure increasing with familiarity (Zajonc, 1968), this “mere exposure” effect emerges 487 

when stimuli are repeated among distractors, or across several hours/days (Tan et al., 2006; Hunter and 488 

Schellenberg, 2011), thereby allowing participants to consolidate what they’ve heard and forget 489 

specific features of it– or at least experience less fatigue – and thus continue to learn (Berlyne, 1971; 490 

Chmiel and Schubert, 2017). Since Study 2 illustrated decreased liking across multiple repetitions of 491 

the same stimuli over a short time span, resembling novelty preferences (reviewed in Oudeyer et al., 492 

2016), this result likely reflects participants’ boredom rather than shifting preferences for certain 493 

degrees of predictability. Structural and veridical predictability (i.e., familiarity) therefore seem to 494 

influence liking differently (but see Chmiel and Schubert 2017 for a review of studies that show them 495 

to have similar effects). 496 

Between our two studies, individually fit Wundt-effect models explained between 0.1%-54% of 497 

the liking variance, demonstrating both the low statistical power of within-subject analyses and 498 

meaningful individual differences. Musical sophistication – particularly perceptual abilities – explained 499 

a significant portion of these differences: participants with significant Wundt effects were generally 500 
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more sophisticated than those without, and more sophisticated participants had sharper preferences for 501 

simpler stimuli (Figure 4). Yet kurtosis and skewness were strongly correlated, and partial correlations 502 

suggested that musical sophistication is more closely related to sharper preferences than to preferences 503 

for simpler stimuli. Moreover, the present sample fell in just the 32nd percentile of normative musical 504 

sophistication scores, and since more sophisticated listeners exhibit stronger associations between 505 

musical information content and unexpectedness ratings (Hansen and Pearce, 2014), a sample with 506 

more sophisticated listeners and/or a broader stimulus range including simpler ones than those used 507 

here might reveal a more nuanced effect. Nonetheless, more sophisticated listeners might in fact be 508 

more sensitive to musical predictability – perhaps due to more confident predictions and/or greater 509 

attention to music-syntactic violations – that shift their optimal level towards stimuli with lower 510 

information content (cf. Hansen and Pearce, 2014; but see Pearce, 2014 for an alternative hypothesis). 511 

Although mDW-IC and mDW-Ent were strongly correlated (Figure 2), an ANOVA with 512 

categorized stimuli showed that preferences are more complicated than merely an overall liking for 513 

intermediate complexity, as high entropy amplified preferences for predictability to exceed those of 514 

greater unpredictability (Figure 3D). This pattern implies that the Wundt effect arises primarily from 515 

the relative stability of low-entropy stimuli, while instability shifts preferences towards more-516 

predictable events that can validate listeners’ uncertain predictions. Future research should better 517 

distinguish these variables to elucidate the generalizability of this finding. 518 

Our results suggest that learning about musical structure may be intrinsically rewarding. Reducing 519 

uncertainty (i.e., reducing high mDW-Ent with low mDW-IC) and seeking information (i.e., 520 

incorporating medium mDW-IC during low mDW-Ent) are essential elements of learning, and appear 521 

to convey reward value (Bromberg-Martin et al., 2010; Oudeyer et al., 2016; Brydevall et al., 2018). 522 

People are willing to sacrifice money to reduce uncertainty about future rewards – such as how big 523 

they’ll be – even when that information has no influence on the rewards themselves (Brydevall et al., 524 

2018), and reducing uncertainty elicits dopamine transmission and reward-system activity (Bromberg-525 
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Martin and Hikosaka, 2009; Brydevall et al., 2018). Learning new information about one’s 526 

environment – like the identities of blurry images, the meanings of pseudowords, or the answers to 527 

trivia questions – similarly engages dopamine release and nucleus accumbens (NAc) activity (Kang et 528 

al., 2009; Jepma et al., 2012; Ripollés et al., 2014, 2018). Intermediate complexity, which maximizes 529 

both reducible uncertainty and learnable information, thus optimizes reward-related responses 530 

(Oudeyer et al., 2016). Within this framework, it is possible that pleasurable musical surprises and the 531 

Wundt effect derive from the same predictive and motivational processes that adapt our beliefs and 532 

actions to our environments, such as predictions that descend from the frontal cortex to the auditory 533 

cortex and brainstem and prediction errors that ascend in the reverse direction (cf. Koelsch et al., 534 

2018). Meanwhile, these pathways and subcortical structures, like the NAc, may mediate the reward of 535 

seeking and obtaining information in music as in other domains (Kang et al., 2009; Jepma et al., 2012; 536 

Ripollés et al., 2014; Brydevall et al., 2018). 537 

The intrinsic reward of learning might also explain a range of previous music-aesthetic findings. 538 

The emotional impact of musical surprises (Meyer, 1956; Sloboda, 1991; Huron, 2006; Grewe et al., 539 

2007) could derive from powerful feedback signals facilitating learning, and the distinct dopaminergic 540 

activity before and during peak pleasure moments (Salimpoor et al., 2011) from curious anticipation 541 

and evaluation. In goal-directed learning, dopamine neurons encode both uncertainty leading up to 542 

predicted outcomes and “reward prediction errors” (RPEs) afterwards, which signal how much better 543 

or worse the outcomes were than predicted (Fiorillo et al., 2003). We recently used fMRI to identify 544 

RPE-related activity during music processing in the NAc with a reinforcement-learning paradigm, 545 

using musical outcomes that were either unaltered and pleasant or distorted and unpleasant (Gold et al., 546 

2019). This discovery illustrates how music might engage the reward network by manipulating 547 

expectations; yet it is unclear how musical events can be “better” or “worse” than expected, and thus 548 

why this network might process these events during naturalistic music listening. Based on an intrinsic 549 

reward for learning, one possibility is that ostensibly value-neutral musical surprises elicit positive 550 
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RPEs when they facilitate learning, which would occur when the surrounding context affords the 551 

formation of a predictive model and the surprises contribute to this model. Conversely, surprises that 552 

detract from one’s model might be experienced as penalties, and thus negative RPEs. Sequences of 553 

intermediate predictability and uncertainty would be most conducive to this learning process (cf. 554 

Oudeyer et al., 2016), consistent with the present results and others which indicate that surprises are 555 

pleasant when the context is stable enough for them to be informative and unpleasant otherwise (e.g., 556 

Brattico et al., 2010; Egermann et al., 2013; Grewe et al., 2005, 2007; Koelsch et al., 2008; Sloboda, 557 

1991). The reward system’s response to musical information-theoretic properties has not yet been 558 

studied, but we predict that the NAc would be more engaged by intermediate complexity, based on the 559 

present data. 560 

Since music constantly manipulates interweaving structures, all but the most predictable stimuli 561 

have some degree of uncertainty (Meyer, 1956; Huron, 2006; Vuust, 2010; Zald and Zatorre, 2011; 562 

Gebauer et al., 2012). Music thus enables uncertain predictions about multiple interacting structures, 563 

the anticipation of their outcomes, and learning – especially when the music is complex but 564 

decipherable. This learning process could enhance predictions for future events, and induce 565 

dopaminergic reward-system activity for both uncertain anticipation and learning-related RPEs (cf. 566 

Fiorillo et al., 2003), potentially accounting for the pleasure these surprises so often elicit (Meyer, 567 

1956; Sloboda, 1991; Huron, 2006; Steinbeis et al., 2006; Grewe et al., 2007). Our findings support 568 

this interpretation by rigorously replicating the Wundt effect with formal modeling of musical 569 

complexity, implicating prediction-based learning in the enduring mystery of how abstract stimuli like 570 

music can be so pleasurable. 571 

 572 

References 573 

Abuhamdeh S, Csikszentmihalyi M (2012a) The Importance of Challenge for the Enjoyment of 574 

Intrinsically Motivated, Goal-Directed Activities. Personal Soc Psychol Bull 38:317–330. 575 



 

25 
 

Abuhamdeh S, Csikszentmihalyi M (2012b) Attentional involvement and intrinsic motivation. Motiv 576 

Emot 36:257–267. 577 

Baranes A, Oudeyer P-Y, Gottlieb J (2015) Eye movements reveal epistemic curiosity in human 578 

observers. Vision Res 117:81–90. 579 

Berlyne DE (1971) Aesthetics and Psychobiology. New York, New York: Appleton-Century-Crofts. 580 

Berlyne DE (1974) Studies in the new experimental aesthetics: Steps toward an objective psychology 581 

of aesthetic appreciation. Oxford, UK: Hemisphere. 582 

Brattico E, Jacobsen T (2009) Subjective Appraisal of Music. Ann N Y Acad Sci 1169:308–317. 583 

Brattico E, Jacobsen T, De Baene W, Glerean E, Tervaniemi M (2010) Cognitive vs. affective listening 584 

modes and judgments of music - An ERP study. Biol Psychol 85:393–409. 585 

Bromberg-Martin ES, Hikosaka O (2009) Midbrain Dopamine Neurons Signal Preference for Advance 586 

Information about Upcoming Rewards. Neuron 63:119–126. 587 

Bromberg-Martin ES, Matsumoto M, Hikosaka O (2010) Dopamine in Motivational Control: 588 

Rewarding, Aversive, and Alerting. Neuron 68:815–834. 589 

Brydevall M, Bennett D, Murawski C, Bode S (2018) The neural encoding of information prediction 590 

errors during non-instrumental information seeking. Sci Rep 8:6134. 591 

Caprara GV, Barbaranelli C, Borgogni L, Perugini M (1993) The “big five questionnaire”: A new 592 

questionnaire to assess the five factor model. Pers Individ Dif 15:281–288. 593 

Carrus E, Pearce MT, Bhattacharya J (2013) Melodic pitch expectation interacts with neural responses 594 

to syntactic but not semantic violations. Cortex 49:2186–2200. 595 

Castellano MA, Bharucha JJ, Krumhansl CL (1984) Tonal hierarchies in the music of North India. J 596 

Exp Psychol Gen 113:394–412. 597 

Chater N, Vitányi P (2003) Simplicity: a unifying principle in cognitive science? Trends Cogn Sci 598 

7:19–22. 599 

Chmiel A, Schubert E (2017) Back to the inverted-U for music preference: A review of the literature. 600 



 

26 
 

Psychol Music 45:886–909. 601 

Clarke EF (2005) Ways of Listening: An Ecological Approach to the Perception of Musical Meaning. 602 

New York, New York: Oxford University Press. 603 

Creighton H (1966) Songs and ballads from Nova Scotia. Gen Pub 1703. 604 

Daddaoua N, Lopes M, Gottlieb J (2016) Intrinsically motivated oculomotor exploration guided by 605 

uncertainty reduction and conditioned reinforcement in non-human primates. Sci Rep 6:20202. 606 

Darwin C (1871) The Descent of Man and Selection in Relation to Sex. London, UK: J. Murray. 607 

den Ouden HEM, Daunizeau J, Roiser J, Friston KJ, Stephan KE (2010) Striatal Prediction Error 608 

Modulates Cortical Coupling. J Neurosci 30:3210–3219. 609 

Diggle PJ, Heagerty P, Liang K-Y, Zeger S (2002) The Analysis of Longitudinal Data. Oxford Stat Sci 610 

S:396. 611 

Dowling WJ (1978) Scale and contour: Two components of a theory of memory for melodies. Psychol 612 

Rev 85:341–354. 613 

Dubé L, Le Bel J (2003) The content and structure of laypeople’s concept of pleasure. Cogn Emot 614 

17:263–295. 615 

Egermann H, Pearce MT, Wiggins G a, McAdams S (2013) Probabilistic models of expectation 616 

violation predict psychophysiological emotional responses to live concert music. Cogn Affect 617 

Behav Neurosci 13:533–553. 618 

Fiorillo CD, Tobler PN, Schultz W (2003) Discrete coding of reward probability and uncertainty by 619 

dopamine neurons. Science (80- ) 299:1898–1902. 620 

Friston K (2010) The free-energy principle: a unified brain theory? Nat Rev Neurosci 11:127–138. 621 

Gebauer L, Kringelbach ML, Vuust P (2012) Ever-changing cycles of musical pleasure: The role of 622 

dopamine and anticipation. Psychomusicology Music Mind, Brain 22:152–167. 623 

Gold BP, Frank MJ, Bogert B, Brattico E (2013) Pleasurable music affects reinforcement learning 624 

according to the listener. Front Psychol 4:541. 625 



 

27 
 

Gold BP, Mas-Herrero E, Zeighami Y, Benovoy M, Dagher A, Zatorre RJ (2019) Musical reward 626 

prediction errors engage the nucleus accumbens and motivate learning. Proc Natl Acad Sci U S A 627 

116:3310–3315. 628 

Gottlieb J, Oudeyer P-Y, Lopes M, Baranes A (2013) Information-seeking, curiosity, and attention: 629 

computational and neural mechanisms. Trends Cogn Sci 17:585–593. 630 

Grewe O, Nagel F, Kopiez R, Altenmüller E (2005) How does music arouse “chills”? Investigating 631 

strong emotions, combining psychological, physiological, and psychoacoustical methods. Ann N 632 

Y Acad Sci 1060:446–449. 633 

Grewe O, Nagel F, Kopiez R, Altenmüller E (2007) Listening To Music As A Re-Creative Process: 634 

Physiological, Psychological, And Psychoacoustical Correlates Of Chills And Strong Emotions. 635 

Music Percept An Interdiscip J 24:297–314. 636 

Hansen NC, Pearce MT (2014) Predictive uncertainty in auditory sequence processing. Front Psychol 637 

5:1052. 638 

Hargreaves DJ, MacDonald R, Miell D (2005) How do people communicate using music? (Miell D, 639 

MacDonald R, Hargreaves DJ, eds). Oxford, UK: Oxford University Press. 640 

Hunter PG, Schellenberg EG (2011) Interactive effects of personality and frequency of exposure on 641 

liking for music. Pers Individ Dif 50:175–179. 642 

Huron D (2006) Sweet Anticipation: Music and the Psychology of Expectation. Cambridge, 643 

Massachusetts: The MIT Press. 644 

Jepma M, Verdonschot RG, van Steenbergen H, Rombouts SARB, Nieuwenhuis S (2012) Neural 645 

mechanisms underlying the induction and relief of perceptual curiosity. Front Behav Neurosci 6:5. 646 

Kang MJ, Hsu M, Krajbich IM, Loewenstein G, McClure SM, Wang JT, Camerer CF (2009) The Wick 647 

in the Candle of Learning. Psychol Sci 20:963–973. 648 

Kessler EJ, Hansen C, Shepard RN (1984) Tonal Schemata in the Perception of Music in Bali and in 649 

the West. Music Percept An Interdiscip J 2:131–165. 650 



 

28 
 

Kidd C, Piantadosi ST, Aslin RN (2014) The Goldilocks Effect in Infant Auditory Attention. Child 651 

Dev 85:1795–1804. 652 

Koelsch S, Fritz T, Schlaug G (2008) Amygdala activity can be modulated by unexpected chord 653 

functions during music listening. Neuroreport 19:1815–1819. 654 

Koelsch S, Vuust P, Friston K (2019) Predictive Processes and the Peculiar Case of Music. Trends 655 

Cogn Sci 23:63–77. 656 

Krumhansl CL (1990) Tonal Hierarchies and Rare Intervals in Music Cognition. Music Percept An 657 

Interdiscip J 7:309–324. 658 

Loui P, Wessel DL, Kam CLH (2010) Humans Rapidly Learn Grammatical Structure in a New 659 

Musical Scale. Music Percept 27:377–388. 660 

Lumaca M, Trusbak Haumann N, Brattico E, Grube M, Vuust P (2019) Weighting of neural prediction 661 

error by rhythmic complexity: A predictive coding account using mismatch negativity. Eur J 662 

Neurosci. 663 

Mas-Herrero E, Marco-Pallares J, Lorenzo-Seva U, Zatorre RJ, Rodriguez-Fornells A (2013) 664 

Individual Differences in Music Reward Experiences. Music Percept An Interdiscip J 31:118–138. 665 

Meyer LB (1956) Emotion and Meaning in Music. Chicago, Illinois: University of Chicago Press. 666 

Müllensiefen D, Gingras B, Musil J, Stewart L (2014) The Musicality of Non-Musicians: An Index for 667 

Assessing Musical Sophistication in the General Population. PLoS One 9:e89642. 668 

Omigie D, Müllensiefen D, Stewart L (2012) The Experience of Music in Congenital Amusia. Music 669 

Percept An Interdiscip J 30:1–18. 670 

Omigie D, Pearce MT, Williamson VJ, Stewart L (2013) Electrophysiological correlates of melodic 671 

processing in congenital amusia. Neuropsychologia 51:1749–1762. 672 

Oram N, Cuddy LL (1995) Responsiveness of Western adults to pitch-distributional information in 673 

melodic sequences. Psychol Res 57:103–118. 674 

Oudeyer PY, Gottlieb J, Lopes M (2016) Intrinsic motivation, curiosity, and learning: Theory and 675 



 

29 
 

applications in educational technologies. Prog Brain Res 229:257–284. 676 

Pearce M, Müllensiefen D (2017) Compression-based Modelling of Musical Similarity Perception. J 677 

New Music Res 46:135–155. 678 

Pearce MT (2005) The construction and evaluation of statistical models of melodic structure in music 679 

perception and composition. Unpublished doctoral thesis. City University London, London, UK. 680 

Pearce MT (2014) Effects of expertise on the cognitive and neural processes involved in musical 681 

appreciation. In: Art, Aesthetics, and the Brain (Huston JP, Nadal M, Mora F, Agnati LF, Camilo 682 

JCC, eds). Oxford, UK: Oxford University Press. 683 

Pearce MT (2018) Statistical learning and probabilistic prediction in music cognition: mechanisms of 684 

stylistic enculturation. Ann N Y Acad Sci 1423:378–395. 685 

Pearce MT, Müllensiefen D, Wiggins G a. (2010) The role of expectation and probabilistic learning in 686 

auditory boundary perception: a model comparison. Perception 39:1365–1389. 687 

Pearce MT, Wiggins GA (2006) Expectation in Melody: The Influence of Context and Learning. Music 688 

Percept 23:377–405. 689 

Riemenschneider A ed. (1941) Bach — 371 Harmonized Chorales and 69 Chorale Melodies with 690 

Figured Bass. New York, New York: G. Schirmer, Inc. 691 

Ripollés P, Ferreri L, Mas-Herrero E, Alicart H, Gómez-Andrés A, Marco-Pallares J, Antonijoan RM, 692 

Noesselt T, Valle M, Riba J, Rodriguez-Fornells A (2018) Intrinsically regulated learning is 693 

modulated by synaptic dopamine signaling. Elife 7. 694 

Ripollés P, Marco-Pallarés J, Hielscher U, Mestres-Missé A, Tempelmann C, Heinze H-J, Rodríguez-695 

Fornells A, Noesselt T (2014) The Role of Reward in Word Learning and Its Implications for 696 

Language Acquisition. Curr Biol 24:2606–2611. 697 

Salimpoor VN, Benovoy M, Larcher K, Dagher A, Zatorre RJ (2011) Anatomically distinct dopamine 698 

release during anticipation and experience of peak emotion to music. Nat Neurosci 14:257–262. 699 

Salimpoor VN, van den Bosch I, Kovacevic N, McIntosh AR, Dagher A, Zatorre RJ (2013) 700 



 

30 
 

Interactions between the nucleus accumbens and auditory cortices predict music reward value. 701 

Science 340:216–219. 702 

Sauvé SA, Sayed A, Dean RT, Pearce MT (2018) Effects of pitch and timing expectancy on musical 703 

emotion. Psychomusicology Music Mind, Brain 28:17–39. 704 

Schaffrath H (1992) The retrieval of monophonic melodies and their variants: Concepts and strategies 705 

for computer-aided analysis. Comput Represent Model Music:95–110. 706 

Shany O, Singer N, Gold BP, Jacoby N, Tarrasch R, Hendler T, Granot R (2019) Surprise-Related 707 

Activation in the Nucleus Accumbens Interacts with Music-Induced Pleasantness. Soc Cogn 708 

Affect Neurosci. 709 

Sloboda JA (1991) Music Structure and Emotional Response: Some Empirical Findings. SAGE 710 

PublicationsSage CA: Thousand Oaks, CA. 711 

Steinbeis N, Koelsch S, Sloboda JA (2006) The role of harmonic expectancy violations in musical 712 

emotions: Evidence from subjective, physiological, and neural responses. J Cogn Neurosci 713 

18:1380–1393. 714 

Tan S-L, Spackman MP, Peaslee CL (2006) The Effects of Repeated Exposure on Liking and 715 

Judgments of Musical Unity of Intact and Patchwork Compositions. Music Percept 23:407–421. 716 

Vuust P (2010) The Pleasure of Making Sense of Music. Interdiscip Sci Rev 35:166–182. 717 

Wundt WM (1874) Principles of Physiological Psychology. Leipzig, Germany: Wilhelm Engelmann. 718 

Zajonc RB (1968) Attitudinal effects of mere exposure. J Pers Soc Psychol 9:1–27. 719 

Zald DH, Zatorre RJ (2011) Music. In: Neurobiology of Sensation and Reward (Gottfried JA, ed). 720 

Boca Raton, FL: CRC Press/Taylor & Francis. 721 

Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed Effects Modelling for Nested 722 

Data. In, pp 101–142. Springer, New York, NY. 723 

  724 



 

31 
 

Table 1: Stimulus details.  725 

Stimulus details for all 55 experimental stimuli and nine “attention trial” stimuli. 726 

  727 

Table 2: Comparing IDyOM configurations. 728 

This table shows the seven IDyOM configurations tested. In all cases, IDyOM predicts the chromatic 729 

pitch and onset time of a note using one or more source viewpoints (corresponding to musical 730 

attributes). Viewpoints may be used in isolation or linked with another viewpoint, indicated with 731 

parentheses – e.g., (ioi-ratio cpitch) – in which case the model predicts notes represented as a tuple of 732 

the values of the constituent viewpoints – e.g., (1 60) for a middle C whose duration is the same as the 733 

previous note. For each configuration, we used linear mixed-effects models to compare the output 734 

mean information content (IC), mean duration-weighted IC (mDW-IC), and mean entropy of each 735 

stimulus, given the corresponding model, to the unexpectedness ratings of an independent sample of 24 736 

participants who did not participate in the present studies. The fixed-effect coefficient (β), p value, 737 

coefficient of determination (R2), and Akaike information criterion (AIC) of each model is shown here. 738 

This process revealed that the mDW-IC measure based on unlinked ioi-ratio and cpitch was the best 739 

correlate of subjective unexpectedness (bolded here), and so we used this implementation for the 740 

present studies. 741 

 742 

Figure 1: Information Dynamics of Music (IDyOM) model. 743 

We used the Information Dynamics of Music model (IDyOM, Pearce, 2005, 2018) to systematically 744 

measure music unpredictability as information content (IC) and entropy. As configured here, IDyOM 745 

first builds a long-term model (LTM) of the statistical structure of a large training set of 903 melodies, 746 

represented as sequences of pitch and inter-onset interval ratios (IOIr). In a new stimulus melody with 747 

n notes, IDyOM then estimates the probability of each possible continuation x from an alphabet X, at 748 

each note index i based on the LTM and a short-term model (STM) learned dynamically within the 749 
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current stimulus, i.e. from note 1 to note i. To combine the probabilities derived from the LTM and 750 

STM, IDyOM first computes a geometric mean of the LTM and STM probabilities for pitch and IOIr 751 

separately, weighting each according to its entropy such that predictions based on higher-entropy 752 

models are less influential (signified by “*”) and then multiplies these resulting pitch and IOIr 753 

probabilities. It then computes the note’s IC as its negative log probability to the base 2, and its entropy 754 

as the expected value of the IC across all possible continuations (X). The result is a reliable 755 

computational measure of pitch unpredictability and uncertainty based on long- and short-term musical 756 

statistics. In the present studies, we averaged these note-by-note measures across each stimulus to 757 

represent each 30-second stimulus as one unit. 758 

 759 

Figure 2: Stimulus unpredictability and uncertainty distributions. 760 

Using formal mathematical modeling of musical unpredictability and uncertainty, we developed 55 761 

stimuli, all excerpts of real, pre-composed music, that varied across quantifiably wide ranges of mean 762 

duration-weighted entropy (mDW-Ent, i.e. the average entropy of all notes in a stimulus weighted by 763 

their durations) and mean duration-weighted information content (mDW-IC, i.e. the average 764 

information content of all notes in a stimulus weighted by their durations). We standardized these 765 

measures with z scores to compare them, and so the standardized mDW-Ent and standardized mDW-IC 766 

are shown here. These features were positively correlated (Pearson’s r = 0.44, p < 0.001). 767 

 768 

Figure 3: Behavioral effects of unpredictability and uncertainty. 769 

Linear mixed-effects analyses revealed significant Wundt effects in Study 1. (A) The optimal model of 770 

mean duration-weighted information content (mDW-IC) explained 26.3% of the variance in liking 771 

ratings (p < 0.001) with negative linear (β = -0.21, p < 0.001) and quadratic (β = -0.09, p < 0.001) 772 

effects. It also had significant random intercepts and slopes across subjects (intercept 95% CI = 0.54 – 773 

0.86, slope 95% CI = 0.11 – 0.29). The red curve shown here represents the fitted model, while the 774 
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blue dots depict the mean liking ratings for each stimulus adjusted according to the model’s random 775 

effects. (B) The optimal model of mean duration-weighted entropy (mDW-Ent) explained 19.1% of the 776 

variance in liking ratings (p = 0.03), with negative linear (β = -0.09, p = 0.009) and quadratic effects (β 777 

= -0.06, p = 0.003) and significant subject-varying random intercepts (95% CI = 0.54 – 0.86). The red 778 

curve shown here represents the fitted model, while the blue dots depict the mean liking ratings for 779 

each stimulus adjusted according to the model’s random effects. (C) We used k-means clustering to 780 

categorize our stimuli. Starting with six points (black diamonds) to distinguish differentiate low and 781 

high mDW-Ent along with low, medium, or high mDW-IC, this procedure yielded the six stimulus 782 

categories that we used for repeated-measures analysis of variances (rm-ANOVA). (D) A rm-ANOVA 783 

reaffirmed the main effect of mean duration-weighted IC [F(1.70,69.63) = 34.45, partial η2 = 0.51, p < 784 

0.001, using Greenhouse-Geisser correction since Mauchly’s test of sphericity was violated] but not 785 

mDW-Ent [F(1,41) = 2.84, p = 0.10], and also suggested an interaction between the two on liking 786 

ratings [F(1.71,70.21) = 3.17, partial η2 = 0.07, p = 0.06]. Planned comparisons reflected the Wundt 787 

effect of mDW-IC when mDW-Ent was low (high mDW-IC < low mDW-IC: p < 0.001, high mDW-IC 788 

< medium mDW-IC: p < 0.001, low mDW-IC vs. medium mDW-IC: p = 0.35), but not when mDW-789 

Ent was high, when liking ratings for low mDW-IC were significantly greater than those for medium 790 

mDW-IC (p = 0.01, high mDW-IC < low mDW-IC: p < 0.001, high mDW-IC < medium DW-IC: p < 791 

0.001). Likewise, there was a significant preference for stimuli with high mDW-Ent over low mDW-792 

Ent when mDW-IC was low (p = 0.001), but not when mDW-IC was medium (p = 0.60) or high (p = 793 

0.85), implying that uncertain contexts amplify the pleasure of predictability.  794 

 795 

Figure 4: Individual differences in Wundt effects. 796 

Individual differences in the Wundt effects of Study 1 could be explained in part by musical 797 

sophistication, as measured by the Goldsmiths Musical Sophistication Index (Gold-MSI, Müllensiefen 798 

et al., 2014). (A) We represented each participant’s Wundt effect as a distribution of mean liking 799 
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ratings across mean duration-weighted information contents (mDW-ICs) by multiplying these 800 

measures together, resulting in flatter distributions for those with similar preferences across the mDW-801 

IC spectrum, sharper distributions for those with more particular preferences, and so on. We then 802 

measured the kurtosis and skewness of each distribution, reflecting the sharpness and asymmetry of the 803 

participant’s preferences, respectively. To illustrate this analysis, we show the distribution for 804 

Participant 7, on the left, who exhibits the greatest kurtosis and skewness of the sample, and Participant 805 

43, on the right, who has the lowest kurtosis and second-lowest skewness. (B) There was a significant 806 

positive correlation between Gold-MSI scores and the kurtosis of the Wundt effect, revealing sharper 807 

preferences for relatively more sophisticated participants [F(1,41) = 7.43, p = 0.009, β = 0.02, R2 = 808 

0.15]. (C) There was also a significant positive correlation between Gold-MSI scores and the skewness 809 

of the Wundt effect, wherein more sophisticated listeners also had greater relative preferences for 810 

stimuli of lower mDW-IC [F(1,41) = 4.76, p = 0.03, β = 0.003, R2 = 0.10]. In both cases, the Gold-MSI 811 

“Perceptual Abilities” subscale was the only one to survive follow-up stepwise regressions [kurtosis 812 

effect F(1,41) = 6.50, p = 0.01, β = 0.04, R2 = 0.14; skewness effect F(1,41) = 5.89, p = 0.02, β = 0.009, 813 

R2 = 0.13], indicating that music-listening skills drove these results. Kurtosis and skewness were also 814 

highly correlated (r = 0.94, p < 0.001), complicating the interpretations of these results. 815 

 816 

Figure 5: Behavioral effects of unpredictability, uncertainty, and repetition. 817 

Linear mixed-effects analyses revealed significant Wundt effects in Study 2. (A) The optimal model of 818 

mean duration-weighted information content (IC) explained 41.6% of the variance in liking ratings (p < 819 

0.001) with only a negative quadratic effect (β = -0.18, p < 0.001) and significant random intercepts 820 

and slopes across subjects (intercept 95% CI = 0.31 – 0.58, mean duration-weighted IC slope 95% CI = 821 

0.15 – 0.29, mean duration-weighted IC2 slope 95% CI = 0.10 – 0.19, repetition slope 95% CI = 0.05 – 822 

0.09). The red curve shown here represents the fitted model, while the blue dots depict the mean liking 823 

ratings for each stimulus adjusted according to the model’s random effects. (B) The optimal model of 824 
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mean duration-weighted entropy explained 34.9% of the variance in liking ratings (p < 0.001), with 825 

negative linear (β = -0.31, p < 0.001) and quadratic effects (β = -0.25, p < 0.001). This model also had 826 

significant subject-varying random intercepts (95% CI = 0.30 – 0.58), slopes for mean duration-827 

weighted entropy (95% CI = 0.26 – 0.49), slopes for mean duration-weighted entropy2 (95% CI = 0.82 828 

– 0.97), and slopes for repetition (95% CI = 0.05 – 0.09). The red curve shown here represents the 829 

fitted model, while the blue dots depict the mean liking ratings for each stimulus adjusted according to 830 

the model’s random effects. (C) The best-fitting model of liking and repetition which included an 831 

interaction term between mean duration-weighted information content and liking significantly fit the 832 

data (R2 = 0.42, p < 0.001), but not better than an alternative model that excluded the fixed effects of 833 

repetition [likelihood ratio test χ2(1, N = 27) = 3.42, p = 0.18]. Even so, this model indicated that the 834 

Wundt effect did not significantly change across repetitions, as the interaction term was not significant 835 

(p = 0.38). 836 
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Piece Excerpt Time 
(approx.) Composer Year Key Meter Studies mDW-

IC 
mDW-

Ent 
Streams of 
Kilnaspig 0:00 – 0:30 Irish 

Traditional Unknown G Major Compound 
Duple 1, IS 2.34 3.62 

Eighteen Studies for 
the Flute, Op. 41, 

No. 11 
1:30 – 2:00 Joachim 

Andersen 1891 F Major Simple 
Duple 1, 2, IS 2.99 2.23 

When This Cruel 
War is Over 1:00 – 1:30 American 

Traditional 1863 Bb Major Simple 
Duple 1, IS 3.72 3.86 

Seven Variations on 
a Theme from 

Silvana, J. 128, Op. 
33, Var. 7 

8:00 – 8:30 Carl Maria 
von Weber 1854 Bb Major Compound 

Duple 
1, 2 

(clar), IS 3.89 2.87 

12 Fantasias for 
Solo Flute, No. 3, 

Vivace 
0:45 – 1:15 

Georg 
Philipp 

Telemann 
1733 B Minor Simple 

Duple 1, IS 3.93 2.64 

Eighteen Studies for 
the Flute, Op. 41, 

No. 18 
0:50 – 1:20 Joachim 

Andersen 1891 F Minor Compound 
Duple 1, IS 4.04 2.6 

12 Fantasias for 
Solo Flute, No. 3, 

Vivace 
0:10 – 0:40 

Georg 
Philipp 

Telemann 
1733 B Minor Simple 

Duple 1, IS 4.08 2.45 

Young Cowherd 0:00 – 0:30 Chinese 
Traditional Unknown G Major Simple 

Duple 1 4.1 3.75 

Sakura 0:00 – 0:30 Japanese 
Traditional Unknown D Minor Simple 

Duple 1 4.23 4.39 

Orchestral Suite No. 
2 in B minor, BWV 

1067 
2:45 – 3:15 

Johann 
Sebastian 

Bach 
1739 B Minor Simple 

Duple 1, 2, IS 4.52 3.95 

Eighteen Studies for 
the Flute, Op. 41, 

No. 1 
0:45 – 1:15 Joachim 

Andersen 1891 C Major Simple 
Duple 1, 2, IS 4.97 3.6 

Five Divertimentos, 
K. 439b, No. 2, 

mvmt. 4 
0:50 – 1:20 

Wolfgang 
Amadeus 
Mozart 

1785 C Major Simple 
Triple 1, IS 5 3.12 

Gavotte 0:00 – 0:30 
François-

Joseph 
Gossec 

Unknown C Major Simple 
Duple 1, IS 5.04 2.32 

Maiden Voyage 2:50 – 3:20 Herbie 
Hancock 1965 A Minor Simple 

Duple 1 5.16 3.32 

Seven Variations on 
a Theme from 

Silvana, J. 128, Op. 
33, Theme 

0:00 – 0:30 Carl Maria 
von Weber 1854 Bb Major Compound 

Duple 1, IS 5.31 3.76 

Drei Fantasiestücke, 
Op. 73, No. 1 0:30 – 1:00 Robert 

Schumann 1849 A Minor Simple 
Duple 

1, 2 
(clar), IS 5.36 4.06 

Five Divertimentos, 
K. 439b, No. 2, 

mvmt. 4 
3:50 – 4:20 

Wolfgang 
Amadeus 
Mozart 

1785 G Major Simple 
Triple 1, IS 5.47 3.54 

35 Exercises for 
Flute, Op. 33, No. 3 1:00 – 1:30 Ernesto 

Koehler 1880s F Major Simple 
Triple 1, IS 5.54 4.01 

Eighteen Studies for 
the Flute, Op. 41, 

No. 6 
1:00 – 1:30 Joachim 

Andersen 1891 B Minor Simple 
Triple 1, IS 5.57 4.09 
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Carmen Suite No. 1, 
Aragonaise 0:45 – 1:15 Georges 

Bizet 1882 D Minor Simple 
Triple 1, IS 5.61 3.65 

Orchestral Suite No. 
2 in B minor, BWV 

1067 
0:00 – 0:30 

Johann 
Sebastian 

Bach 
1739 B Minor Simple 

Duple 1, IS 5.61 3.52 

35 Exercises for 
Flute, Op. 33, No. 

15 
0:00 – 0:30 Ernesto 

Koehler 1880s E Major Simple 
Duple 1, IS 5.63 3.62 

Drei Fantasiestücke, 
Op. 73, No. 1 1:15 – 1:45 Robert 

Schumann 1849 A Minor Simple 
Duple 1, IS 5.63 3.97 

Eighteen Studies for 
the Flute, Op. 41, 

No. 10 
0:00 – 0:30 Joachim 

Andersen 1891 C# Minor Compound 
Duple 

1, 2 
(prac), IS 5.65 4.13 

35 Exercises for 
Flute, Op. 33, No. 

10 
0:00 – 0:30 Ernesto 

Koehler 1880s D Major Simple 
Duple 1, IS 5.8 4.16 

Study No. 1 in C 
Major, Op. 131 0:00 – 0:30 Giuseppe 

Gariboldi 1900 C Major Simple 
Duple 1, IS 5.92 3.81 

Flute Concerto No. 
2 in G minor, 

RV439 “La notte” 
10:00 – 10:30 Antonio 

Vivaldi 1729 C Minor Simple 
Duple 1, IS 5.93 3.63 

Dolly Suite Op. 56, 
No. 1 0:10 – 0:40 Gabriel 

Fauré 1893 G Major Simple 
Duple 1, IS 5.98 4.2 

Flute Concerto No. 
2 in G minor, 

RV439 “La notte” 
9:15 – 9:45 Antonio 

Vivaldi 1729 G Minor Simple 
Duple 1, IS 6.06 3.83 

Solo de Concours 4:00 – 4:30 André 
Messager 1899 Bb Major Simple 

Duple 

1 (prac), 
2 (clar), 

IS 
6.09 4.22 

Student 
Instrumental 
Course: Flute 

Student, Level II 
book: pg. 12 
exercise no. 2 

0:10 – 0:40 

Douglas 
Steensland, 

Fred 
Weber 

2000 Ab Major Simple 
Duple 1, 2, IS 6.09 4.11 

Eighteen Studies for 
the Flute, Op. 41, 

No. 6 
0:00 – 0:30 Joachim 

Andersen 1891 B Minor Simple 
Triple 

1 (prac), 
2, IS 6.09 4.07 

Fantaisie, Op. 79 0:30 – 1:00 Gabriel 
Fauré 1898 E Minor Simple 

Triple 1, IS 6.21 4.14 

12 Fantasias for 
Solo Flute, No. 5, 

Allegro 
0:37 – 1:17 

Georg 
Philipp 

Telemann 
1733 C Major Simple 

Triple 1, IS 6.49 3.70 

12 Fantasias for 
Solo Flute, No. 10, 

Dolce 
1:57 – 2:27 

Georg 
Philipp 

Telemann 
1733 G Minor Simple 

Duple 1, IS 6.4 3.02 

35 Exercises for 
Flute, Op. 33, No. 2 0:07 – 0:37 Ernesto 

Koehler 1880s G Major Simple 
Duple 1, IS 6.61 3.79 

12 Fantasias for 
Solo Flute, No. 10, 

Presto 
2:45 – 3:15 

Georg 
Philipp 

Telemann 
1733 F# Minor Simple 

Triple 1, IS 7.09 4.1 

Eighteen Studies for 
the Flute, Op. 41, 

No. 8 
1:30 – 2:00 Joachim 

Andersen 1891 F# Minor Simple 
Triple 1, 2, IS 7.27 4.19 
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Con Alma 1:15 – 1:45 Dizzy 
Gillespie 1954 Ab Major Simple 

Duple 1, IS 7.63 4.03 

35 Exercises for 
Flute, Op. 33, No. 

11 
1:00 – 1:30 Ernesto 

Koehler 1880s A Minor Compound 
Duple 1, IS 7.84 4.64 

Syrinx 2:15 – 2:45 Claude 
Debussy 1913 Bb Minor Simple 

Triple 1, IS 7.87 3.95 

Orchestral Suite No. 
2 in B minor, BWV 

1067 
3:45 – 4:15 

Johann 
Sebastian 

Bach 
1739 E Minor Simple 

Duple 1, IS 8.05 4.5 

Nocturnes, Op. 37, 
No. 1 0:30 – 1:00 Frédéric 

Chopin 1839 C Minor Simple 
Duple 1, IS 8.08 4.41 

Seven Early Songs, 
Die Nachtigall 0:30 – 1:00 Alban 

Berg 1907 A Major Simple 
Triple 1, IS 8.19 3.47 

Les Folies 
d’Espagne, Nos. 7 

and 8 
0:10 – 0:40 Marin 

Marais 1701 E Minor Simple 
Triple 1, 2, IS 8.6 2.84 

Nocturnes, Op. 37, 
No. 1 0:00 – 0:30 Frédéric 

Chopin 1839 C Minor Simple 
Duple 1, IS 8.66 4.32 

Les Folies 
d’Espagne, No. 5 0:00 – 0:30 Marin 

Marais 1701 E Minor Simple 
Triple 1, IS 9.48 3.5 

Le Rossignol en 
Amour 1:45 – 2:15 François 

Couperin 1722 G Major Simple 
Triple 1, IS 9.56 3.85 

Caravan 0:00 – 0:30 
Duke 

Ellington, 
Juan Tizol 

1936 C Minor Simple 
Duple 1 10.35 5.3 

Citygate/Rumble 1:00 – 1:30 Chick 
Corea 1986 Db Major Simple 

Duple 1, IS 10.75 3.78 

First Rhapsody 0:30 – 1:00 Claude 
Debussy 1910 F# Minor, 

E Minor 
Simple 
Duple 1, 2, IS 10.9 4.32 

Alone Together 0:45 – 1:15 Arthur 
Schwartz 1932 D Minor Simple 

Duple 1, 2, IS 10.93 3.85 

Seven Early Songs, 
Traumgekrönt 0:30 – 1:00 Alban 

Berg 1908 G Minor Simple 
Duple 1, IS 11.15 4.08 

Les Folies 
d’Espagne, No. 1 0:00 – 0:30 Marin 

Marais 1701 E Minor Compound 
Triple 

1, 2 
(prac), IS 11.28 4.47 

Le Jamf 0:45 – 1:15 Bobby 
Jaspar 1960 Eb Major Simple 

Duple 1 11.31 3.96 

Syrinx 0:00 – 0:30 Claude 
Debussy 1913 Bb Minor Simple 

Triple 1, IS 13.21 3.32 

Mei 0:37 – 1:07 Kazuo 
Fukushima 1962 Atonal Simple 

Duple 1, 2, IS 16.52 4.62 

35 Exercises for 
Flute, Op. 33, No. 5 

0:03 – 0:33 
(piano at 2.5) 

Ernesto 
Koehler 1880s G Major Simple 

Duple 1 (attn.) 10.71 3.61 

Ballet of the 
Shepherds (from 
Armide, Wq. 45) 

0:05 – 0:35 
(piano at 7.5) 

Christoph 
W. von 
Gluck 

1777 Eb Major Simple 
Duple 1 (attn.) 14.46 3.64 

Baldwin’s Music, 
Exercise No. 4 

0:00 – 0:30 
(piano at 8.8) 

Baldwin’s 
Music Unknown F Major Simple 

Duple 1 (attn.) 10.57 3.89 
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Waltz (from 
Coppélia) 

0:50 – 1:20 
(piano at 12.3) 

Léo 
Delibes 1870 C Major Simple 

Triple 1 (attn.) 8.15 4.02 

22 Studies in 
Expression and 
Facility, Op. 89, 

No. 6 

0:00 – 0:30 
(piano at 15.0) 

Ernesto 
Koehler 1904 D Minor Simple 

Duple 1 (attn.) 4.95 4.14 

Fuku Ju So 0:02 – 0:32 
(piano at 18.8) 

Japanese 
Traditional Unknown A Minor Simple 

Duple 1 (attn.) 6.4 4.47 

Scheherazade, Op. 
35, mvmt. 3 (The 
Young Prince and 

The Young 
Princess) 

0:00 – 30:00 
(piano at 21.7) 

Nikolay 
Rimsky-
Korsakov 

1888 B Minor Simple 
Triple 1 (attn.) 4.42 3.90 

Sicilienne, Op.78 0:00 – 0:30 
(piano at 24.4) 

Gabriel 
Fauré 1893 G Minor Compound 

Duple 1 (attn.) 6.17 4.04 

Baldwin’s Music, 
Exercise No. 1 

0:00 – 0:30 
(piano at 25.7) 

Baldwin’s 
Music Unknown G Major Simple 

Duple 1 (attn.) 6.47 4.36 
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Model source viewpoints Regression predictor Fixed effect (β) P value R2 AIC 

(ioi-ratio cpitch) 
Mean IC 4.93 < 0.001 0.10 3854.6 
mDW-IC 6.16 < 0.001 0.12 3845.7 

Mean Entropy 11.51 0.012 0.06 3866.7 

ioi-ratio cpitch* 
Mean IC 4.33 < 0.001 0.09 3856.4 

mDW-IC* 5.99* < 0.001* 0.13* 3844.0* 
Mean Entropy 18.09 0.109 0.05 3869.8 

(ioi-ratio cpint) 
Mean IC 3.40 0.005 0.07 3864.0 
mDW-IC 5.89 < 0.001 0.10 3852.3 

Mean Entropy 2.17 0.751 0.04 3873.1 

ioi-ratio cpint 
Mean IC 3.65 0.001 0.08 3860.7 
mDW-IC 5.28 < 0.001 0.10 3851.8 

Mean Entropy 7.71 0.613 0.04 3872.5 

(ioi-ratio cpintfref) 
Mean IC 5.26 < 0.001 0.09 3856.8 
mDW-IC 6.76 < 0.001 0.11 3848.5 

Mean Entropy 12.86 0.065 0.05 3869.1 

ioi-ratio cpintfref 
Mean IC 4.92 < 0.001 0.09 3855.9 
mDW-IC 6.27 < 0.001 0.11 3849.2 

Mean Entropy 21.01 0.292 0.04 3872.1 

ioi-ratio (cpint cpintfref) 
Mean IC 3.84 < 0.001 0.08 3859.7 
mDW-IC 5.17 < 0.001 0.10 3851.2 

Mean Entropy -4.32 0.823 0.04 3873.2 
 


