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Abstract

Bird activity detection (BAD) deals with the task of predicting
the presence or absence of bird vocalizations in a given audio
recording. In this paper, we propose an all-convolutional neu-
ral network (all-conv net) for bird activity detection. All the
layers of this network including pooling and dense layers are
implemented using convolution operations. The pooling opera-
tion implemented by convolution is termed as learned pooling.
This learned pooling takes into account the inter feature-map
correlations which are ignored in traditional max-pooling. This
helps in learning a pooling function which aggregates the com-
plementary information in various feature maps, leading to bet-
ter bird activity detection. Experimental observations confirm
this hypothesis. The performance of the proposed all-conv net
is evaluated on the BAD Challenge 2017 dataset. The proposed
all-conv net achieves state-of-art performance with a simple ar-
chitecture and does not employ any data pre-processing or data
augmentation techniques.

Index Terms: bird activity detection, all-conv net, learned
pooling

1. Introduction

Manual monitoring of birds can be a tedious and difficult task
due to the wide range of habitats, such as islands, marshes and
swamps, occupied by different bird species [1]. Many bird
species are nocturnal which makes it less feasible to manu-
ally monitor them. Moreover, it requires an experienced bird
watcher to accurately identify the bird species. Acoustic moni-
toring bypasses the need of manual labour and provides a con-
venient way to monitor birds in their natural habitats without
any physical intrusion [2].

Recently, there is a boom in sophisticated automatic record-
ing devices which can be programmed to record audio data
for many days. This vast amount of audio data can be used
for acoustic monitoring, which can give insight into avian di-
versity, migration patterns and population trends in different
bird species. Bird activity detection (BAD) [3] is generally the
first module in any bioacoustic monitoring system. BAD dis-
tinguishes the audio recordings having bird vocalizations from
those recordings which do not contain any bird call or song.
Hence, BAD helps in removing the audio recordings which do
not contain any bird vocalizations from further processing. This
reduces the amount of data to be processed for other tasks such
as bird vocalization segmentation and species identification.

The task of BAD becomes challenging due to the varia-
tions present in bird vocalizations across different bird species.
These variations can be due to the different frequency profiles or
different frequency-temporal modulations of different species.
This behaviour is more evident in the vocalizations of Emer-
ald dove and Cassin’s vireo. The sounds produced by Emerald
dove are characterized by low-frequency and have little varia-

tion in frequency along time. On the other hand, the vocaliza-
tions of Cassin’s vireo relatively occupy high frequency bands
and exhibit different kinds of frequency and temporal modula-
tions. These variations present in bird sounds make it difficult
to model the bird vocalizations class effectively. Apart from
this, the background of audio recordings is also unpredictable.
Different biotic and abiotic non-bird sounds can form the back-
ground in any audio recording. Hence, the task of BAD can be
seen as the classification between the universe of bird sounds
and the universe of non-bird sounds. The extreme variations
present in both the sets make this simple two-class classifica-
tion problem challenging. An ideal bird activity detector should
work well across different bird species in different recording
environments.

Many studies in the literature have targeted the task of
BAD. In our earlier studies [4, 5], the frameworks based on
SVM powered with dynamic kernels are proposed for the task
of BAD. In [4], a GMM based variant of the existing proba-
bilistic sequence kernels is proposed while in [5], an archetypal
analysis based sequence kernel is successfully utilized for BAD.
Both these frameworks require less amount of training data and
generalize well on unseen data. However, the classification per-
formance of these frameworks is not up-to the level of state-
of-art BAD frameworks. In [6], a masked non-negative matrix
factorization (Masked NMF) approach for bird detection is pro-
posed. Masked NMF can handle weak labels by applying a bi-
nary mask on the activation matrix during dictionary learning.
In [7], a convolutional recurrent neural network (CRNN) for
BAD is proposed. Convolutional layers of this network extract
local frequency shift invariant features while recurrent layers
learn the long-term temporal relations between the features ex-
tracted from short-term frames. The classification performance
of this network is comparable to the state-of-art methods on the
evaluation data of the BAD 2017 dataset. This method does not
utilize any pre-processing or data augmentation. However, the
recurrent layers are computationally expensive to train which
increases the overall computational time required to train the
CRNN. In [8], two CNNs (sparrow and bulbul) are proposed.
The ensemble of these two networks provide state-of-art bird
activity detection on this dataset.

Inspired by the success of CNN-based architectures for
BAD and simplicity of all-conv neural network proposed in
[9], we propose an all-convolutional neural network (all-conv
net) for BAD. This network is characterized by alternating con-
volution and pooling layers followed by dense layers, where
each of these layers are implemented by the convolution oper-
ation itself. Instead of max-pooling, the local features obtained
using a convolution layer are pooled using a learned aggrega-
tion, implemented using convolution operations. This aggre-
gation function is referred as learned pooling, which aggregates
the contemporary information present in different feature-maps.
On the contrary, max-pool operations aggregates the informa-
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tion present in each feature-map individually (see section 2).
This behaviour of learned pooling helps in obtaining better dis-
criminating features, leading to a better classification perfor-
mance in comparison to the normal max-pooling. Moreover,
the proposed all-conv net has lesser number of trainable param-
eters in comparison to the existing state-of-art neural networks
for the task in hand and does not utilize any pre-processing and
data augmentation.

The rest of this paper is organized as follows. In Section
2, the proposed deep all-conv framework is described in detail.
Performance analysis and conclusion are in sections 3 and 4,
respectively.

2. Proposed Framework

In this section, we describe the proposed all-conv net for BAD.
First, we describe Mel-spectrogram, a spatio-temporal feature
representation obtained from the raw audio recordings. Then,
we describe the proposed all-conv net which maps the input
Mel-spectrogram to a two dimensional probabilistic score vec-
tor containing probabilities for the presence and absence of any
bird activity.

2.1. Feature representation

Mel-spectrogram, a spatio-temporal feature representation, ob-
tained from the audio recordings are used as input to the pro-
posed all-conv net. Short-term Fourier transform (STFT) is em-
ployed to obtain the spectrogram from the input audio record-
ings. The audio signal is windowed using a frame size of 20
ms with no overlap and a Hamming window. 882 FFT points
are used to obtain the Fourier transform of an audio frame. This
process converts a 10 second (duration of recordings in the BAD
2017 dataset) audio recording into a 441 x 500 dimensional
spectrogram representation. Each frame of this spectrogram is
converted into a 40-dimensional vector of log filter bank en-
ergies using Mel filter-bank [7]. Hence, each 10-second au-
dio recording is represented by a 40 x 500 dimensional Mel-
spectrogram.

2.2. All-conv net for BAD

The proposed architecture consists of four pairs of convolution
and learned pooling layers followed by two (1, 1) convolution
layers. The input to the network is a 40 x 500 Mel-spectrogram.
A kernel size of 5 x 5 with a stride of 1 x 1 is used in the con-
volutional layers. To avoid over-fitting, as data is not abundant,
the proposed architecture has only 16 filters in each convolu-
tional layers. In order to pool the feature maps, the convolution
with kernel size of 5 x 1 and 2 x 1 with a stride of 5 X 1 and
2 x 1 respectively is used at the subsequent layers. In the later
part of the network, we have two 1 X 1 convolutional layers
with 196 and 2 filters respectively. The output of these layers is
a two-dimensional feature map, which is converted into a prob-
abilistic score vector using soft-max function. The elements of
this vector signify the probability of the presence and absence
of the bird activity in any input Mel-spectrogram.

For regularization, batch normalization [10] has been used
after convolutional layers and dropout [11] with the probabil-
ity of 0.25 and 0.5 has been used after convolutional layers and
learned pooling layers respectively. The weights of the network
has been initialized using random normal distribution. The net-
work is optimized using Adam optimizer [12] with a learning
rate of 0.001 and a decay of 10~° and binary cross-entropy as
the loss function. The network is shown in Fig. 1. An exhaus-
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Figure 1: Proposed all-conv architecture for bird activity detec-
tion

tive grid search is applied to establish the various parameters
such as the number of convolutional layers, the number of fil-
ters, the size of filter kernel and drop-out rates. Following are
the main highlights of the proposed network:

Input: The input to the network is Mel-spectrogram of dimen-
sions 40 x 500, extracted from audio wave files (see Section
2.1).

Learned pooling: Replacing max-pooling with convolution
pooling layers incorporates the inter-feature dependencies. To
pool the feature maps, we utilise strided convolutions instead
of max-pooling. Throughout the learning process, the tempo-
ral dimension is kept constant. Although, for BAD, preserv-
ing temporal dimension may not make any difference. But for
other applications which are extension of BAD such as bird ac-
tivity/event segmentation, it is essential to preserve the time in-
formation. By the series of convolution and learned pooling op-
erations, the input data has been transformed into a vector with
16 unique spatial feature representations of size 16 x 1 x 500.
Intuitively, each of these 1 x 500 feature vectors can be inter-
preted as a position vector which points to certain regions in the
input Mel-spectrogram. The elements of these position vectors
are coordinates of the peak responses learned by corresponding
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Figure 2: Illustration of the difference between (a) max pooling
and (b) learned pooling.

filters.

After this stage, these 16 feature vectors are stacked to-
gether to form a new 2D feature representation of size 500 x
16 corresponding to each input Mel-spectrogram. Temporal
pooling is applied on this 2D representation to obtain a 16-
dimensional feature vector. This temporal pooling is imple-
mented using 1D strided convolution. This helps in compress-
ing the 2D matrix representation into a low dimensional feature
representation.

Convolutional fully connected layers: The fully connected lay-
ers at the end of the network are implemented by using 1 x 1
convolutions in which the number of filters in each of the con-
volution layers are equivalent to the number of neurons in a
fully connected layer. The first layer consists of 196 filters and
finally, we reduce our feature map to 2 dimensions to get the re-
quired probability of the presence/absence of the bird activity.

Activations: ReLU (Rectified Linear Unit) activation has been
applied over all the convolutional and the learned pooling lay-
ers. While on the fully connected layer of 196 filters (which
has been implemented using convolutional layer), we have ap-
plied sigmoid activation. Softmax is applied over the final 2-
dimensional output of the network to get the probabilities of
presence/absence of bird activity.

2.3. Learned pooling vs. max-pooling

As discussed earlier, learned pooling learns an aggregation
function that utilizes the correlations among different feature
maps. On the other hand, max-pool does not take into consider-
ation these inter-feature map relations. In max-pool, each fea-
ture map is processed individually and any aggregated feature
map is a function of only one input feature map. However, in
learned pooling, an aggregated feature map is a function of mul-
tiple input feature maps. This behaviour is illustrated in Fig. 2.
The analysis of the filters learned at the first convolution layer of
the proposed all-conv net confirm that the information learned
by each filter can be complementary to other filters. This is il-
lustrated in Fig. 3. The analysis of Fig. 3(b) illustrates that the
8th filter of the first convolution layer of the proposed all-conv
net is only concerned with learning the bird vocalizations. On
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Figure 3: (a) Mel-spectrogram of an audio recording containing
bird activity (b) Response of the 8th filter, learned in the first
comvolution layer, for the input Mel-spectrogram shown in (a)
(¢) Response of the 11th filter, learned in the first convolution
layer, for the input Mel-spectrogram shown in (a).

the contrary, 11th filter is learning the background information
(Fig. 3(c)). Thus, it can be deduced that each filter is learn-
ing a different behaviour or event. The utilization of this com-
plementary information in the aggregation function can lead to
more discriminative features. The learned pooling learns this
sort of aggregation, leading to better bird activity detection (see
Section 3).

2.4. Discriminative nature of the learned features

The first 10 layers of the proposed all-conv net can be seen as
a feature learner while the last 2-dense layers act as a classi-
fier. In this subsection, we analyse the discriminative ability
of the 16-dimensional features generated by the network at the
10th layer (before the dense layers). Fig. 4 shows the feature
representations for five different audio files present in the BAD
2017 dataset. These files cover five different cases i.e. first one
contains a birdcall mimicked by a human (fake birdcall), sec-
ond contains the background without any birdcall (pure noise),
third one contains birdcalls (pure birdcall), fourth one has both
speech and birdcall (speech+birdcall) and fifth one contains
music only (music). The analysis of Fig. 4 highlights the ability
of the proposed all-conv net to differentiate between bird activ-
ity and various other acoustic events. The feature coefficients
corresponding to the first few filters (i.e. 1,3,4 and 6) exhibit
high magnitudes for birdcalls only. As a result, a clear discrim-
ination between birdcalls and other sounds, such as speech and
music, is evident in these features. This highlights the effective-
ness of the proposed all-conv net for the task in hand.

3. Performance Analysis
3.1. Dataset and evaluation metric

The performance of the proposed all conv-net is evaluated on
the BAD challenge 2017 dataset [13]. The dataset is divided
into two parts: development and evaluation. The development
dataset has 15690 audio recordings, out of which 7710 has bird
activity. The evaluation dataset has 8620 recordings. All of
these recordings are 10 seconds long and are sampled at 44.1
kHz. More information about the source and recording condi-
tions of BAD 2017 dataset can be found at [13]. The 80% of
the development data is used for training the network while rest
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Figure 4: 16-dimensional feature vectors obtained before the
dense layers

of the 20% is used for validation purposes. The number of ex-
amples in both bird and non-bird classes are forced to be the
same.

The area under the Receiver Operating Characteristic curve
(AUC) [14] is used as a metric to evaluate the performance of
the proposed network.

3.2. Comparative methods

The performance of the proposed all-conv net is compared with
various other methods proposed for BAD on the evaluation
dataset of BAD challenge 2017. We have used rapid probabilis-
tic sequence kernels (RPSK) [4], masked NMF (MNMF) [6],
RCNN [7], bulbul and sparrow networks [8] and DenseNets
[15] as comparative methods. Apart from the methods listed
here, the performance of the proposed all-conv net can be com-
pared with all the entries of the BAD 2017 challenge. The per-
formance of all the entries on the evaluation dataset is listed at
[16].

[ RPSK [ |MNMF [N DenseNet [0 RCNN [N bulbul [ sparrow [ All-conv
100

o 88.2 76 gg4 889
70

Figure 5: Classification performance of the proposed all-conv
net along with various other methods.

AUC (%)

3.3. Classification performance

The classification performance of the proposed all-conv net
along with various comparative methods is depicted in Fig. 5.
The analysis of this figure makes it clear that non-deep learn-
ing methods (RPSK and MNMF) are not able to perform up-to
the level of deep learning based frameworks. The performance
of all-conv net is comparable to the state-of-art deep learning
frameworks including bulbul-net which is the winning entry of
BAD challenge 2017. Also, it must be noted that the proposed
all-conv net does not utilize any pre-processing and data aug-
mentation. Incorporating these steps in the proposed architec-
ture may lead to an improvement in the classification perfor-
mance.

Number of trainable parameters: Table 1 shows the number
of trainable parameters in the deep frameworks considered in

Table 1: Number of training parameters in various deep learn-

ing frameworks considered in this study

Framework Trainable parameters
DenseNet [15] 328004
RCNN [7] 806000
Bulbul [8] 373169
Sparrow [8] 309843
All-conv (Proposed) 154414
Input shape (1x40x500)

All-conv net

Max-pool variant

5x5 Conv2D 16 ReLU

5x5 Conv2D 16 RelLU

5x1 Conv2D 16 ReLU

5x1 MaxPool2D

5x5 Conv2D 16 RelLU

5x5 Conv2D 16 ReLU

2x1 Conv2D 16 ReLU

2x1 MaxPool2D

5x5 Conv2D 16 RelLU

5x5 Conv2D 16 ReLU

2x1 Conv2D 16 RelLU

2x1 MaxPool2D

5x5 Conv2D 16 RelLU

5x5 Conv2D 16 RelLU

2x1 Conv2D 16 ReLU

2x1 MaxPool2D

500 ConviD 16 ReLU

500 MaxPool1D

1x1 Conv2D 196 sigmoid

Dense 196 sigmoid

1x1 Conv2D 2 softmax

Dense 2 softmax

AUC 88.91

85.01

Figure 6: Architecture of the all-conv net and its max-pool vari-
ant.

this study. Although the comparative deep learning frameworks
considered in this study show comparable performances to the
proposed all-conv net, the number of trainable parameters in the
all-conv net is significantly lesser than the other methods.

Effect of max-pooling and learned pooling on the classifi-
cation performance: To analyse the effect of learned pool-
ing on the classification performance, we replaced each learned
pooling layer of the proposed all-conv net with max-pooling
layers. This max-pool variant of the proposed network is
shown in Fig. 6. This replacement of the learned pooling with
max-pooling showed a relative drop of 4.39% (from 88.9% to
85.01%) in AUC. This justifies the claim that the utilization
of the complimentary feature-maps information during pooling
leads to the discriminative feature representations which pro-
vides better classification performance.

4. Conclusion

In this paper, we proposed an all-conv net for bird activity detec-
tion. This network is characterized by the use of convolution op-
erations for implementing all the layers including pooling and
the fully connected layers. The performance of this proposed
network is comparable to the state-of-art bird activity detection
methods. This paper also highlights the use of learned pooling
over max-pooling in the proposed network. The experimen-
tal observations verifies the superiority of the learned pooling
over traditional max-pooling for the task of bird activity detec-
tion. Future work may include exploring the learned pooling
on other types of the acoustic classification tasks to see if the
trends observed in bird activity detection replicate themselves
on the other tasks.
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