
Teachers’ Experiences of using PRIMM to Teach Programming in
School

Sue Sentance∗
King’s College London
sue@raspberrypi.org

Jane Waite
Queen Mary University of London

j.l.waite@qmul.ac.uk

Maria Kallia
King’s College London
maria.kallia@kcl.ac.uk

ABSTRACT
PRIMM is an approach to teaching programming at K-12 that facili-
tates the structure of lessons in a purposeful way. PRIMM stands
for Predict-Run-Investigate-Modify-Make, and draws on recent
research in programming education. In particular the PRIMM ap-
proach recognises that starting with existing code and being able
to explain what it does gives novice programmers the confidence
to write their own programs. Using the PRIMM approach, teachers
can devise scaffolded and targeted tasks for students which helps
engender understanding, particularly for those who may have pre-
viously struggled to understand programming concepts. In this
techniques paper, we consider what PRIMM is, and the experiences
that teachers have had of using the structure in the classroom.
PRIMM materials have been trialled in schools in a study involving
around 500 students aged 11-14. From interviews with nine par-
ticipating teachers we have found that teachers particularly value
the collaborative approach taken in PRIMM, the structure given
to lessons, and the way that resources can be differentiated. We
propose that PRIMM is an approach that could be adopted in all
phases of programming education as well as in teacher training.

CCS CONCEPTS
• Social andprofessional topics→K-12 education;Computer
science education;

KEYWORDS
K-12 education, programming education, K-12 teachers
ACM Reference Format:
Sue Sentance, Jane Waite, and Maria Kallia. 2019. Teachers’ Experiences
of using PRIMM to Teach Programming in School. In Proceedings of the
50th ACM Technical Symposium on Computer Science Education (SIGCSE
’19), February 27-March 2, 2019, Minneapolis, MN, USA. ACM, New York, NY,
USA, 7 pages. https://doi.org/10.1145/3287324.3287477

1 INTRODUCTION
The reformation of school computing in England has been a wel-
come development given that it is essential that we prepare all
young people with the digital skills they need to fully participate
∗The first author now works at the Raspberry Pi Foundation

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGCSE ’19, February 27-March 2, 2019, Minneapolis, MN, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5890-3/19/02. . . $15.00
https://doi.org/10.1145/3287324.3287477

in society. The introduction of new computer science concepts and
skills into the curriculum, particularly in the area of computer pro-
gramming, has been challenging for students and teachers, firstly
because models for pedagogy are either not fully formed or shared
with teachers, and secondly, because computer programming can
be difficult to learn [24]. It is thus recognised that more research
needs to be conducted with a focus on appropriate pedagogy [31].

Computing teachers benefit from access to proven teaching
strategies and pedagogies relating to programming. Much research
has been carried out in this area, mostly in higher education settings,
but only recently in schools, and this has not been widely translated
into usable structures for teachers. Consequently, computing teach-
ers are being called to deliver a challenging subject with insufficient
knowledge of effective teaching strategies and on how to develop
and enhance vital competencies to accomplish this task. To address
these issues, we have developed and are evaluating a new pedagog-
ical model for teaching and learning programming (PRIMM) [26].
PRIMM can be used to structure lessons and sequences of lessons
with the following activities:

• Predict what code will do
• Run the code to test predictions
• Investigate the structure of code
• Modify the code to add functionality
• Make a new program using the same/modified structures.

PRIMM stands forPredict,Run, Investigate,Modify andMake.
Using PRIMM, classroom activities can be designed which involve
predicting the output of code, code comprehension and gradually
making new programs. It is a method of teaching programming that
counters the known problem of novices trying to write programs
before they are able to read them [15]. It incorporates activities that
scaffold learning for students and provides a structure for lessons.

In this techniques paper, we describe the rationale for this ap-
proach, exemplify it, and describe teachers’ experiences. In a study
of the PRIMM methodology we interviewed nine experienced K-12
Computing teachers about their teaching of programming to stu-
dents aged 11-14 using PRIMM. From our analysis we identified that
teachers particularly value predicting what code does, the potential
for differentiation to a wide range of abilities, and the structure
provided by PRIMM.

2 TEACHING PROGRAMMING:
INSTRUCTIONAL APPROACHES

Much research associated with the teaching of programming has fo-
cused on pedagogy and instructional approaches to teaching. From
the 1980s we see an emphasis on learners constructing knowledge
as they explore [22]; applying ideas from Papert’s constructionism

Paper Session: Teaching Practice 1 SIGCSE '19, February 27–March 2, 2019, Minneapolis, MN, USA

476

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queen Mary Research Online

https://core.ac.uk/display/237088209?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/3287324.3287477
https://doi.org/10.1145/3287324.3287477

we see instructional approaches based around open-ended activi-
ties, through which students can develop a personal understanding
of newly introduced concepts or devices.

More recent research has highlighted the need for guided instruc-
tion to ensure that learners circumnavigate a carefully constructed
progression to develop a complete mental model [8, 9, 17, 20, 25].
Grover et al. suggest that to foster deep learning a combination of
guided discovery and instruction rather than pure discovery and
’tinkering’ would be more successful[9]. This sentiment is echoed
by a number of studies with emerging evidence that some of the
more difficult concepts such as initialisation, variables and loops
need to be explicitly taught [11, 12, 20]. Other studies raise the need
for learners’ cognitive load to be managed by more closely con-
trolling learning opportunities and learning experiences [1, 32, 33].
This research has implications for pedagogy in school, suggest-
ing that targeted teaching is needed for difficult concepts within a
controlled progression of learning experiences [35].

Research in the teaching of programming has also included a
focus on the levels of abstraction involved in understanding how to
write programs. Cutts et al. reviewed university students use of vo-
cabulary when solving multiple choice questions [6] and suggested
a teaching model of student understanding of programs called the
Abstraction Transition Taxonomy (ATT) which included three lev-
els of language in programming: English, CS Speak and Code. The
recommendation from this research was to support learners to be
able to transition across all levels. Another framework, the Levels of
Abstraction (LOA) framework, has been developed for introductory
programming courses [2, 23, 28]. Four levels are described: execu-
tion; program; algorithm and problem [2]. The focus of the LOA
framework is on learners knowing what level they are working at
and being able to transition between the levels.

Another focus has been on reading and tracing code. Work by
Lister and colleagues over many years has highlighted the impor-
tance of reading code and being able to trace what it does before
writing new code[15, 16]. Comparing tracing skills to code writing,
they demonstrated that novices require a 50% tracing code accuracy
before they can independently write code with confidence [16, 34].
Learning to program is sequential and cumulative, and tracing re-
quires students to draw on accumulated knowledge to conceive a
big picture. Work by Teague and Lister in this area suggests that
novice learners should be focused on very small tasks with single
elements [30]. Another study concluded that as well as inferring
meaning from code from its structure, the first step should be to
make inferences about the execution of the program [5].

Studies related to code comprehension have also highlighted the
importance of reading code to address misconceptions of algorithm
efficiency [7] and the use of worked examples to understand how
variables change over time [29]. Gujberova and Kalas recommended
a sequence of carefully graded learning activities for primary stu-
dents to improve programming and computational thinking, includ-
ing activities where learners read and interpreted each line of code,
as well as a stage for reading the entire program and predicting
the outcome [10]. Another approach is subgoal modelling, where
meaningful labels are added to worked examples to visually group
steps into subgoals - thereby highlighting the structure of code. Two
higher education studies [18, 21] used this strategy with exemplar
text, worked examples and problems. Both reports concluded that

those students given subgoals performed significantly better than
those who had no subgoals or who added their own subgoals.

Another approach used in the teaching of programming is Use-
modify-create (UMC). UMC is a teaching framework for supporting
progression in learning to program [14]. Learners move along a
continuum from where they first use programs made by someone
else to finally create their own programs. Between these points they
modify work made by someone else so that the modified material
becomes ’theirs’.

3 THE PRIMM APPROACH
The PRIMM approach builds on some of the research cited above.
In particular it draws primarily on three areas of research:

• Tracing and read-before-you-write[15, 16]. PRIMMdraws
on tracing and reading code as an important principle for
teaching programming [15]. The predict phase of PRIMM
encourages students to practice reading code and working
out what it will do when executed.

• Use-Modify-Create [14]. PRIMM is influenced by the work
on Use-Modify-Create (UMC) [14]. PRIMM’s predict, run and
investigate phases map to the use stage. Modify is the same
across both frameworks. PRIMM’s make phase is equiva-
lent to create. PRIMM has partly built on UMC to gradually
transfer ownership of the program to the student. It supports
the student’s confidence as they are not burdened by the
prospect of failure until they understand how the program
works.

• Levels of Abstraction [6, 23]. Thirdly, PRIMM draws on
work relating to abstraction [6, 23], in that the different
activities focus on different levels of abstraction. The Predict
and Run phases focuses very much on the execution of code,
whereas the Investigate stage is about the program, or Cutts
et al’s Code level. When students reach the Make stage they
have developed skills to focus on the ‘problem’ that needs
to be solved.

4 A PRIMM LESSON
In this section, we briefly describe a PRIMM lesson or sequence
of lessons, and the materials that exemplify this. The intention is
that teachers can develop their own PRIMM-like materials at an
appropriate level for their students.

4.1 Predict and Run
At the beginning of a PRIMM lesson, students are given a short
program on the board, or on paper, to look at in pairs. The task is
for them to write down the output of the program. Our examples
use Python; two examples are shown in Figures 1 and 2.

The teacher discusses the students’ answers with the class, and
students then download code and run to check their prediction. It
is important that they do not copy the code as this is a completely
different process. Access to a shared area where starter programs
are stored is important, and multiple predict activities can be used.

4.2 Investigate
In this phase of the lesson or sequence of lessons, students are asked
code comprehension questions about the same program or snippet

Paper Session: Teaching Practice 1 SIGCSE '19, February 27–March 2, 2019, Minneapolis, MN, USA

477

Figure 1: A predict activity from one of the first lessons

Figure 2: A predict activity from a more advanced lesson

Figure 3: Sample question in the investigate phase

of code. These questions pick out certain aspects of the program
to develop understanding. Developing good questions in this sec-
tion requires a good understanding of programming and student
misconceptions, and the Block Model [25] can help to structure
questions. For example, students may be asked a question about the
execution of the whole program, which requires an understanding
of the underlying algorithm and program execution. In the pizza
example shown in Figure 2, the student may be asked what happens
if the user does not add any toppings. In addition questions can be
asked which enable the students to discuss individual snippets of
codes, such as that shown in Figure 3. Discussion of the question
should ideally take place in pairs or groups to enable students to
develop the vocabulary they need to talk about the program [6].

4.3 Modify and Make
In this phase of the lesson the learners are able to build on the
existing program to modify and create new programs. Carefully
structured activities allow progression from simple changes to more
substantial functional changes to the program. Having an existing
program in place gives the student confidence and something to
build on. Sometimes the modify task is to remove obvious glitches
with the program. For example, following the Pizza example in
Figure 2, a modify task may to be to improve the program so that
the output does not end with “and”. Subsequently, in the make
phase, the students will be asked to create a new program from

a problem description, drawing on what they have learned about
loops and string manipulation from the previous program [6].

5 THE STUDY
As part of our research into the effectiveness of PRIMM, we applied
design-based research methodology [4] to evaluate and test the
materials implementing the PRIMM approach. The goal of design-
based research (DBR) is to “use the close study of learning as it
unfolds within a naturalistic context that contains theoretically in-
spired innovations, usually that have passed through multiple itera-
tions, to then develop new theories, artifacts, and practices that can be
generalized to other schools and classrooms.” [p.151][3]. DBR takes
materials that have been developed through a particular theoretical
perspective and implements them in a naturalistic setting, iterating
with the results of the materials in context. The PRIMM materials
are on their third iteration: firstly in a small study in a CPD setting
[26], secondly used in a pilot study with six teachers (Section 5.1),
and the third iteration developed for the main study (Section 5.2).
We used DBR to consider both the structure of PRIMM as a teaching
aid and the actual materials produced to exemplify PRIMM.

5.1 The pilot study
We designed and implemented a short pilot study to evaluate the
effectiveness of PRIMM and understand it better. The pilot study
involved 6 teachers and approximately 80 students over 4-7 lessons,
followed by individual interviews with the teachers to consider
their views of PRIMM and the materials. Interviews were recorded,
transcribed, coded and analysed. Teachers were enthusiastic about
the PRIMM structure; our analysis of the interviews enabled us to
further develop the materials and to devise appropriate research
instruments for the subsequent main study. For the pilot we devel-
oped PRIMM-style worksheets for teachers to use with the intention
of teachers developing them further and becoming co-creators of
PRIMM materials. We concluded that we needed to provide more
comprehensive materials and that teachers had limited confidence
and time to develop their own resources in the PRIMM style.

5.2 The main study
For the main study we built on the pilot study in refining both
the study materials and the analysis process. 14 teachers were
recruited, of whom 13 completed the trial and taught just less than
500 students using PRIMM for a period of three to four months at
the beginning of 2018. As a separate part of the study we used a
quasi-experimental approach to investigate the impact of PRIMM
on students’ performance [27], with an experimental group of 493
students performing significantly better (p<.05) than a comparison
group of 180 students in a post-test. In this paper, we focus on the
qualitative analysis, and the teachers’ experiences of PRIMM.

5.3 Participants
Teachers were recruited to the study via a number of channels, being
selected on the basis of having students undertaking an appropriate
programming module within the timeframe of our study. Teachers
attended a one-day training session on the PRIMM approach and
materials, which included the rationale behind DBR; teachers were
invited to adapt, edit and upload edited materials as they wished

Paper Session: Teaching Practice 1 SIGCSE '19, February 27–March 2, 2019, Minneapolis, MN, USA

478

during the study. Teachers completed evaluations of the PRIMM
lessons that they taught, and interviews were arranged at the end
of the trial with PRIMM materials. All ethical procedures were
adhered to. Information about the teachers is shown in Table 1.

Table 1: Summary of teacher and lesson characteristics

ID Teacher Grade Class No. No. No.
gender gender classes topics lessons

in study covered \topic
A Female 8th Girls 2 10 1
B Male 8th Boys 3 7 2
C Male 7th Mixed 2 8 2
D Female 6th Mixed 1 5 2-3
E Male 8th Mixed 2 10 2-3
F Female 7&8th Mixed 4 4 2
G Male 7th Girls 3 7 1
H Male 7th Mixed 6 7-9 1-2
I Male 8th Girls 2 8 1

5.4 Data collection: interviews
Semi-structured interviews were designed and conducted. After the
pilot study (see Section 5.1) we reviewed the interview questions for
their contribution and usefulness and adapted them for the follow
up study interview. In the pilot study teachers were asked questions
on general information about sessions with PRIMM and questions
on PRIMM experiences. The general questions were retained as
they were useful to verify subject material covered; the experience
questions were expanded and grouped over three sections, resulting
in four sections of questions for the main study:

• Section A General information about PRIMM sessions
• Section B Impact of PRIMM on students’ programming skills
• Section C Impact of PRIMM on teachers’ confidence
• Section D Use of PRIMM resources and the future

In total nine interviews were held with teachers from the 13
participating schools: these 9 were representative of the sample of
13 (see Table 1). All interviews and focus groups were completed
in the spring of 2018.

5.5 Data analysis
All interviews were conducted online, audio recorded and tran-
scribed. A thematic qualitative data analysis (QDA) approach was
used to analyse the transcribed interviews and outcomes of tasks
based on the methodology detailed by [13]. NVivo was used to
support the process of coding text segments. Two of the authors
worked on the coding of the interviews.

In the pilot study we had first generated high level categories
deductively from the research questions [13]. We had also cre-
ated sub-categories at this stage, based on knowledge of the field
[19]. However, in the main study we started by coding inductively
from the interviews [19]. The rationale for this decision was to
investigate whether there were any significant differences in the
emergent themes. The overall objective at this point was to create
main themes which would lead to a structure for reporting which
would not be pre-determined by any initial constraints.

Table 2: Summary of codes

Overarching theme % segments
coded to this theme

A Practical details of implementation 9%
B Skills needed to program 4%
C. Stages of PRIMM 18%
D. Impact and use of PRIMM 23%
E. Differentiation and assessment 24%
F. Adaptation and future use 12%
G. Teachers’ feelings and emotions 11%

One author coded two of the interviews adding and amending
categories and sub-categories inductively. After this first pass of
coding, we reviewed and revised the resultant categories to confirm
they matched the data coded. Two interviews provided approxi-
mately 1/5th of the overall transcripts in line with recommendations
from [13] of 10 to 20% for the first pass. Following this, all inter-
views were coded. Emergent patterns were recognized and new
codes created to hierarchically group codes. This process was re-
peated across the categories creating, merging and splitting codes
inductively [13, 19]. Once the more elaborate category system had
been created, we checked that all data adhered to the new coding
structure and recoded as necessary [13]. A second researcher then
coded three of the nine interviews (33% of the text) a second time,
with a Cohen’s Kappa reliability score of 0.75, which is considered
as good agreement between researchers.

6 RESULTS: TEACHERS’ EXPERIENCES
Through an iterative coding process seven key themes emerged
from the data, as shown in Table 2, which shows the themes and
the % of coded segments for each theme. In total there were 1603
coded segments. Within the 6 themes, categories were divided and
further sub-divided to capture teachers’ contributions. In total there
were 87 separate sub-categories of themes. The 20 most commonly
occurring of these 101 sub-categories is shown in Table 3.

From the 20 most common sub-categories and from our own
theming exercise, we can see that teachers were commenting largely
on the structure and use of PRIMM, differentiation for different
groups of students, and also their own response to teaching in this
way as teachers.

6.1 The structure and use of PRIMM
Teachers commented on a range of aspects of PRIMM that sup-
ported their teaching. Several teachers liked the way the lessons
were divided up into different activities and maintained interest of
students of different abilities:

“...it’s chunking it up . . . and each lesson having a new
challenge that builds on the previous one so it keeps
the interest of the ones that have raced ahead in the
previous lesson.” (Teacher A)

One teacher commented that the predict and run part of the
lesson promoted student engagement:

Paper Session: Teaching Practice 1 SIGCSE '19, February 27–March 2, 2019, Minneapolis, MN, USA

479

Table 3: Most common sub-categories

No Sub-category No.
segments

1 Use and adaptation of PRIMM 147
2 Use for lower ability children 91
3 Predict aspect of PRIMM 78
4 Teacher emotions 70
5 Progress made by pupils 63
6 Modify aspect of PRIMM 59
7 Investigate aspect of PRIMM 58
8 Use for higher ability children 50
9 PRIMM being fun 46
10 Future use of PRIMM 42
11 Make aspect of PRIMM 35
12 Routine nature of PRIMM 34
13 Differentiation by group 32
14 Assessment 32
15 Run aspect of PRIMM 31
16 Repeating or interwoven concepts 30
17 Differentation by task 30
18 Flow of control and tracing 27
19 Differentiation by teacher guidance 25
20 Pupil/pupil communication 23

“I think the Predict bit drew them into the lesson from
the start and then they were focused and that’s what
made them want to get involved.” (Teacher I)

Generally, asking students to predict what codewould dowithout
writing any was a new strategy for teachers. Teacher C commented
that he felt it set much higher expectations of his students. Several
other teachers referred to the collaborative nature of PRIMM:

“ I think the starter activity, where they actually have a
clear activity, that was very good because it got them to
work with each other, help them help each other, really.
And then, moving on, [we had] the code to be given to
the students to actually work with.” (Teacher H)

Teachers also commented on the independence and thinking
skills generated by predicting what the code would do:

“With the starters, quite often I used a whiteboard where
they actually had to write down what they thought the
program was going to do, what values they thought
the program was going to create. Because they were
having to work out and write down what the program
was doing, they were having to actually think about
for themselves, rather than me telling them what the
program was doing.” (Teacher C)

Teachers could see the value of asking questions to demonstrate
code comprehension, although the investigate part of the process
was felt to be a difficult part of the lesson for some students. In part
this was caused by the pitch of thematerials (written by the research
team) being too high, and including some challenging questions.
However alongside these concerns teachers acknowledged that

they helped students gain an understanding of what was going on
in the program:

“ They were spotting how things happened or the signif-
icance of particular bits of the code and realising that
essentially that the task was easier than they might
previously have thought.” (Teacher I)

Teacher I linked enjoyment of the modify stage and indepen-
dence as he said:

“The less able ones [students] enjoyed it (modify) be-
cause they got what they were doing when they were
at that stage. They were more sure of themselves than
they have been in previous Python lessons where they’ve
relied on my telling them. This was them doing it them-
selves . . . the difference was tangible.” (Teacher I)

Eight of the nine teachers mentioned how clear the PRIMM
process was, how easy it was to follow the PRIMM structure or the
routine repeatable nature of PRIMM:

“By the third lesson they were familiar with the struc-
ture and they were happy to go with it. They knew what
was coming next, if you like, without necessarily know-
ing what the content was going to be, they knew what
was coming up next.” (Teacher I)

Some of the content provided in the PRIMMmaterials was felt to
be too advanced for students at some schools, and teachers felt they
were pushing students through it. For example, Teacher D pointed
out that he felt pressurized to get learners to complete work:

“In one sense, it was very well structured because it
meant that the high-performance students never run
out of work. In none of the lessons did I have students
who completed every single thing. But it also meant
that I was sort of pushing on a lot.” (Teacher D)

The PRIMM modify stage was linked to learner confidence:

“. . . previously, when they’re writing their own programs,
we have so much trouble with syntax errors and half the
lesson is just them sorting out syntax. So actually being
able to modify it, they can think a little bit more about
what their code is doing rather than whether they’ve
got a colon in the right place or whatever. And then I
think, moving on, once they get to making their own,
they’ve got that little bit more confidence that they’ve
got a starting point to move on from” (Teacher A)

Teachers reported valuing and making time for the make aspect,
despite being short of time:

“One of the reasons I didn’t get through ten activities is
that the geography quiz was a really interesting make
project for them, yet most of them barely started their
first question within the time available in one hour
across that lesson. I actually sacrificed the next lesson
. . . it was a nice lesson to have as an extension without
introducing new concepts. We actually gave up another
hour to making and peer reviewing the geography quiz”
(Teacher A)

Paper Session: Teaching Practice 1 SIGCSE '19, February 27–March 2, 2019, Minneapolis, MN, USA

480

6.2 Accessibility to a range of learners
One of the motivations behind PRIMMwas that mandatory comput-
ing needs to be accessible to students with a wide range of abilities,
and those who may not have any innate interest in the subject. For
example, Teacher D mentioned that if students were not interested
at all in programming, they could get into the content of the les-
son much more quickly “because they didn’t have to go through the
process of typing it out themselves”.

Three of the teachers described how they adapted some of the
resources in the investigate stage, for example making missing
word activities. Some teachers described how their lower-ability
learners did not get on to the final make activities but that they
had still achieved some of the learning outcomes:

“I found that the resources for each lesson had enough
stretch for those that got it straight away and wanted
to go ahead, but also there was enough so that those
that didn’t get it. They could carry on modifying, not
necessarily getting onto themake part . . . and they didn’t
have that sense of frustration that they weren’t doing
anything.” (Teacher D)

Teacher D also saw starting with an existing program an advan-
tageous way to make progress:

“It’s like a writer, isn’t it? You write an essay. If you
start with a blank bit of paper, that scares some people.
I think the same can be true of a blank IDLE screen. So
I think having a structure to hinge what they’re doing
on and not starting blank and the idea of tinkering is
actually a good one.” (Teacher D)

Many of the lower-ability students lack confidence in program-
ming but teachers felt that the PRIMM structure enabled students
to gradually build up confidence through the repetitive nature of
the exercises, and be more comfortable about making mistakes:

“At first, they weren’t confident by themselves to predict,
and so I’d ask them to talk in pairs, for example, as I
think they were scared of getting it wrong . . . But as we
went on and it became a routine that we did it, and I
had to build up the fact that they probably will fail as
resilience . . . as a normal way of working. Once they got
to that point, they realised if they got it wrong, it didn’t
actually matter, because it actually gave us more to talk
about and about why they thought it was wrong, and
mistakes were completely acceptable and a normal part
of computer science.” (Teacher D)

6.3 Teachers‘ personal experience
Teachers talked a lot about how they experienced teaching with
PRIMM personally. Several teachers discussed gaining more confi-
dence or insight into their own teaching methods.

“I felt that the structure, it’s something that I could hand
over to someone that wasn’t such a confident coder and
they could go with it as well. ” (Teacher A)

Other teachers mentioned that using PRIMM made them more
confident in their own students ability to learn new concepts:

“I think that’s one of the things that I’d take away from
PRIMM. It’s something that had changed my practice

and it made me I suppose more confident in kids’ ability
to grasp functions or user-defined functions and proce-
dures. I’d say that was one of the few things in which
I’d changed in terms of confidence.” (Teacher B)

Another teacher explained how they had more idea of students’
progress during the lesson, which made them more effective:

“I found I could get round the room much more quickly,
and I was seeing everyone’s screen or I was being shown
things. Things were being explained to me, instead of
me asking for explanations from them.” (Teacher I)

One of the most confident and experienced teachers in the study,
who found keeping to the PRIMM structure through the whole trial
quite constraining, talked about the PRIMM approach as something
he would use amongst other approaches, and repeated several times
that he thought of PRIMM as a ‘philosophy’ rather than a ‘method-
ology’. From this we infer that the structure was restrictive to him,
but that the inherent ideas implicit were useful:

“I think the structure of PRIMM every lesson is a bit
constraining. But I think as a philosophy, it’s great. And
I hope that the post-test against the control group shows
that PRIMM is successful because it seems to make sense.
It seems to me that, as a philosophy, it would be great.
As a methodology, it’s quite constricting.” (Teacher B)

Teachers also talked about adapting the resources for future use,
which implies a confidence to develop their teaching further. Finally,
teachers had comments on improvements to the materials, or how
they might adapt the approach for their particular students. Overall
teachers were positive: “It really does work! ” (Teacher I)

6.4 Summary
Our study to date indicates that teachers value the structure pro-
vided by PRIMM. Many comments related to the Predict phase
particularly. This aligns with the work around the importance of
reading and tracing code [15, 30, 34] as well as the importance
of understanding transition between different levels of a program
[2, 6, 23, 28]. Teachers like the idea of students modifying existing
code, supported by the UMC approach [14], although in some cases
the materials were too weighty for the teachers to reach those sec-
tions in the time available. In terms of the materials we developed
to exemplify PRIMM, our research indicates that while the struc-
ture of the lessons suited the lower ability students in the class,
the quantity of content in the materials meant teachers could not
complete all the activities planned. This does not necessarily reflect
on the PRIMM structure but indicates that both the structure and
content of PRIMM lessons are equally important.

Some teachers in our study were very willing to adapt materials
and create new ones for students, for topics that we had not yet
covered, in particular. Other teachers were less confident to do
this and felt constrained by being in a research study. We reflected
that, although we had built up good relationships with teachers in
the study, in future studies we would ensure that materials were
co-constructed and owned more definitively by teachers.

Paper Session: Teaching Practice 1 SIGCSE '19, February 27–March 2, 2019, Minneapolis, MN, USA

481

7 CONCLUSION
In this paper we have described the structure of the PRIMM ap-
proach and the materials we developed to exemplify it. Through
interviews with teachers we have gained an understanding of the
extent to which PRIMM is useful in school.

From teacher feedback, we can conclude that teachers find the
approach useful and indicate that it helps students to gain a better
understanding of programming, as well as structuring productive
lessons. We have shown that teachers particularly value the collab-
orative approach taken in PRIMM, and the structure given to the
lessons. Teachers also could see the potential for differentiation to a
wide range of abilities, and the focus on subject-specific vocabulary
that PRIMM engenders.

Although there has been much research around programming
pedagogy, with a range of strategies suggested, our experience to
date suggests that this approach offers teachers a clear and easy-to-
follow structure for lessons that other approaches have not provided.
For this reason, in our future work we plan to revisit the method-
ology used to ensure that teachers feel able to engage more with
the materials design and take an enhanced participatory role in the
research. We are collecting PRIMM-style resources that teachers
have developed to use in their classrooms to use as exemplars for a
wider body of teachers. We anticipate that this approach may be of
use to other researchers of school-based computing education.

REFERENCES
[1] Giora Alexandron, Michal Armoni, Michal Gordon, and David Harel. 2014.

Scenario-based Programming: Reducing the Cognitive Load, Fostering Abstract
Thinking. In Companion Proceedings of the 36th International Conference on Soft-
ware Engineering (ICSE Companion 2014). ACM, New York, NY, USA, 311–320.
https://doi.org/10.1145/2591062.2591167 00023.

[2] Michal Armoni. 2013. On Teaching Abstraction in Computer Science to Novices.
Journal of Computers in Mathematics and Science Teaching 32, 3 (2013), 265–284.

[3] Sasha Barab. 2014. Design-based research: A methodological toolkit for engi-
neering change. In The Cambridge Handbook of the Learning Sciences, Second
Edition. Cambridge University Press.

[4] Sasha Barab and Kurt Squire. 2004. Design-based research: Putting a stake in the
ground. The journal of the learning sciences 13, 1 (2004), 1–14.

[5] Teresa Busjahn and Carsten Schulte. 2013. The Use of Code Reading in Teaching
Programming. In Proceedings of the 13th Koli Calling International Conference
on Computing Education Research (Koli Calling ’13). ACM, New York, NY, USA,
3–11.

[6] Quintin Cutts, Sarah Esper, Marlena Fecho, Stephen R. Foster, and Beth Simon.
2012. The Abstraction Transition Taxonomy: Developing Desired Learning
Outcomes Through the Lens of Situated Cognition. In Proceedings of the Ninth
Annual International Conference on International Computing Education Research
(ICER ’12). ACM, New York, NY, USA, 63–70.

[7] Judith Gal-Ezer and Ela Zur. 2004. The efficiency of algorithmsâĂŤmisconcep-
tions. Computers & Education 42, 3 (April 2004), 215–226. https://doi.org/10.
1016/j.compedu.2003.07.004

[8] Varvara Garneli, Michail N. Giannakos, and Konstantinos Chorianopoulos. 2015.
Computing education in K-12 schools: A review of the literature. In Global
Engineering Education Conference (EDUCON), 2015 IEEE. IEEE, 543–551. 00017.

[9] Shuchi Grover, Roy Pea, and Stephen Cooper. 2015. Designing for deeper learning
in a blended computer science course for middle school students. Computer
Science Education 25, 2 (April 2015), 199–237. https://doi.org/10.1080/08993408.
2015.1033142

[10] Monika Gujberova and Ivan Kalas. 2013. Designing Productive Gradations of
Tasks in Primary Programming Education. In Proceedings of the 8th Workshop in
Primary and Secondary Computing Education (WiPSE ’13). ACM, New York, NY,
USA, 108–117. https://doi.org/10.1145/2532748.2532750 00012.

[11] Peter Hubwieser, Michal Armoni, Michail N. Giannakos, and Roland T. Mittermeir.
2014. Perspectives and Visions of Computer Science Education in Primary and
Secondary (K-12) Schools. Trans. Comput. Educ. 14, 2 (June 2014), 7:1–7:9. 00041.

[12] Paul A. Kirschner, John Sweller, and Richard E. Clark. 2006. Why Minimal
Guidance During Instruction Does Not Work: An Analysis of the Failure of Con-
structivist, Discovery, Problem-Based, Experiential, and Inquiry-Based Teach-
ing. Educational Psychologist 41, 2 (June 2006), 75–86. https://doi.org/10.1207/

s15326985ep4102_1 05793.
[13] Udo Kuckartz. 2014. Qualitative text analysis: A guide to methods, practice and

using software. Sage.
[14] Irene Lee, Fred Martin, Jill Denner, Bob Coulter, Walter Allan, Jeri Erickson, Joyce

Malyn-Smith, and Linda Werner. 2011. Computational thinking for youth in
practice. ACM Inroads 2, 1 (2011), 32.

[15] Raymond Lister, Elizabeth S Adams, Sue Fitzgerald, William Fone, John Hamer,
Morten Lindholm, Robert McCartney, Jan Erik Moström, Kate Sanders, Otto
Seppälä, et al. 2004. A multi-national study of reading and tracing skills in novice
programmers. In ACM SIGCSE Bulletin, Vol. 36. ACM, 119–150.

[16] Raymond Lister, Colin Fidge, and Donna Teague. 2009. Further Evidence of a
Relationship Between Explaining, Tracing and Writing Skills in Introductory
Programming. In Proceedings of the 14th Annual ACM SIGCSE Conference on
Innovation and Technology in Computer Science Education (ITiCSE ’09). ACM, New
York, NY, USA, 161–165.

[17] Sze Yee Lye and Joyce Hwee Ling Koh. 2014. Review on teaching and learning of
computational thinking through programming: What is next for K-12? Computers
in Human Behavior 41 (2014), 51–61. 00303.

[18] Lauren E. Margulieux and Richard Catrambone. 2016. Improving problem solving
with subgoal labels in expository text and worked examples. Learning and
Instruction 42 (2016), 58–71. 00015.

[19] P Mayring. 2000. Forum: Qualitative Social Research Sozialforschung, 2. History
of Content Analysis. In Forum: Qualitative Social Research. Sozialforschung, Vol. 1.

[20] Orni Meerbaum-Salant, Michal Armoni, and Mordechai (Moti) Ben-Ari. 2013.
Learning computer science concepts with Scratch. Computer Science Education
23, 3 (Sept. 2013), 239–264. https://doi.org/10.1080/08993408.2013.832022

[21] Briana B. Morrison, Lauren E. Margulieux, Barbara Ericson, and Mark Guzdial.
2016. Subgoals Help Students Solve Parsons Problems. In Proceedings of the 47th
ACM Technical Symposium on Computing Science Education (SIGCSE ’16). ACM,
New York, NY, USA, 42–47. https://doi.org/10.1145/2839509.2844617 00025.

[22] Seymour Papert. 1980. Mindstorms: children, computers and powerful ideas.
Vol. Harvester studies in cognitive science. Harvester, Brighton.

[23] Jacob Perrenet, Jan Friso Groote, and Eric Kaasenbrood. 2005. Exploring students’
understanding of the concept of algorithm: levels of abstraction. ACM SIGCSE
Bulletin 37, 3 (2005), 64–68.

[24] Anthony Robins, Janet Rountree, and Nathan Rountree. 2003. Learning and
Teaching Programming: A Review and Discussion. Computer Science Education
13, 2 (2003), 137–172.

[25] Carsten Schulte. 2008. Block Model: An Educational Model of Program Compre-
hension As a Tool for a Scholarly Approach to Teaching. In Proceedings of the
Fourth International Workshop on Computing Education Research (ICER ’08). ACM,
New York, NY, USA, 149–160.

[26] Sue Sentance and JaneWaite. 2017. PRIMM: Exploring pedagogical approaches for
teaching text-based programming in school. In Proceedings of the 12thWorkshop in
Primary and Secondary Computing Education. ACM. https://doi.org/10.475/123_4

[27] Sue Sentance, Jane Waite, and Maria Kallia. [n. d.]. Teaching computer program-
ming with PRIMM: a sociocultural perspective. Paper in review. ([n. d.]).

[28] David Statter and Michal Armoni. 2016. Teaching Abstract Thinking in Introduc-
tion to Computer Science for 7th Graders. In Proceedings of the 11th Workshop in
Primary and Secondary Computing Education (WiPSCE ’16). ACM, New York, NY,
USA, 80–83. https://doi.org/10.1145/2978249.2978261 00010.

[29] Leigh Ann Sudol-DeLyser, Mark Stehlik, and Sharon Carver. 2012. Code com-
prehension problems as learning events. In Proceedings of the 17th ACM annual
conference on Innovation and technology in computer science education. ACM,
81–86. http://dl.acm.org/citation.cfm?id=2325319

[30] Donna Teague and Raymond Lister. 2014. Programming: Reading, Writing and
Reversing. In Proceedings of the 2014 Conference on Innovation and Technology in
Computer Science Education (ITiCSE ’14). ACM, New York, NY, USA, 285–290.

[31] The Royal Society. 2017. After the Reboot: Computing Education in UK Schools.
Policy Report.

[32] Chia-Yin Tsai, Ya-Fei Yang, and Chih-Kai Chang. 2015. Cognitive Load Compari-
son of Traditional and Distributed Pair Programming on Visual Programming
Language. In Educational Innovation through Technology (EITT), 2015 International
Conference of. IEEE, 143–146. 00001.

[33] Jeroen J. G. van MerriÃńnboer and John Sweller. 2005. Cognitive Load Theory
and Complex Learning: Recent Developments and Future Directions. Educa-
tional Psychology Review 17, 2 (June 2005), 147–177. https://doi.org/10.1007/
s10648-005-3951-0 00000.

[34] Anne Venables, Grace Tan, and Raymond Lister. 2009. A Closer Look at Tracing,
Explaining and Code Writing Skills in the Novice Programmer. In Proceedings
of the Fifth International Workshop on Computing Education Research Workshop
(ICER ’09). ACM, New York, NY, USA, 117–128.

[35] Jane Waite. 2017. Pedagogy in teaching Computer Science in schools: A Lit-
erature Review. https://royalsociety.org/ /media/policy/projects/computing-
education/literature-review-pedagogy-in-teaching.pdf The Royal Society.

Paper Session: Teaching Practice 1 SIGCSE '19, February 27–March 2, 2019, Minneapolis, MN, USA

482

https://doi.org/10.1145/2591062.2591167
https://doi.org/10.1016/j.compedu.2003.07.004
https://doi.org/10.1016/j.compedu.2003.07.004
https://doi.org/10.1080/08993408.2015.1033142
https://doi.org/10.1080/08993408.2015.1033142
https://doi.org/10.1145/2532748.2532750
https://doi.org/10.1207/s15326985ep4102_1
https://doi.org/10.1207/s15326985ep4102_1
https://doi.org/10.1080/08993408.2013.832022
https://doi.org/10.1145/2839509.2844617
https://doi.org/10.475/123_4
https://doi.org/10.1145/2978249.2978261
http://dl.acm.org/citation.cfm?id=2325319
https://doi.org/10.1007/s10648-005-3951-0
https://doi.org/10.1007/s10648-005-3951-0

	Abstract
	1 Introduction
	2 Teaching programming: instructional approaches
	3 The PRIMM approach
	4 A PRIMM lesson
	4.1 Predict and Run
	4.2 Investigate
	4.3 Modify and Make

	5 The Study
	5.1 The pilot study
	5.2 The main study
	5.3 Participants
	5.4 Data collection: interviews
	5.5 Data analysis

	6 Results: Teachers' experiences
	6.1 The structure and use of PRIMM
	6.2 Accessibility to a range of learners
	6.3 Teachers` personal experience
	6.4 Summary

	7 Conclusion
	References

